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Data-driven coarse-grained modeling of
non-equilibrium systems†

Shu Wang, ‡ Zhan Ma ‡ and Wenxiao Pan *

Modeling a high-dimensional Hamiltonian system in reduced dimensions with respect to coarse-grained

(CG) variables can greatly reduce computational cost and enable efficient bottom-up prediction of main

features of the system for many applications. However, it usually experiences significantly altered

dynamics due to loss of degrees of freedom upon coarse-graining. To establish CG models that can

faithfully preserve dynamics, previous efforts mainly focused on equilibrium systems. In contrast, various

soft matter systems are known to be out of equilibrium. Therefore, the present work concerns non-

equilibrium systems and enables accurate and efficient CG modeling that preserves non-equilibrium

dynamics and is generally applicable to any non-equilibrium process and any observable of interest.

To this end, the dynamic equation of a CG variable is built in the form of the non-stationary generalized

Langevin equation (nsGLE), where the two-time memory kernel is determined from the data of the

auto-correlation function of the observable of interest. By embedding the nsGLE in an extended

dynamics framework, the nsGLE can be solved efficiently to predict the non-equilibrium dynamics of the

CG variable. To prove and exploit the equivalence of the nsGLE and extended dynamics, the memory

kernel is parameterized in a two-time exponential expansion. A data-driven hybrid optimization process

is proposed for the parameterization, which integrates the differential-evolution method with the

Levenberg–Marquardt algorithm to efficiently tackle a non-convex and high-dimensional optimization

problem.

1 Introduction

When we study various soft matter systems, such as polymers,
biomolecules, and colloidal suspensions, full atomistic
simulations based on all-atom molecular dynamics (MD) can
be computationally demanding because many degrees of
freedom and high-dimensional Hamiltonian equations are
involved, limiting the system size and time scale accessible in
the simulations. If only certain main features of the system are
of interest, we can focus on a small set of observables that
characterize those features. For example, considering a system
of biomolecules or proteins, one is interested in the collective
motion of specific groups of atoms to understand a biological
mechanism.1,2 Therefore, coarse-grained (CG) modeling can be
established, which projects a high-dimensional fine-grained
system onto a smaller set of variables (CG variables) and
constructs the equation of motion that governs the dynamics
of CG variables. By solving a reduced-dimension equation,

CG modeling is computationally more efficient than full
atomistic simulations and hence allows accessing larger length
scales and longer-time effects in practical applications. The CG
dynamic equation can be established by systematically
integrating out ‘‘irrelevant’’ degrees of freedom such as detailed
information of the molecules and/or the solvent surrounding the
molecules. Along this line, most previous studies concentrated
on systems at equilibrium, where the generalized Langevin
equation (GLE)3,4 has been established to describe the
equilibrium dynamics of CG variables and applied in various CG
models.5–11 However, many soft matter systems are known to be
out of equilibrium, e.g., molecular self-assembly driven by time-
dependent temperature protocols,12–15 dynamics of DNA under
an applied force,16 and polymer dynamics in a flow.17 Therefore,
it is of more interest in practice to be able to properly describe
the non-equilibrium dynamics of CG variables. To this end, the
non-stationary generalized Langevin equation (nsGLE)18–20 has
recently been established as a promising mathematical frame-
work for CG modeling of non-equilibrium systems, which
provides the equation of motion for the CG variables subject
to non-equilibrium processes. In principle, the nsGLE can be
rigorously derived using time-dependent projection
operators.18,21 It does not require time scale separation, i.e.,
the CG variable can be any observable of interest, whether slow
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or fast relative to the dynamics of unresolved degrees of freedom.
Similarly to the GLE, the nsGLE implicitly incorporates the
kinetic effects of unresolved degrees of freedom through a
memory term and a fluctuating force term. However, different
from the GLE, the memory kernel in the nsGLE is a two-time
function to account for the dependence on the initial conditions
of non-equilibrium processes. Although theoretically sound,
applying the nsGLE to practical CG modeling encounters the
following challenges. First, determining the memory kernel from
data can involve numerical differentiation, which needs to be
regularized to ensure a stable and accurate solution. Second,
since the non-stationary memory kernel is a two-time function,
giving an explicit form of the fluctuating force such that the
memory and fluctuating force obey a fluctuation–dissipation
like relation18,19 is a challenging task. Third, directly solving
the nsGLE can be computationally expensive because the
convolution of memory requires the historical information of
CG variables at every time step, and the fluctuating term is
difficult to compute, which overshadows the benefit of CG
modeling.

The present work aims to address the challenges of applying
the nsGLE to CG modeling of non-equilibrium systems, and
our contributions include the following. First, we propose a
numerical method that can efficiently and stably determine the
memory kernel from the data of the auto-correlation function
of the observable of interest. For prediction beyond the time
range of the data set, the memory kernel is extrapolated via the
Gaussian process regression. Second, by approximating the
memory kernel in a two-time exponential expansion, we prove
the equivalence of the nsGLE and an extended Markovian
process. By embedding the nsGLE in an extended dynamics
framework, we provide a specific form of the fluctuating
force such that the memory and fluctuating force satisfy the
fluctuation–dissipation relation, and in the meantime avoid the
expensive convolution of memory, rendering the CG modeling
computationally efficient. Third, to parameterize the exponential
expansion approximating the memory kernel, we propose a
systematic approach via data-driven optimization. In particular,
we propose a hybrid optimization process that leverages the
differential-evolution and Levenberg–Marquardt algorithms for
non-convex and high-dimensional optimization. Finally, for
validation, we apply the proposedmethodology to a representative
non-equilibrium system: a star-polymer melt in a heating process.
Star-polymer melts have been used as typical benchmark systems
for validating CG models.5,7,22,23 The methodology proposed in
this work is applicable to CGmodeling of various non-equilibrium
soft matter systems, for which only data accessible in either
simulations or experiments for the reference Hamiltonian system
are needed.

2 Non-stationary generalized
Langevin equation

Without loss of generality, we denote a CG coordinate
(mass-scaled) as R̂(t) of d dimension and the corresponding

momentum as P̂(t). The nsGLE can then be written as eqn (1)
and holds for any reference time t:18,19

dP̂ðtÞ
dt

¼ hF̂ðtÞi �
ðt
t
dt 00K̂ðt 00; tÞP̂ðt 00Þ þ ~̂Ftðt; tÞ; (1)

where the three terms in the right-hand side correspond to the
mean force, a friction term, and a fluctuating force term,
respectively. Note that the friction term is associated with a
two-timememory kernel K̂(t00,t), which accounts for the dependence
of non-equilibrium dynamics on the initial conditions.18 In the
original nsGLE,18–20 h�i refers to an average over ensembles
given by a distribution of initial states in the phase space.
In this work, we interpret eqn (1) as a stochastic process
considering unknown initial states, which is an assumption
that our work draws on. If we choose the normalized

momentum PðtÞ ¼ P̂ðtÞ � hP̂ðtÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjP̂ðtÞj2i � hP̂ðtÞi2

q as the CG variable, the

nsGLE can be simplified as follows:

dPðtÞ
dt

¼ �
ðt
t
dt 00Kðt 00; tÞPðt 00Þ þ ~Ftðt; tÞ: (2)

Here, note that F̃t(t,t) depends on the reference time t.
In practice, we need to specify a reference time to solve the
nsGLE. Without loss of generality, we define t = 0 in this paper
and hence obtain

dPðtÞ
dt

¼ �
ðt
0

dt 00Kðt 00; tÞPðt 00Þ þ ~FðtÞ; (3)

where F̃(t) = F̃0(0,t) is the fluctuating term. The memory kernel
and fluctuating force satisfy

Kðt 00; tÞ ¼ h~Fðt 00Þ � ~FðtÞi
hjPðt 00Þj2i ; (4)

which is the fluctuation–dissipation relation that holds for
non-stationary processes.19 In this paper, we neglect any corre-
lations between CG particles and between different dimensions
of the CG variable, and hence the memory kernel is regarded as
a scalar function.

2.1 Determination of the memory kernel

To determine the two-time memory kernel K̂(t00,t), we rely on
the following property of the fluctuating term for any given t1
and t2:

19

~Ft2ðt2; tÞ ¼ ~Ft1ðt1; tÞ þ
ðt1
t2

dt 00Kðt 00; tÞPðt 00Þ; (5)

which can be easily obtained by substituting t = t1 and t = t2
into eqn (2), respectively, and then subtracting the two
resulting equations. Multiply both sides of eqn (3) by P(t0)
and simplify the resulting equation using eqn (5) with t2 = 0
and t1 = t0. Taking the trajectory-average and using the ortho-
gonality of P(t0) and F̃t0(t0,t) as hP(t0)�F̃t0(t0,t)i = 018 finally lead to

�Dðt 0; tÞ ¼
ðt
t 0
Cðt 0; t 00ÞKðt 00; tÞdt 00; (6)
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where C(t0,t) = hP(t0)�P(t)i is the auto-correlation function of

the momentum; Dðt 0; tÞ ¼ @Cðt 0; tÞ
@t

is the force–momentum

correlation function. The memory kernel K(t0,t) can then be
determined by solving eqn (6) in discrete setting if we have the
data of C(t0,t) and D(t0,t) at discrete time instances. In our work,
since we have chosen the normalized momentum P as the CG
variable to simplify the nsGLE, as noted in eqn (3), it is more
convenient to determine D(t0,t) by numerical differentiation
of C(t0,t) than to directly obtain D(t0,t) as the normalized
force–momentum correlation function. Considering that the
numerical differentiation may be sensitive to data noise and
unstable, a regularization, via the Tikhonov regularization,24,25

is enforced in this work, for which the regularization
parameters can be determined using the quasi-optimality
criterion,26,27 as discussed in the ESI.† Once we obtain the data
of C(t0,t) and D(t0,t) at discrete time instances, eqn (6) is
discretized into the following linear system by applying the
midpoint quadrature rule:28

DtCnKn = �Dn (7)

for every discrete time tn = nDt, where Cn A Rn�n with Ci;j
n ¼

1

2
ðCðt 0i; tj�1Þ þ Cðt 0i; tjÞÞ for i r j (otherwise, Ci,j

n = 0), Kn A Rn

with Ki
n ¼ K t 0

i�1
2

; tn

� �
, and Dn A Rn with Di

n ¼ Dðt 0i�1; tnÞ. Given

sufficiently smooth data of Cn and Dn, eqn (7) can be
solved stably. Note that the resulting linear system from
discretizing the first-kind Volterra equation is not guaranteed
to be well-conditioned. Upon larger data noise and condition
numbers, the linear system in eqn (7) may need to be regular-
ized, e.g., via the Tikhonov regularization,24,25 to ensure stable
solutions.

In the literature, the non-stationary memory kernel is
computed using a different approach, where eqn (6) is first
integrated in terms of t. Taking the derivative with respect to t0

on the resulting equation leads to a Volterra equation of the
second kind, which is then numerically solved by an iterative
procedure29 or via matrix inversion.30 The solution obtained is
finally converted into the memory kernel by taking the derivative
with respect to t. The entire process involves numerical
differentiation twice, for which the data are smoothed using the
Bézier surface method.30 Our method directly solves eqn (6),
requires numerical differentiation once to obtain D(t0,t) from
C(t0,t), and uses the Tikhonov regularization24,25 to stabilize the
numerical differentiation and possibly an ill-conditioned linear
system.

Using the method described above along with the data of
C(t0,t) for 0 r t0 r t r tdata, we can determine the memory
kernel K(t0,t) up to tdata. In the case that we need to forecast
the dynamics beyond the range of data, we can employ the
Gaussian process regression (GPR) to extrapolate the memory
kernel K(t0,t) up to tpred, denoted as Kpred(t0,t). The furthest
extrapolation time tpred depends on the standard deviation
(uncertainty level) of GPR. In particular, define x = [t0,t]T A R2

and x* = [t0*,t*]T A R2 as the inputs for training and prediction,

respectively, with 0 r t0 r t r tdata and 0 r t0* r t* r tpred.
The Gaussian process model is given by K(t0,t) B
GP[m(x),R(x,x*)] with m(x) the mean function and R(x,x*) the
covariance function. Here, the covariance function assumes
a squared exponential form with the hyper-parameters
determined by minimizing the negative log marginal
likelihood31 via the Quasi-Newton optimizer L-BFGS.32

A key advantage of GPR is that the uncertainty bounds of
prediction can be derived from the hyper-parameters, and
hence a measure of the uncertainty at t* Z tdata can be
defined as

s�ðt�Þ ¼

P
t 0 o t�

jŝðKpredðt 0�; t�ÞÞj2P
t 0� o t�

jKpredðt 0�; t�Þj2
; (8)

with ŝ(Kpred(t0*,t*)) the standard deviation of GPR at t* 4 tdata
for all (t0* r t*). From it we can determine the furthest
extrapolation time tpred by: s*(tpred) r zGPR, with zGPR the
desired tolerance of uncertainty in GPR.

2.2 Extended dynamics

After the memory kernel K(t0,t) is constructed, the next task is to
specify the fluctuating force in eqn (3), and we thus obtain an
effective CG description in the form of nsGLE. The resulting
nsGLE can then be solved to predict the non-equilibrium
dynamics of the process. However, determining the fluctuating
force from the fluctuation–dissipation relation in eqn (4) is
difficult. And directly solving eqn (3) requires storing
historical information and is computationally expensive.
To circumvent these difficulties, we first approximate the
memory kernel K(t0,t) by an exponential expansion, noting that
the memory is usually a decaying function generally with
oscillations:

Kðt 0; tÞ �
XN
i¼1

aiðtÞaiðt 0Þ exp �ai

2
ðt� t 0Þ

� �
� ½bi cosðqiðt� t 0ÞÞ

þci sinðqiðt� t 0ÞÞ�;
(9)

where ai, bi, ci and qi are the parameters to be determined,

satisfying ai Z 0, bi Z 0 and jcij �
aibi

2qi
; and according to desired

accuracy, N can be truncated to a finite number. Rewrite eqn (9)
into a matrix form:

Kðt 0; tÞ ¼ �ApsaðtÞe�ðt�t 0ÞAssaðt 0ÞAsp: (10)

Here, a(t) A R2N�2N is a time-dependent parameter matrix
composed of ai(t); Aps A R1�2N, Asp A R2N�1, and Ass A
R2N�2N are parameter matrices whose elements are comprised
of the parameters: ai, bi, ci and qi in eqn (9). The specific
forms of the parameter matrices are provided in the ESI.†

Soft Matter Paper

Pu
bl

is
he

d 
on

 2
7 

M
ay

 2
02

1.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 - 

M
ad

is
on

 o
n 

7/
26

/2
02

1 
5:

38
:4

1 
PM

. 
View Article Online

https://doi.org/10.1039/d1sm00413a


This journal is © The Royal Society of Chemistry 2021 Soft Matter, 2021, 17, 6404–6412 |  6407

Given eqn (10), the following extended dynamics

_PkðtÞ

_SkðtÞ

 !
¼ �

0 ApsaðtÞ

aðtÞAsp Ass

 !
PkðtÞ

SkðtÞ

 !

þ
0 0

0 Bs

 !
0

xðtÞ

 !
;

(11)

is equivalent to the nsGLE in eqn (3) with the fluctuating force
given by

~FkðtÞ ¼ �
ðt
0

ApsaðtÞe�ðt�t 0ÞAssBsxðt 0Þdt 0

� ApsaðtÞe�tAssSkð0Þ:
(12)

Here, eqn (11) and (12) are written for each dimension (Pk) of
the CG variable P(t) A Rd�1 with k = 1,2,. . .,d; Sk A R2N�1 is
an auxiliary variable vector, whose initial state Sk(0) satisfies

hSk(0)i = 0 and hSkð0ÞST
k ð0Þi ¼

hjPðt 0Þj2i
d

I; n A R2N�1 is a vector

of uncorrelated Gaussian random variables with hxi(t)i = 0 and
hxi(t)xj (0)i = dijd(t), where xi and xj denote the different elements
of n; and the matrix Bs A R2N�2N satisfies

BsB
T
s ¼ hjPðt 0Þj2i

d
Ass þ AT

ss

� �
: (13)

The fluctuating force given in eqn (12) satisfies the fluctua-
tion–dissipation relation in eqn (4), as explained in the ESI,†
where a detailed proof of the equivalence between eqn (11) and
(3) is also provided. The nsGLE is thereby converted to the
extended dynamics that avoids convolution of memory and
hence is much cheaper to solve than the original nsGLE. A
similar idea was proposed for solving the GLE in the context
of equilibrium dynamics.7,9,10,33,34 For non-equilibrium
processes, Stella et al. has proposed a Markovian embedding
for the nsGLE by approximating the memory kernel as a two-
time exponential expansion.35 We note two distinctions
between their work and ours: (1) our expansion includes both
sin and cos oscillators to represent more general oscillating
behaviors of the memory kernel; (2) while the functions a(t) and
a(t0) can be analytically derived from the atomistic Hamiltonian
for the particular problem considered by Stella et al.,35 they are
unknown in general and need to be determined, e.g., via
parameterization as proposed in the following section.

2.3 Parameterize the memory kernel

To determine the parameters in the expansion (eqn (9)) approx-
imating the memory kernel, we propose a data-driven optimization

process. Rewrite eqn (9) as Kðt 0; tÞ ¼
PN
i¼1

aiðtÞaiðt 0Þbiðt� t 0Þ with

biððt� t 0ÞÞ ¼ exp �ai

2
ðt� t 0Þ

� �
½bi cosðqiðt� t 0ÞÞþ ci sinðqiðt� t 0ÞÞ�,

and {ai,bi,ci,qi} A kb. Without prior knowledge, ai can be approxi-

mated by a general polynomial as follows: aiðtÞ ¼
PM
j¼0

pijt
j , where M

is the polynomial order, and {pij} A ka are the coefficients.
To determine the parameters k = {ka,kb}, we solve the following

optimization problem:

k� ¼ argmin
k

PðkÞ; (14)

where P(k) is the objective function and is defined as PðkÞ ¼

Kðt 0; t;kÞ�Kpredðt 0; tÞ
		 		

1

Kpredðt 0; tÞ
		 		

1

with 8�81 the L1 norm. Since P(k) is

generally non-convex, the optimization could easily fall into some
local minima. Using different random initial guesses can alleviate
this issue to some degree; however, it requires the numbers of
initial guesses and independent optimization processes to increase
exponentially with the dimension of k. Even for a moderately high-
dimensional parameter space, the computational cost can be
prohibitive. Thus, we employ a hybrid optimization process lever-
aging the differential evolution (DE)36 and Levenberg–Marquardt
(LM)37,38 algorithms. The hybrid method is computationally
efficient and can effectively avoid falling into local minima. In
particular, the DE is used to narrow down appropriate initial
guesses of k, and the LM is then used to find the nearbyminimum.

Before the optimization process, we first determine the
polynomial order M in the approximation of ai(t). Letting t0 =

t in eqn (9), we obtain Kðt; tÞ ¼
PN
i¼1

biai2ðtÞ. Since K(t,t) is

proportional to ai
2(t), we can approximate K(t,t) by a 2M-order

polynomial. Noting that any continuous function can be
approximated by an expansion of Legendre polynomials,39 we
next expand K(t,t) with increasing order of Legendre polyno-
mials. To proceed, we map t A [0,tpred] to %t A [�1,1] by

�t ¼ 2t� tpred

tpred
since Legendre polynomials are defined on the

interval [�1,1]. K(%t,%t) can then be expanded as

Kð�t; �tÞ ¼
X2M
k¼0

gkLkð�tÞ þ
X1

k¼2Mþ1

gkLkð�tÞ; (15)

with Lk(%t) the kth-order Legendre polynomial basis. The coeffi-
cient gk can be determined from39

gk ¼
2kþ 1

2

ð1
�1

Kð�t; �tÞLkð�tÞd�t; (16)

where the integral can be numerically evaluated by a quad-
rature rule, e.g., the trapezoidal rule. Due to the orthonormality
and completeness of the Legendre polynomials, the termsP1
k¼2Mþ1

gkLkð�tÞ can be neglected in eqn (15) given the tolerance

of truncation error. Thereby, we can determine the polynomial
order M in the approximation of ai(t). After that, we proceed
with the hybrid optimization process based on the DE and LM
algorithms to solve the optimization problem in eqn (14).

The DE is a type of evolutionary algorithm for global
optimization,36 whose basic idea is to reduce the objective
function by generating mutated vectors, usually called greedy
search. Greedy search converges fast but can be trapped
by some local minima. The DE overcomes this difficulty by
simultaneously generating several vectors (called population),
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where mutation is achieved by comparing two vectors and then
adding their difference after being weighted to a third vector.
The population and mutation ensure a thorough exploration
over the searching space and avoid falling into a local
minimum. Thus, the DE is potentially capable of solving the
global optimization problems that are non-differentiable and
have multiple local minima.40 Its key specifics are provided
below. First, the DE draws on a population of individuals,
which are defined as the D-dimensional parameter vectors
kg,k for k = 1,2,. . .,NP, where D = N(M + 5), NP is the population
size, and g represents the generation. All individuals are
randomly initialized as k0,k over the searching space. Unless
stated otherwise, we assume a uniform probability distribution
for all random samplings. Second, the following steps are
iterated until the stopping criterion of optimization (based
on the maximum number of iterations gmax or the desired
tolerance) is met.

(1) Mutation: for each individual kg,k, k = 1,2,. . .,NP, a
mutant vector is generated according to

vk = kg,k1 + FM�(kg,k2 � kg,k3), (17)

where k1,k2,k3 A [1,NP] are randomly chosen and distinct from
each other; FM 4 0 is a scaling factor that controls the
mutation, which is called the mutation weight.

(2) Crossover: a trial vector uk is created by

ukðlÞ ¼
vkðlÞ; ol oCR

lg;kðlÞ; ol 	 CR

(
; (18)

where ol A [0,1] is a uniformly distributed random number for
l = 1,2,. . .,D, and CR A [0,1] is the preset crossover rate.

(3) Selection: to decide whether or not the trial vector uk
should become an individual of the next generation, it is
compared with the original vector kg,k by a greedy selection:

kgþ1;k ¼
uk; PðukÞoPðlg;kÞ

lg;k; PðukÞ 	 Pðlg;kÞ

(
; (19)

where kg+1,k is the offspring of kg,k for the next generation.
The values of the population size NP, mutation weight FM, and
crossover rate CR are set following Gämperle.41

Although the DE has demonstrated its superior perfor-
mance, e.g. robustness and fast convergence, by numerical
experiments for solving benchmark global optimization
problems with dimensions up to 100,42 its computational cost
could enormously increase when refining the solution since it
does not use the information of gradients. As a result, it is
challenging for the DE to accurately determine the precise
position of optimum with reasonable computational cost.
Therefore, we propose a hybrid method combining the DE with
a robust local optimization algorithm, the LM.37 To proceed, we
set a tolerance zDE for the DE, which is larger than the desired
tolerance zopt for the entire optimization. When the minimum
of the objective function for the current generation in the

DE
Q

k�g
� �

is smaller than that of the last generation and also

the preset tolerance zDE, k
�
g is taken as the starting point for the

LM algorithm to search the nearby local minimum k*. If P(k*)
r zopt, the optimization process is terminated, and we find the

optimal parameters k�¼ k�a; k
�
b

n o
; otherwise, we return to the

DE and proceed to the next generation. The detailed algorithm
of the hybrid optimization is outlined in Algorithm 1.

Algorithm 1. Hybrid optimization

Require: Memory kernel data of Kpred(t0,t) with 0 r t0 r t r
tpred
Ensure: Optimized parameters k*
1: for N = 1,2,. . .do
2: Initialize NP random parameter vectors k0,k with k =
1,2,. . .,NP and set z = min{P(k0,1),P(k0,2),. . .,P(k0,NP)}
3: for g = 0,1,. . .,gmax do
4: k�g ¼ argmin

k¼1;2;...;NP

fPðkg;kÞg

5: if P k�g
� �

o min(zDE,z) then

6: z ¼ P k�g
� �

7: Search k* by the LM with k�g as the starting point

8: if P(k*) o zopt then
9: Output k* and terminate all loops
10: end if
11: end if
12: for k = 1,2,. . .,NP do
13: Generate a mutant vector vk by eqn (17)
14: Create a trial vector uk by eqn (18)
15: Make the next generation kg+1,k by eqn (19)
16: end for
17: end for
18: end for
19: retrun k*

3 Numerical example

As a proof of principle, we applied the proposed methodology
to a benchmark non-equilibrium problem: heating a star-
polymer melt. The CG coordinate was chosen at the center of
mass (COM) of a tagged star polymer immersed in the melt of
other identical star polymers. The momentum (normalized)
of the COM of the tagged star polymer was the CG variable.
We analyzed the non-equilibrium dynamics of this tagged star
polymer during the heating process and constructed the
dynamic equation of the CG variable based on the nsGLE.
The data of the reference high-dimension Hamiltonian system
were obtained from MD simulations, and hence, while one set
of MD simulation results were used to construct the CG
dynamic equation, the other set was used for validating the
CG modeling predictions. In particular, we collected the data of
the two-time auto-correlation function of momentum C(t0,t) =
hP(t0)�P(t)i from MD simulations. The constructed nsGLE was
solved via extended dynamics, whose predictions within or
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outside the range of data set used to construct the CG model
were compared with the MD simulation results. All of the
simulations were performed using LAMMPS.43

The star-polymer melt consists of 1000 identical star
polymers including the tagged one. In the MD simulations,
each star polymer consists of 31 Lennard-Jones (LJ) beads, i.e. a
core LJ bead and 10 identical arms with 3 LJ beads per arm.
The core LJ bead and the LJ beads in each arm are connected by
the finitely extensible non-linear elastic (FENE) bonds. The
inter-atomic potential adopts the purely repulsive Weeks–
Chandler–Andersen (WCA) potential given by

EWCAðrÞ ¼
4e

s
r

� �12
� s

r

� �6
þ 1

4


 �
r � rc

0 r4 rc

0
B@ ; (20)

where r is the distance between two LJ beads; rc = 21/6s is the
cutoff distance. The FENE potential for the bonded interaction
between connected LJ beads is

EFENEðrÞ ¼
�1

2
kbr0

2 ln 1� r

r0

� �2
" #

r � r0

1 r4 r0

0
BB@ ; (21)

where kb = 3000e/s2 is the spring constant, and r0 = 1.5s is the
maximum length of the FENE spring. The mass of all LJ beads
was chosen to be unity. The simulation box was a periodic cubic
box of length 33.8395s. The reduced LJ units were used herein;
i.e., the units of mass, length, and energy are set to m = 1, s = 1,
and e = 1, and the corresponding unit of time is s(m/e)0.5 = 1.
The Nose–Hoover thermostat under the canonical ensemble
(NVT) with the thermostat relaxation time 0.6 was employed
with the time step Dt = 0.001. The MD simulation was first
performed at kBT = 1.0 for 106 time steps to equilibrate the
system and then continued with the temperature continuously
increasing from kBT = 1 to kBT = 2 for 15 000 time steps from t =
0.0 to t = 15.0. With the temperature in the Nose–Hoover
thermostat varying over time, the fine-grained system corre-
sponds to a time-dependent Hamiltonian system. Note that the
nsGLE in eqn (3) and the fluctuation–dissipation relation in
eqn (4) are valid for CG modeling of time-dependent Hamilto-
nian systems.19 From the MD simulations, 8000 independent
trajectories were collected to obtain the data of C(t0,t) (see
Fig. 1), from which the CG model was constructed. In addition,
we collected 120 000 more independent trajectories to obtain
the corresponding C(t0,t) as the reference for validating the CG
modeling predictions.

3.1 Compute the memory kernel from data

To determine the memory kernel K(t0,t) from the data of C(t0,t),

the force–momentum correlation function Dðt 0; tÞ ¼ @Cðt 0; tÞ
@t

was first computed via numerical differentiation regularized by
the Tikhonov regularization following the quasi-optimality
principle (see the ESI†) with m0 = 0.1 and Z = 0.99. With the
discrete data of C(t0,t) and D(t0,t) obtained, eqn (7) was directly

solved for K(t0,t) up to tdata. Fig. 2 presents the resulting D(t0,t)
and K(t0,t).

3.2 Extrapolate the memory kernel

The memory kernel K(t0,t) computed from the MD simulation
data was then extrapolated by the GPR for longer time
prediction beyond tdata until tpred. For this numerical example,
the following modified squared exponential function was

Fig. 1 Data of C(t0,t) obtained from the MD simulations. (a) 3-D view as a
function of t–t 0 and t0, where the data are shown in absolute values.
(b) Dependence of C(t0,t) on t at different t0 (solid lines), along with the
temperature (kBT) as a function of t (dashed line).

Fig. 2 (a) D(t 0,t) obtained via direct numerical differentiation (solid lines)
vs. via regularized numerical differentiation by the Tikhonov regularization
(dashed lines). (b) The absolute value of K(t0,t) (on a logarithmic scale)
computed from eqn (7) using the data of C(t 0,t) and regularized D(t0,t).
The zoom-in subplot provides a closer view of |K(t0,t)| for 0 r t � t0 r
0.05. All the results herein are plotted at t0 = 0, t0 = 4, and t0 = 8.
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employed as the covariance function:

Rðx; x�; yÞ ¼ yf2 exp �ðt� t�Þ2
2yl1 2

� ðt� t 0 � t� þ t 0�Þ2
2yl2 2


 �
;

where y = [yf,yl1,yl2] are the hyper-parameters. The predicted
memory kernel, Kpred, is shown in Fig. 3, where tdata = 10, tpred =
12, and the tolerance of the GPR uncertainty was set to zGPR =
0.008. We further compared the GPR predictions with the test
data and assessed the relative error:

erðt�Þ ¼

P
t 0��t�

jKpredðt 0�; t�Þ � Kðt 0�; t�Þj2P
t 0��t�

jKðt 0�; t�Þj2

and the uncertainty level of GPR s*(t*) (defined in eqn (8)) at
different prediction times 10 o t* r 15. For that, Kpred(t0*,t*)
was predicted by GPR using the training data within 0 r t0 r
t r 10; the test data K(t0*,t*) for 10 o t0* r t* o 15 was
obtained by solving eqn (7) with the data of C(t0*,t*). From the
results depicted in Fig. 4, we can see that as the extrapolation
time goes further, the uncertainty level s*(t*) and the relative
error er(t*) both increase with similar trends, which also
supports the use of s*(t*) as a criterion to determine from data
the furthest prediction time tpred.

More investigations were performed for assessing the ability
of GPR to extrapolate the memory kernel when using different
sets of training data. Specifically, three sets of data within 0 r
t0 r t r 2 (Set 1), 4 r t0 r t r 6 (Set 2), and 8 r t0 r t r 10
(Set 3), respectively, were compared. Fig. 5 summarizes the
computed uncertainty of GPR s*(t*) when using the three sets
of training data for prediction of the memory kernel at different
extrapolation times t* 4 tdata. Although each set has the same
amount of data, the prediction based on each exhibits different
uncertainties at the same t* � tdata. Using the data in earlier
times resulted in a larger uncertainty in prediction. It can be
due to the fact that the heating process considered in this work
displayed nonlinear temperature rises in earlier times, which

led to more complex variations in the memory kernel as a
function of time in earlier times than later. Thus, how far the
memory kernel can be extrapolated depends on the choice of
training data as well as the desired tolerance of uncertainty.

3.3 Parameterize the memory kernel

The parameterization of Kpred(t0,t) was achieved using the proposed
hybrid optimization process, from which the approximation of
Kpred(t0,t) via the expansion in eqn (9) was constructed with M = 2
and N = 4. The tolerance of optimization was set to zopt = 0.1, and
the value of the objective function corresponding to the optimal
parameters is P(k*) = 0.092. The values of other parameters
involved in the hybrid optimization were set to NP = 10D, FM =
0.8, CR = 0.5, gmax = 1� 106, zDE = 0.5, and zopt = 0.1. The searching
space of k was set with: pij A [�1, +1], ai A [0,100], bi A [0,100], qi A

[0,100], and ci 2 �aibi

2qi
;
aibi

2qi


 �
, which is as large as physically

reasonable.
The predicted and parameterized memory kernels are

compared in Fig. 6. The parameterized memory kernel
Kparam(t0,t) with N = 3 is also shown. Note that the accuracy of
approximating the memory kernel via the two-time exponential

Fig. 3 Predicted memory kernel Kpred(t 0,t) by the GPR model. Here,
Kpred(t0,t) is divided into two parts by a red vertical flat surface: the left
corresponds to the regression from the training data for 0 r t0 r t r
tdata = 10; the right corresponds to the extrapolation from the training data
for tdata o t0 r t r tpred = 12.

Fig. 4 (a and b) Comparison of the GPR model predictions with the test
data at t 0* = 10 and t* = 12, respectively. (c) The relative error er(t*) and the
uncertainty level s*(t*) of GPR at different extrapolation times t* 4 tdata.

Fig. 5 Uncertainty of GPR s*(t*) in the prediction of the memory kernel
for t* 4 tdata using different sets of training data.
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expansion increases by truncating the expansion with more
terms, i.e., increasing N. Thus, the parameterization with larger
N is more accurate.

3.4 CG modeling predictions

From the parameterized memory kernel and eqn (10), we
assembled the matrices a(t), A, and Bs for the extended
dynamics. The CG modeling predictions until tpred were
obtained by solving eqn (11) using the implicit velocity-Verlet
temporal integrator. The two-time auto-correlation function of
momentum C(t0,t) predicted by the CG model was compared
with the MD simulation results, as depicted in Fig. 7. We found
good agreements. And the CG model constructed using the

parameterized memory kernel with a larger N is more accurate.
The relative error between the CG (with N = 4) prediction and

the reference MD result is
CCGðt 0; tÞ � CMDðt 0; tÞk k1

CMDðt 0; tÞk k1
¼ 0:03,

where 8�81 denotes the L1 norm of discrete data; the data of
CCG(t0,t) and CMD(t0,t) were attained from the CG and MD
simulations, respectively.

4 Conclusions

We have presented a data-driven approach for constructing CG
models of Hamiltonian systems in non-equilibrium dynamics.
It goes beyond the existing literature in CG modeling, which
mainly focuses on how to properly describe the equilibrium
dynamics of CG variables. Our approach has addressed the key
challenges in CGmodeling of non-equilibrium systems, including
how to efficiently and stably determine the non-stationary
memory kernel, how to give a specific form of the fluctuating
force such that the memory and fluctuating force satisfy the non-
stationary fluctuation–dissipation relation, and how to efficiently
solve the non-stationary dynamic equation of CG variables.
Through the numerical example, we have demonstrated that the
CG model can predict with desired accuracy the non-equilibrium
dynamics of the observable of interest both inside and outside the
regime of data used to construct the CG model. The approach
only requires the data of the two-time auto-correlation function of
non-equilibrium trajectory-averaged observable of interest,
which can be readily obtained from simulations or experiments.
We anticipate that the methodology proposed in this work can be
generally applied to modeling high-dimensional non-equilibrium
dynamics in reduced dimensions for various soft matter systems
such as polymers, biomolecules, and colloids.
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