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We study frequency fluctuations in self-sustained oscillators based on nonlinear underdamped res-
onators. Important types of such resonators are nano- and microelectromechanical systems. Various noise
sources are considered, with the emphasis on the fundamentally unavoidable noise that comes along with
dissipation from the coupling to a thermal reservoir. The formulation in terms of the action-angle variables
of the resonator allows us to analyze a deeply nonlinear regime. In this regime the vibration frequency as
a function of the action can have an extremum. We show that frequency fluctuations can be strongly
reduced by choosing the operation point at this extremum. We suggest a practical implementation of a
nanoresonator that has the appropriate property and show explicit results for the corresponding model.
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L. INTRODUCTION

Self-sustained oscillations underlie the operation of a
wide range of systems, various types of clocks, frequency
generators, and lasers being familiar examples. One of
the most important problems of the physics and appli-
cations of these systems is frequency fluctuations. Many
aspects of this problem are common for different types
of vibrational systems. To be specific, in this paper we
are motivated by and will discuss frequency fluctuations
in the context of nano- and microelectromechanical sys-
tems (NEMS and MEMS), although the results are not
limited to these systems. During the past decades, various
types of NEMS and MEMS have been developed, which
are mechanical resonators with eigenfrequencies lying in a
broad range from 10* to 10° Hz. The vibrational eigen-
modes often have a high quality factor O, given by the
ratio of the eigenfrequency to the energy decay rate; even
at room temperatures Q can be as large as 8 x 108 [1].
These features enable numerous applications of NEMS
and MEMS, including various applications that require
compact frequency sources; cf. Refs. [2,3].

NEMS and MEMS are mesoscopic systems: they are
large on the atomic scale, but at the same time they are
small. Therefore, their vibrational modes often exhibit
significant levels of nonlinearity and relatively strong fluc-
tuations; cf. Refs [4—7]. An important part of these fluctu-
ations comes from the thermal noise that emerges because

" dykmanm@msu.edu

2331-7019/21/15(1)/014024(14)

014024-1

of the coupling of the modes to other degrees of free-
dom, which form a thermal reservoir. Thermal noise is
an unavoidable source of fluctuations, because it natu-
rally comes along with dissipation and is related to the
decay of the modes by the fluctuation-dissipation theorem.
This noise directly leads to fluctuations of the phases (and
ultimately the frequencies) of the modes.

Another important source of frequency fluctuations due
to thermal noise comes from the interplay of this noise
with the nonlinearity of the vibrational modes. Indeed, the
nonlinearity leads to the dependence of the vibration fre-
quency on the energy, or, equivalently, on the vibration
amplitude. Because of the noise, the amplitude fluctuates
in time, resulting in frequency fluctuations. A well-known
manifestation of this effect is the characteristic broadening
of the power spectrum of the vibrational modes and, con-
sequently, of the spectrum of the response to an external
field [8]. In nanoscale vibrational systems, such broaden-
ing has been studied in detail in several experiments; cf.
Refs. [9—16] and the references therein.

To perform self-sustained vibrations, a resonator has to
be complemented by an amplifying feedback loop. The
amplifier determines the vibration amplitude. It is well
known (cf. Refs. [17—19]) that, for a linear resonator,
the intensity of frequency fluctuations induced by ther-
mal noise scales as the inverse squared vibration ampli-
tude. Suppressing the fluctuations requires exciting the
resonator to comparatively large amplitudes. However, if
the vibration nonlinearity comes into play, fluctuations of
the vibration amplitude make an increasingly important

© 2021 American Physical Society



MILLER, SHAW, and DYKMAN

PHYS. REV. APPLIED 15, 014024 (2021)

contribution to fluctuations of the vibration frequency. A
conventional strategy for alleviating this effect is to engi-
neer resonators that remain linear in a comparatively broad
amplitude range; cf. Refs. [20-22].

A qualitatively different approach aimed at suppress-
ing the noise from the feedback loop was pioneered by
Greywall et al. [23,24] and was later extended in Refs.
[25-28]. This approach exploits the bistability of the
response of the nonlinear resonator to a resonant drive and
the possibility to tune this resonator to a specific point
on the response curve. Yet another approach is based on
using coupled modes [29], including nonlinear resonance
in coupled modes [30,31]. Besides frequency sources,
suppressing frequency fluctuations is critically important
for many other applications of NEMS and MEMS, from
mass sensing (cf. Refs. [32-35]) to various force mea-
surements, including measurements of magnetic forces
(cf. Refs. [36-39]).

In this paper we show that, if the nonlinearity of a
weakly damped resonator meets certain fairly general
conditions, it can be used to suppress the amplitude-to-
frequency noise conversion in a well-defined range of
comparatively large vibration amplitudes [40]. The extent
of the suppression and the frequency range can be con-
trolled, as we show on a simple example. This allows one
to operate the resonator in an optimal regime in terms of
reducing both the small-amplitude and the conventional
large-amplitude frequency fluctuations.

The idea of the approach is based on the observation that
the eigenfrequency of a resonator may depend on the vibra-
tion amplitude nonmonotonically. Near the extrema of this
dependence small amplitude fluctuations are not translated
into frequency fluctuations. An interesting manifestation of
the effect of the nonmonotonicity in open systems, i.e., in
the absence of a feedback loop, is the noise-induced nar-
rowing of the power spectrum [41]. Here, the width of the
spectrum of a nonlinear vibrational mode first increases
with increasing noise intensity, but then decreases, before
it ultimately starts increasing again. In a micromechanical
system this effect was recently observed by Huang et al.
[15].

The analysis below uses the fact that the vibrational
mode is strongly underdamped, i.e., the vibration fre-
quency largely exceeds the decay rate. Respectively, the
amplification is also weak, in the appropriate units, as it
only needs to compensate the weak damping. In contrast
to much of the previous work on NEMS and MEMS, it
is not assumed that the nonlinearity is weak and that the
vibration frequency as a function of the amplitude remains
close to its zero-amplitude value. The analysis extends to
the case where the frequency at the extremum of its ampli-
tude dependence may be significantly different from its
zero-amplitude value. In many systems, such a noticeable
change of the vibration frequency is not accompanied by
generating strong overtones, as will be seen in the example

we discuss. Moreover, the amplifier in the feedback loop
can be an efficient frequency filter, which will suppress
overtones at the output of the system.

Technically, the approach is based on separating dynam-
ical time scales, in the spirit of the method of averaging
[42,43]. Since the vibration frequency is much higher than
the rate at which the oscillator amplitude changes, one
can calculate the amplitude change by averaging the equa-
tions of motion over the amplitude-dependent vibration
period. A more general and insightful way to do this,
which we follow, is to describe the vibration dynamics
in terms of action-angle variables. Importantly, the sepa-
ration of time scales also strongly simplifies the analysis
of fluctuations, as the system is susceptible to the noise in
comparatively narrow frequency intervals centered at the
vibration frequency and, generally, its overtones, including
zero frequency.

The goal of the paper can be understood from the
schematic of the fluctuation suppression in Fig. 1. We
consider a basic model of an oscillator that consists of a
resonator and a feedback loop. The resonator has a vibra-
tional mode with a high quality factor Q. The oscillations
of this mode are the output of the system. A part of the out-
put is amplified, transformed by the feedback loop, and fed
back as a resonant force that drives the vibrational mode.
In addition, there is noise that also drives the mode and
leads to fluctuations of the vibration frequency. This noise
includes the internal noise of the resonator and the noise
from the feedback loop.

The relevant types of noises and ways to suppress them
are sketched in Fig. 1. The noises have distinct sources, and
therefore different spectra and statistics. The dissipation-
related resonator noise usually has a broad spectrum with
the width exceeding the vibration frequency. This noise is
unavoidable, as mentioned above. However, there is also a
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FIG. 1. Sketch of the types of noise that lead to frequency
fluctuations and the ways of suppressing them.
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low-frequency noise, which comes primarily from defects
in the system and directly affects the frequency; cf. Ref.
[6] and the references therein. Similarly, the noise from the
feedback loop can have both broadband and low-frequency
components, the phase-shift noise being an example of
the latter. Importantly, both the resonator and the ampli-
fier noises cause fluctuations in the vibration amplitude
and thus the action variable of the vibrational mode, which
transform into frequency fluctuations in a nonlinear res-
onator. It is the way of suppressing this transformation, and
thus reducing the effect of the broadband (in particular, the
dissipation-related thermal) noise that we consider.

In Sec. II we formulate the problem and describe the
model of the resonator. In Sec. III we describe the deter-
ministic dynamics in terms of the action-angle variables
and derive the equations motion for the period-averaged
action and phase. In Sec. IV we discuss the noise terms in
these equations. In Sec. V the equations for the action and
the phase are linearized near the stable vibrational state
and small fluctuations about this state are considered. In
Sec. VI the action (or amplitude) dependence of the frac-
tional frequency fluctuations is discussed and the proposed
means of suppressing these fluctuations is described. In
Sec. VII we use a simple example to illustrate the effi-
cacy of the proposed method of suppressing frequency
fluctuations. Section VIII contains concluding remarks.

II. THE MODEL

The major element of the oscillator is a weakly damped
vibrational mode that we assume to be a mode of a micro-
or nanomechanical resonator. The mode is to be operated at
amplitudes well beyond its linear dynamic range. Various
sources of nonlinearity of vibrational modes in NEMS and
MEMS have been identified [44,45]. The mode dynamics
can be described as the dynamics of a particle with mass
M, coordinate ¢, and momentum p vibrating in a potential
U(g), so that the Hamiltonian of the system has the form

2
H=2_1ugq. 1)

2M
If the mode were isolated, it would perform vibrations
with constant energy. However, the underlying NEMS or
MEMS mode is coupled to other degrees of freedom of
the resonator and the surrounding medium, which serve
as a thermal reservoir. Therefore, the energy is not con-
served. Energy dissipation can be described by a friction
force L(q,p) that slows down the motion and breaks time-
reversal symmetry. A simple familiar example of such
force is viscous friction, L(g,p) = 2 p. However, gener-
ally the force is retarded [46,47]. The form of the force
depends on the underlying microscopic mechanism. Sev-
eral such mechanisms have been proposed for different
MEMS and NEMS modes; see Refs. [48-55] and the

references therein.

We consider the case where the resonator quality fac-
tor Q is large, which implies a small dissipation rate. Slow
dissipation is advantageous in several respects, including
the reduction of the frequency noise due to thermal fluc-
tuations; MEMS and NEMS used for making oscillators
usually have a large Q factor. For O > 1, the nonlinear
mode is sensitive primarily to excitations of the thermal
reservoir in a narrow interval centered at the vibration fre-
quency, and possibly its overtones. Therefore, on a long
time scale compared to the vibration period, the retarda-
tion of the friction force can be disregarded, as first shown
for a harmonic oscillator [56] and later extended to weakly
nonlinear vibrations [57—59].

Sustaining vibrations of the oscillator requires compen-
sating the energy dissipation. This is achieved by adding
a feedback loop that incorporates an amplifier and a phase
shifter. In the equation of motion, we model the force that
provides the energy gain due to the amplified feedback by
a gain force G(q,p).

In addition, there are various other perturbations act-
ing on the vibrational mode, which we lump into a force
f(qg,p)&(¢). Here &(r) is a random function of time that
models internal and external noises. The vector notation
is used here not for different spatial components, but rather
to indicate that there are different components of the noise
that come from physically distinct sources; cf. Fig. 1.
Generally, these components are statistically independent.
They drive the system directly as a force (the “additive”
noise [60]) and modulate the parameters of the system,
so that the overall random force depends on the dynam-
ical variables ¢,p. This dependence is described by the
weighing factor f(g,p). The (¢, p)-dependent weights of
the noise components, which are given by the components
of the vector f, are generally different.

With these three forces, the equation of motion of the
system reads,

q=p/M, (2a)

p =-0,U+G(g,p) — L(g,p) +1(q,p)§@®.  (2b)
Again, we emphasize that the retardation in L(g,p) and
f(g,p) is disregarded conditionally, keeping in mind the
description of the dynamics on the slow time scale, which
is given in Sec. III. Respectively, the forces L and G are
small compared to the characteristic values of the restoring
force |9,U]. Since L is small, only small G is required to
sustain oscillations. The noise & (7) is assumed to be weak.
This means that the noise-induced variances of the vibra-
tion amplitude and frequency are small compared to the
squared amplitude and frequency, respectively. We further
assume that the noise &(f) is zero mean and stationary,
(§(H)&(¢) is a function of t—¢ only, and similarly for
higher-order correlators.
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III. ACTION-ANGLE VARIABLES

We are interested in the regime where the vibrations of
the mechanical system are nonlinear. They are almost peri-
odic, for weak noise, but generally are nonsinusoidal. It is
convenient then to describe the dynamics of the system in
terms of its action-angle variables, 7 = (27)~! ¢ p dg and
¢ = (9/9]) fqp dg . For a Hamiltonian system, Eq. (1),
the transformation from (¢, p) to (/, ¢) is a standard canon-
ical transformation of mechanics [61]. If the conservative
system has energy E, its vibration frequency w (/) is found
from the relation 3//9E = w~'(I); in such a system the
action variable remains constant, whereas d¢/dt = w([).
The coordinate and momentum are functions of 7, ¢, with
q(l,¢) and p (I, ¢) being 27 periodic in ¢.

For a harmonic mode, w (/) is a constant, w (/) = w(0).
For a conservative system, the typical scale Iy of the
action variable / where the vibration nonlinearity is pro-
nounced is given by the condition

lw (L) — @ (0)] ~ @(0).

In what follows we choose a constant in ¢ so that
p,nx) =0 for integer n. With this choice, since ¢ and
p are respectively even and odd functions of time in a con-
servative system, ¢(/,¢) and p(/, ¢) are even and odd in
¢. This means that in the Fourier series,

9, ) =Y qu(De",  pU,p) =Y paHe", (3)

we have g, =q_, =q) andp, = —p_, = —p,.
In the variables /, ¢ the equations of motion (2) become

I = (0y9)[G — L+ 1(q.p)E D],

“
¢ =) — @9lG — L+1(g,p)§O)].

Equations (4) explicitly show that if G, L, and f are small
then, over the vibration period 27 /w(/), the action [
changes only slightly and the increment of the phase is
close to 27, on average. In fact, this is what we mean by the
dissipation, gain, and noise being weak. The effect of G, L,
and f therefore accumulates on times much larger than the
vibration period. To describe the effect of dissipation and
gain, we note that, with ¢, p expressed as functions of / and
¢, the terms containing G(¢,p) and L(q,p) are periodic
in ¢. They can be written as sums of terms proportional
to exp(ing). The terms with n = 0 oscillate in time with
period 27 /w(I). Therefore, the effect of these terms does
not accumulate.

To describe the long-term dynamics, we can average
over ¢ the regular terms in Eqs. (4) and rewrite these

equations as

1~ 39)[G(q.p) — L(g,p)] + &, D,  (52)

¢~ o) — (319)[G(q,p) — L(q,p)] + &4(1,1), (5b)

where the overline means averaging over ¢,

2
Vi, ¢) = 2n)! /0 doVl,¢).

The functions &;(/, ) = {(9,q)f(q,p)E(H)}4 and &, (1, 1) =
—{(0rq)f(q,p)&(?)}4 are the noise terms. The curly brack-
ets {-}, indicate that the correlators of the corresponding
noise terms are averaged over ¢, and therefore we write
these terms as functions of / and ¢. This issue is discussed
in more detail below.

Prior to discussing the noise terms we note that, if
we disregard fluctuations, Eqgs. (5) show that both / and
é— () vary on the time ¢,, which is determined by the
characteristic reciprocal values of G and L. It is on the time
scale 7. that we can disregard both the retardation of the
backaction from the thermal reservoir (cf. Refs. [62,63]
and the references therein) and the delay of the feedback
loop; see also Sec. VIIC. In addition, it is assumed that the
correlation time of the thermal reservoir is small compared
to 1.

In Eq. (5a), the terms —(9,9)L(q,p) and (9,9)G(q,p)
respectively describe the energy loss due to the coupling
to the thermal reservoir and the energy gain due to the
amplifier. The terms —(9;¢)L(q,p) and (9;q)G(q, p) in Eq.
(5b), on the other hand, describe the corresponding shifts
of the vibration frequency. Overall, for underdamped sys-
tems, the formulation in terms of the action-angle variables
is advantageous, as it does not require the knowledge of the
shape of the limit cycle in the phase space of the oscillator
used in other approaches [26,64].

IV. THE STRUCTURE OF THE NOISE TERMS

The noise terms in Eq. (4) can be generically written in
the form ), f,() exp(ing)&(¢). The functions f, are the
Fourier components of d,q f and 9;¢ f in the equations for
I and ¢, respectively; here we are interested in the struc-
ture of the noise terms and do not discuss their specific
form. Different components of the noise &(7) have differ-
ent power spectra and possibly different statistics. Some
of them, like the thermal noise that comes along with the
regular force L, have a broad spectrum, with a correla-
tion time f.oy  #. We denote this broadband noise by
£pp(f) and the corresponding weighing factors by f, B®)
(these factors are different for / and ¢). In the average
values (f,B®[I(1)]e"*Pepg(s) , the oscillating terms will
be filtered out by the oscillator. Therefore, these averages
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depend on /(¢), but not on ¢ (¢). They can be included in the
noise-independent terms in Egs. (5), so that the broadband
part of the noise will have zero mean.

The pair correlation functions of the corresponding
noise components are sums over n, m of the terms

P 0]e" O ap (0, PP ()] Epp (1) -

In these sums one should keep only smooth terms
with n = —m. Over the noise correlation time .., the
value of 7(f) changes very little, /() ~ I(¢t). There-
fore, one can write the pair correlator as a sum of the
terms (|, BB [1(2,)]1* cos{no[I (1)1t — 1 ) }pp (DB (1)

with t, = (¢ + ¢ )/2. These terms do not contain the phase
¢. Higher-order correlators related to the broadband noise
can be analyzed similarly; they are also independent of ¢.

We now discuss the low-frequency noise & p(z), with
the correlation time 7., that largely exceeds the vibra-
tion period 27 /w(/) and can exceed the relaxation time
t,. In the Fourier series Y, /. exp(ing) for the weigh-
ing factor / P one should keep only the slowly varying
terms, i.e., the noise can be written as fNO(LF)[I ®]1eLr (D).
The Fourier components £, exp(ing) with |n| > 0 are
filtered out. We can again include (ﬁ)(LF) [I(®]éL(?) into
the noise-independent terms in Egs. (5) and thus assume
that the low-frequency part of the noise has zero mean.

The above analysis shows that both the broadband and
the low-frequency components of the noise can be writ-
ten as functions of / and ¢ that do not contain the phase.
This justifies writing the noise terms in Eqgs. (5) as &(/,f)
and £4(/,1). Since w(/) > 1/t,., these two types of noise
essentially include all physically relevant noises that drive
the mode.

In physical systems, an important type of broadband
noise is the previously mentioned thermal noise that comes
from the coupling to a thermal reservoir and is attendant to
the dissipative force L(q,p). A broadband noise can also
come from external sources. Typically, a broadband noise
is well approximated by an additive force, i.e., the function
BB that multiplies £gg(7) in Eq. (2b) can be assumed to
be independent of ¢, p. The components of fE2 can be set
equal to unity by rescaling &g (#). The terms proportional
to the powers of ¢, p in f®®) are often small. If such terms
are not important, we can write the broadband components
of the noises in Eq. (4) as

&0 (1, 1) = —d1gEp ().
(6)

PRI = Bs9888(2),

However, if nonlinear friction in the resonator is signifi-
cant (cf. Refs. [55,65—68]), one should take into account a
g-dependent component of the broadband noise [59]. This
can be done by replacing in Eq. (6) &g () — &p(?) +
q’;‘g]\}) (t). The noise component SéI\BJL) (t) can often be

assumed statistically independent from the g-independent
part of the broadband noise.

The components of the low-frequency noise that are not
multiplied by ¢ and/or p are filtered out by the oscilla-
tor. Therefore, in the analysis of the low-frequency noise
one should take into account the dependence of £ in
Eq. (2b) on the dynamical variables of the oscillator. It
should be noted that, generally, the power spectrum of the
broadband noise &gg(7) may be nonzero at zero frequency.
When the corresponding noise component is multiplied
by a ¢-independent part of 9;q(/, ¢), it contributes to the
noise &,(/,1). We incorporate this contribution into the
low-frequency phase noise.

V. FLUCTUATIONS ABOUT THE STABLE
VIBRATIONAL STATE

A. Noise-free regime

Of primary importance in terms of the operation of the
oscillator are the time-independent solutions / and ¢ =
of Eq. (5) in the absence of fluctuations. These solutions
are given by the equations

{@9[Gq.p) — Lg.p1},_,, =0, %)

= Q) = o) = {@I[Gq.p) — Lg.P)1},_,. -
®)

The values of Iy and  give the operation point of the
oscillator. They determine the amplitude of the vibrations
and their frequency. In the considered slow decay and weak
amplification case | — w(ly)|<< . Note that there may
exist multiple steady states, but here we focus on one stable
steady state and do not discuss the effects related to switch-
ing between the stable states. Generally, the vibrations in
a stable state are nonsinusoidal, i.e., ¢(¢) and p(¢) have
components that oscillate at the overtones of . However,
as mentioned above, in many cases of interest, including
the practically important example we show below, these
components are small and fall off exponentially with the
increasing number of the overtone [the exponent is deter-
mined by the imaginary part of the time ¢ where ¢(7), p (t)
have singularities as functions of the complex time for the
conservative motion; cf. Ref. [61]].

B. The low-frequency power spectra of the dynamical
variables

We assume that the noise is weak. This means that the
root-mean-square fluctuations of the action about its sta-
tionary value are small compared to /g, and also that the
variance of the phase that accumulates over the period
27/ is small compared to 277. For a weak noise, one can
analyze the oscillator dynamics by expanding the regular
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parts of Egs. (5) about /g,
81 ~ —a(lq)SI + & Iy, 1),
¢ ~ Q) + BUDS + &Iy, 1),

where a (/) = d[(9,q)(L — G)]/dl and B([) = d2(1)/dI.
The stable operation of the oscillator requires that o (/g;) >
0. The previously introduced relaxation time of the oscil-
lator is t, = 1/a(Ily). We note that this time differs from
the relaxation time of small-amplitude vibrations of the
nano- or micromechanical system on which the oscillator
is based. However, at least for a not too large amplitude,
these parameters have the same order of magnitude.

)

S = [ ae 10s100= o
oo st

S, () = f dte™ (y(t)y (0)=  *(Iy)

oo

where

Ep(l, ) = / a1 0E (1,0 (12)

[e¢]

with u, v standing for / and ¢.

Of interest for understanding the frequency stability are
the power spectra at low frequencies w . They charac-
terize the slow fluctuations of the amplitude and frequency
of the self-sustained vibrations. The variances of the action
and the fractional frequency are respectively

= 1 / S, (w)dw.

2
(13)

It follows from Egs. (4) and (6) that the dominant contribu-
tion to the noise spectrum E;(w) that determines S; comes
from the broadband noise. If the random force &gg(#) has
a smooth power spectrum around the frequency €2(/y) and
its overtones, as is usually the case, the function Ej(w)
depends very weakly on w forw  Q(/g) Therefore,

1= — / S (@)do,
27

L
(811~ [2a(ls)] ™" Ey (g, 0). (14)

In many cases of interest for NEMS and MEMS, includ-
ing the example below, the decay rate of the action (/) is
a smooth function that does not vary much with / in the
range of interest. The major dependence of the action fluc-
tuations on / is then determined by the factor Ej(/,0). As
seen from Eq. (6), the broadband contribution E;?B) U, w),

Epp (s, ) + B2(I)S1 (@) + 2B (Iy) Re

Conventional characteristics of fluctuations in the oscil-
lator are the power spectrum of the intensity fluctua-
tions S;(w) and the power spectrum of the fractional fre-
quency fluctuations Sy, (w), where the fractional frequency
is defined in terms of the time derivative of the vibration
phase as [69]

y(0) = [¢ — QUDI/Q Us). (10)
From Egs. (9) we see that these power spectra are sim-

ply expressed in terms of the power spectra of the noise
components,

2 E[[(Ist: (,()),

E1¢([st»a.))i|}’ (11)
a(ly) +iw

(

which is the leading contribution to E;(/, w), in the range
of small 7 scales as

EPY (L w) o« (9pq)? T A2, T Iy, (15)

where 4 is the vibration amplitude. This expression is
familiar for thermal noise in a damped harmonic oscil-
lator and is, ultimately, a consequence of the equiparti-
tion theorem for such an oscillator. The analysis of the
dependence on / of the power spectrum of the fractional
frequency fluctuations is more complicated and will be
described in the next section.

VI. FRACTIONAL FREQUENCY FLUCTUATIONS

It is seen from Eq. (11) that there are three contributions
to the power spectrum of the fractional frequency fluctua-
tions. One comes from the phase noise Ey4(/, ), another
comes from the action (and thus vibration amplitude) fluc-
tuations S; (w), and a third from the interference of the first
two. In turn, the phase noise spectrum has a contribution
from both the broadband and the low-frequency noise. The
former contribution, ES;B) (I, w), which includes that from
the thermal noise related to the dissipation, is often con-
sidered as the ultimate lower (“fundamental’) limit on the
frequency noise intensity [4,6,32,70]. As seen from Eq.
(6), this intensity is proportional to (9;¢)%. For a linear
oscillator, it falls off with increasing vibration amplitude
AocI'? as

By (o) o (hq)* oI ocA?, T L. (16)
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It is this relation that imposes a restriction on the vibra-
tion amplitude from below in order to have an apprecia-
ble frequency stability. The relation 9;g o< 7~/? does not
apply for large amplitudes where the vibrations are signif-
icantly nonlinear. However, quite generally, |d;¢| falls off
with increasing amplitude, as will be seen in the example
below.

In contrast, the contribution to g4 (/, @) from the low-
frequency noise does not necessarily fall off with increas-
ing amplitude. This is clear already from the simplest
example of the low-frequency noise that corresponds to
fluctuations of the mode eigenfrequency w,. Here the force
component in Eq. (2b) is f ¥ (¢, p) o ¢. Then the phase
noise is 5(;]“1:) o qd;q. The intensity of this noise is inde-
pendent of the vibration amplitude for a linear oscillator
and in many models becomes weakly amplitude dependent
for a moderately strong nonlinearity. The way to decrease
this noise depends on its source. For example, one com-
ponent of this noise comes from scattering of thermal
excitations off the considered vibrational mode, the mech-
anism known for impurity vibrations in solids [71,72]. We
note that the coupling to a thermal reservoir that leads to
the nonlinear friction discussed below also leads to this
noise [55]. The intensity of this noise depends on the
geometry of the resonator and decreases with decreasing
temperature. Another important source are two-level sys-
tems [6,73—76]. The noise from two-level systems can be
reduced by using single-crystal resonators and improving
the surface quality.

Yet another source of frequency fluctuations is the
amplifier noise. Generally, both the phase and the ampli-
tude of the signal from the amplifier are fluctuating. Grey-
wall et al. [23] showed that the effect of the fluctuations of
the amplifier phase can be eliminated by tuning the weakly
nonlinear and weakly damped resonator to the cusp (codi-
mension two) bifurcation point of the nonlinear resonator
response to a sinusoidal drive. Later Kenig et al. [26] con-
sidered the reduction of the effect of the feedback-loop
noise where both the amplification and the phase lag are
fluctuating. The success of this approach is highly sensitive
to how the amplifier operates.

In contrast, here we are interested in reducing the
unavoidable noise that comes along with dissipation
because of the coupling to a thermal reservoir. Respec-
tively, of central interest is the contribution to the fre-
quency noise given by the term B(I5)S;(w) in Eq. (11).
This contribution comes from the fluctuations of the action,
or, equivalently, of the vibration amplitude. From Egs. (6)
and (15), where there is no nonlinear friction, the depen-
dence of the noise intensity E;(0) on the action / is given
by the factor (8¢q)2. For I Iy, where the oscillator is
weakly nonlinear, this factor is proportional to /. It usu-
ally also increases with increasing / where the nonlinearity
is not small. It is this increase that does not allow one
to suppress the contribution of the broadband noise to

Hge by just increasing the vibration amplitude. It there-
fore imposes a fundamental limitation on the frequency
stability.

The contribution of the last term in Eq. (11) to the fluc-
tuation spectrum S, (w) comes from the interference of
the action and phase noises. For the broadband noise, this
interference is suppressed for @ — 0 because d3qd;q = 0
by parity. On the other hand, noises from different sources
are uncorrelated. Therefore, this term is small for small
frequency and we will not discuss it.

A. Reducing the effect of the amplitude fluctuations

The effect of the action noise S;(w) on frequency fluctu-
ations is determined by the parameter (/). This parame-
ter characterizes the oscillator nonlinearity. In the usually
considered limit of weak nonlinearity, § (/) is a constant.
This is the case for the weak Duffing nonlinearity, which
is often used to describe MEMS and NEMS [23,26,44].
In the Duffing model, the potential in Eq. (1) is U(g) =
%M wiq* + %M yq*, where y is the nonlinearity parameter,
and then

do/dl ~3y/AMw; (I L) (17
In model (17) the contribution of the action noise to the
frequency fluctuations spectrum is seen from Eq. (15) to be
proportional to /, i.e., it linearly increases with the action.

One may infer from Eqgs. (15)+17) that, generally, for
very small /g, the power spectrum of the frequency fluctu-
ations S, (w) will be decreasing with increasing /i because
of the Iy — 0 divergent term in Egy /s, w). However,
with a further increase in /Iy, S, (w) may start increasing
because of the oscillator nonlinearity and the conversion
of the amplitude noise into frequency fluctuations. There-
fore, S, (w) should have a minimum as a function of I,
as is indeed demonstrated for the micromechanical system
studied by Huang ef al. [15].

One can reduce the lower bound on the frequency fluc-
tuations imposed by the coupling to a thermal reservoir,
if the parameter B(/y) is made small in a range of the
vibration amplitudes where the term 268 s already small.
Moreover, there may be an optimal value of the action /,,
the “sweet spot,” where B (/) = d2/dl = 0. If one thinks
of the dependence of the vibration frequency w(/) on /
as dispersion, such a sweet spot may be called a “zero-
dispersion” point. We recall that Q(7) is close to w(/),
and therefore quite generally if €2(/) has an extremum at
I = I, the function w (/) has an extremum, too, located at
I ~ I,. When discussing the model of a nonlinear system
where the zero-dispersion point arises, we will be refer-
ring to the extremum of w (/), since this is the function that
describes the dynamics in the absence of a weak coupling
to a thermal reservoir. This is advantageous as different
models of the coupling that lead to the same character
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of the decay can give a somewhat different frequency
renormalization.

Where I, is sufficiently large, operating the oscillator
near this /, may be optimal in terms of suppressing fre-
quency fluctuations. On the one hand, E%B) is suppressed
by a comparatively large I, as seen from Eq. (16), while
on the other hand, the amplitude noise is not converted into
frequency fluctuations.

One can then expect a complicated behavior, where
S, (w) first decreases with increasing Iy, then starts increas-
ing because of the increasing B2S;(w), but then it may
start decreasing again where B (/) starts decreasing. Ulti-
mately, S, will reach an absolute minimum and after that
will increase again [40]. Such double-minimum behavior
is indeed observed in the simple model we discuss below
and can be seen in Ref. [15]. It raises the question of the
optimization of the operation point of the oscillator.

The dependence of Sy (w) on I is somewhat similar to
the dependence of the width of the power spectrum on
the noise intensity (temperature) in passive (no feedback
loop) resonators in which the vibration frequency w (/) is
nonmonotonic. As mentioned earlier, in such systems the
power spectrum first broadens with increasing tempera-
ture due to the increasing range of the vibration energies
and, consequently, of the vibration frequencies w (/). How-
ever, as the energy range further increases, extending to
the range of small |dw/dI|, the width of the spectrum
decreases [41]. This is because the vibration amplitude
increases with increasing /, and therefore vibrations with
large / make a dominating contribution to the spectrum,
whereas, at the same time, the frequencies of vibrations
with different / are close to each other where |dw/dI| is
small, that is, near /,. The spectral narrowing associated
with the vanishing of dw/dI is an example of a group of
the “zero-dispersion” phenomena [77].

VII. AN ILLUSTRATIVE EXAMPLE

In this section, we illustrate the above general theory
using a simple model of the feedback loop and the res-
onator. In particular, we consider a prototypical resonator
described by a biased Duffing model. As mentioned earlier,
the Duffing model applies to a large number of micro- and
nanomechanical resonators. Implementing a static bias in
these systems is fairly straightforward and can be accom-
plished by applying a gate voltage, for example. The model
of a biased Duffing oscillator has the desired property,
namely a tunable operating point where the frequency is
independent of the amplitude, the zero-dispersion point.
The occurrence of such an operating point and the possibil-
ity to appropriately tune the system has been demonstrated
in several types of MEMS (cf. Refs. [15,21]), including
systems designed for time keeping [67].

We first discuss the deterministic (noise-free) dynamics
and show that the system can be made to operate at the

sweet spot. Then we investigate the noise properties of the
oscillator and demonstrate the benefits of operating at a
zero-dispersion point.

A. Dissipation and feedback

The analysis of self-sustained vibrations of a strongly
underdamped resonator should include a discussion of the
mechanisms of the energy loss and gain and of the conser-
vative motion of an isolated mode. We begin with the loss
and gain mechanisms.

The most frequently considered mechanism of losses
in MEMS and NEMS is viscous friction, where the fric-
tion force is proportional to the velocity (or, equivalently,
the momentum) of the mode. The function L(g,p) that
describes this force has the form

L=2 p. (18)
We note that, even for weakly nonlinear vibrational modes,
the friction coefficient  generally depends on the mode
frequency. This dependence is smooth and is different for
different mechanisms of damping; cf. Refs. [44,76,78]. It
may be weak for some important mechanisms, like ther-
moelastic relaxation or scattering by two-level systems,
provided the temperature diffusion rate or the decay rate
of the two-level systems is smaller than the NEMS or
MEMS frequency. We are interested in the value of  for
the mode frequency close to w(/,), but strictly speaking,
when determining the working point of the resonator, one
may have to take into account the fact that can depend on
. This dependence does not affect the qualitative results
we consider, and therefore we disregard it.

For the viscous friction (18), the phase-averaged loss
terms in Egs. (5) have the form

@ )L——/h s =2 1
N A A (19)

@)L = 0.

We used here the facts that ¢ and 9;¢q are even in ¢, whereas
p is odd.

The gain can be modeled in a variety of ways; cf. Refs.
[23,26]. It incorporates amplification of the output signal,
a phase shift between this signal and the signal that is
fed back into the resonator, and saturation that limits the
energy put into the resonator. Here we are interested in
the regime of comparatively large amplitudes and use a
saturated phase-shifted harmonic feedback,

G =gcos(¢p + A), (20)
where g is the gain saturated amplitude and  is the phase
shift added to the phase ¢ of the output signal. The satu-
rated amplitude is independent of the signal at the output of
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the resonator, but the signal from the amplifier is sinusoidal
at the frequency of the output signal.

For this form of the gain, the corresponding phase-
averaged gain terms in Eqgs. (5) are given by

(0p9)G = gq1 (1) sin

. (21)
(019)G = g(dq1/dI) cos
[the Fourier coefficient g (/) is defined in Eq. (3)].
From Eq. (7), the stable steady-state value of the action
Iy is given by the root of the equation
g sin =2 Ist/q1 (Ist) (22)
for which the coefficient « (/) in the linearized equation of
motion (9) is positive. With the account taken of Eq. (22),

aly) =2 [1—@dng/dinDy].  (23)

The stability condition «(/y) > 0 imposes a constraint on
the feedback parameters g and . The other important con-
straint comes from the analysis of fluctuations, which are
inevitably present in the amplifier. We consider the most
important case where the fluctuations of g and  have
long correlation times compared to 1/a(ly), i.e., to the
order of magnitude, compared to the relaxation time of the
resonator. It follows from Egs. (5) and (21) that these fluc-
tuations produce fluctuations in both the action / and the
phase ¢. The phase noise from small fluctuations in s
minimal when = 0, 7. However, these conditions cor-
respond to zero amplification; the stationary value of /g
is seen from Eq. (22) to be equal to zero. On the other
hand, phase fluctuations due to small fluctuations in g are
minimized for = 7/2,37/2; however, the effect of fluc-
tuations in  on the phase fluctuations is maximal in this
case. Generally, the mean values of the feedback coeffi-
cients can be optimized depending on the relative strengths
of the fluctuations of g and . Often  is set equal to
7 /2, in which case the value of g required to achieve self-
oscillations with a given amplitude is minimal, as seen
from Eq. (22).

It follows from Egs. (8) and (21) that the parameter
that determines the effect of the action fluctuations on the
frequency fluctuations has the form

By) = (d2/dl)y,
= (dw/dl);, — g(d*q,/dI*);, cos . (24)

For cos = 0, the feedback loop does not shift the vibra-
tion frequency compared to the resonator frequency, and
then B(ly) = (dw/dl)y, i.e., the parameter 8 depends on
the dispersion of the resonator frequency only.

As mentioned earlier, for large vibration amplitudes,
it may be necessary to take into account nonlinear fric-
tion. At the phenomenological level, in the simplest case

this friction is described by the van der Pol force, Ly =
4 MND(g/q0)*p [we use the notation of Refs. [55,59]; g9 =
( /2Mag)'/?, and the parameter D is proportional to

, so that  drops out from the expression for the clas-
sical nonlinear friction force]. Incorporating this force is
straightforward. Equations (22) and (23) for the stationary
value of the action /i and the decay rate o (/) are modified
as

K{g) =0, (25a)
K() = gqi(Dsin - —2 1

_2 ()t f Fpdg,  (25b)
w(ly) = [dK()/dl s, (250)

As expected, the nonlinear friction-induced term propor-
tional to NV in K(7) increases with the action variable
I faster than 7 (as /2, for small /), and therefore stronger
amplification is required to maintain a large value of
Iy when nonlinear friction is significant. However, this
friction is usually not strong in MEMS and NEMS.

B. Conservative dynamics of a biased Duffing oscillator

We now turn to the conservative dynamics of a biased
Duffing mode. This model has the desired nonmonotonic
dependence of the vibration frequency on the action. The
potential of the mode has the form,

Ulg) = Ag + iMlq* + tMyq*. (26)

Here A is the bias field, and we assume y > 0, the
condition met in many NEMS and MEMS.

The Hamiltonian equations of motion ¢ =p/M, p =
—dU/dq in potential (26) can be solved explicitly in terms
of the Jacobi elliptic functions [41]. The scaled coordinate
(y/@?)'%q as a function of the scaled time w,¢ depends
on the single scaled bias parameter A and the scaled action
variable 7,

A= M)A, I=1y/Mo’. (27)

The vibration frequency as a function of I is shown in
Fig. 2. The eigenfrequency wy = w(/ = 0) of the vibra-
tions at the minimum of U(g) (where / = 0) differs from
w,; it monotonically increases with increasing |A|. From
Ref. [41], we find, after some algebra, that w (0) ~ w.(1 +
302/2) for |A|< 1 and w(0) ~ V3w A|'? for |A]>
1. The slope dw(I)/dI ~ 3(1 — 131%)/4 for I — 0 and
A< 1 is positive, but it becomes negative for |A| >
8/7°/2. On the other hand, w(/) increases with I at large
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FIG. 2. Frequency dispersion w (/) for the biased Duffing res-
onator with potential energy (26) as a function of the scaled
action I = yI/M. > for several values of the scaled bias parame-
ter A, Eq. (27). From top to bottom, A = 2.5 (brown), 2 (purple),
1.5 (orange), 1 (green), 0.5 (yellow), and 0 (blue). The black
dashed line is the locus of zero dispersion points, dw/dl = 0.

I irrespective of A,
T (3/4)w I [7?T(7/4)]'/?
w() ~
[20(5/9)]*3
~ 116w '3, T> 1.

Therefore, @ has a minimum as a function of / for |A| >
8/7%/?.The position of this minimum is marked in Fig. 2.
For the considered case of weak damping of the resonator
and, respectively, weak amplification by the feedback loop,
the value of / at the minimum of w (/) is very close to the
sweet spot 7, given by the equations B(/,) = 0 that takes
into account the renormalization w (/) — Q(1).

The amplitude 2|q; (/)| of the main tone of the con-
servative vibrations scales as /'/? for small I and as /'/3
for large I. For large I, the ratio of 2¢g1(I) to the total
vibration amplitude is approximately 0.825. For such 7,
the amplitude of the (2n + 1) overtone is proportional
to exp[—(2n + 1)z /2] and thus quickly falls off with
increasing n (the fall off is even faster for smaller I;
even overtones have parametrically small amplitudes for
large 7).

It follows from the scaling that, if nonlinear friction can
be disregarded, the decay rate of the fluctuations of the
action is a(ly) ~ for small Iy and a(ly) ~ 41'/3 for
large Iy. Since the ratio Iy/q; (Iy) in Eq. (22) monotoni-
cally increases with increasing Iy, the stationary value of
the action is uniquely determined by the feedback loop
parameters g and

C. Frequency fluctuations in a biased oscillator

We now apply the general results to the analysis of the
fractional frequency fluctuations in the oscillator described
by model (26). As indicated in Sec. VI, of primary interest

in terms of the fundamental limit on S, are the fluctua-
tions that invariably come along with dissipation. They are
induced by the corresponding thermal noise. In the case of
linear friction, this is a broadband noise with the correlator

((NEBB(1))= 2D58(t — 1), D=2 MkgT. (28)
If there is an extra source of broadband noise, the noise
intensity D is appropriately increased.

As pointed out earlier, the major Fourier component of
the vibrations for model (26) is the main tone. There are
higher-frequency overtones, which are small, and also a
zero-frequency component ¢(/, ¢). The static shift ¢(7, ¢)
does not lead to dissipation and thus is not of interest in
the present context; its effect in NEMS has been studied in
Ref. [79]. In what follows we take into account only the
main tone, i.e., we approximate

Disregarding small-amplitude high overtones does not
change the qualitative results. Moreover, we study the
range of / where the frequency shift |w (/) — w(0)] is not
necessarily small, but remains smaller than w(0). In this
case, in the main-tone approximation (29) both the friction
coefficient and the noise intensity are determined by the
power spectrum of the thermal reservoir near w(0) (more
precisely, we are talking here about the power spectrum
of the operator /4, that determines the energy g/, of the
coupling of the resonator to the thermal reservoir). On the
other hand, if higher overtones of ¢(/, ¢) were substantial,
it would be necessary to keep track of the power spectrum
of the thermal reservoir at frequencies of approximately
now(I) with n > 1. If the properly weighed power spectrum
is not flat, this would limit the applicability of approxi-
mation (28) and also of the linear friction approximation
(18).

In the main-tone approximation, the nonlinear friction is
determined by the power spectrum of the thermal reservoir
at frequencies of approximately 2w (0) (the relevant term
in the coupling Hamiltonian in this case is qthNL) /2). For
the corresponding broadband noise, we write

(ENDDEN ()= 2DNV§ (1 — 1), (30)

implying that the power spectrum of EgL) (1) is flat in a
sufficiently broad range around 2w (0). For thermal fluctu-
ations, DNV = 4 (NDg 2\, T In fact, the applicability
of the model to the analysis of fluctuations about the sta-
ble state requires only that the spectrum of EgL) (1) be flat
in the region of the width ~« (/) around w (/) for linear
friction, and 2w (i) for nonlinear friction.

Equations (6) and (28)~30) allow us to find the corre-
lators Eye(/,w) and E;(/,w) in Egs. (11) and (12) and
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thus the power spectra of the intensity fluctuations and the
fractional frequency fluctuations. For linear friction,

En(l,w) = 4D|q1 ()%, By (I, ®) = 4D|dq1 (D%,

(31)
whereas, for nonlinear friction,
Ep (1L w) = 4DV g (D,
(32)

BN (1) = DNV q) (12
Given that g, (1) ~ [I/2M w(0)]'/? for I — 0, we see that,
for small /, the fractional frequency fluctuations for w
a(]) scale with I as

~ D 1 81a) 2
DD o\’
— 144’ — 33
t ooy Lt ( ) } (33)

where 9;w is calculated for / — 0 and / = /. Note that
we consider S, (w) rather than the variance S, (0) to take
into account the situation where there is a weak 1/f -type
noise in the system; in this case w plays the role of the
reciprocal observation time during which the contribution
of such fluctuations is small, whereas formally the variance
of the fractional frequency diverges for v — 0.

It is seen from Eq. (33) that the fractional frequency
fluctuations fall off with increasing action / in the small-/
range: S, o< /~! for very small /. If the resonator is linear,
d;w = 0, as the vibration amplitude is increased, the phase
noise decreases towards the limit set by the nonlinear fric-
tion D™V (and the low-frequency noise). Increasing the
amplitude up to the maximal possible level is the com-
mon approach employed for reducing phase noise. This
maximal level is set by the nonlinearity. Where d;w (/) is
nonzero and w (/) monotonically depends on /, function
S, has a minimum and increases with / for larger /. This
means that there is an optimal operating amplitude deter-
mined by the balance of the term proportional to /~! and
the terms proportional to / and /2 in Eq. (33).

In both the unbiased and biased Duffing models, for very
large 7(>> Inv), S, decreases with increasing /, if we use
approximation (29). However, describing this range using
the Duffing model is impractical, as higher-order nonlin-
earities usually come into play; cf. Refs. [15,21,67] and
the references therein.

An important feature of model (26), which makes it
distinct from the standard Duffing model, is that w (/) is
nonmonotonic. Function w (/) displays a minimum, as seen
from Fig. 2, and this minimum lies in the range where
the nonlinearity is still moderately small, that is, where
|wmin(I) — w(0)| is significantly smaller than w(0). For

weak damping and amplification, the corresponding value
of I determines the sweet spot 7, i.e.,

wmin(l) = a)(l*)

Operating the resonator at [ = [, is advantageous, as
it minimizes the effect of the amplitude fluctuations and
simultaneously strongly reduces the effect of the phase
fluctuations. We note that, for weak nonlinearity and a
strong signal from the amplifier, the condition d2/dl = 0
may hold even where the eigenfrequency w (/) is mono-
tonic; the analysis of noise suppression has to be done
differently in this case [27].

To find the power spectrum of the fractional frequency
fluctuations S, for model (26) beyond the small-/ approxi-
mation, one can calculate w(/) and ¢, (/) from the Hamil-
tonian equations of motion in potential (26) and also,
independently, use the explicit expressions in terms of the
elliptic integrals and Jacobi elliptic functions. For linear
friction, the value of /i is determined by the amplifier
through Eq. (22).

In the dimensionless variables 1, ~which is defined in
Eq. (27), &) = o()/w,., and () = (y'*/w)q:1(]),
we can write

4Dy - - ~—2,F
S0 = 1 gedn & =670
2 dlng, \
x (331 + 1 23*502_e<1_ ) ] '
@7g0)” + 1017 @r0)” =5 dinl /) i,
(34)

The dimensionless function S'y is shown in Fig. 3. The
dependence of /i on the amplification factor g is mono-
tonic, and therefore, qualitatively, the plot would have the
same form if S, were plotted against g.

A remarkable feature of the fractional frequency fluc-
tuations seen from Fig. 3 is the double-minimum struc-
ture. The necessary condition for its occurrence is that
w([l) is nonmonotonic, i.e., the scaled bias parameter is
A > 8/7%/%. The first minimum occurs for Iy < I, and
is due to the competition between the decrease in phase
fluctuations with increasing / and the increase of the con-
tribution from amplitude fluctuations; cf. Ref. [80]. For
linear friction, it is located at Iy ~ I'/2|0;w|;—¢ in the
limit of small I'/|d;w|. This is the “conventional” opti-
mal operation point of the resonator. However, for the
considered nonmonotonic @ (/), S, has another minimum
located at /..

It is critically important that S, is significantly smaller
at the sweet spot /, than at the first minimum. In Fig. 3
we show that, even for a Q factor much smaller than the
O factors of typical MEMS and NEMS, the minimal S,
can be readily made smaller by a factor ~10? than for a
monotonic w (/). This demonstrates the advantage of using
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FIG. 3. Scaled fractional frequency fluctuations S'y versus the
scaled action 7 calculated at the operating point I = Iy /M. w?
given by Eq. (22) for the biased Duffing oscillator; I' /w, = 0.01.
The curve with a single minimum at relatively small g corre-
sponds to A = 0, whereas the curves that display the increasingly
smaller minimal S’y correspond to A = 0.5,1.0,1.5,2.0,2.5. The
color coding is the same as in Fig. 2.

the sweet spot to reduce frequency fluctuations. It suggests
numerous applications in NEMS and MEMS based time-
keeping devices and also in sensing devices, which often
utilize phase-locked loops.

VIII. CONCLUSIONS

In this paper we describe a means for suppressing fre-
quency fluctuations due to the fundamentally unavoidable
thermal noise that comes along with the dissipation of a
vibrational mode in a nonlinear resonator. The idea is to
use large-amplitude vibrations to suppress phase fluctua-
tions induced by this noise while at the same time elimi-
nate the nonlinearity-induced conversion of the amplitude
fluctuations into frequency fluctuations. This is accom-
plished by making the frequency a nonmonotonic function
of the vibration amplitude and operating the system at
the extremum of this function, the zero-dispersion point.
Along with the thermal noise, this also eliminates the
amplitude-to-frequency conversion of fluctuations caused
by a nonequilibrium noise, including the broadband noise
from the feedback loop.

The distinctive feature of the approach is that it consid-
ers the regime of comparatively large vibration amplitudes.
The analysis in terms of the action-angle variables allows
one to study not only a broad range of parameters of the
conservative motion, but also different dissipation mecha-
nisms, such as linear and nonlinear friction. It also applies
for various models of the amplifier, since the key feature
of the dynamics, the nonmonotonic frequency dependence
on the amplitude, is a feature of the resonator itself.

The frequency and amplitude of the vibrations at the
sweet spot can be controlled, which adds tunability to
a resonator. This is illustrated by a simple example,

which considers a conventional bias control of nano- and
micromechanical resonators.

The proposed approach does not eliminate the low-
frequency phase fluctuations, which are caused by the
material problems in the resonator and can also come from
the feedback loop. However, it allows tuning the feed-
back loop so as to minimize the effect of its low-frequency
fluctuations. For example, tuning the average phase shift
allows reducing the effect of fluctuations of this shift.
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