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Abstract

Although interstellar grains are known to be aspherical, their actual shapes remain poorly constrained. We assess
whether three continuous distributions of ellipsoids (CDEs) from the literature are suitable for describing the
shapes of interstellar grains. Randomly selected shapes from each distribution are shown as illustrations. The often-
used Bohren—Huffman CDE includes a very large fraction of extreme shapes: fully 10% of random draws have
axial ratio as/a; >19.7, and 5% have as/a; > 33. The CDE2 distribution includes a much smaller fraction of
extreme shapes, and appears to be the most realistic. For each of the three CDEs considered, we derive shape-
averaged cross sections for extinction and polarization in the Rayleigh limit. Finally, we describe a method for
“synthesizing” a dielectric function for an assumed shape or shape distribution if the actual absorption cross
sections per grain volume in the Rayleigh limit are known from observations. This synthetic dielectric function
predicts the wavelength dependence of polarization, which can then be compared to observations to constrain the

grain shape.

Unified Astronomy Thesaurus concepts: Interstellar dust (836)

1. Introduction

After many years of study, both the composition and the
geometry (shape, porosity) of interstellar grains remain uncertain.
While meteorites can provide samples of presolar grains that were
part of the interstellar grain population at the time of formation of
the solar system, the surviving particles may not be representative,
and the sampling techniques are biased toward large ‘“‘stardust”
grains with isotopic anomalies. Interstellar grains collide with
interplanetary spacecraft, providing some information on ele-
mental composition, but the data are limited and generally involve
vaporization of the impinging particle, leaving both mineralogy
and preimpact morphology uncertain (e.g., Altobelli et al. 2016).
The Stardust mission captured some particles relatively intact
(Westphal et al. 2014a, 2014b), but dynamical considerations
argue against these particles having come from the interstellar
medium (Silsbee & Draine 2016).

As a result, our knowledge of interstellar grains is based almost
entirely on (1) evidence of elements that have been “depleted”
from interstellar gas and incorporated into dust grains and (2)
observations of the interaction of electromagnetic waves with the
interstellar grains: absorption, scattering, and emission (Hensley &
Draine 2021). The challenge to grain modelers is to create
physical models that are consistent with these constraints.

Grain models must specify the optical properties of the grain
materials, and the shapes and sizes of the grains. The optical
properties of a grain, particularly for polarization, depend on the
grain shape, i.e., morphology. Because the universe of possible
grain morphologies is unbounded, modelers are forced to limit
consideration to some subset of idealized shapes. With stringent
constraints now available for polarized extinction by and emission
from interstellar grains, the assumption of spherical grains is no
longer adequate for modeling. The natural first step beyond
spheres is to consider spheroids and ellipsoids.

The present work has two aims. The first is to discuss certain
distributions of ellipsoidal shapes. Continuous distributions of
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spheroidal or ellipsoidal shapes have been considered in some
previous studies, but the discussions have generally been
limited to the angle-averaged absorption cross sections, with
little said about the actual distribution of shapes. Here we
explicitly discuss the distribution of shapes associated with
three particular continuous distributions of ellipsoids (CDEs).
We also derive the polarization cross sections for the CDEs for
grains in the “electric dipole” or Rayleigh limit when the grains
are not randomly oriented.

The second aim is to present a method for using observational
constraints on absorption at long wavelengths, plus a prior
estimate of the dielectric function at shorter wavelengths, to derive
the complex dielectric function e(\) at long wavelengths .
Absorption and polarization by grains both depend on the grain
shape, or distribution of shapes. If we knew the dielectric function
€()), we could (at least in principle) infer the actual grain shape by
computing absorption versus A for different assumed shape
distributions, and seeing which shape distribution best agrees with
observations. Because the actual grain materials remain unknown,
we do not know e(\), and hence cannot use that approach to
deduce the grain shape. However, if we have observations of both
absorption and polarization, we can determine which shape
distribution yields a dielectric function that is consistent with both.
We show here how this can be done. The methods developed here
have been employed to obtain a dielectric function for “astrodust”
(Draine & Hensley 2021) for spheroids and CDEs.

The paper is organized as follows: absorption and polariza-
tion cross sections for ellipsoids in the long-wavelength
(Rayleigh) limit are reviewed in Section 2. In Section 3, we
discuss the properties of three continuous distributions of
ellipsoidal shapes, the BHCDE, ERCDE, and CDE2 distribu-
tions, and present images of shapes drawn randomly from each
of these distributions. Analytic results for polarized absorption
cross sections are presented in Sections 4 and 5. Attenuation
and polarization by a medium with partial grain alignment is
discussed in Section 6. In Section 7, we develop a method for
employing the results obtained here, together with other
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constraints, to obtain a self-consistent dielectric function given
observations of absorption as a function of wavelength. Our
results are summarized in Section 9. Certain technical results
are collected in Appendices A-D.

2. Absorption in the Rayleigh Limit

In the Rayleigh limit (grain size < wavelength )\), the
interaction of a grain with an incident electromagnetic wave is
fully characterized by the grain’s electric polarizability tensor
(see, e.g., Draine & Lee 1984). Here we review the dependence
of this polarizability tensor on the grain shape.

2.1. Ellipsoidal Grains

Consider an ellipsoidal grain with semimajor axes
ay < a> < az and volume V= (47/3)a aas. Let d;, @, s be
unit vectors along the three principal axes. We define an
effective radius aer = 3V /4m)'73 = (a1a2a3)'/>.

The grain material is assumed to have an isotropic complex
dielectric function €(\) = €; + ie,, where €;(\) and €,()\) are the
real and imaginary parts of €, and ) is the wavelength in vacuo.
In the long-wavelength limit a; < A, the electric polarizability
tensor for radiation with E||@; is oy; = A;V/4m, where

e—1
Aj(e) = ————, ey
! 1+ Lite— 1)
with L; given by (see, e.g., Bohren & Huffman 1983)

1 o dx

L=~ f )

To2do RGP+ 005 + 007 + 012
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The L;, referred to variously as “geometrical factors,” “shape

factors,” or “depolarization factors” are determined by the axial
ratios a;/az and a,/as. The L; satisfy

Li+L,+L;=1. )

If ap < ar < as, then
Ly> Ly > L (5)

The allowed domain is shown in Figure 1. The absorption cross
section for radiation with E||d; is

27V
Qw={fmw> (6)

After propagating a distance z through a medium with dust
number density n,, a plane wave will undergo both attenuation
(due to absorption) and a phase shift relative to propagation in
vacuo. The phase shift (in radians) will be 7,Cphaz, Where
Vv
Cohaj = TRe(Aj). @)

The axes @, d,, a3 coincide with the principal axes of the
moment of inertia tensor, with eigenvalues I; > I, > I3. For
randomly oriented grains, the absorption cross section is

®)

g+ 2C
Cran: H"‘ an :27TVIm(A1+A2 —|—A3)
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Figure 1. The domain of allowed shape factors (L, L,). The shaded region is
the domain where L; < L, < L; (see text). Other regions, numbered 2-6,
correspond to the other possible orderings of Ly, L,, Ls.

Interstellar grains are generally spinning rapidly, and it is
appropriate to average over the grain orientations. The direction
of the grain axis @; may be correlated with the angular momentum
vector J; if the grains are in suprathermal rotation, @; will tend to
be aligned with J, as originally pointed out by Purcell (1979). The
absorption cross sections for E||@; and E L a; are

27V

G = Can(Elay = == Im(4) ©)
C = CuE L @) = 27;‘/ Im(A2 ;A3), (10)

where the grains are assumed to be spinning with @, and d;
randomly distributed in the plane L to a;.

Consider the limiting case of spinning grains that are
perfectly aligned with @ ||J. For unpolarized radiation
propagating with wave vector kL J, the polarization-averaged
absorption cross section is

Cars = (11)

G+ 27V Im(A2 + Az + 2A1)
2 A 4 '

The difference in absorption cross sections will produce linear
polarization, characterized by the “polarization cross section”
G- 2nv (Az + Az — 2AI)

2 A 4

pol = (12)
There will also be a phase shift between the two linear
polarizations. We define

% (A2 +A3—2A1) (13)

ACpha = Cpha,L — Cpha,H = TRC

After propagating a distance z through a medium with dust
number density n,, the phase difference between the modes will
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be 1n;ACpnaz. If the direction of grain alignment rotates along the
direction of propagation, radiation that is initially unpolarized will
develop circular polarization (Martin 1972, 1974). We define a
“circular polarization efficiency factor”

Cpol ACoh;
Qcpol = — X —=—. (14)
Tdefp Tdefp

If the rotation angle is small, and the percentage linear
polarization is small, the circular polarization after propagating
a path length z has Stokes parameters V and I varying as

1%

7 (08 Qcpol X (ndﬂ'aeszZ)2~ (15)

2.2. Spheroids

Prolate spheroids have a; =a, < az, and oblate spheroids
have a; < a, = az. The “shape factors” L; are given by van de
Hulst (1957)

— 2 2
prolate: L; = ! 2e [Lln(1 + e) - 1] <1/3, et=1- (a_l)
e 2¢ \1—e¢ az
(16)
Li=L,= 17—L3 (17)
2
2 2
oblate: L; = ! +ze [1 - larctan(e)] >1/3, 2 = (a_3) —1
e e a
(18)
1—-L
Ly=L;= L, (19)
2
A sphere has (Ly, Lo, L3) = (%, %, %); the prolate limit (needle-

like) has (L, Lo, L3) = (g, % 0); the oblate limit (disk-like)
haS (L17 L2a L3) = (1’ 0’ O)

3. Continuous Distributions of Ellipsoids
3.1. Shape Factors

Every ellipsoidal shape is uniquely specified by its triplet of
depolarization factors (L;, L,, L3). Consider a population of
ellipsoidal grains, each with the same volume V, but with some
continuous distribution of axial ratios; this is referred to as a
“continuous distribution of ellipsoids” (CDE). Suppose that each
grain has principal axes labeled 1,2,3 arbitrarily, and that G(¢|,
Up)dld?, is the fraction of the population with L, € [¢y, ¢, + d¢1],
Lelt,, tr+dl,), and L3=1—L; — L,. The function G is
nonnegative (G > 0) and normalized: fG(Ll, Ly)dL,dL, =1 over
the allowed (L;, L) domain. If labels 1,2,3 were assigned
arbitrarily, the function G must satisfy symmetry requirements,
including G(L,, L,)=G(,, L)=G(L,, 1—L,—L,)> but
otherwise we have no a priori knowledge of the function G,
other than expecting that very extreme axial ratios should be
rare .

Various distributions of shapes have been considered in
the literature, including spheroids (Treffers & Cohen 1974;
Min et al. 2003), and ellipsoids (Bohren & Huffman 1983).

2 One can also consider functions G that do not satisfy these symmetry
requirements, but in this case, one must restrict discussion to only one of the six
subregions in Figure 1.
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Bohren & Huffman (1983) gave a lucid introduction to CDEs
in general, and presented a simple illustrative example, referred
to here as the BHCDE. We discuss the BHCDE and two other
distributions of ellipsoids that have been considered in the
astrophysical literature.

1. BHCDE: The simplest functional form
G(L,,Ly)y=2forL1 20, L, 20, Li+ L, <1 (20

is often considered; Bohren & Huffman (1983) present this
as an example, and it has subsequently been applied by a
number of authors (e.g., Rouleau & Martin 1991; Alexander
et al. 1994; Min et al. 2003, 2006, 2008; Sargent et al. 2006;
Rho et al. 2018. Because G(L,, L,) is independent of L; and
L,, it is sometimes asserted that “all shapes are equally
probable” (Bohren & Huffman 1983) or “all shapes are
equally weighted” (Sargent et al. 2006), seemingly suggest-
ing that this is a “fair” sampling of ellipsoidal shapes. While
it is correct that all ellipsoidal shapes are present, it is not
clear how “all shapes are equally probable” is to be
understood, given that shapes are not discrete and there is no
commonly accepted metric for “shape space.”

Although having the virtue of analytic simplicity, we
will see below that the BHCDE distribution has an extreme
representation of very elongated shapes, with L — 0. We
will argue that the BHCDE distribution seems unlikely to
approximate grain shape distributions in nature, whether for
desert sand or interstellar dust.

2. ERCDE: Zubko et al. (1996) proposed eliminating the
most extreme shapes by truncating the distribution (20):

2
G(Ly, L)) = ——— forL| > L,
ol = 5y
L2 > Lmin’ Ll + L2 < 1 — Lmim (21)

referring to this as the “externally restricted CDE”
(ERCDE). L., is a free parameter. While removing
extreme shapes with L;— 0 or L; — 1 is desirable, the
ERCDE distribution still seems unphysical, as we will see
below. Note that if L,;;, — 0, the ERCDE — BHCDE.
3. CDE2: Ossenkopf et al. (1992) proposed the distribution

G(Ly, Ly) = 120L1L, L3 = 120LL,(1 — Ly — Ly) 22)
for L1>O, L2>O, L1+L2<1,
which has the desirable behavior G — 0 for L; — 0 and
L, — 1. This distribution has subsequently been referred
to as “CDE2” (Fabian et al. 2001; Sargent et al. 2006),
and we shall so refer to it here.

The distribution functions G(L;, L,) for these three CDEs are
shown in Figure 2.

3.2. Shape Distributions

Because the optical properties of ellipsoids in the limit a < A
are determined by L, L,, and Lz;=1—L; —L,, most
discussions of CDEs have been concerned only with the
distribution of L; values, rather than the distributions of
the ellipsoid axial ratios. However, it is of interest to examine
the distributions of actual grain shapes that correspond to the
BHCDE, ERCDE, and CDE2 distributions.
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Figure 2. G(L;, L,) for the BHCDE, ERCDE (with L, = 0.05), and CDE2 shape distributions.
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Figure 3. Twenty randomly selected ellipsoids drawn from the BHCDE, ERCDE, and CDE2 distributions. All examples have equal volume. Three views are shown
for each shape: viewed along the short axis @; (top row), and along the @3 and @, axes (second and third rows). For each distribution, the 20 random shapes are shown

in order of increasing as/a; (left to right).

For a given set of axial ratios (a»/ay, as/a,), the L; values
can be obtained by numerical quadrature (Equation (2)).
Since there does not appear to be any direct way to
invert Equation (2) to obtain (ay/a;, asz/a;) from given
(L1, Lp), we have implemented a numerical procedure to
find (a»/a;, as/a;) corresponding to given (L;, L,). In
Appendix D, we demonstrate that any solution found in this
way is unique.

We continue to adopt the ordering a; < a, < as, Ly > L, > L;.
We draw (L, L,) values randomly according to the BHCDE,
ERCDE, or CDE2 distributions and, for each (L;, L), find the
corresponding axial ratios (a,/a;, asz/a;). Figure 3 shows 20
examples selected randomly from each of these shape

distributions. Figure 4(a) shows the distribution of long/short
axial ratios as/a, for the BHCDE, ERCDE (with L, = 0.05),
and CDE2 distributions. Figure 4(b) shows the cumulative
distribution function of axial ratios as/a;, and Figure 5 shows
the distributions of axial ratios for the BHCDE, ERCDE, and
CDE2 distributions. Some characteristics of these shape distribu-
tions are listed in Table 1.

The BHCDE distribution has a very large fraction of extreme
axial ratios; Figure 4(b) shows that 10% of the realizations have
asz/a; >19.7 and 1% of the realizations have as/a; >98.5.
Extreme elongation will increase the susceptibility to fragmen-
tation in high-speed grain—grain collisions. Highly elongated
grains may also be more vulnerable to centrifugal disruption if
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Figure 5. Distributions of axial ratios a3/a, and a,/a, for the BHCDE, ERCDE (L, = 0.05), and CDE2 shape distributions. Oblate spheroids have a3/a, = 1, and

prolate spheroids have a,/a; = 1.

Table 1

Long/Short Axis Ratio az/a;

BHCDE ERCDE? CDE2
Mode” 3.26 3.27 2.24
Median 4.58 3.35 2.73
25% 9.23 5.07 4.25
10% 19.7 6.97 6.72
5% 32.97 8.32 9.11
1% 98.49 10.92 17.11
Notes.
& Lomin = 0.05.

® Maximum of dP /d In(as /ay).

spun-up by strong radiative torques (Silsbee & Draine 2016;
Hoang 2019) or gas—grain streaming (e.g., Tatsuuma &
Kataoka 2021). The actual shape distribution for interstellar

grains is of course unknown, but it seems unlikely to include as
large a fraction of extreme aspect ratios as the BHCDE
distribution. The CDE2 (with ~90% of the draws having
asz/a; <6.72) or ERCDE (with ~90% of the draws having
azfa; < 6.9 for Ly, = 0.05) may be more plausible shape
distributions to consider for interstellar dust grains.

4. Polarization by CDEs

The observed polarization of starlight by dust, and of
submillimeter emission from dust in the interstellar medium,
indicates that interstellar grains spin with their short axis
tending to be aligned with the local magnetic field B; this
occurs because the grain’s angular momentum J tends to align
with the magnetic field, and the short axis of the grain tends to
align with J. Rotation and nutation, and precession of J around
B, are all rapid, and physical processes such as paramagnetic
dissipation cause J to align with B.
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In protoplanetary disks, magnetic effects are relatively much
weaker. Grain drift can cause J to tend to be perpendicular to
the (azimuthal) streaming direction (Gold 1952), while
radiative torques may cause Jto tend toward the radial
direction (Lazarian & Hoang 2007; Tazaki et al. 2017).
Whatever the spin-up process, if the grains are spinning
suprathermally we expect dissipation in the grain to cause the
short axis to be aligned with J. The results obtained below for
absorption cross sections averaged over CDEs are applicable
both to the interstellar medium and to protoplanetary disks.
This is true also for the polarization cross sections, provided
only that the degree of alignment of the short axis with Jis
independent of shape. Interpretation of observed polarization is
often complicated by the need to include polarized scattering,
which can even be important at submillimeter wavelengths in
protoplanetary disks (Kataoka et al. 2015).

In order to discuss polarization by a population of partially
aligned grains, we require the distribution of depolarization
factors separately for the short axis, and for the other two axes.

It is useful to restrict consideration to the ordering
0< Ly <Ly <Ly <1: for each ellipsoid, j =3 corresponds to
the long axis, j=1 to the short axis, and j=2 to the
intermediate axis. Let g;({)dl be the fraction of ellipsoids with
L;c[¢, ¢+ df]. The distribution functions g;, g», g3 can be
obtained from G, as discussed in Appendix A. Figure 6 shows
g1, &, and gz for the BHCDE, ERCDE, and CDE2 shape
distributions.

4.1. The BHCDE Distribution

Figure 6(a) shows the distribution functions g; for the
BHCDE distribution. We see that g3(f) peaks at =0,
corresponding to infinitely elongated needles: fully 10% of
the BHCDE ellipsoids have L; < 0.0171. Only very extreme
shapes have such small values of Ls, for example, a prolate
spheroid with axial ratios 1: 1: 11.17 has L; = 0.0171. Another
example with L3 =0.0171 would be an ellipsoid with axial
ratios 1:4.72:22.3. It does not seem likely (to us) that
interstellar grains will have such a large fraction of extremely
elongated shapes.

4.2. The ERCDE Distribution

The ERCDE distribution is similar to the BHCDE distribu-
tion, except that cases with L < L, are excluded. Thus L,
is a free parameter for the ERCDE distribution. The ERCDE
distribution has g3 peaking at L3 = L;,. As an example, we
consider L, = 0.05 (see Figure 6(b)).

What shapes would correspond to the limiting cases
L3 = L,? One example of a shape with Ly = 0.05: a prolate
spheroid with axial ratios 1:1:5.41 (with L, =L,=0475,
L3;=0.05). Another example: an oblate spheroid with axial
ratios 1: 14.43:14.43 (with L; =0.9, L, = L3 =0.05). A third
example: an ellipsoid with axial ratios 1:2.965:8.79 (with
Ly =0.719, L, =0.231, L; =0.05).

Because g5 increases monotonically as L3 — Ly, (see
Figure 6(b)), this shape distribution places substantial weight
on the most extreme allowed grain shapes. For instance, fully
10% of the ERCDE realizations with L;, = 0.05 have
L3 < 0.06454. Thus the ERCDE shape distribution also appears
to overrepresent extreme shapes, unless Ly, 2 0.10. The
ERCDE shape distribution will be further discussed below.
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Figure 6. Distributions gi, g>, and g3 of depolarization factors L, L,, L3 for the
three CDE distributions discussed in Section 3: (a) Bohren & Huffman CDE
(BHCDE) from Equation (20). (b) Externally restricted CDE (ERCDE) from
Equation (21) with Ly, = 0.05. (c) Ossenkopf, Henning, and Mathis CDE
(CDE2) from Equation (22). The BHCDE and ERCDE distributions have
extreme representation of small L. Of the three, the CDE2 distribution appears
most realistic (see text). The solid bars in panel (c) show the values of
Ly =L, =0.2364 and L, = 0.5272 for a b/a = 2 oblate spheroid.

4.3. The CDE?2 Distribution

The distribution functions g; for the CDE2 distribution are
shown in Figure 6(c). While the CDE2 does include extreme
shapes, it has g3 — 0 for L3 — 0, and g; — 0 for L; — 1. Ten
percent of the realizations have L3 < 0.06185, so it is somewhat
similar to the ERCDE with L.,;, = 0.05 in the representation of
extreme shapes, although the CDE2 distribution function has
the virtue of smoothness.

5. Absorption Cross Sections for the BHCDE, ERCDE and
CDE2 Distributions

The shape-averaged absorption cross section associated with
axis j is

Con(E) = 2 1)) 23)
) = [4; 5@, 24)

where A; is related to the complex dielectric function e through
Equation (1). For ellipsoids with specified axial ratios a;: a,: as,
the g; are 6-functions. As seen above, for a population of ellipsoids
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with a continuous distribution of shapes, the g; become continuous
distribution functions (see Figure 6). Min et al. (2006) show that
a single particle with an irregular shape also has its absorption
cross section given by Equation (23) with continuous distribution
functions g;.

5.1. Randomly Oriented Particles

For randomly oriented particles, the absorption cross
section is

Coun = 27V Im[<A1> + (A) + (A3>:|. (25)

3

Bohren & Huffman (1983) obtained the absorption cross
section for randomly oriented grains with the BHCDE shape
distribution:

bhcde
QL:“_”Im[(lﬂ)lng], (26)
\% A X

where x=¢— 1. For the ERCDE (Equation (21)) the
absorption cross section for randomly oriented grains was
obtained by Zubko et al. (1996):

Cot _d4m 1

\% A - 3»Lmin)2
y {(1 N D)l[wiD]}, @
X 1 + xLmin

where D = 1 — 2L, It is easily verified that this reduces to
Equation (26) for L, — O.

Fabian et al. (2001) obtained the absorption cross section for
randomly oriented ellipsoids with the CDE2 shape distribution
(Equation (22)):

Can” _ 40m
Vv

L(7(1 +x)3In(l +x) + x + Sy + LLIE + l)c“) :
x4 2 6 4

(28)

5.2. Polarization Cross Sections for Aligned Particles

The polarization cross section (see Equation (12)) is

Cpol = ﬂIm><[<A2> + <A;> — 2<A1>]. (29)

For the BHCDE distribution, we find

C;(?lcde _ 3_7T -
\%4 2

LRl )35l 5)

—2(1 + x)In(1 —|—x)]. (30)
X
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where x = ¢ — 1. For the ERCDE distribution we find

G _3x_ 1
Vv 2A (1 = 3Lpyin)?

x Im{lz(l n B)]n[l 1 xB] — 9(1 4 l)ln[l n f]
X X 3 3

— (l + D)ln[l + XL inl — 2(l + D)ln[l + xD]}
X X

(3D
_ Lmin

B= L
2 2

, D=1—2Lyp. (32)

See Appendix A for the derivation of Equation (31).
Equation (30) is recovered by setting L, = O.

The polarization cross section for the CDE2 distribution is
(see Appendix A):

cde2 30n 1 X
ol | — 3(=9 — 3x + 3x% + x3)ln(1 + —)
1% A x* 3

1 6(4 — 3x2 — x3)1n(1 + %)

+ 21 + x)In(1 + x) — 5x — lx2 + Zx3 + 1x“) )
2 6 72

(33)

6. Polarized Absorption by Partially Aligned Grains

An interstellar grain with angular momentum J will have a
magnetic moment p resulting from a combination of the
Barnett effect (if the grain has unpaired electron spins), the
Rowland effect (if the grain is charged), and ferromagnetism (if
the grain contains magnetic material).” If |J x B|=0, the
p X By torque will cause Jto precess around B,. There are
three distinct orientational issues:

1. The angle « between the grain’s principal axis of largest
moment of inertia, d;, and the angular momentum
J (alignment of the grain body with J).

2. The angle (3 between J and B, (alignment of J with By).

3. The angle  between B, and the line of sight.

Consider radiation propagating in the Z direction, and suppose
B to be in the y-Z plane, making an angle  with the £ axis. In
the electric-dipole limit a/A < 1, the mean absorption cross
section and the polarization cross section sections for x- and y-
polarized radiation can be written (see Appendix B)

C.+ C, .

R CPOICI)(Slnz’y - 3) (34)
2 3

C — G i

Ty = Cpo P sin, (35)
where (see Appendix B)
9 5 1 )( 5 1 )

= —| (cos — — || {cos - = 36
2cosa) = (o) - 3 G6)

3 For ferromagnetic grains, the rotation-averaged effective magnetic moment

() =JJ - )/ .
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is a generalization of the “polarization reduction factor” originally
introduced by (Greenberg 1968, p. 328) and Purcell & Spitzer
(1971). Perfect alignment ((cos? o) = (cos? 3) = 1) has = 1;
random orientation ((cos? 3) = 1/3) results in & =0.

If By is itself not perfectly uniform, Lee & Draine (1985)

showed that sin?~y — sin®~, x %((cos2 8) — %) where 7, is
now the angle between Z and the (dust mass-weighted) mean
magnetic field (By), and é is the angle between (B,) and the
local By; (cos?§) is the dust mass-weighted average of cos®§
over the sightline. If we assume that o, B, and ¢ vary
independently, then the overall polarization reduction factor
becomes

= 2?7(<cos2 a) — %)(@082 ) — %)((0052 6y — %)
(37)

Let N, be the column density of grains, and C, and C, be the
average absorption cross section per grain for radiation polarized
in the X and y directions. Let 7,=N,C, and 7,=N,C, be the
optical depths for radiation polarized in the X and y directions.
Initially unpolarized radiation will be attenuated and polarized as a
result of linear dichroism (i.e., preferential attenuation of one
linear polarization), with overall attenuation and fractional
polarization

=9t (38)
2
e —e ™
=\ 39)
p g*Ty _|_ e*Tx

From (34) and (35) we can find the absorption cross section per
grain volume Cy,,(\)/V from the measured attenuation I/1; and
polarization p (see Appendix C) where p is the mass density of
the grain material, and X4 is the dust mass surface density:

@@:i++%“ 2)

\% DI /p T 3 sin? Y
2 2 3 4
c o2 2 Y o)) e
21 37 3sin?~y ™
=/ (41)

Because p,/7, is normally small, common practice is to
approximate Cp,,(\)/V=T7,/(Xq/p); note, however, that
Hensley et al. (2019) have demonstrated that the high quality
of the Planck data permit the dependence of the total emission
on p,/7, (the first-order term in Equation (40)) to be used to
constrain the full 3D orientation of the magnetic field.

7. Self-consistent Dielectric Functions Derived from
Infrared Absorption

The relationship between Cyps(A) and Cpi(A) derived in the
previous sections can be leveraged on astronomical data in the
infrared. Here we show how the full dielectric function e(\) can
be estimated using knowledge of the infrared opacity.

Suppose that we have an estimate of the dielectric function
€()) of the grain material at short wavelengths A < A, and have
observational knowledge of the extinction 7(\) at infrared
wavelengths A > A\, X4, and an estimate for the grain material
density p. From these, we can estimate the observed absorption

cross section per grain volume C% /V for randomly oriented
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grains (see Appendix C). This applies to the dust material in the
ISM, where we have constraints on the infrared and far-infrared
opacity, including the strong silicate absorption features at 9.7
and 18 yum. Here we show how one can use the “observed”
CE)(X\)/V to obtain the complex dielectric function e()) at
infrared wavelengths.

We assume that, at wavelengths A > \;, the grains have
a < ), so that we can employ the electric-dipole approximation
(8) to relate Cy,/V to the complex dielectric function. We
must, of course, make an assumption about the grain shape, or
distribution of grain shapes. For spheres, spheroids, ellipsoids,
or the CDEs discussed in this paper, we have analytic
expressions relating Ci,,/V to the dielectric function e()\); the
analytic result enables efficient iterative algorithms to be
applied to solve the system of equations.

The dielectric function must satisfy the Kramers—Kronig
relations (Landau et al. 1993). We suppose that we start with a
dielectric function €’()\) that is reasonably accurate at \ < ;.
We extend the imaginary part of €” to long wavelengths A > X,
in a smooth way:

SN = 3 (\) x (%) (42)

and obtain (by numerical integration) the real part ) () at all
wavelengths using the Kramers—Kronig relation (Landau et al.
1993):

xeg(x)

~dx, (43)

e?(w):1+zpf°0 :
T Jo XxX°—w
where P indicates that the “principal value” of the singular
integral is to be taken. The actual behavior of €J(\ > 1 pm) is
unimportant, because we will adjust the total absorption as
required to reproduce C° /V at XA > \;. We accomplish this
by adding additional absorption in the form of N Lorentz
oscillators, each with resonant frequency wq;, dimensionless
damping parameter ;, and dimensionless strength S;:

N 2 -1
cW) = eO@w) + Zskll - (i) - mil .44

k=1 Wok Wok

Because €®(w) and each of the Lorentz oscillators separately
satisfy the Kramers—Kronig relations, e(w) given by Equation (44)
will satisfy the Kramers—Kronig relations for any {wox, ¥, Si}-

We distribute the Lorentz oscillators between A; and Ay > \;
according to some smooth prescription (e.g., uniform in log A).
Then we set the widths of the Lorentzians by specifying the
dimensionless damping parameters ~y;:

2\
“Yk:CX( :

j—1

— 1] with j = max(2, k). (45)

For 7, < 1, each resonance contributes Im(e) with a
FWHM = ywor. To represent a smooth function, we want
Yrwo to be large compared to wy x1 — Wox, but small enough to
be able to reproduce the expected frequency dependence of
Im(e). This is accomplished by suitable choice for C. For
example, Draine & Hensley (2021) adopt N = 3000,
wor/woy =3 cm/1 um =3 x 10*, and C = 10.

The model cross sections C™°%D (\) depend on the {S;}. To
find the self-consistent solution, we iteratively adjust the S; to
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solve the N simultaneous equations

Yk _ |:)\Cr(argodel):| - |:)\lea0rl)q):| _ 0 , k = 1’,_,’N_
/\k )\A

14 14
(46)

Thus we have N equations to determine N unknown S.
Iterative alogrithms, such as the Levenberg-Marquardt method
(see, e.g., Press et al. 1992), can be used to find the solution Si;
it is helpful that analytic formulae for the partial derivatives
0Y;/0S can be obtained from Equation (44) and one of (8),
(26), (27), or (28).

We remark here that the problem does not always have a
solution: if the “observed” A\C%™ /V is too large, there may
not be any dielectric function e(\) that can reproduce the
assumed A\C°® /V for the assumed grain shape. Because of
the Kramers—Kronig relations, all wavelengths matter: strong
absorption at one wavelength will imply a large Re(¢) at longer
wavelengths, limiting the ability of the grain to absorb at those
wavelengths.

We apply this methodology to estimate the effective
dielectric function €(\) for interstellar dust material in a
separate paper (Draine & Hensley 2021).

8. Ellipsoids versus More Complex Shapes

This paper has concentrated on the optics of grains with
spheroidal or ellipsoidal shapes, including continuous distribu-
tions of ellipsoidal shapes. In the Rayleigh limit a < A, the
interaction of a grain with the electromagnetic field is
determined by a single symmetric tensor cy characterizing
the polarizability of the grain. For a given dielectric function,
ellipsoidal shapes allow us to explore plausible values for
Qj / V.

At shorter wavelengths, the response of the grain to an
incident electromagnetic field is more complex, and ellipsoidal
shapes provide only a first approximation to asphericity.
Ellipsoidal shapes may be an adequate approximation for
estimation of cross sections for absorbing or scattering light, for
modeling polarization of starlight at optical wavelengths, or
polarized thermal emission at submillimeter wavelengths.

However, radiative torques are important for grain dynamics,
including the alignment of interstellar grains (Draine &
Weingartner 1996, 1997; Hoang & Lazarian 2008). The reflection
symmetries (and therefore zero chirality) of ellipsoidal shapes
artificially suppresses radiative torques. Therefore, studies of
radiative torques on interstellar grains must consider non-
ellipsoidal grain shapes. However, the overall deviations from
nonsphericity implied by observations of polarized emission at
long wavelengths will still serve to constrain the more complex
shapes used for studies of starlight torques.

9. Summary
The principal results of this study are as follows:

1. We discuss the distributions of ellipsoidal shapes that
correspond to three previously proposed CDEs. Twenty
randomly selected shapes from each distribution
(Figure 3) serve to illustrate the three distributions.

2. The often-used CDE discussed by Bohren & Huffman
(1983) (here referred to as the BHCDE distribution)
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includes what appears to be an unrealistically large
fraction of extremely elongated or extremely flattened
shapes.

. The CDE2 distribution proposed by Ossenkopf et al. (1992)
includes a much smaller fraction of extreme shapes and
seems more realistic as a model for distributions of grain
shapes.

4. For each of the three CDEs considered here, we obtain
the distribution functions g;(L;) for the geometric factors
Ly, Lo, Ls.

5. In the electric-dipole limit a/ A < 1, we obtain absorption
and polarization cross sections for partially aligned
ellipsoidal grains with the three proposed CDEs.

6. We present a method for obtaining a self-consistent
dielectric function consistent with an assumed absorption
opacity and an assumed distribution of shapes.

(O8]
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Appendix A
Polarization Cross Sections for Grain Populations with
Continuously Distributed Ellipticities

A.l. General Considerations

Consider a population of ellipsoids with a distribution of axial
ratios. Every ellipsoidal shape is uniquely specified by its triplet of
depolarization factors (L;, L,, L3). Because Lz =1 — L; — L,, the
ellipsoid is fully determined by the doublet (L;, L,), which must
lie in the triangular region bounded by L, =0, L, =0, and
L, + L, =1, as shown in Figure 1.

The distribution of shapes can be characterized by the
distribution of L values. Let dP = G(Ly, L,)dLidL, be the
probability that L; € (L +dL,), L, € (L, + dL,). The function
G(L,, L,) fully determines the shape distribution (i.e., the
distribution of axial ratios). If G is to apply to the full triangular
region in Figure 1, then (because labeling of axes 1, 2, 3 is
arbitrary), G must depend symmetrically on L,, L,, Ls:

G(Ly, L)) =Gy, L) =G(Ly, 1 — Ly — Ly)
for all allowed L, L. (A1)

The region of allowed (L,, L,) can be divided into six
triangular subregions of equal area, shown in Figure 1,
corresponding to the six possible orderings of Ly, L,, L3: (1)
Lyi<Ly<L;, (2) L<Li<L;, () Li<Li<L,
Ly<L3< Ly, (5) Ls< Ly <Ly, and (6) Ly < Ly < Ls.

For clarity, we fix the order of the L values: we choose the
ordering 0 < L; <L, <L; <1, corresponding to region 1
(shaded) in Figure 1. Then L, is for E parallel to the principal
axis of largest moment of inertia (the “short axis”), and L; is for
E along the principal axis of smallest moment of inertia (the
“long axis”).

Within subregion 1, let gi(L;)dL; be the probability that
Lje Ly L;+dLy:
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&(Ln=0 for0 < Ly < 1/3
p— Ll
=6,",, Gl LdL, for1/3 < Ly < 1/2
- 1-L,
=6, ,GLi LdL, for1/2 <L <1
&) =6 [ G(Ly, LdL, for 0 < L < 1/3
=6 [ " Gy, Loyl for 1/3 < Ly < 1/2
=0 for1/2 < L,
1-3L
HUL=3[ "G ~Li+2/2,(1 - Ly~ 2)/2)dz for0 < Ly<1/3
=0 for1/3 < L (A2)

where we have introduced z = (L, — L,) for evaluation of gs.
The factor of six in (A2) appears because we assume the
normalization deleLzzl over the full triangular region,
hence deL,sz =1/6 over region 1. It can be verified that

1
f g(LydL; =1 forj=1,2,3. (A3)
o .
For distributions of ellipsoidal shapes,
(e—D
A; Ef—~leL~. A4
(A)) 1+Lj(6—1)g(j) J (A4)
A.2. BHCDE
The simplest CDE is the uniform distribution
G(L,Ly)=2 for 0< L+ L, <1, (A5)

which obviously satisfies the symmetry condition (A1). This
example was discussed by Bohren & Huffman (1983); we refer
to (A5) as the BHCDE. For this case we have

1

g =0 forL1<§
1 1 1
=18L;— =) for— <L < —
(L4 3) 3 1S3
=6(1 — L) for%éngl
g2:12L2 forOéngé
—12(1—2L)for] <L <1
2 3\ 2\2

=0 forléLz

2

1
8 =06(1 —3L3) for0 < L3 < E

=0 for % < La. (A6)

10

Distributions g;, g, and gz are shown in Figure 6(a). Then
6 1 +x
A)=—(1 4+ x)In| ———
A x{( ) (1+x/2)

- 3(1 + ?)m(%]}

(A7)

12 x 14 x/2
A) = =221+ Z || —Z=| - m(
(A2) x{( +2)n(1+x/3) n( +X/3)}

(A8)

18 X X
(4a) — _{(1 + —)1n(1 +x/3) - —}. (A9)

x 3 3
(A +A32 ) 20 oA e 2 (ALO)

X

Equation (A10) was previously obtained by Bohren & Huffman
(1983).

A.3. ERCDE

The BHCDE includes shapes that are infinitely elongated
(Lj — 0) and infinitely flattened (L; — 1). Zubko et al. (1996)
proposed to exclude the most extreme shapes by imposing the
restriction L; > Ly, where 0 < Ly, < 1/3, giving what
Zubko et al. referred to as the “externally restricted distribution
of ellipsoids” (ERCDE):

2
G(Ly, Lp) = 0 3L 7 for
Lmin < Ll 5 Lmin < LZ B
(Ll + LZ) < 1 - 2'Lmin~ (All)
With L, =0 one obtains the original BHCDE; with
Lyin — 1/3 one obtains spheres. The domain in the L;—L,
plane is shown in Figure 7.

Zubko et al. (1996) obtained (A; + A, + Az) for randomly
oriented grains with the ERCDE distribution. Discussion of
aligned grains requires the absorption per volume for grains
aligned with the electric fields along their principal axes. The
ERCDE has
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g=0 for L; < %
S R 2(L1 —~ l) for + < 1, < L= Lmin)
(1 = 3Lwyn) 3 3 2
= ﬁ(l — Ly — 2Ly ) for w <L <1 = 2L
=0 for1 — 2L in < Ly
&= 0 for Ly < Lyin
= (1;72[;)2(142 - Lmin) for Lyin < Ly < %
- min
=2 (1~ Ly — 2Ly for s < Ly < L)
(1 - 3Lmin )2 3 2
=0 for w < L2
83 = 0 for L3 < Lmin
-2 _(1-3L)  forlmm<Li<~
(1 - 3Lmin)2 3
0 for% <L (A12)
Distributions g;, g,, and g3 are shown in Figure 6(b) for A4. CDE2
Lin = 0.05. Itis convenient to define Ossenkopf et al. (1992) proposed the distribution
B=1/2 — Lyn/2 (A13)
D=1-2L.. (Ald) G(Ly, Ly) = 120LL, Ls. (A20)
x=e¢— L (A15) This satifies the symmetry requirement (Al), and has the
We obtain desirable property that G — 0 for L; — 0. We find
6 1 1+ xD 1
A)=————<|—+DJ|n - L
WG —3me)2{(x ) [1 +xB] &Ly =0 forL; < =
—3(l+1)1n[1+w ]} Al6) :60L1(71+3L1+3L1279L13)f0r%<L1<%
x 3 1 +x/3 X 1
:60L1(1 — Ll) fOI‘E < Ll < 1
12 1 1+ xB
A:72—+B)ln7 _ 302 _ 1
(A2) i 3me)2{ (x [1 +x/3] g,(Ly) =120L3 (3 — 5L,) for0 <Ly < -
_ a2 4 1 1
B (l N me)ln[ 1 +x/3 ]} (AL7) = 120(L, — 3L? + 4L%) for > < Lo < o
X 1 + xLmin 1
=0 for — < L,
18 1 1
Ajy=————3|— + = 1
4s) (1 — 3Lpmin)? {(x N 3) 83(L3) = 60L3(1 — 3L3 — 3L§ + 9L3) for0 < L3 < 3
><1I1|:11+}Z/3 ] (l—ngin)} (AIS) =0 for — < Lj
+ XL min
(A21)
(Al + Ay + A3) 2
3 (1 = 3Lyin)? These distributions are shown in Figure 6(c). To have a sense of

{(1 + o) [w_D
X 1+
Equation (A19) was previously obtained by Zubko et al.
(1996).

] — (1 - 3Lmin)}. (A19)

xL min

how nonspherical a typical ellipsoid from this distribution might
be, we consider the mean depolarization factors (LJ> = fog,(lg-)dL_i.
For g; given by Equation (A21), we find (L;) =0.5355, (L) =
0.3040, and (L3) =0.1605. These mean values correspond to an
ellipsoid with axial ratios a;: a,: az::1: 1.664: 2.716.

11
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Figure 7. The qhaded area is the ERCDE locus with depolarization factors
Ly > Ly > L3 > Ly, (see text).

For g; given by Equation (A21), we obtain

<A1> = 6—g)|:(9 + 3x — 3X2 - x3)
X

ln(l + %) + (=8 4 6x2 + 2x3)1n(1 + %)

+ (=1 —=3x —3x2 —x)»In( + x)

+2x +x2 + %x3 + Lx“] (A22)
9 216
60 ,
(Ay) = (—18 — 6x + 6x2 Jr2)c)ln1+3
x*
+(8 — 6x2 — 2x3)1n(1 + %)
+2x + 2x% + gx + i)64] (A23)
9 216
(A3) = 6—2[(9 +3x — 3x? — x3)1n(1 + £)
x 3
—3x — lx2 + £x3 + ix“] (A24)
2 18 108
<A1 + A +A3> . %
3 x*
3 S, s 1y
X —(1 4+ x)’In(1 +x) +x + —x~+ —x° + —x~|,
2 6 4
(A25)

where x =€ — 1. Equation (A25) was previously obtained by
Fabian et al. (2001).

Appendix B
Orientation-averaged Cross Sections for Partially Aligned
Grains

Consider radiation propagating along the Z axis. Let the local
magnetic field be in the y —Z plane, with y=the angle
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between Band the line of sight: B = § sin~y + £ cos~y. Let
Jbe a unit vector in the direction of the grain’s angular
momentum, and 3 the angle between J and B. If 3> 0, the
grain’s magnetic moment will cause Jto precess around B, and
we may write

J :ﬁcosﬂ—i—fsinﬂcosgbl—i—(f xl})sinﬂsingbl (B1)
= X sin 5 cos ¢, + y (cos B siny — sin 5 cosy sin ¢,)
+ Z(cos B cos~y + sin @sin~ysin @), (B2)

with ¢, varying from 0 to 27 over one precession period.
Observations of starlight polarization indicate that there is
systematic alignment of J with B, i.e., (cos? ) > 1/3, with the
alignment presumed to result from some combination of
paramagnetic dissipation (Davis & Greenstein 1951), super-
paramagnetic dissipation (Jones & Spitzer 1967), ferromag-
netic dissipation (Draine & Hensley 2013), or starlight torques
(Draine & Weingartner 1997; Weingartner & Draine 2003;
Hoang & Lazarian 2009a, 2009b).

On short timescales, the grain spins and nutates with fixed
J according to the dynamics of rigid bodies (see, e.g.,
Weingartner & Draine 2003). Let @, be the principal axis of
largest moment of inertia, and let o be the angle between Jand
a,. At constant J and kinetic energy E, the grain will tumble:
a will nutate around J. If the grain is triaxial, the angle o does
not remain constant during the nutation, but will have some
time-averaged value of (cos” o).

For fixed J, the kinetic energy of the grain is minimized if
a =0 (cos? a = 1). If the direction of 4 is uncorrelated with J,
then (cos” o) = 1/3. Thus we expect dissipation in the grain to
result in (cos? ) > 1/3. Suprathermally rotating grains, with
rotational Kinetic energy Eyo >> kT gpin, are expected to have
cos’av~ 1 as the result of dissipation associated with
viscoelasticity (Purcell 1979) or the even greater dissipation
associated with the Barnett effect (Lazarian & Roberge 1997)
and nuclear spin relaxation (Lazarian & Draine 1999).

After averaging over precession and nutation,

A.Azzl_i( 2 _l)
(@ - %)%) 32 {cos? o) 3

X (coszﬁ — %) (B3)
(@ -9)%) = 1 + —((cos2 a) — l)
3 3
X (coszﬂ - %)(sinzy — —) (B4)
(@ %) = (@ 37) = 5 + =
X (<c052 a)y — % ((cos2 ) — —) (B5)
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The cross sections for radiation polarized in the X and
y directions are

Cx = Cran + %Cpol(D (B7)
Cy = Cran — 2Cp01<I>(sin2'7 — %) (BS)

C. + G, .
R cpolcp(smw - 3) (BY)

2 3
C,—C
— = = Cp®sin’y (B10)
1 A A A

Cran = E[Cabs(E”al) + Cabs(EHaZ) + CabS(E||a3)] (Bll)

1 A N X
Cpol = Z[Cabs(E”aZ) + Cabs(E”aS) - 2Cabs(E||a1)] (Blz)
= %((cos2 a) — %)(coszﬁ — %)

Appendix C
Estimating C,,,, from Observations

(B13)

Suppose that the attenuation I/l is known, where the
intensity /(\) is summed over both polarization modes, and the
unattenuated radiation I, is unpolarized. The fractional
polarization p()\) is also measured. Let Z be the direction of
propagation, and ¥ be the polarization direction. If NV is the total
column density of grains, we seek to determine the cross
section Cp,,(A) for randomly oriented grains. Define

_ T+ T
=TT Cl
T 3 (CD)
T — Ty
=22, (€2)
Then
1 e x4+ e ™
L _e*rte” C3
7 5 (C3)
_ 1
:e‘T[l - Erf, + O(T;‘,)]. (C4)
p== ;I_/Ie : ©
0
1+ <72+ 0(7)
:Tp[ At ] = r,,[1 + 202 0(7‘;,)], (C6)
[1-372+ 0] 3
2
T, Rp — gp“‘ + 0(p), (C7)
* — Into/D) + ln[l - ow;,)] (C8)
~n(ly /1) — L2 o C9
Nn( 0/ ) - ETP+ (Tp) ( )
1
~In(ly /1) — Epz + 0(p™). (C10)
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From (B9)-(B12), we have

7= N[Cmn - Cp01<1>(sin27 - %)] (C11)

=NCpan — T,,(1 - (C12)

_2
3sin?y )

Using (C7) and (C10), we obtain

Cran:i ln(&) +p 1 - 2
N I 3sin?~y
1, 2., 2
—op2 231 —
LT ( 3sin?y

If the polarization fraction p <1, we may approximate
Cran =~ (1/N)In(ly /I). For finite p < 0.2, we can correct for
the alignment if p is measured and sin?~ can be estimated.

)-i— 0(p4)]. (C13)

Appendix D
Proof of Uniqueness

For an ellipsoid with semimajor axes a; < a, < as, the
corresponding shape factors L;>L,>L; are given by
Equations (2) and (3). While we do not offer a proof that
there is an (ay/a,, as/a;) corresponding to every possible (L,
L,, L3), we have implemented a numerical procedure that
always returns a solution. In this note, we demonstrate that this
solution is unique.

Suppose that (a>/a;, as/a;) corresponds to the desired (L,
L,, L3). Without loss of generality, let a; = 1. We may then
rewrite

I araz ™ dx
j = f 2 2 2 1/2°
2 Joo (g + 01 + x)(a; + x)(az + x)]
(DD)
Computing the derivatives
o _ 1 [ s — (D2)
day,  2Jo (1 +x)3%(as; + x)3%(a; + x)\/?
oL _1 [ dpxdx (D3)
daz  2Jo (1 +x)3%as + 0 (a; + x)3/?
oL, _ 1 [ daxdx (D4)
Oas 2Jo (1 +x)"%(as + x)3%(a5 + x)*?
OLs _ lf apxdx . (D5)
day;  2Jo (1 +x)V%(as + x)¥ (a5 + x)*/?

we see that the integrands are positive definite for all a,, a3, and
x. Therefore,

%>0, %>0, %>O, %>O. (D6)
8a2 803 8(13 8a2
Because the L; sum to one, it must be true that
oy | Oy 0Ly g o)
8(12 8(12 8(12
8a3 (9a3 8a3
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and so

oL
8612

s
8(13

Assume that there are two sets of axial ratios (a,, as) and
(ay’, a3’) that yield the same (L;, L,, L3). We will proceed by
starting from (a», as) and adjusting the axial ratios one at a time
to the values (a,’, a3’). We will show that it is impossible to
make a nonzero adjustment and return back to the original (L,
L,, L3). Note that, since 1< a,<az by construction,
Ly > L, > L3 and thus permutations of the L; are excluded.

If a; > a,’, we can first decrease a, until it is equal to a,’.
From the relations above, doing so decreases L, increases L,,
and decreases L3. To return the L; to their original values,
adjusting a; must increase L, decrease L,, and increase L;.
However, decreasing a; decreases L; while increasing ay
increases L,, and so the desired adjustment is not possible. An
analogous argument holds for a; < a,’.

Therefore, (a,, as3) is the unique set of axial ratios
corresponding to (L;, L,, L3).

<0, < 0. (DY)
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