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The present work concerns the transferability of coarse-grained (CG) modeling in reproducing the

dynamic properties of the reference atomistic systems across a range of parameters. In particular, we

focus on implicit-solvent CG modeling of polymer solutions. The CG model is based on the generalized

Langevin equation, where the memory kernel plays the critical role in determining the dynamics in all

time scales. Thus, we propose methods for transfer learning of memory kernels. The key ingredient of

our methods is Gaussian process regression. By integration with the model order reduction via proper

orthogonal decomposition and the active learning technique, the transfer learning can be practically

efficient and requires minimum training data. Through two example polymer solution systems, we

demonstrate the accuracy and efficiency of the proposed transfer learning methods in the construction

of transferable memory kernels. The transferability allows for out-of-sample predictions, even in the

extrapolated domain of parameters. Built on the transferable memory kernels, the CG models can

reproduce the dynamic properties of polymers in all time scales at different thermodynamic conditions

(such as temperature and solvent viscosity) and for different systems with varying concentrations and

lengths of polymers.

1 Introduction

To study polymers or biomolecules in solution, coarse-grained
(CG) modeling and simulations can be practically more
efficient1–8 compared with full atomistic simulations via, e.g.,
all-atom molecular dynamics (MD). Instead of tracking individual
atoms of molecules and solvent, the CG modeling averages out or
eliminates certain degrees of freedom (DOFs) to reduce the
system’s dimensionality and captures the molecules’ collective
dynamics and properties. The removal of highly-fluctuating
atomic DOFs and the larger characteristic length scale of CG
coordinates allow us to employ larger time steps in CG
simulations. In implicit-solvent CG modeling,9–14 not only are
the DOFs representing polymer molecules reduced but also the
solvent DOFs are eliminated. Providing significantly reduced
DOFs and larger time steps, CG modeling is computationally
more efficient than full atomistic simulations and hence can
grant larger accessible length scales and render tractable
simulation of long-time effects in practical applications.15–18

However, to reap the benefit of CG modeling, two challenges
must be addressed. The first one is to conserve both the
structural and dynamic properties of polymers under coarse-
graining. To conserve the structural properties (e.g., radial and
angular distribution functions), the CG potential (or potential
of mean force) must be correctly constructed.19–26 To conserve
the dynamic properties (e.g., diffusivity and the velocity auto-
correlation function (VACF)), the kinetic effect of unresolved
DOFs (including solvent) on the system must be properly
accounted for in CG modeling. For that, a non-Markovian
dynamics (e.g., in the form of a generalized Langevin equation
(GLE)) must be introduced in the CG model because the
elimination of DOFs results in a non-Markovian memory in
the dynamics of CG variables, as discussed in the literature27–32

and also in our prior work.13,14 The second challenge lies in the
transferability of CG modeling, for instance, how the CG model
constructed can be transferable across different thermo-
dynamic conditions. Efforts to attain transferable CG potentials
that preserve structural properties under coarse-graining have
made substantial progress.33–37 In contrast, the transferability
of a CG model in conserving the dynamic properties has not
been extensively discussed. Lyubimov et al. derived from the
GLE an analytical factor for dynamical rescaling of the friction
coefficient in CG modeling to correctly capture the long-time
diffusion of polymers. The derived rescaling factor is transferable
for different polymer systems and thermodynamic conditions,
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with the temperature and radius-of-gyration as the input
parameters.38,39 However, the approach is only applicable to
polymer melts and reproducing the long-time diffusion
coefficient of polymers.38,39 Other valuable attempts for
polymer melts have employed the energy renormalization
method.40–42 By varying the cohesive interaction strength with
a temperature-dependent factor in the CG models, the dynamic
properties of polymers related to configurational entropy can
be preserved over a wide temperature range. In the work by
Dunbar and Keten,42 this method has also been shown to be
capable of capturing the effect of chemistry specificity and
preserving mechanical properties. However, for polymers in
solution and to reproduce the dynamic properties beyond the
long-time normal diffusion, e.g., super- and/or sub-diffusion
and the VACF as a function of time, a new methodology to
render transferability in CG modeling is required. Noting
that the memory kernel plays a critical role for a CG
model to reproduce the entire dynamics,27,28,43,44 especially
in implicit-solvent CG modeling with many solvent DOFs
unresolved,13,14,29,30 the present work hence focuses on the
transferability of the memory kernel in CG modeling.

In particular, we propose two transfer learning methods to
enable memory kernel transfer across different thermodynamic
conditions (such as temperature and solvent viscosity) and
across different systems with varying solute concentrations
and lengths of polymer chains. The proposed transfer learning
methods draw on Gaussian process regression (GPR). By integration
with the model order reduction via proper orthogonal decom-
position (POD) and the active learning technique, the transfer
learning can be practically efficient and requires minimum
training data. GPR is chosen because of its flexibility to
represent nonlinear relationships between multi-dimensional
outputs and inputs and its capability to quantify the
uncertainty of prediction in both interpolation and extrapolation.
The model order reduction enables the representation of the
memory kernel (as a function of time and parameters) in a
reduced temporal and parameter space, which in turn greatly
reduces the training and prediction costs of GPR. The active
learning technique allows for the efficient use of data
with maximum information gain via adaptive sampling guided
by the uncertainty quantified in GPR. Through two example
polymer solution systems, we demonstrate the accuracy
and efficiency of the proposed transfer learning methods in
the construction of transferable memory kernels, from
which the CG models can reproduce the dynamic properties
of polymers across different thermodynamic conditions and
systems.

The rest of the paper is organized as follows. In Section 2.1,
we describe the framework of CG modeling, which is built upon
the GLE and extended dynamics. Section 2.2 explains in detail
the proposed transfer learning methods, whose key ingredients
include GPR, POD, and active learning. We present the
numerical results in Section 3, where two benchmark examples
are used to assess the accuracy and computational cost of
transfer learning. Finally, we conclude and summarize our
main findings and contributions in Section 4.

2 Methodology
2.1 CG modeling

Without loss of generality, we consider an atomistic system
consisting of n atoms in polymer molecules, with coordinates
r = {ri|i = 1,2,. . .,n} and momenta p = {pi|i = 1,2,. . .,n}. In CG
modeling, n atoms are coarse-grained as N clusters (referred to
as CG particles), and each cluster contains nc atoms. To be
consistent in notation, we use the lowercase mi, ri, and pi to
represent the mass, position, and momentum of the i-th atom
in the atomistic system; and the uppercaseMI, RI, and PI denote
the mass, position, and momentum of the I-th CG particle in
the CG system. The variables of the atomistic and CG systems
are related via:

MI ¼
Xnc
i¼1

mIi; RI ¼
1

MI

Xnc
i¼1

mIirIi; PI ¼
Xnc
i¼1

pIi; (1)

where the subscript Ii denotes the i-th atom in the I-th CG
particle; MI, RI, and PI are defined as the total mass, center-of-
mass (COM) position, and total momentum of all atoms in the
I-th CG particle, respectively.

The GLE given by the Mori–Zwanzig projection
formalism45–47 provides a theoretically sound framework for
CG modeling, where the non-Markovian dynamics of the CG
system are governed by:

_PI ¼ hFI i �
ðt
0

Kðt� t 0ÞMI
�1PI ðt 0Þdt 0 þ ~FI : (2)

On the right-hand side of eqn (2), the first term represents the
mean force on the I-th CG particle. The third term F̃I denotes
the fluctuating force. The second term (referred to as the
dissipative force) has a memory kernel K(t� t0), which is related
to the fluctuating force by K(t) = (1/kBT) h[F̃I(t)][F̃I(0)]i to satisfy
the second fluctuation–dissipation theorem.48 Here, kB denotes
the Boltzmann constant; T is the thermodynamic temperature.
The kinetic effect of the lost atomic DOFs under coarse-
graining is properly accounted in the CG dynamics by the
memory kernel and the fluctuating force with colored noise
in eqn (2).46,47

The mean force in eqn (2) is hFI i ¼
1

kBT

@

@RI
lnoðRÞ, where

R = {R1,R2,. . .,RN} is a point in the CG phase space; o(R)
represents a normalized partition function of all the atomistic
configurations at phase point R. Because the present work
concerns the dynamic properties and does not consider the
structural properties or free energy, hFIi is regarded as the
average for the I-th CG particle over all phase points. Thus,
without external force fields, the mean force exerted on a CG
particle is approximated to be zero; i.e., hFIi = 0. Eqn (2) can
hence be simplified to:

_PI ðtÞ ¼ �
ðt
0

Kðt� t 0ÞVI ðt 0Þdt 0 þ ~FI ðtÞ; (3)

with the velocity VI ðt 0Þ ¼
PI ðt 0Þ
MI

.
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To conserve the dynamics and reproduce the dynamic
properties of the underlying atomistic system, the memory
kernel in eqn (3) must be directly linked to the atomistic system
and can be computed from the atomistic data.

2.1.1 Memory kernel. To determine the memory kernel K(t)
in eqn (3) from the atomistic data, we rely on the property that
the velocity V and fluctuating force F̃ come from two orthogonal
subspaces and hence are not correlated to each other, i.e.,
hVTF̃i = 0. Thus, multiplying both sides of eqn (3) by V(0)T

leads to:

hVð0ÞT _PðtÞi ¼ �
ðt
0

Kðt� t 0ÞhVð0ÞTVðt 0Þidt 0; (4)

where C(t) = hV(0)TV(t0)i is the VACF; W(t) = hV(0)T :P(t)i defines
the force–velocity correlation function (FVCF). While the data of
the VACF can be directly obtained in the atomistic simulations,

the FVCF can be evaluated from WðtÞ ¼ dCðtÞ
dt

using numerical

differentiation. The memory kernel K(t) can then be solved via
deconvolution of eqn (4) given the data of the VACF and FVCF.
Note that the integral operator in eqn (4) is the Volterra
operator.49 Although the deconvolution can have a unique
continuous solution, the solution does not depend continuously
on the data; i.e., the solution is unstable against data noise due
to the nondegeneracy of C(t). Thus, solving the deconvolution to
determine the memory kernel is an ill-posed problem, and
proper regularization must be enforced. What we have are the
data of the VACF and FVCF at discrete times (i.e., ti = (i – 1)Dt
with i = 1,2,. . .,Nt). Hence, eqn (4) can be discretized, and the
deconvolution is solved in the discrete setting. Note that
discretization can regularize an ill-posed problem, known as the
‘‘self-regularization’’ property of discretization.50 As a result, the
deconvolution problem becomes well-posed when solved in
the discrete setting. However, the linear system resulting from
discretization could be ill-conditioned51 and requires further
regularization. Applying the midpoint quadrature rule,49 eqn (4)
can be discretized into the following linear system:

CK = �W, (5)

where C A R(Nt�1)�(Nt�1) with

Ci;j ¼
Dt
2
ðCðti�jþ1Þ þ Cðti�jþ2ÞÞ i � j

0 io j

8><
>: ;

K A RNt�1 with Ki = K(ti+ 1/2); and W A RNt�1 with Wi = W(ti+1). If
the linear system in eqn (5) is ill-conditioned, which means its
solution is unstable and sensitive to data noise, the Tikhonov
regularization52,53 is introduced and leads to the following
regularized linear system:

(CTC + b)K = �CTW, (6)

where CT is the transpose of C, and b is the regularization
parameter. The value of b can be determined using the
quasi-optimality criterion.54,55 In addition to the deconvolution,
the numerical differentiation used to obtain the data of the FVCF
is also an ill-posed problem and requires regularization.

For the numerical examples considered in this work, the
FVCF (W(t)) was obtained via numerical differentiation
regularized by the Tikhonov regularization following the quasi
optimality principle; the linear system in eqn (5) was well-
conditioned and hence directly solved without regularization.

2.1.2 Extended dynamics. Given the memory kernel K(t) deter-
mined, the GLE in eqn (3) can be solved to predict the dynamics of
the CG system. However, directly solving this equation requires
evaluation of the time convolution of the memory kernel and
velocity and generation color noise for the fluctuating force, which
needs to store the historical information and can be prohibitively
expensive. Note that the solvent-mediated kinetics could result in a
long-tailed memory kernel, making the computation even more
expensive. To address the challenge of directly solving the GLE, K(t)
is first approximated by an asymptotic expansion as:

KðtÞ �
XN
l¼1

exp �al

2
t

� �
½bl cosðqltÞ þ cl sinðqltÞ�; (7)

where the parameters {al,bl,cl,ql}l = 1,. . .,N can be determined via
fitting.13,27 Truncating the expansion with more terms (larger N)
leads to amore accurate approximation of K(t). Approximating the
memory kernel by a finite set of exponentially damped oscillators
as in eqn (7) would allow the GLE to be replaced with Markovian
dynamics extended in higher dimensions. By doing so, the
expensive cost of solving the GLE can be significantly reduced,
as has been evidenced in the literature.13,27,56 To this end, eqn (7)
is rewritten in a matrix form as:

K(t) E –Apse
�tAssAsp, (8)

where Aps = �AT
sp. If we define the parameter matrix A = [0, Aps;

Asp, Ass], it can be assembled from the parameters in eqn (7) by:

Al ¼

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bl

2
� qlcl

al

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bl

2
þ qlcl

al

r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bl

2
� qlcl

al

r
al

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ql2 þ al2

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bl

2
þ qlcl

al

r
�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ql2 þ al2

p
0

2
6666666664

3
7777777775
: (9)

In eqn (9), the top right block contributes to Aps; the bottom left
contributes to Asp; and the block on the bottom right constitutes
Ass, which is a block diagonal matrix consisting of 2 � 2 blocks.

Given eqn (8) and by introducing auxiliary variables S, the
extended Markovian dynamics is given by:

_P

_S

 !
¼ �

0 Aps

Asp Ass

 !
M�1P

S

 !
þ

0 0

0 Bs

 !
0

n

 !
: (10)

Here, n is a vector of uncorrelated Gaussian random variables
with hn(t)i = 0 and hxI,m(t)xJ,n(0)i = dIJdmnd(t), where xn and xm
denote the different elements of n. To satisfy the second
fluctuation–dissipation theorem,48 BsB

T
s = kBT(Ass + AT

ss).
We can write the parameter matrix B = diag(0,Bs). To ensure
A and B are both real number matrices, the parameters in

eqn (7) need to satisfy: al Z 0, bl Z 0, and jcl j �
albl

2ql
.
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The extended dynamics in eqn (10) are equivalent to the GLE in
eqn (3)56 with the fluctuating force:

~FðtÞ ¼ �
ðt
0

Apse
�ðt�t 0ÞAssBsnðt 0Þdt 0: (11)

The extended dynamics in eqn (10) circumvent the expensive
time-convolution, only needs to sample white noise, and hence
can be solved more efficiently than the GLE. In the present
work, the implicit velocity-Verlet temporal integrator57 was
used to numerically solve eqn (10) in the CG simulations.

2.2 Transfer learning of the memory kernel

In this section, we explain the methodology proposed for transfer
learning of thememory kernel, which enables the CGmodeling to be
transferable across a range of parameters to reproduce the dynamic
properties of the underlying atomistic systems. The proposed
methodology draws on the GPR and can be significantly accelerated
by the model order reduction and active learning techniques.

2.2.1 Transfer learning based on GPR. The memory kernel
is denoted as K(t;l), where the vector l represents the parameters of
interest such as temperature, concentration, and solvent viscosity;
and (t,l)AT�PwithT = [0,tf] andPARd representing the time
domain and parameter space, respectively, where d is the dimen-
sion of the parameter space. Our goal is to predict the memory
kernel K(t;l*) at any given parameter instance l* AP by using the
data of K(t;l) at Np training parameter instances. To achieve this
goal, we define x = [t,l] A Rd+1 and y = K(x) A R as the input and
output of GPR, respectively. Recalling that the data of the memory
kernel are obtained at Nt discrete times (Section 2.1.1), we have a
total of Ntrain = Nt � Np training data for GPR. The dependence of
the outputs (memory kernels) Y = [y1,y2,. . .,yNtrain

]T A RNtrain on the
inputs (time and parameters) X = [x1,x2,. . .,xNtrain

]T A RNtrain�(d+1) is
modeled as a Gaussian process: Y(X) B GP(u(X),R(X,X)). Here,
u(X) A RNtrain is the mean function, and R(X,X) A RNtrain�Ntrain is the
covariance matrix. In this work, the covariance function is assumed
to be a squared exponential form, i.e.,

RijðX;X; qÞ ¼ yf2 exp �1

2

Xdþ1

k¼1

ylk
2ðxi;k � xj;kÞ2

" #
; (12)

where xi,k and xj,k refer to the k-th element of xi and xj, respectively;
h = (yf,yl1,yl2,. . .,yld+1) denotes the hyper-parameters. Using the GPR
model inferred from the training data, we can predict K(t;l*) at any
given l*. For that, the inputs are X* = [x1*,x2*,. . .,xNt

*] with xi* = [ti,l*];
the outputs are Y* = [K(t1;l*),K(t2;l*),. . .,K(tNt

;l*)]T and satisfy:

Y*|Y B GP(û,R̂) , (13)

where

û ¼ RðX�;XÞ RðX;XÞ þ s2I
� ��1

Y� uðXÞ½ � þ uðX�Þ;

R̂ ¼ RðX�;X�Þ � RðX�;XÞ RðX;XÞ þ s2I
� ��1

RðX�;XÞT ;
(14)

and s2 is the variance of identically independent Gaussian
noise (with zero mean) assumed in the GPR model.
In eqn (14), û is the mean value of the prediction at l*; the
diagonal elements of R̂ are the analytical uncertainty bounds,

denoted as ŝ. To determine s2 and the hyper-parameters h, we
minimize the negative log marginal likelihood:58

� log pðYjy; s2Þ ¼ 1

2
YTC�1Yþ 1

2
log jCj þNtrain

2
logð2pÞ; (15)

using the Quasi-Newton optimizer L-BFGS,59 where C = R(X,X)
+s2I. Once s2 and the hyper-parameters are determined, the
GPR model is complete and can be used to predict the memory
kernel at any parameter instance of interest along with the
uncertainty quantified for the prediction.

2.2.2 Transfer learning accelerated by model order
reduction. The training cost of GPR exhibits a cubic scaling with
respect to the number of training data, i.e. O(Ntrain

3). In practice,
Ntrain = Np � Nt can be a large number due to the large Nt. As we
have discussed above, the dynamics of a polymer in solution can
display a long-tailed memory kernel. To fully capture the mem-
ory kernel’s variations in all time scales, the data must be
collected at many discrete times, resulting in a large Nt. In the
numerical examples considered in this work, Nt is larger than Np

(the number of training parameter instances) by 2 or 3 orders.
Hence, if the memory kernel is directly modeled by GPR as
discussed in Section 2.2.1, the training cost can be expensive due
to a large Ntrain. Thus, we further propose a strategy to greatly
accelerate the transfer learning by combining the GPR with
model order reduction. In particular, the memory kernel is first
decomposed using POD into temporal and parameter modes,
from which only the dominant modes are retained. GPR is then
used to model the dominant parameter modes only.

As in Section 2.2.1, we need snapshot data of K(t;li) at li with
i = 1,2,. . .,Np. A reduced order model (ROM) is established for the
memory kernel by decomposing the snapshot data of K(t;li) as:

Kðt; liÞ ¼ �KðtÞ þ K̂ðt; liÞ ¼ �KðtÞ þ
XNp

k¼1

akðlÞfkðtÞ; (16)

where �KðtÞ ¼ 1

Np

PNp

i¼1

Kðt; liÞ denotes the mean of all snapshots;

the fluctuating part K̂ is decomposed into the temporal bases fk(t)
and the parameter modes ak(l). Note that in the classical model
order reduction for dynamical systems, the POD basis functions
are spatial bases.60 Here, we adapt the technique to our needs and
replace the spatial bases with temporal bases. According to POD,
the basis functions can be obtained by eigendecomposition of the
correlation matrix G A RNp�Np of the fluctuating parts:

Gij ¼
ðtf
0

K̂ðt; miÞK̂ðt; mjÞdt; (17)

where i and j refer to the i-th and j-th snapshots, respectively. Then,
the temporal bases fk(t) (i.e., POD basis functions) are given as:

fkðtÞ ¼
1ffiffiffiffiffi
lk

p
XNp

i¼1

wk
i K̂ðt; miÞ; (18)

where {l1,l2,. . .,lM} are the eigenvalues of G in descending order;
wi

k is the i-th component of wk, the eigenvector corresponding to
the eigenvalue lk. The idea of POD is that the energy contributed by
each basis can be reflected by its corresponding eigenvalue. Thus, if
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the first R { Np eigenvalues are significantly larger than those
remaining, we only need to retain the first R modes because they
dominate the energy, i.e.,

K̂ðt; miÞ ¼
XNp

k¼1

akðmÞfkðtÞ �
XR
k¼1

akðmiÞfkðtÞ

¼
XR
k¼1

ffiffiffiffiffi
lk

p
wi
kfkðtÞ; (19)

where akðmiÞ ¼
ffiffiffiffiffi
lk

p
wi
k. The approximation (truncation) error of

eqn (19) is ePOD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNp

k¼Rþ1

lk

s
, which can be reduced by increasing

R, i.e., by keeping more POD modes. Based on it, we define the
relative error of POD as:

ePODr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNp

k¼Rþ1

lk

PNp

k¼1

lk

vuuuuuut : (20)

For a target tolerance zPOD, by requiring ePODr r zPOD, we can
determine how many dominant modes to retain in the ROM, i.e.,
the value of R.

Given eqn (19), we can establish the ROM for the memory
kernel as:

Kðt; m�Þ � KROMðt; m�Þ ¼ �KðtÞ þ
XR
k¼1

akðm�ÞfkðtÞ; (21)

by which the memory kernel can be effectively predicted at a
given parameter instance l* by the reduced temporal bases
fk(t) and parameter modes ak(l*). Thus, we only need to train
and predict ak(l*) instead of the entire memory kernel function
K(t;l*), resulting in greatly reduced training and prediction
costs. Following the idea of data-driven nonintrusive reduced
order modeling,60 we still use GPR to model each parameter
mode ak(l), i.e., ak(l) = y(x) B GP(uk(x),Rk(x,x*)), where the
input and output of GPR become x = l A Rd and y = ak(l),
respectively. Now the number of training data required in GPR
is Ntrain = Np, which is much smaller than Ntrain = Np � Nt in
Section 2.2.1. Once the GPR model of each parameter mode is
constructed, we can predict ak(l*) and in turn the memory
kernel by eqn (21) at any given parameter instance l*. In
addition, the uncertainty for the predicted ak(l*) can be quan-
tified by the standard deviation ŝk(l*) in the GPR model.

2.2.3 Active learning with minimum training data. To
ensure the accuracy of the inferred GPR models, sufficient
training data are required. However, attaining the data of
memory kernels requires nontrivial efforts. Thus, minimizing
the number of data required for training the GPR models
becomes necessary. To this end, we propose an active learning
strategy to adaptively sample the training data and to ensure
maximum information gain from the data sampled. The key
idea is to take advantage of the fact that the GPR can predict
not only the mean û but also the standard deviation ŝ to
quantify the uncertainty. The knowledge of uncertainty can

guide the sampling of the next data. In particular, the next
parameter instance lnext to be sampled is where the uncertainty
level reaches a maximum over the sampling space. In this work,
active learning is only integrated with the transfer learning
accelerated by model order reduction (Section 2.2.2) but not
with the transfer learning based solely on GPR (Section 2.2.1).
This is because in Section 2.2.1 the computational cost for
updating the GPR model after each new sampling is significant,
which can overshadow the benefit of active learning. The
proposed procedure is described below.

LetPtrARd denote the training sampling space and notePtrD
P, where P, as mentioned before, represents the entire parameter
space considered including the region beyond the range of training
sampling space. The active learning starts with a small set of
sampling points, denoted asPactive

tr , which can be chosen randomly
or uniformly over the training sampling space. The data of memory
kernels K(t;l) for all l A Pactive

tr are generated following Section
2.1.1. The following steps are then taken successively: (1) build the
ROM for the memory kernel as in eqn (21) and construct a GPR
model for each ak(l), k = 1,2,. . .,R; (2) quantify the uncertainty �s(l)
of the GPR models for each l A Ptr as:

�sðmÞ ¼

PR
k¼1

ŝkðmÞ

PR
k¼1

k ûk k1
; (22)

with ŝk(l) the standard deviation of the GPR model for ak(l)
and 8ûk8N the LN norm of ûk, a vector consisting of ûk for each
l A Ptr; (3) determine the next sampling parameter instance:
lnext ¼ argmaxsðlÞ

l 2 Ptr
; and (4) generate the data of the memory

kernel K(t;lnext) at lnext and augment the training data set with the
new data. These four steps are repeated until the maximum uncer-
tainty �s(lnext) is less than the preset tolerance zAL. As such, the active
learning can start with a small set of training data and then adaptively
add more data as necessary at locations that can maximize informa-
tion gain. The entire procedure is also outlined in Algorithm 1.

Algorithm 1 Active learning
Generate data of K(t;l) for all l A Pactive

tr

Set zAL, zPOD, and �s(lnext) = N

While �s(lnext) 4 zAL do
Build the ROM as in eqn (21) via POD with the tolerance zPOD
Construct a GPR model for each ak(l), k = 1,. . .,R
Quantify the uncertainty �s(l) of the GPR models for each
l A Ptr

Determine
lnext ¼ argmaxsðlÞ

l 2 Ptr

Generate the data of K(t;lnext)
Augment the training parameter instances with Pactive

tr = Pactive
tr

, {lnext}

end while
Output the ROM (as in eqn (21)) with the temporal bases fk(t)
and the GPR model for each ak(l), k = 1,. . .,R
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3 Results

In this section, we assess the accuracy and efficiency of our
proposed transfer learning methods in two example systems: a
star polymer and a peptoid polymer. The dynamics of the star
polymer or peptoid polymer in solution can be affected by
parameters such as temperature, concentration, and solvent
property. We aimed to establish transferable memory kernels
so that the CG models can faithfully reproduce the dynamic
properties of the reference atomistic systems across different
values of the parameters. The dynamic properties include the
VACF, diffusion coefficient, and mean square displacement
(MSD) as functions of time. For convenience, we hereinafter
denote the transfer learning method based solely on GPR
(Section 2.2.1) as GPR transfer learning and the transfer
learning method via both ROM and GPR (Section 2.2.2) as
ROM–GPR transfer learning.

In CG modeling, each star polymer or peptoid polymer was
coarse-grained as a single CG particle, i.e., the CG coordinate is
the COM of each polymer, and the CG variable is the total
momentum of each polymer; and the solvent (or water) DOFs
were all eliminated. The memory kernels computed from
atomistic data were obtained following Section 2.1.1. To construct
a CG model, the memory kernel predicted by transfer learning
was approximated by eqn (7). The dynamics of the CG system
were simulated by solving eqn (10) numerically using the implicit
velocity-Verlet temporal integrator, for which in-house computer
codes were developed under the framework of LAMMPS.61

3.1 Star-polymer solution

We first considered solutions of star polymers. In the atomistic
representation, each star polymer consists of a core Lennard-
Jones (LJ) bead and 10 identical arms with 3 LJ beads per arm,
as illustrated in Fig. 1.

The core LJ bead and the LJ beads in each arm are identical
and connected by the finitely extensible non-linear elastic (FENE)
bonds. The solvent is also modeled by LJ beads. The dynamics of
the atomistic system are governed by the Hamiltonian:

H ¼
Xn
i¼1

pi
2

2mi
þ
X
iaj

EðrijÞ; (23)

where n is the total number of LJ beads in the atomistic system; pi
and mi are the momentum and mass of the i-th LJ bead,
respectively; rij = |rij| = |ri � rj| is the distance between two LJ

beads; and E denotes the total potential energy contributed by the
interatomic and bonded potentials.

The interatomic LJ potential between the i-th and j-th LJ
beads adopts the purely repulsive Weeks–Chandler–Andersen
(WCA) potential and is given by:

EWCAðrijÞ ¼
4eij

sij
rij

� �12

� sij
rij

� �6

þ1

4

" #
rij � rcut

0 rij 4 rcut

8>><
>>: ; (24)

where rcut = 21/6sij is the cutoff distance. We denote the WCA
potential’s parameters for the star polymers as estar and sstar
and for the solvent as esol and ssol. In all MD simulations, while
the values of estar, sstar, and esol were fixed as estar = 1, sstar = 1,
and esol = 1, the value of ssol varied for different solution
systems within the range ssol A [1.0,2.2]. For the interaction
between a star-polymer LJ bead and a solvent LJ bead, the WCA
potential’s parameters were determined using the geometric
mix rule.

The FENE potential for the bonded interaction between
connected LJ beads in each star polymer is:

EFENEðrijÞ ¼
�1

2
kbr0

2 ln 1� rij

r0

� �2
" #

rij � r0

1 rij 4 r0

0
BB@ ; (25)

where kb = 30 is the spring constant, and r0 = 1.5 is the
maximum length of the FENE spring.

Here, the reduced LJ units were employed; the mass of all LJ
beads was chosen to be unity. Each star-polymer solution
consists of 620 000 LJ beads. The MD simulations were
performed using LAMMPS.61 In all simulations, a periodic
cubic box of length 115.7295 was used, which is large enough
to neglect the effect of the periodic box on the VACF. The Nose–
Hoover thermostat under the canonical ensemble (NVT) was
employed with the time step Dt = 0.001. In each MD simulation,
the data after reaching thermal equilibrium were collected for
computing the ensemble-averaged quantities of interest.

The concentration of star polymers in each solution was
different and varied with g A [0.2,0.8], where g is defined as the
number of star-polymer LJ beads divided by the total number of
all LJ beads. In addition, the temperature varied with T A
[0.5,2.0] for each system. Thus, there are three parameters that
differentiate the star-polymer solution systems considered
herein, i.e., the concentration of star polymers g, the temperature
T, and the solvent viscosity characterized by ssol. We applied the
proposed transfer learning methods to enable memory kernel to
transfer across these parameters. The memory kernel was deter-
mined up to tf = 20 until the VACF (C(tf)) decayed to |C(tf)|/|C(0)|
r 10�2, which is long enough to capture the dynamics in all
time scales.

To compare the two methods (GPR transfer learning and
ROM–GPR transfer learning) and also to demonstrate how the
proposed active learning technique can be implemented, we
first limited the transfer learning to one parameter. Thereafter,
we tackled the more challenging case over all three parameters

Fig. 1 Atomistic model of a star polymer consisting of 31 LJ beads: one
core and 10 arms with 3 beads per arm.
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using the ROM–GPR transfer learning method along with active
learning.

3.1.1 Transferable in one parameter. The temperature and
solvent viscosity were fixed at T = 1.0 and ssol = 1.0, respectively.
The concentration of star polymers g was the only changing
parameter, i.e., l = g A [0.2,0.8]. Hence, the parameter space is
one-dimensional: P = [0.2,0.8]. Here, the parameter instances
used for training were from Ptr = [0.2,0.6]. The proposed active
learning technique allowed us to adaptively sample the training
data and to minimize the data needed for training the GPR
models given the target tolerance of accuracy.

The tolerances for POD and active learning were set as zPOD =
0.1 and zAL = 0.005, respectively. The active learning process
was initiated with two initial parameter instances randomly
sampled as Pactive

tr = {0.2496,0.4528}. At these two parameter
instances, we computed the memory kernels K(t;g = 0.2496) and
K(t;g = 0.4528) from the MD simulation data as described in
Section 2.1.1. Through POD we constructed the ROM as in
eqn (21), where R = 1 and only the first POD basis needs to be
retained for the target zPOD = 0.1. The GPR model for the
parameter mode a1(m) inferred from the two training data
instances, along with its uncertainty as defined in eqn (22),
are shown in Fig. 2. With only two training data instances, the
inferred GPR model exhibits large uncertainty, which indicates
that more training data are needed. Because the uncertainty
quantified by �s(m) reaches its maximum at m = 0.6, it was chosen
as the next sampling point mnext = 0.6. The memory kernel
K(t;g = 0.6) was computed from the MD simulation data and
added to the training data.

Now the training sampling set became Pactive
tr =

{0.2486,0.4528,0.6}. With the three training data instances,
the GPR model inferred for a1(m) along with its uncertainty is
depicted in Fig. 3. Compared with Fig. 2, the uncertainty of the
GPR model was greatly reduced by adding one more piece of
training data. However, the maximum uncertainty is still larger

than the preset tolerance zAL = 0.005, and hence, the next
sampling point was chosen where the maximum uncertainty
occurs, i.e., mnext = 0.2. With that, the training sampling set
became Pactive

tr = {0.2486,0.4528,0.6,0.2}. The GPR model for
a1(m) and its uncertainty inferred from the four training data is
illustrated in Fig. 4. By including one more training data
instance, the GPR model’s uncertainty was further reduced,
and the maximum uncertainty was less than the preset
tolerance zAL = 0.005. Thus, the sampling process via active
learning could be terminated. The GPR model for a1(m) in Fig. 4

Fig. 2 The first step of the active learning process: (a) GPR model for the
POD parameter mode a1(m) inferred from 2 randomly initialized training
data instances. (b) Uncertainty quantified by �s(m) of the inferred GPR model
and the next sampling point (mnext = 0.6) determined by active learning.

Fig. 3 The second step of the active learning process: (a) GPR model for
the POD parameter mode a1(m) inferred from 3 training data instances.
Here the third training data instance is obtained from Fig. 2. (b) Uncertainty
quantified by �s(m) of the inferred GPR model and the next sampling point
(mnext = 0.2) determined by active learning.

Fig. 4 The third step of the active learning process: (a) GPR model for the
POD parameter mode a1(m) inferred from 4 training data instances, where
the fourth training data instance is obtained from Fig. 3. (b) Uncertainty
quantified by �s(m) of the inferred GPR model. Here, the active learning
process is terminated since the maximum of the uncertainty level is smaller
than the preset tolerance.
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was then substituted into the ROM in eqn (21) with R = 1 to
predict the memory kernel at any given parameter m* A P.

To examine the accuracy of such a predicted memory kernel,
we selected a set of testing parameter instances: Ptest = {0.2 +
0.04i}i=0,1,. . .,15. Note that while some of these testing parameter
instances are within the range of the training sampling space
Ptr, others are beyond the range; i.e., the predictions include
not only interpolation but also extrapolation. We used the
relative error to evaluate the accuracy of prediction, which is

defined as: er ¼
k KR�G � K k2

k K k2
with KR–G denoting the memory

kernel predicted by ROM–GPR transfer learning, K the memory
kernel determined fromMD simulation data, and 8	82 denoting
the L2 norm. The relative errors of the memory kernels
predicted at all 16 testing parameter instances are depicted in
Fig. 5. It can be seen that all predictions are accurate with the
largest relative error of 2.5%; extrapolation outside the training
sampling space Ptr is less accurate than interpolation inside
Ptr; and the error increases as the extrapolation goes further.

Next, we compare the ROM–GPR transfer learning method
with the GPR transfer learning method in terms of the accuracy
and computational cost. For that, we used the same training
parameter instances determined by active learning, i.e.,
Pactive

tr = {0.2486,0.4528,0.6,0.2}; and two testing parameter
instances were selected: m1* = 0.4 inside the training sampling
space Ptr and m2* = 0.8 outside Ptr. The memory kernels
predicted at the two testing parameter instances by the two
methods are compared in Fig. 6. By comparison with the
memory kernel computed from the MD simulation data
(regarded as the ‘‘ground truth’’), we find that the predictions
of these two methods both achieve good accuracy with the
relative errors er(m1*) = 0.009 and er(m2*) = 0.025 for KR–G and
er(m1*) = 0.011 and er(m2*) = 0.046 for KG, where KG denotes the
memory kernel predicted by the GPR transfer learning method.
However, the computational costs of the two methods are
significantly different. Specifically, it took the GPR transfer
learning method 1086 s to construct the GPR model and
0.2832 s to predict the memory kernel at a testing parameter
instance, but it only took the ROM–GPR transfer learning
method 0.1127 s to construct the ROM and GPR model and

7.880 � 10�4 s to predict K(t;m*). Both methods were imple-
mented in Matlab and run on a workstation with an Intel Core
CPU i5-6500 3.20 GHz processor. We hence find evidence that
the transfer learning based on GPR can be greatly accelerated
by model order reduction.

Finally, from the predicted memory kernel at a given parameter
instance, the CG model was constructed. For that, the memory
kernel was first approximated by eqn (7). The dynamics of the
CG system were then simulated by solving eqn (10). To examine
whether the CG model could accurately reproduce the dynamic
properties of the reference atomistic system in all time scales,
we computed the VACF (C(t)), diffusion coefficient (D(t)), and
MSD as functions of time. In Fig. 7 and 8, we present the results
obtained from CG modeling at two different concentrations of
star polymers (g1* = 0.4 and g2* = 0.8) compared with the MD
simulation results. Overall good agreements can be found, and
all stages of diffusion from super-diffusion to normal diffusion
are correctly captured. We hence demonstrate that by transfer
learning of 4 memory kernels at concentrations g =
{0.2486,0.4528,0.6,0.2}, we were able to construct the CG model
that could accurately reproduce the reference atomistic
system’s dynamic properties in all time scales across a range
of concentrations (g* A (0.2,0.8]), unseen in the training
data and even outside the range of training sampling space
Ptr = [0.2,0.6].

3.1.2 Transferable in multiple parameters. After verifying
the transferability of the memory kernel in one parameter and
engaging in a detailed discussion about the two transfer
learning methods and the active learning strategy, we next
demonstrate how transfer learning can enable the memory
kernel to be transferable in multiple parameters. In particular,
the parameter space comprises three parameters: the temperature
T, the concentration of star polymers g, and the solvent viscosity

Fig. 5 The relative error er(m*) of the memory kernels KR–G(t;m*) predicted
by ROM–GPR transfer learning at different testing parameter instances
m* A Ptest.

Fig. 6 Star polymer: the memory kernels K(t) predicted at (a) m1* = g1* =
0.4 (interpolation) and (b) m2* = g2* = 0.8 (extrapolation) by the ROM–GPR
(KR–G) and GPR (KG) transfer learning methods, respectively, compared
with the memory kernels computed from the MD simulation data (ground
truth). Here, g is the concentration of star polymers; the same training
parameter instances Pactive

tr were used for both methods.
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characterized by ssol, and was specified as P = [0.5,2.0] �
[0.2,0.8] � [1.0,2.2] in this case with the training sampling space
set as Ptr = [0.75,1.75] � [0.3,0.7] � [1.1,2.1]. In such a multi-
dimensional, large parameter space, the memory kernels’
magnitudes and time scales vary in orders, as depicted in
Fig. 9, where 4 memory kernel samples are displayed at 4
parameter instances sampled inPtr. This makes transfer learning
challenging and hence serves as a good problem to assess the
effectiveness of our proposed methods.

The active learning process started with 8 initial training
parameter instances chosen as Pactive

tr = {(0.75 + 1i1,0.3 +
0.4i2,1.1 + 1i3)}i1=0,1; i2=0,1; i3 = 0,1. For the preset tolerance
zPOD = 0.01, 8 POD bases were retained in the ROM, i.e., R = 8
in eqn (21). As a result of active learning, Np = 54 sampling
points was determined as the number of final training para-
meter instances, such that the uncertainty (defined in eqn (22))
of the GPR models for the parameter modes ak(l) with
k = 1,. . .,8 was less than the preset tolerance zAL = 0.025.
To illustrate the advantage of active learning, we set up a
control group, where the training parameter instances of the
same number (Np = 54) were sampled uniformly as: Puniform

tr =
{(0.75 + 0.5i1,0.3 + 0.2i2,1.1 + 0.2i3)}i1=0,1,2; i2=0,1,2; i3=0,. . .,5. Two
testing parameter instances were selected: l1* = (1.75,0.42,1.74)
inside the training sampling space Ptr but not in Pactive

tr or
Puniform

tr , and l2* = (0.5,0.2,1.0) outside Ptr. Fig. 10 presents the
memory kernels predicted by the ROM–GPR transfer learning
method at the two testing parameter instances with different
sets of training parameter instances, i.e., Pactive

tr vs. Puniform
tr .

By comparing the results with the ground truth, it is obvious
that using the same number of training data, the memory
kernels predicted using the training parameter instances
adaptively sampled via active learning are more accurate than
using the uniformly sampled training parameter instances.
While the relative errors for the former are er(m1*) = 0.026 and
er(m2*) = 0.068, the relative errors for the latter are er(m1*) = 0.349
and er(m2*) = 0.932. Thus, to achieve the same target accuracy,
transfer learning coupled with active learning may require
much less training data, which thereby greatly reduces the
training cost.

Fig. 7 VACF (C(t)), diffusion coefficient (D(t)), and MSD of the star polymer
predicted by the CG models at m1* = g1* = 0.4 compared with the MD
simulation results. Here, g is the concentration of star polymers; the
memory kernel predicted by the ROM–GPR (KR–G) or GPR (KG) transfer
learning method was approximated by eqn (7) with N = 7 terms.

Fig. 8 VACF (C(t)), diffusion coefficient (D(t)), and MSD of the star polymer
predicted by the CG models at m2* = g2* = 0.8 (outside the training
sampling space), compared with the MD simulation results. Here, g is the
concentration of star polymers; the memory kernel predicted by the
ROM–GPR (KR–G) or GPR (KG) transfer learning method was approximated
by eqn (7) with N = 7 terms.

Fig. 9 Star polymer: sample memory kernels at 4 parameter instances:
l1 = (0.75,0.3,1.1), l2 = (0.75,0.7,1.1), l3 = (1.75,0.3,2.1), and l4 =
(1.75,0.7,2.1). Here, l = (T,g,ssol) with T the temperature, g the concen-
tration of star polymers, and ssol characterizing the solvent viscosity.
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The CG model was then constructed from the predicted KR–G(t).
Fig. 11 and 12 present the VACF, diffusion coefficient, and MSD
predicted by the CGmodel. They agree well with theMD simulation
results. All stages of diffusion – super-, sub-, and normal-diffusion
(in Fig. 11) – are correctly captured. We hence verify that by transfer

learning, thememory kernel is transferable inmultiple parameters,
built on which the CG models can accurately reproduce the
dynamic properties of the reference atomistic system in all time
scales for different temperatures, concentrations of star polymers,
and solvent viscosities.

3.2 Peptoid polymer

After assessing the proposed methods in a model polymer
solution system, we next studied a real polymer system
consisting of peptoid polymers, which are known as a class of
highly configurable biopolymers.62–68 The peptoid polymer
studied in this work contains N-[2-(4-chlorophenyl)ethyl]
glycine (N4-Clpe) and N-(2-carboxyethyl)glycine (Nce) groups,63

whose chemical structure is described in Fig. 13. In different
solution systems, a peptoid polymer can consist of different
numbers of repeat units, denoted as z. The peptoid solutions
were made of one peptoid polymer immersed in water with a
fixed concentration of 1600 mg kg�1. The all-atom representation
of a peptoid polymer in MD simulations is shown in Fig. 14.
Here, the AMBER0369 force field with the parameters from the
generalized AMBER force field63,70,71 was adopted for the peptoid
molecule; the SPC force field72 was employed for modeling the
water molecules. The MD simulations were performed using the
GROMACS package.73

The appropriate size of the periodic cubic box was determined
by running the MD simulation in the isothermal–isobaric
ensemble (NPT) using the Parrinello–Rahman barostat74 at 1 bar

Fig. 10 Star polymer: the memory kernels KR–G(t) predicted at (a) l1* =
(1.75,0.42,1.74) and (b) l2* = (0.5,0.2,1.0) by the ROM–GPR transfer
learning method with Pactive

tr vs. Puniform
tr , compared with the memory

kernels directly computed from the MD simulation data (ground truth).
Here, both Pactive

tr and Puniform
tr have 54 training parameter instances.

Fig. 11 VACF (C(t)), diffusion coefficient (D(t)), and MSD of the star
polymer predicted by the CG model at l1* = (1.75,0.42,1.74) compared
with the MD simulation results. Here, the memory kernel predicted by the
ROM–GPR transfer learning method coupled with active learning was
approximated by eqn (7) with N = 5 terms.

Fig. 12 VACF (C(t)), diffusion coefficient (D(t)), and MSD of the star
polymer predicted by the CG model at l2* = (0.5,0.2,1.0) (outside the
training sampling space), compared with the MD simulation results. Here,
the memory kernel predicted by the ROM–GPR transfer learning method
coupled with active learning was approximated by eqn (7) with N = 6
terms.
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with isotropic pressure coupling. The MD simulations were then
performed in the NVT ensemble with the modified Berendsen
thermostat.75 To maintain the entire system in the NVT ensemble
more effectively, the thermostat was enforced to the peptoid
molecule and to the water molecules separately. The time step
Dt was chosen as 2 fs. After the thermal equilibrium was reached
(after 100 ps in our case), data were collected for computing the
ensemble-averaged quantities of interest.

In this study, the temperature and the length (i.e., the
number of repeat units) of a peptoid polymer varied in different
systems. Hence, they were the two parameters to practise
transfer learning and to assess the transferability of the memory
kernel. The parameter space was specified as P = [275,365] �
[1,6], i.e., the temperature T varies from 275 K to 365 K, and the
number of repeat units in a peptoid polymer z varies from 1 to 6.
The training sampling space was set as Ptr = [275,315] � [1,3].
The 4 initial training parameter instances for active learning
were sampled as Pactive

tr = {(275 + 40i1,1 + 2i2)}i1=0,1; i2=0,1. The
tolerance for POD was set as zPOD = 0.1, for which 2 POD bases
were retained in the constructed ROM with R = 2 in eqn (21).
After adding 6 more sampling points via active learning, the
uncertainty (defined in eqn (22)) of the GPR models for the
parameter modes ak(l) with k = 1,2 was less than the preset
tolerance zAL = 0.01. Thus, we used the memory kernels
computed from the MD simulation data at the 10 sampled
parameter instances as the training data in the transfer learning.
To ensure that the memory kernel is long enough to capture the

dynamics in all time scales, each was computed up to tf = 50 ps
until the VACF (C(tf)) decayed to |C(tf)|/|C(0)| r 10�2.

To examine the performance of transfer learning, two testing
parameter instances were selected: l1* = (307,1), which is where
the uncertainty of the GPR models for all parameter modes is

Fig. 14 Atomistic representation of a peptoid polymer with the number of
repeat units z = 2.

Fig. 15 Peptoid polymer: the memory kernels KR–G(t) predicted by the
ROM–GPR transfer learning method at (a) l1* = (307,1) (interpolation),
corresponding to T = 307 K and z = 1 and (b) l2* = (365,6) (extrapolation),
corresponding to T = 365 K and z = 6, compared with the memory kernels
directly computed from the MD simulation data (ground truth).

Fig. 13 Chemical structure of a peptoid polymer, where z denotes the
number of repeat units: N4-Clpe and Nce.

Fig. 16 VACF (C(t)), diffusion coefficient (D(t)), and MSD predicted by the
CG model at T = 307 K for the peptoid polymer with one N4-Clpe and Nce,
compared with the MD simulation results. Here, to construct the CG
model, KR–G(t;l1*) in Fig. 15 (a) was approximated by eqn (7) with N = 7
terms.
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maximized inside the training sampling space Ptr; and l2* =
(365,6), which is outside Ptr and represents the most extreme
case in the parameter space considered. Fig. 15 shows the
memory kernels predicted at the two selected testing parameter
instances. The figure shows that the memory kernels predicted
by the ROM–GPR transfer learning agree well with the ground
truths with the relative errors of 0.028 and 0.086 for l1* and l2*,
respectively.

Using the predicted memory kernels KR–G(t;l*), we constructed
the CG models. The VACF, diffusion coefficient, and MSD
predicted by the CG models were compared with the MD
simulation results, as depicted in Fig. 16 and 17. Good
agreements were achieved in all time scales. Thus, in a real
polymer solution system, we again verify that by transfer learning,
the memory kernel can be transferable in multiple parameters
and across a non-trivially large parameter space. Built on the
transferable memory kernel, the CG model can accurately
reproduce the dynamic properties of the peptoid polymer in all
time scales for different temperatures and lengths of polymer.

4 Conclusion

We have introduced transfer learning of the memory kernel in
CG modeling. Built on a transferable memory kernel, the CG
model can reproduce the dynamic properties of the reference
atomistic system under different thermodynamic conditions
such as temperature and solvent viscosity and for different
systems with varying solute concentrations and lengths of

polymer chains. Notably, the transferability allows for out-of-
sample predictions in the extrapolated domain of parameters.
Through two example polymer solution systems, we have
demonstrated the accuracy and efficiency of the proposed
transfer learning. Because the memory kernels are accurately
predicted, the CG models can reproduce the dynamic properties
of polymers in all time scales, including the VACF, diffusion
coefficient, and MSD. The predictions of the CG models agree
well with the atomistic simulation results, and all stages of
diffusion – super-, sub-, and normal-diffusion – are correctly
captured. We expect that the proposed methodology is generally
applicable to CG modeling of other kinds of polymer solutions
and soft matter systems such as colloid suspensions. While the
parameters considered in this work include the temperature,
solvent viscosity, concentration of polymers, and the length of
polymer chains, the proposed transfer learning can certainly be
applied to a broader range of parameters beyond this list.

Two transfer learning methods have been proposed and
compared. The GPR transfer learning method directly models
memory kernels (functions of time) at different parameters as a
multivariate Gaussian process. GPR is not only flexible for
interpolation or extrapolation at any given input, but also can
quantify the uncertainty of any prediction. The ROM–GPR
transfer learning method integrates the GPR with model order
reduction and active learning, by which it is more computa-
tionally efficient and requires minimum training data. In the
ROM–GPR transfer learning method, a ROM is first constructed
via POD for the memory kernel. By such, the memory kernel is
represented in a reduced temporal and parameter space, and
the GPR is only needed for the parameter modes. Thus, both
the training and prediction costs of GPR are greatly reduced.
Furthermore, guided by the uncertainty quantified in GPR, the
active learning technique enables adaptive sampling of the
training data. Compared with other sampling strategies, e.g.,
uniform sampling, using the same number of training data,
active learning leads to much more accurate transfer learning.
Thus, to achieve the same accuracy, active learning requires
less training data and thereby a lower training cost.

The present work has attempted to construct transferable
memory kernels that preserve dynamic properties under coarse-
graining. Potentially, it can be integrated with the efforts in the
literature that focus on attaining transferable CG potentials,33–37

so that the CG modeling can preserve both the structural and
dynamic properties of the underlying atomistic system and is
transferable across a range of parameters. This will be our
future work.
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M. Majewski, A. Krämer, Y. Chen, S. Olsson, G. de Fabritiis,
F. Noé and C. Clementi, J. Chem. Phys., 2020, 153, 194101.

34 J. Ruza, W. Wang, D. Schwalbe-Koda, S. Axelrod,
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