Session 4: Policies

CODASPY 21, April 26-28, 2021, Virtual Event, USA

Incremental Maintenance of ABAC Policies

Gunjan Batra
Rutgers University, USA
gunjan.batra@rutgers.edu

Jaideep Vaidya
Rutgers University, USA
jsvaidya@rbs.rutgers.edu

ABSTRACT

Discovery of Attribute Based Access Control policies through min-
ing has been studied extensively in the literature. However, current
solutions assume that the rules are to be mined from a static data
set of access permissions and that this process only needs to be
done once. However, in real life, access policies are dynamic in
nature and may change based on the situation. Simply utilizing the
current approaches would necessitate that the mining algorithm
be re-executed for every update in the permissions or user/object
attributes, which would be significantly inefficient. In this paper, we
propose to incrementally maintain ABAC policies by only updating
the rules that may be affected due to any change in the underlying
access permissions or attributes. A comprehensive experimental
evaluation demonstrates that the proposed incremental approach
is significantly more efficient than the conventional ABAC mining.

ACM Reference Format:

Gunjan Batra, Vijayalakshmi Atluri, Jaideep Vaidya, and Shamik Sural. 2021.
Incremental Maintenance of ABAC Policies. In Proceedings of the Eleventh
ACM Conference on Data and Application Security and Privacy (CODASPY ’21),
April 26-28, 2021, Virtual Event, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3422337.3447825

1 INTRODUCTION

The flexibility, scalability, dynamic nature, portability and identity-
less features of Attribute Based Access Control (ABAC) make it
an attractive choice to be employed as a means to enforce access
control in many traditional and emerging application domains [8].
Under ABAC, security policies (also called rules in this paper) are
specified based on subject, object and environmental attribute con-
ditions. However, a key problem in deploying ABAC is to precisely
configure it for effective access control. The problem of automati-
cally discovering the best set of minimum ABAC rules to configure
the system using existing permissions of users on the resources is
known as ABAC Policy Mining.

While the ABAC mining problem has been well studied in the
literature, all the approaches assume the system to be static in
nature. However, in reality, all systems change in due course of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CODASPY 21, April 26-28, 2021, Virtual Event, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8143-7/21/04...$15.00
https://doi.org/10.1145/3422337.3447825

185

Vijayalakshmi Atluri
Rutgers University, USA
atluri@rutgers.edu

Shamik Sural
IIT Kharagpur, India
shamik@cse.iitkgp.ernet.in

time, which necessitates updating (or maintaining) the ABAC rules
since the original rules may no longer be valid. Such maintenance
requires re-mining of the ABAC policies that reflect the changes,
which is often quite expensive and inefficient, especially when the
number of users and objects is large and changes to the data are
quite frequent.

In this paper, we propose an efficient alternative where ABAC
policy maintenance can be performed in an incremental fashion
whenever a change occurs. In particular, we consider the following
changes (A). Note that other changes such as adding subjects and
objects do not affect the ABAC policies.

(1) Addition of a permission: This means granting access to a
user on an object that did not previously exist.

(2) Deletion of a permission: This means revoking a user’s ex-
isting permission to access an object.

(3) Addition of an attribute value: This means assigning a new
attribute value to either a subject or an object that currently
is not assigned.

(4) Deletion of an attribute value: This means removing an ex-
isting attribute value assignment from a subject or an object.

Given the current set of ABAC policies and the set of changes A,
the two alternative approaches to discover the new set of ABAC
policies have been depicted in Figure 1. More specifically:

(1) Redo ABAC Mining is an intuitive method to discover new set
of ABAC rules in which ABAC mining process is performed
whenever there is a change.

Incremental Maintenance is an efficient means of handling
changes and discovering new ABAC rules by taking into
account only the part of the data that was affected by the
change. However, this process requires us to first extract and
maintain some intermediary data structures using which we
obtain the new set of rules that cover the changes.

In this paper, we have employed the ABAC-SRM mining algo-
rithm proposed by Talukdar et al. [20] as this is one of the fastest
approaches thus far proposed. We have compared the efficiency of
the above two approaches - the redo ABAC mining and the incre-
mental maintenance. Since the data used to mine the policies in the
latter case is significantly smaller than the former approach, is very
efficient as shown in our experimental evaluation.

The rest of this paper is organized as follows. In Section 2, we
review the preliminaries of ABAC definition and concepts, as well
as the ABAC-SRM mining approach [20]. In Section 3, we discuss
the types of changes and formalize the problem of incremental
maintenance of ABAC policies. We also provide an overview of the
approach to solve the problem. In Section 4 we present the proposed

https://doi.org/10.1145/3422337.3447825
https://doi.org/10.1145/3422337.3447825

Session 4: Policies

ABAC Policy Rules
+ Intermediary
Data Structures

Updated
ABAC Policy

Incremental

Maintenance Rules

‘ Add Permission
Change,A _ Delete Permission
Add Attributes
L Delete Attributes

Updated
ABAC Policy

ABAC Policy
Rules

Redo

ABAC Mining Rules

Figure 1: Alternative Approaches to Maintenance of ABAC
Policies

incremental maintenance approach with detailed algorithms. This
includes a pre-processing phase to extract the necessary interme-
diate data structures and algorithms to handle the four types of
changes mentioned above. In Section 5, we experimentally compare
the cost of maintaining ABAC system using our proposed incre-
mental maintenance approach versus employing the redoing ABAC
mining approach. In Section 6 we discuss the related work and in
Section 7, we present conclusions and future research.

2 PRELIMINARIES

In this section, we briefly review the attribute based access control
model (ABAC) [9], and the ABAC mining approach from Talukdar
et al. [20], called the ABAC-SRM. The notations of ABAC and ABAC
Mining approach have been borrowed from [20].

2.1 ABAC

In an ABAC system, the authorization to perform an operation (e.g.,
read, write) is granted based on the attributes of the requesting
user, requested object, and the environment in which a request is
made. The ABAC policy rules are comprised of the attributes, which
include user attribute conditions and object attribute conditions
that determine granting of a permission to the user.

The basic components of an ABAC system are as follows:
Users (U): Represents a set of authorized users/subjects. u;, for 1 <
i < |U| denotes each member of this set.
Objects (O): Represents a set of resources to be protected. Each
member of this set is denoted as o;, for 1 < i < |O|.
Environment (E): Represents a set of environment conditions, inde-
pendent of users and objects. Each member of this set is denoted as
ej, for 1 < i< |E|.
Uga: Represents a set of user attribute names. Members of these sets
are represented as ua;, for 1 < i < |Uy|, Each ua; is associated with
a set of possible values it can acquire. For instance, if a user attribute
Title is associated with the values {Instructor, TA, Student}, then for
every u € U, value of the attribute Title can be either Instructor, TA
or Student.
O4: Represents a set of object attribute names. Members of these
sets are represented as oa;, for 1 < j < |04]. Each oq; is associated
with a set of possible values it can acquire. For instance, if an object
folder with records of student has object attribute Major associated
with a set of values {Computer Science, Electronics, Mechanical}, then

186

CODASPY 21, April 26-28, 2021, Virtual Event, USA

Table 1: UA

U Department Title= Department= | Title=
(ie)r =Computer Science | Instructor Electronics TA

(ucy) (ucy) (ucs) (ucq)
u 0 0 1 1
up 0 1 1 0
u3 1 1 0 0
Uy 1 0 0 1

for every o € O, value of the attribute Major can be either Computer
Science, Electronics or Mechanical.

EA: Represents a set of environment attribute names. Members
of these sets are represented as ea;, for 1 < i < |E4]. Each eq; is
associated with a set of possible values it can acquire. For instance, if
an environment attribute Campus is associated with a set of values
{USA, UK, Australia}, then for every e € E, value of the attribute
Campus can be either USA, UK or Australia.

P: A set consisting of all possible permissions/operations on objects
allowed in a system. For example, if read and write are the only two
possible operations on objects, then P = {read, write}. Each member
of P is represented as p;, for 1 < i < |P|.

Uc: Represents a set of all possible user attribute conditions de-
noted as ucj, for 1 < j < |Uc|. Members of this set are represented
as equalities of the form n = ¢, where n is a user attribute name
and c is either a constant or any. For instance if user attribute Ti-
tle has possible values {Instructor, TA, Student} and user attribute
Department has possible values as {Computer Science, Electronics,
Mechanical}, then Uc will be a set comprising of {Title=Instructor,
Title=TA, Title=Student, Title=Any, Department=Computer Science,
Department=Electronics, Department=Mechanical, Department=Any}.
Note here, that the condition n = Any does not have to be explicitly
chosen. It is set only if at least one other condition for n is present.
Oc: Represents a set of all possible object attribute conditions de-
noted as ocg., for 1 < k < |Oc¢|. Members of this set are represented as
equalities of the form n = ¢, where n is an object attribute name and ¢
is either a constant or any. For instance if object attribute Major has
possible values {Computer Science, Electronics, Mechanical} and ob-
ject attribute RecordsOf has possible values {Instructor, TA, Student,
Staff}, then O¢ will be a set comprising of {Major=Computer Science,
Major=Electronics, Major=Mechanical, Major=Any, RecordOf=
Instructor, RecordOf=Student, RecordOf=TA, RecordOf=Staff, RecordOf
=Any}. For an attribute name n, if the value of ¢ is any, then the
attribute n is not relevant for making the corresponding access
decision. Therefore, as above, the condition n = Any does not have
to be explicitly chosen. It is set only if at least one other condition
for n is present.

IT: Represents a set of access rules called the rule base of the ABAC
system. Each member of this set is denoted as r;, for 1 <i < [IT|. A
rule r in ABAC is of the form (uc, oc, p).

If a user makes a request to access an object, the rule base is
searched for any rule through which the user can gain access. If
such a rule exists, then the access is granted, otherwise it is denied.

For the sake of simplicity, in this paper, we assume the environ-
ment condition to be any.

UA: User attribute relation UA C U X Uc is a many-to-many map-
ping of users and user attribute conditions. We use a m X n binary

Session 4: Policies

Table 2: OA

. Major Major Recordof
O]Zée)d =Electronics | =Computer Science | =Student
(ocy) (oc3) (oc3)
01 1 0 1
02 0 1 1
Table 3: IT
Rule ID Rule
1 ucs, 0cy
2 ucy, oca

Authorizations
(A)

User Attribute
Relation (UA)

Object
Attribute
Relation (OA

User
Object
permission

(UOPp)

ABAC Policy Mining
Algorithm

ABAC Policy
Rules ()

Figure 2: ABAC Mining Process

matrix to represent UA, where UA[1,j]=1, if user u; satisfies an
attribute condition uc;. An example is shown in Table 1 where user
u; is a TA whose department is Electronics.

OA: Object attribute relation, OA € O X Oc¢ is a many-to-many
mapping of objects and the set of all attributes conditions, where
an m X n binary matrix represents OA. OA[1,j]=1 if an object o;
satisfies an object attribute condition oc;. Table 2 shows an example
where object o1 is the recordof Student in Electronics Major.

2.2 ABAC Mining

A: An authorization a is of the form of (u, o, p) and represents user
u € U, object 0 € O, and permission p € P, respectively, where a
denotes that a user u is allowed to perform an operation p on an
object 0. We use p.a as the permission associated with a. We denote
the set of all authorizations as A. For each permissions p; € P,
we define Ay, C A such that for every a € Ap,;, p.a = p;. For
example, if P = {read,write}, we have Areaq and Ayrite such that
Aread U Aurite = A.

Given A, we construct a table UOP), for each permission type p
(read, write etc.). The columns of this matrix are all possible user
attribute conditions and object attribute conditions of users and
objects in A, respectively, a column for p and column for Row Id.
There is a row in UOP), for each user object pair. For each row, if
the user attribute condition (object attribute condition) is true for
a user (object), the corresponding cell is filled with 1, otherwise
with 0. If there exists a a = (u, 0, p), we insert a 1 in the p column
of that u — o. For the remaining rows, the p column is 0. Given P =
{p1,p2...pn}, UOP = UL UOPy,.

UOPP: User Object Permission Matrix UOPp, is a M X N matrix,
where M = |U| x |O| comprising of a row for each user-object pair,
and N = |Uc| + |O¢| + 1, comprising of a column for each object

187

CODASPY 21, April 26-28, 2021, Virtual Event, USA

attribute condition, a column for each user attribute condition, and
a column for the permission p and a column for Row Id. For the
UA in table 1, OA in table 2 and A in table 4a, table 4b shows the
UOP\eaq constructed.
ABAC Mining;: Given the set of authorizations A, the set of user
attribute conditions (Uc), the set of object attribute conditions(O¢),
ABAC Mining discovers minimum set of access rules I such that
there exists a rule r € II where u is allowed to perform p on o iff
a = (u,0,p) € A. Table 3 shows the rules II corresponding to the
UOP¢4q in table 4b.

In this work, to find out IT, the ABAC-SRM Mining algorithm
has been used. This algorithm finds minimum possible ABAC rules
through subset enumeration. It is being used in the form of the fol-

lowing function: ABAC-SRM(Perm1Rules,PermORules,Speci ficRules),

where Perm1Rules are the Permission One rows, PermORules are
Permission Zero rows and Speci ficRules are current ABAC rules.
This function evaluates the ABAC rules IT and returns them.

3 INCREMENTAL MAINTENANCE PROBLEM

In this section, we define the problem of maintenance of ABAC
policies in an incremental fashion, and discuss the basic idea behind
our proposed approach.

3.1 Types of Changes

A: Represents a set of possible changes allowed in an ABAC system.
Each member is denoted as A; for 1 < i < |A]. The change A could
be to authorization set (A) or User Attribute Relation (UA) or Object
Attribute Relation (OA) in ABAC, and makes the current rules IT
invalid. Types of changes, A are:

(1) Addition of an Access Permission (Agp): This means autho-
rizing a user access to an object which previously didn’t exist.
Agp : A« AU a, where a = (m_user, m_object, p).

This will lead to the permission column of a row in UOP
corresponding to user m_user and object m_object to be
changed from 0 to 1.

Deletion of an Access Permission (A4,): This means remov-
ing a user’s existing access to an object. This will lead to the
permission column of a row in UOP to be changed from 1
t00.Agp : A=A \ a where a = (m_user, m_object, p).
This will lead to the permission column of a row in UOP
corresponding to user m_user and object m_object to be
changed from 1 to 0.

Addition of an Attribute value (A,4): This means assigning
a user/object an attribute value which previously it did not
have, i.e,, Agq : UA[L,j] « 1 where user m_user satisfies user
attribute condition uc;.

This will lead to the attribute condition being 1 for all of the
user’s/object’s rows in the UOP.

Deletion of an Attribute value (A4,) : This means removing
an existing attribute value of a user/ object, i.e., Ay, : UA[Lj]
« 0, where user m_user does not satisfy user attribute con-
dition uc;.

This will lead to the attribute condition being 0 for all of the
user’s/object’s rows in the UOP.

—
S
~

—
&Y
=

—
N
=

We assume that during the addition and deletion of permission
changes, the user/object attribute values remain the same. Similarly,

Session 4: Policies

(a) Authorizations (A)

(b) UOPRead

CODASPY 21, April 26-28, 2021, Virtual Event, USA

User | Object | Permission User - Department Title= Department= | Title= Major Major RecordOf _
u o pi Row Id Object =Computer Science | Instructor Electronics TA =Electronics | =Computer Science | =Student Rpl -
ead
u-o (ucy) (ucy) (ucs) (ucq) (ocy) (0c2) (ocs)
U1 01 p1
us 01 P 1 Ui 01 0 0 1 1 1 0 1 1
us 01 P2 2 uz 01 0 1 1 0 1 0 1 1
us 02 1 3 us 01 1 1 0 0 1 0 1 0
u3 05 P2 4 Uq 01 1 0 0 1 1 0 1 0
Ua 02 1 5 ui 02 0 0 1 1 0 1 1 0
6 uz 02 0 1 1 0 0 1 1 0
7 us3 02 1 1 0 0 0 1 1 1
8 Uq 02 1 0 0 1 0 1 1 1

Table 4: The set of Authorizations and the corresponding UOPg, .4

we assume that during the addition and deletion of attribute values,
the permissions of users on objects remain unchanged. We would
also like to note that addition/deletion of environment attributes
will be handled similar to user/object attributes.

DEFINITION 1 (INCREMENTAL ABAC PoLicY MAINTENANCE). Given
a set of ABAC rules I1 that encapsulate the original access policy, and
the change A, the Incremental ABAC Maintenance Problem aims to
discover a set of rules 11" that encapsulates the new access policy de-
rived by applying the changes A more efficiently than re-mining the
new policy.

3.2 Overview of the approach

The concept behind performing incremental mining is that when-
ever a change occurs, it impacts only a particular row in the UOP
or a small set of rows in the UOP. We only need to work on that
part of the UOP to update the ABAC rules. Intuitively, we need
to replace a few rows in the UOP with new ones which have the
change incorporated in them. We can have two types of rows in
UOP that can be added or deleted from the UOP:

(1) Rows with value of Permission column as 1, called Permis-
sion One Rows.

(2) Rows with value of Permission column as 0, called Permis-
sion Zero Rows.

For example, in Table 5, the Permission One Rows are [3,5,6,8]
and Permission Zero Rows are [1,2,4,7,9]. For every type of change,
we delete the Permission Zero and Permission One rows impacted
and add the modified/changed Permission Zero and Permission
One rows back to the data set (or data structures that we main-
tain for efficient updation). Our approach to incremental ABAC
maintenance is based on the above concept.

4 INCREMENTAL MAINTENANCE
APPROACH

In this section, we describe in detail our proposed approach to
perform the incremental maintenance of ABAC policies. We first
discuss the steps performed during the pre-processing phase and
then discuss the incremental maintenance algorithms for the four
change types.

4.1 Pre-Processing

The incremental ABAC maintenance approach is based on the idea
that we maintain certain intermediary data structures on which we
can operate to find out the new set of ABAC rules I1’. Specifically,
given the set of ABAC rules I (i.e, the original policy) and the UOP
derived from the policy, we maintain the following data structures:

(1) ZeroRowlIds: The Row Ids of Permission Zero Rows in the
UOP.

(2) ZeroRules: This is a minimum set of Permission Zero Rows
which covers all the Permission Zero rows, such that each
Zero row is a subset of atleast one rule in ZeroRules.

(3) ZeroRowCouverage: This is a list of size |ZeroRules| where
each element is a set that gives the Row Ids in the UOP of the
Permission Zero rows that are a subset of the corresponding
ZeroRule (i.e., it provides a mapping of the ZeroRules to
the Rows Ids of the Permission Zero rows covered by the
corresponding rule in ZeroRules).

(4) ZeroRulelds: The Row Ids in the UOP of the ZeroRules rows.

(5) OneRowlIds: The Row Ids in the UOP of the Permission One
Rows.

(6) OneRowCouverage: This is a list of size |II| where each el-
ement is a set that gives the Row Ids in the UOP of the
Permission One rows that are a super set of the correspond-
ing ABAC rule in II (i.e., it provides a mapping of the II to
the Row Ids of the Permission One Rows authorized by the
corresponding ABAC rule in IT).

Algorithm 1 Pre-Processing Steps

Require: Dataset D = UOP
Require: II
1: ZeroRowlds < Row Ids of Permission Zero Rows
2: ZeroRules « findZeroRules (ZeroRowIds)
3: ZeroRowCouverage < CoverageCalc(ZeroRowlds, ZeroRules, 0)

4: ZeroRulelds <« Row Ids of ZeroRules
5. OneRowlds < Row Ids of Permission One Rows
6: OneRowCoverage < CoverageCalc(OneRowlds,II, 1)

We will denote the entire set of the above data structures by I.
Algorithm 1 gives the specific steps to construct these, and utilizes

Session 4: Policies

Algorithm 2 findZeroRules(ZeroRowids)

1: ZeroRules, ZeroRowList < ¢

2: ZeroRowList « List of set of attribute conditions of Ids in
ZeroRowlds

3: Sort ZeroRowList in descending order based on the number of
attributes in each row

. for each row in ZeroRowList do

if Brule € ZeroRules such that row C rule then
ZeroRules «— ZeroRules U row

end if

: end for

. return ZeroRules

T B e N

Algorithm 3 CoverageCalc(RowlIds, Rules, type)

1: coverage < (@, ..., P}
2: for each rule in Rules do
3. for each Id in Rowlds do

4: if (type==0 and attributes conditions of Id C rule) OR
(type==1 and rule C attributes conditions of Id) then

5: coverage[rule] « coverage[rule] U Id

6: end if

7. end for

8: end for

9: return coverage

two helper functions: i) findZeroRules (Algorithm 2) and ii) Cover-
ageCalc (Algorithm 3). findZeroRules takes as input ZeroRowIds
and returns the minimum set of Permission Zero Rows that en-
capsulate all the Zero rows such that each Zero row is a subset
of atleast one ZeroRule. This is done by sorting the Zero Rows in
descending order based on the number of attribute conditions in
each row and then by adding each row that is not already covered
by some rule to the ZeroRules.

The CoverageCalc function is used to find OneRowCoverage and
ZeroRowCoverage. CoverageCalc takes as input the OneRowIds or
ZeroRowlds, I or ZeroRules and type as 1 for OneRowCoverage
and 0 for ZeroRowCoverage. It returns the corresponding list of sets
called coverage in Line 9 (OneRowCoverage or ZeroRowCoverage
depending on the type). This is accomplished by simply iterating
over each rule and each row provided as input and checking if
the rule is a subset (superset) of the role if the ZeroRowCoverage
(correspondingly, OneRowCouverage) is requested.

ExaMmpLE 1. Consider the UOP given in Table 5. The existing
ABAC rules in the system are : [(ucs3, ocp), (uc1, ucz, oc1)]. By per-
forming the Pre-processing Steps, we get:

ZeroRowlds = [1, 2,4, 7, 9]

ZeroRules = [(ucy, ucy, ocz, oc3), (uca, oc1, ocz), (ucy, ucs, ocy)]

ZeroRowCoverage = [(7, 9), (1, 4), (2)]

ZeroRulelds = [9, 4, 2]

OneRowlds = [3, 5, 6, 8]

OneRowCoverage = [(3, 6), (5, 8)]

189

CODASPY 21, April 26-28, 2021, Virtual Event, USA

Table 5: Illustrative example: UOP

RowlId || u-o || uct wucy wucs ocy oca oc3 || p
1 uj 01 0 1 0 1 0 0 0
2 us 01 1 0 1 1 0 0 0
3 us 01 1 1 0 1 0 0 1
4 U 02 0 1 0 1 1 0 0
5 Uz 02 1 0 1 1 1 0 1
6 us 02 1 1 0 1 1 0 1
7 ui 03 0 1 0 0 1 1 0
8 us 03 1 0 1 0 1 1 1
9 us 03 1 1 0 0 1 1 0

Algorithm 4 AddPermission(D, IT, m_user, m_object, I)

1: m_rowid < Row Id of m_user and m_object in the UOP
2: m_row « attribute condition set of m_row

3: Delete_PermORows ([m_rowid])

4: Add_Perm1Rows ([m_row],[m_rowid])

4.2 Handling Add Permission

Algorithm 4 gives the procedure to grant m_user the permission
to access m_object. This is done by removing the corresponding
row from the list of permission zero rows and adding to the list of
permission one rows. Two helper functions are used to accomplish
this: i) Delete_PermORows (Algorithm 5) and ii) Add_Perm1Rows
(Algorithm 6).

Algorithm 5 Delete_PermORows(delOrowsIds)

1: R_ZeroRules,R_Rulelds « ¢

2: for each Id € delOrowslds do

3. ZeroRowlds « ZeroRowlds \ Id

4 for each cover € ZeroRowCoverage do
5: if Id C cover then
6
7

if Id € ZeroRulelds then
R _ZeroRules < R_ZeroRules U findZeroRules

(cover \ Id)

8: R _Rulelds < R_Rulelds U Index of cover

9: else
10: cover « cover \ Id
11: end if
12: end if
13: end for
14: end for
15: Delete rules in ZeroRules at row numbers in R_Rulelds

16: Delete covers in ZeroRowCoverage at row numbers in

R _Rulelds

17: R_ZeroRowCoverage < CoverageCalc(ZeroRowlds, R_ZeroRules, 0)

18: ZeroRules < ZeroRules U R_ZeroRules
19: ZeroRowCoverage

R_ZeroRowCoverage
ZeroRulelds < findZeroRuleRows (ZeroRules)

— ZeroRowCoverage U

20:

Delete_PermORows (delOrowsIds) Algorithm 5 gives the spe-
cific steps for removing a permission. First, we remove the row from

Session 4: Policies

the permission zero rows (Line 3). Now, we update the intermediary
data structures. First we update the ZeroRowCoverage mapping. If
the permission row to be removed is a rule in ZeroRules then we
need to recompute the rule by removing it from the set of zero per-
mission rows covered by that rule (lines 7-8). Off course, if this is the
only zero permission row represented by that rule, then it is elimi-
nated altogether. Otherwise the permission row is removed from
the cover of every rule in ZeroRules it belongs to (line 10). Lines 15-
20 update the ZeroRules, ZeroRulelds, and the ZeroRowCoverage
by first removing the appropriate rules and affected covers, and
then adding in the additional rules prior calculated (at line 7) and
recalculating the cover corresponding to those rules (line 17).

Add_Perm1Rows(add1rows,add1rowslds): Algorithm 6 gives
the specific steps for adding a permission one row. This function
adds the rows given in add1rows to the ABAC system and re-mines
the policy. To do this, the ABAC-SRM function is used, but instead of
passing in the entire UOP, only the ZeroRules, add1rows and II are
used since they encapsulate the entire UOP, and therefore the min-
ing is much more efficient, as confirmed by the experimental eval-
uation. We then update the OneRowlIds and the OneRowCouverage
using CoverageCalc (Algorithm 3).

EXAMPLE 2 (ADD PERMISSION: U3 GETS ACCESS 03). Granting us
access to 03, means we have to make the permission in Rowld 9
equal to 1. This effectively means we have to delete the Permis-
sion Zero, Row Id 9 from the UOP and add a Permission One row
with the same attribute conditions. Therefore, Algorithm 4 calls
Delete_PermORows with [9] and Add_Perm1Rows with argument
([(uc1,ucz,0c2,0c3)],[9]), obtaining the output given below:
m_row = (ucy, ucg, oca, oc3) , m_rowid = 9
Delete_PermORows([9])

ZeroRowlds = [1,2,4,7]

ZeroRules = [(ucz, oc1, 0c2), (ucy, ucs, ocy), (ucz, ocz, oc3)]

ZeroRowCoverage = [(1,4),(2),(7)]

ZeroRulelds = [4,2,7]
Add_Perm1Rows([(uc1,ucz,0cz,0c3)],[9])

IT = [(ucs, ocz), (uct, ucy)]

OneRowlds = [3,5,6,8,9]

OneRowCoverage = [(5,8),(3,6,9)]

4.3 Handling Delete Permission

Algorithm 7 gives the specific steps to revoke m_user’s permission
to access m_object. This is done by removing the corresponding
row from the list of permission one rows and adding to the list of
permission zero rows. Two helper functions are used to accomplish
this: i) Delete_Perm1Rows (Algorithm 8) and ii) Add_PermORows
(Algorithm 9).

Delete_Perm1Rows (dellrowslds): Algorithm 8 gives the spe-
cific steps to delete permission one rows from the ABAC sys-
tem. Note that whenever a permission one row is deleted, some

Algorithm 6 Add_Perm1Rows(add1rows,add1rowsIds):

1: II « ABAC-SRM (add1rows,ZeroRules,IT)
2: OneRowlds < OneRowlds U add1rowslds
3: OneRowCoverage « CoverageCalc(OneRowlds,I1, 1)

190

CODASPY 21, April 26-28, 2021, Virtual Event, USA

Algorithm 7 DeletePermission(D, II, m_user, m_object)

1: m_rowid < Row Id of m_user and m_object in the UOP
2: m_row « Attribute condition set of m_rowid

3: Delete_Perm1Rows ([m_rowid])

4: Add_PermORows ([m_row],[m_rowid])

Algorithm 8 Delete_Perm1Rows (dellrowsIds)

1: ridinvalid, minerowids, minerows « ¢

2: ridinvalid < Indices of covers in OneRowCoverage having any
Id from dellrowslds

3: for r in ridinvalid do

4 minerowids < minerowids U (cover of OneRowCoverage at

r \ dellrowslIds)

5: end for

6: Delete rules in IT and covers in OneRowCoverage at row num-
bers in ridinvalid

7: minerows « List of attribute condition sets of rows in
minerowids

8: IT « AbacMining (minerows,ZeroRules,II)

9: OneRowlds < OneRowlds \ dellrowslds

10: OneRowCoverage < CoverageCalc (OneRowlds,I1,1)

Algorithm 9 Add_PermORows(addOrows, addOrowsIds)

1: ridinvalid, minerowids, minerows « ¢

2: ridinvalid < Indices of rules in II that are subset of any row
from addOrows

3: minerowids <« row Ids covering all ridinvalid (from
OnerowCoverage)

4: minerows « List of attribute condition sets of rows in
minerowids

: II « II \ ridinvalid

: Delete cover in OneRowCouverage at all numbers in ridinvalid

: for row in addOrows do

for zrule in ZeroRules do
if zrule C row then

10: replace zrule with row

11: else if row ¢ zrule then

12: ZeroRules « ZeroRules U row

13: end if

14: end for

15: end for

16: ZeroRowlds < ZeroRowlds U addOrowslds

17: Update ZeroRulelDs, ZeroRowCoverage

18: II « ABAC-SRM(minerows, ZeroRules, II)

O % N W

ABAC rules become invalid. These rules are found in Line 2, us-
ing OneRowCoverage. Every Id in dellrowslds is checked in every
cover of OneRowCouverage. If an Id is in a cover, the index of the
cover is added to ridinvalid. The numbers in ridinvalid signify
that those rules in IT have become invalid. Next, in Lines 3 - 5, for
all r in ridinvalid, minerowids is evaluated, which is cover at r (in
OneRowCouverage) after the dellrowslds are deleted from it. The
IT and covers in OneRowCoverage are deleted at row numbers in
ridinvalid in Line 6.

Session 4: Policies

The list of attribute conditions of the rows in minerowids is
put in minerows in Line 7. In Line 8, rowsle ftattributes are then
used to mine new II using the algorithm ABAC-SRM. In Lines 9
- 10, OneRowlds are updated by removing the dellrowsIds from
them and OneRowCoverage is also updated by using CoverageCalc
function in Algorithm 3.

Add_PermORows(addOrows, addOrowsIds): Algorithm 9 gives
the specific steps to add permission zero rows. It adds the addOrows
to the ABAC system. When permission zero rows are added, some
rule in IT may become invalid. If an ABAC rule is subset of a Per-
mission Zero row, the rule becomes invalid. In Line 2, we find any
such rules that become invalid. For each row in addOrows, and for
all IT, if any rule in IT is a subset of any row in addOrows, index of
that rule is added to ridinvalid. In Line 3, for all rules in ridinvalid,
the row Ids in OneRowCoverage are added to minerowids and in
Line 4, the attribute conditions of all rows in row Ids of minerowids
are made into list and added to minerows. Next, in Line 5 and
6, at the row numbers in ridinvalid, we delete the II and covers
in OneRowCouverage. In Lines, 7-15, we update the ZeroRules by
adding the addOrows. If a rule in ZeroRules is a subset of a row in
addOrows, then the rule is replaced with the row in addOrows; the
row in addOrows is added to ZeroRules if it is not subset of any rule
in ZeroRules.In Line 16, the addOrowsIds are added to ZeroRowlIds.
Also in Line 17, ZeroRulelds and ZeroRowCoverage are updated.
Finally, in Line 18, IT are updated using the ABAC-SRM mining
algorithm. As earlier, the mining is much more efficient in practice
since it only utilizes the ZeroRules and the IT as opposed to the
entire UOP.

ExAMPLE 3 (REMOVING up’s ACCESS TO 03). This means we have
to make the permission in Rowld 8 equal to 0. This effectively
means we have to delete the Permission One, Row Id 8 from the
UOP and add a Permission Zero row with same attributes condi-
tions. Therefore, Algorithm 7 calls Delete_Perm1Rows with [8] and
Add_PermORows with [(ucy,ucs3,0cz, oc3)],[8]), obtaining the output
given below:
m_row = (ucy,ucs,ocz,0c3), m_rowid = 8
Delete_Perm1Rows([8])

IT = [(uc1, ucz, ocy), (ucs, ocz)]

OneRowlds = [3,5,6]

OneRowCoverage = [(3,6),(5)]
Add_PermORows([(ucy,ucs,ocz, oc3)],[8])

ZeroRules = [(ucy, ucg, oca, oc3), (ucg, ocy,0c2), (ucy, ucs, ocy),
(ucy, ucs, 0c2,0c3)]

ZeroRuleRows = [9,4,2,8]

ZeroRowlds = [1,2,4,7,9,8]

IT = [(uc1, ucy, oc1), (ucs, ocq, 0c2)]

OneRowCoverage = [(3,6),(5)]

ZeroRowCoverage = [(7,9),(1,4),(2),(8)]

4.4 Handling Add Attribute Value

Algorithm 10 gives the specific steps to add the attribute value
m_attribute to user m_user. This is done in four steps: i) we extract
all permission zero rows and permission one rows for m_user and
the corresponding attribute sets (lines 1-4); ii) we remove the corre-
sponding rows from the permission zero and permission one rows;
iii) we update the attributes sets; iv) we insert the updated rows into

191

CODASPY 21, April 26-28, 2021, Virtual Event, USA

the permission zero rows and permission one rows. To ensure that
the intermediary data structures are consistently maintained, the
four prior defined functions i) Delete_PermORows (Algorithm 5); ii)
Delete_Perm1Rows (Algorithm 8); iii) Add_PermORows (Algorithm
9) and iv) Add_Perm1Rows (Algorithm 6) are used to accomplish
this. Note that an attribute value can also be added to an object in
exactly the same way.

Algorithm 10 AddAttribute(D, IT, m_user, m_attribute)

1: m_rowidsl « List of Row Ids of Permission One Rows of
m_user in the UOP

2: m_rowids0 « List of Row Ids of Permission Zero Rows of
m_user in the UOP

3: m_rowsl « List of attribute condition sets of all rows in
m_rowids1

4: m_rows0 « List of attribute condition sets of all rows in

m_rowids0

: Delete_PermORows (m_rowids0)

: Delete_Perm1Rows (m_rowids1)

: Add the m_attribute to the m_rows0 and m_rowsl1

: Add_PermORows (m_rows0,m_rowids0)

: Add_Perm1Rows (m_rows1,m_rowids1)

o % I o W

EXAMPLE 4 (ADD ATTRIBUTE VALUE: 41 GETS uc3). Adding at-
tribute condition ucs to user uj, requires removing all the rows
of user ug, i.e. Row Ids 1, 4 and 7. Then we have to add the at-
tribute condition ucs to the attribute condition set of these rows
and add them back to the data set. Therefore, Algorithm 10 calls

Delete_PermORows with [1, 4, 7], Delete_Perm1Rows with ¢, Add_PermORows

with [(ucg,ucs,0c1),(ucy,ucs,oc1,0c2),
(ucg,ucs,0c2,0c3)],[1,4,7] and Add_Perm1Rows with (¢, ¢) obtaining
the output given below:
m_rowids0= [1,4,7], m_rowids1= ¢
m_rows0= [(ucz,0c1),(ucz,0c1,0c2),(ucz,0c2,0c3)], m_rowsl= ¢
Delete_PermORows ([1,4,7])
ZeroRowlds = [2,9]
ZeroRules = [(ucy, ucy, oca, 0cs3), (ucy, ucs, ocy)]
ZeroRowCouverage = [(9),(2)]
ZeroRulelds = [2,9]
Delete_Perm1Rows (¢)
Add_PermORows ([(ucg,ucs,oc1),(ucz,ucs,oc1,0c2),
(ucz,ucs,0c2,0c3)],[1,4,7])
ZeroRules =[(ucy, ucz, ocz, oc3), (ucy, ucs, ocy), (ucz, ucs, ocy, 0cz),
(ucg, ucs, oc2,0c3)]
ZeroRowlds = [2,9,1,4,7]
ZeroRulelds = [9,2,4,7]
1T = (ucy, ucy, ocq) (ucy, ucs, ocs)
ZeroRowCoverage = [(9),(2),(4,1),(7)]
OneRowCoverage = [(3,6),(5,8)]
Add_Perm1Rows (¢,¢)

4.5 Handling Delete Attribute Value

Algorithm 11 gives the specific steps to remove attribute value
m_attribute from user m_user. This works exactly the same as
Algorithm 10, except that in line 7, we delete m_attribute from

Session 4: Policies

the permission zero and permission one rows for m_user, before
updating all the intermediary data structures.

Algorithm 11 DeleteAttribute(D, IT, m_user, m_attribute)

1: m_rowids1l « List of Row Ids of Permission One Rows of
m_user in the UOP

2: m_rowidsO « List of Row Ids of Permission Zero Rows of
m_user in the UOP

3: m_rowsl « List of attribute condition sets of all rows in
m_rowids1

4: m_rows0 « List of attribute condition sets of all rows in

m_rowids0

: Delete_PermORows(m_rowids0)

. Delete_Perm1Rows (m_rowids1)

: Delete the m_attribute from the m_rows0 and m_rows1

: Add_PermORows (m_rows0,m_rowids0)

: Add_Perm1Rows (m_rows1,m_rowids1)

O ® I o W

ExXAMPLE 5 (DELETE ATTRIBUTE VALUE: U2 LOSES uc1). Removing
attribute condition uc; from user uy requires removing all the rows
of user uy, i.e. Row Ids 2, 5 and 8. Then we have to remove the
attribute condition uc; from the attribute condition set of these
rows and add them back to the dataset. Therefore, Algorithm 11
calls Delete_PermORows with [2], Delete_Perm1Rows with [5, 8],
Add_PermORows with [(uc3,0c1)], [2] and
Add_Perm1Rows with [(uc3,0c1,0c2),(uc3,0c2,0c3)],[5,8] obtaining
the output given below:
m_rowids1 = [5,8], m_rowids0 = [2]
m_rows1 = [(ucy,ucs,0c1,0¢2),(uct,ucs,0c2,0c3)]
m_rows0 = [(ucy,ucs,0c1)]

Delete_PermORows([2])

ZeroRules = (ucy, ucz, ocz, oc3), (ucz, oc, 0cz)

ZeroRowCoverage = [(7,9),(1,4)]

ZeroRulelds = [9,4]

Delete_Perm1Rows([5,8])

IT = [(ucy, oc1)]

OneRowlds = [3,6]

OneRowCoverage = [(3,6)]

Add_PermORows([(ucs3,0c1)], [2])

ZeroRules = [(ucy, ucg, oca, oc3), (uce, ocy, ocz), (ucs, oc1)]

ZeroRowlds = [1,4,7,9, 2]

ZeroRulelds = [9, 4, 2]

IT = [(ucy, 0c1)]

OneRowCoverage = [(3,6)]

ZeroRowCoverage = [(7,9),(1,4),(2)]
Add_Perm1Rows([(uc3,0c1,0¢2),(ucs,0c2,0c3)],[5,8])

IT = [(uc1, oc1), (ucs, ocy)]

OneRowlds = [3,6,5,8]

OneRowCoverage = [(3,6),(5,8)]

5 EXPERIMENTAL EVALUATION

We carried out detailed experiments to study the effectiveness of the
proposed approach in a wide variety of settings, and to understand
the effect of different factors. There are no real datasets available
that capture the incremental change in ABAC policies. So we ran

192

CODASPY 21, April 26-28, 2021, Virtual Event, USA

Parameter Default Value
Users 40
Objects 60
User Attributes 60
Object Attributes 60
Rules 40

Table 6: Default values of Parameters

experiments on synthetic datasets and controlled the degree of
changes and examined the effect of each parameter independently.

We have used the synthetic dataset generator introduced by
Talukdar et al. in [20] to create ABAC policies. The input data set
for the four ABAC maintenance algorithms and ABAC Mining
(using ABAC-SRM) are the same.

ABAC Maintenance algorithms for each type of change were im-
plemented considering a single modification at a time and without
putting constraints to perform a fair comparison with ABAC-SRM
algorithm. The ABAC Maintenance algorithms can handle multiple
permissions and constraints.

For each set of parameter values, synthetic data was created. The
default values for the various parameters are given in Table 6. In
each experiment, we vary one parameter of interest while the rest
are set to the default values given in Table 6.

ABAC rules were mined from the dataset using the ABAC-SRM
algorithm. While using the proposed ABAC Maintenance algo-
rithm, pre-processing steps were carried out and recorded as Pre-
Processing Time. Further, for every change type (four ABAC Main-
tenance Algorithms: Add Permission, Delete Permission, Add At-
tribute value, Delete Attribute value), a random possible input (user
and object or user and attribute value) is identified and both ABAC
Maintenance and ABAC-SRM algorithms are used to accommodate
the change. For all four change types, this process was repeated for
20 random possible inputs on a data set. For Add attribute value and
Delete attribute value, we have performed experiments for addition
and deletion of attribute in users. The results will be similar for
object attributes and environment attributes.

Our objective is to compare the difference in time taken by the
two approaches for different types of changes. Therefore, we ob-
served: (I) the time taken for redoing the ABAC Mining from scratch;
(IT) the time taken for pre-processing to generate the intermediary
data structures; and (II) the time taken for incrementally updating
the policy as well as the intermediary data structures.

Note that without incremental maintenance, the time required
for any change is given by (I). If incremental maintenance is used,
then the time given by (II) is a one-time cost, while the time given
by (II) is incurred for each change. From the figures, it is observed
that for all the cases, ABAC Maintenance (III) is more efficient
than ABAC-SRM (I). In fact, ABAC Maintenance (II) with the Pre-
processing steps (II) also performs better than ABAC-SRM (I).

Figure 3 gives the average running time for adding a permis-
sion. Figure 3a shows the time taken when the User-Object Count
is varied. It can be observed that the time taken for mining, pre-
processing and incremental update all increase linearly. However,
the overall time taken by the incremental approach is significantly
less. Figure 3b shows the time taken when the rule count is varied.

Session 4: Policies

CODASPY 21, April 26-28, 2021, Virtual Event, USA

.

60/60

Pre-Processing

80/80 100/100

User/ Object Count

—=&— Maintenance

(a) Varying User-Object Count

50
- 45
9 40
£35
g 30
= 25
c 20
=1
& 15
¥ 10
< s
0
40/40
Mining g
8
<7
[
v 6
£
E 5
=4
S3
o
g;, 2
<1
0
20 40 60 80
Rule Count
Mining +-- Pre-Processing —e— Maintenance

(b) Varying Rule Count

14
<12
3
g10
@
g®
=
- 6
=1
€ g
o
x 2

40/40 60/60 80/80 100/100

User/ Object Attribute Count
Mining + - Pre-Processing —e— Maintenance

(c) Varying User-Object Attribute Count

Figure 3: Running Time for Add Permission

Here, it can be observed that the time taken by the incremental
approach is independent of the number of rules, where as the time
taken for mining increases, though it plateaus after about 60 rules.
The overall time taken by the incremental approach is again signifi-
cantly less. Finally, Figure 3c shows the results when the user-object
attribute count is varied. Here, it is observed that the time taken
by the incremental approach is again independent of the number
of attribute values, whereas the time required for mining increases
linearly with it. Figures 4, 5, and 6 give the average running time
for deleting a permission, adding an attribute value, and deleting
an attribute value respectively. The behavior in all three cases is
very similar to that in Figure 3.

Quality of the results:

We also looked at the rules generated by our incremental approach
and compared them to the rules obtained directly through mining.
The experiments show that over the course of all 960 runs, in 598
of the cases, the rules generated are exactly the same, and only in
362 cases are the results different. Furthermore, even in those 362
cases, the number of rules generated by our incremental approach
is no more than 3% more than the number of rules obtained directly
through mining. This clearly shows that the quality of the results
obtained through the incremental approach is very close to that
obtained through mining.

193

6 RELATED WORK

To the best of our knowledge, maintenance of ABAC policies has
been studied for the first time in this paper. Hence, there are no
previous work directly related to this problem. However, there
are works in field of ABAC Mining, incremental FD mining and
incremental maintenance of databases, which are discussed below.
ABAC Mining: The standard for ABAC model can be found in
[9]. ABAC Mining has been studied by many researchers. Xu.et
al. [23] are the first to propose an approach for ABAC Mining. Their
approach iterates over tuples in the user-permission relation and
constructs candidate rules. Then it generalizes the candidate rule
to cover additional tuples by using merging techniques. Medvet et
al. [16] have proposed an evolutionary approach that is separate
and conquer algorithm, where at every iteration, a new rule is
generated and the set of access requests is reduced to a smaller
size. The efficiency of this approach is not very different when
compared to that in [23]. Mocanu et al. [17] have proposed a deep
learning model (Restricted Boltzmann Machines) trained on logs to
generate candidate rules. Their system is still under development.
Iyer et al. [10] have presented an approach to mine ABAC policies
having both positive and negative authorization rules. The approach
is based on the rule mining algorithm called PRISM. Gautam et
al. [7] have discussed a constrained policy mining algorithm that
generates a set of ABAC rules, such that the total weight of all
the rules in the mined policy is minimum and no individual rule

Session 4: Policies

60/60

-4 Pre-Processing

CODASPY 21, April 26-28, 2021, Virtual Event, USA

80/80 100/100

User/ Object Count

—=&— Maintenance

(a) Varying User-Object Count

50
- 45
g 40
£35
g 30
£ 25
c 20
=1
& 15
¥ 10
< s
0
40/40
Mining
8
<7
[
v 6
£
E 5
=4
S3
o
g;, 2
<1
0
20 40 60 80
Rule Count
Mining +-- Pre-Processing —e— Maintenance

(b) Varying Rule Count

14
<12
3
g10
@
g®
=
- 6
=1
& g
o
x 2

40/40 60/60 80/80 100/100
User/ Object Attribute Count
Mining + - Pre-Processing —e— Maintenance

(c) Varying User-Object Attribute Count

Figure 4: Running Time for Delete Permission

can have weight greater than a pre-specified constraint. Cotrini et
al. [5] have proposed an algorithm for mining ABAC rules from
sparse access logs. The algorithm, called Rhapsody, is built upon
subgroup discovery algorithm called APRIORI-SD.

Karimi and Joshi [13] have proposed an approach to apply cluster-
ing algorithms over the decision examples to predict rules. Karimi
et al. [14] have also proposed an unsupervised learning-based tech-
nique for detecting patterns in a set of access records and extracting
ABAC policy rules from these patterns. They have presented two
algorithms, rule pruning and policy refinement that improve quality
of mined policy. The latter is useful in ABAC policy maintenance.
Bertino et al. [12] have proposed an approach, called Polisma, for
learning ABAC policies. It combines data mining, statistical, and
machine learning techniques, with potential context information
obtained from external sources to learn a better model. Iyer et
al. [11] have proposed an algorithm for mining ReBAC policies,
and an approach to mine graph transition policies. Gupta et al. [8]
have proposed dynamic groups with attribute-based access control
model for smart cars ecosystem.

Talukdar et al. [20] have used a subset enumeration approach to
discover the ABAC rules in a bottom-up fashion. In this paper, we
have chosen to develop our incremental maintenance approach on
the ABAC-SRM mining algorithm proposed by [20] as they have
shown that they take an order of magnitude less time than [23].
Also, both the algorithms ([20] and [23]) discover almost the same

194

number of rules; whereas [20] has better WSC [18] of the rules than
[23]. It is to be noted that the mining approaches in [20] and [23]
do not consider unrepresented attribute value combinations [2] as
these do not exist in the current authorization set. Better mining
algorithms will need to be devised to tackle this issue. However,
with respect to maintenance, if an existing user is authorized ac-
cess to an object with attribute values from unrepresented set, the
incremental mining approach can handle this in terms of updating
the policy by deleting the previous attribute and adding the new
attribute to the user/object. We require the maintenance algorithm
to be as fast as possible and to the best of our knowledge, the time
results of this algorithm are one of the best. While all the above
approaches focus on mining of ABAC policies, none of them at-
tempt to perform incremental maintenance of the policies when
changes occur. The idea in [20] is that ABAC rules are nothing but
a set of Functional Dependencies. Based on this premise, we have
performed a review of incremental FD mining algorithms which
also inspired us to develop and implement our approach.

Incremental FD Mining: Caruccio et al. [1] represent FDs in a bit-
vector. Their approach employs an upward and downward search
strategy, and updates the set of Functional Dependencies on addi-
tion of new tuples to the database. Wang et al. [21] have proposed
to add new set of tuples to the database based on concept of tuple
partitions and the monotonicity of the Functional Dependencies
and avoid re-scanning of the database. In [22], Wang et al. have

Session 4: Policies

Avg. Run Time (in sec)

40/40

Mining

60/60

CODASPY 21, April 26-28, 2021, Virtual Event, USA

80/80 100/100

User/ Object Count

#--- Pre-Processing

—&— Maintenance

(a) Varying User-Object Count

Avg. Run Time (in sec)
O Rr N W A U OO N

20

40

60 80

Rule Count

Mining -4 Pre-Processing —e— Maintenance

(b) Varying Rule Count

14
< 12
3
g 1o
L)
E?
£
c 6
=]
Z 4
g
x 2
0 2 . -3 , e
40/40 60/60 80/80 100/100

User/ Object Attribute Count

Mining +-- Pre-Processing —e— Maintenance

(c) Varying User-Object Attribute Count

Figure 5: Running Time for Add Attribute Value

also given a Functional Dependency maintenance algorithm which
deals with tuple deletion. Also, Gasmi et al. [6] have proposed an
algorithm to maintain the canonical Functional Dependencies in-
crementally when a new tuple is appended to the original database.
Our approach is mostly inspired by the work of Schirmer et al’s
DynFD [19]. They maintain Functional Dependencies for a dynamic
dataset using a bottom up and top down approach, and indices to
evolve the Functional Dependencies. For a batch of operations, in-
sert, update and delete of data, the algorithm adapts its validation
data structures, and a positive and negative cover of Functional
Dependencies.
Incremental Maintenance in Databases: Besides the above, in-
cremental maintenance has been studied extensively in data bases.
Cheung et al. [3] use incremental updating technique to update
the association rules in large databases whenever new transactions
are added to the database. Also in [4], Cheung et al. have proposed
algorithms for frequent pattern mining in a database and to allow
mining in a single pass over the database as well as insertion or
deletion of transactions in an efficient manner.

Lin et al. [15] have proposed an efficient incremental algorithm
for transaction insertion. The algorithm reduces computations with-
out candidate generation and is based on the utility-list structures.

195

7 CONCLUSIONS AND FUTURE WORK

In this paper, we have examined the problem of maintenance of
ABAC policies in an incremental fashion. We have formalized this
problem and proposed an efficient algorithm to maintain ABAC
policies considering four types of changes. We have experimen-
tally evaluated the performance of the proposed algorithm and
showed that it takes significantly less time to perform a change
when compared to redoing ABAC mining from scratch.

In the future, we plan to develop an approach that would allow
batching of changes and optimally switch between incremental
maintenance and re-mining. We plan to study the the consistency
and scalability aspects of this approach. We would also like to
implement the algorithm for negative authorizations and by adding
noise. Also, we plan to implement the ABAC maintenance approach
when there are constraints such as mutual exclusion, preconditions,
obligations, SoD, attribute-attribute conditions, etc.

ACKNOWLEDGMENTS

Research reported in this publication was supported by the National
Science Foundation awards CNS-1564034, CNS-1624503 and CNS-
1747728 and the National Institutes of Health awards R01GM118574
and R35GM134927. The work of Shamik Sural was partially sup-
ported by the Fulbright Program. The content is solely the responsi-
bility of the authors and does not necessarily represent the official
views of the agencies funding the research.

Session 4: Policies

Avg. Run Time (in sec)

40/40

Mining g

60/60

Pre-Processing

CODASPY 21, April 26-28, 2021, Virtual Event, USA

80/80 100/100

User/ Object Count

—=&— Maintenance

(a) Varying User-Object Count

Avg. Run Time (in sec)
O P, N W M U O N

20 40 60 80

Rule Count

Mining +-- Pre-Processing —e— Maintenance

(b) Varying Rule Count

Avg. Run Time (in sec)

14
12
10
8
6
1
2

40/40 60/60 80/80 100/100

User/ Object Attribute Count

Mining + - Pre-Processing —e— Maintenance

(c) Varying User-Object Attribute Count

Figure 6: Running Time for Delete Attribute Value

REFERENCES

(1]

(2]

=
—

=
&

Loredana Caruccio, Stefano Cirillo, Vincenzo Deufemia, and Giuseppe Polese.
2019. Incremental Discovery of Functional Dependencies with a Bit-vector
Algorithm.. In SEBD.

Shuvra Chakraborty, Ravi Sandhu, and Ram Krishnan. 2019. On the feasibility of
attribute-based access control policy mining. In IEEE IRI. 245-252.

David W Cheung, Jiawei Han, Vincent T Ng, and CY Wong. 1996. Maintenance
of discovered association rules in large databases: An incremental updating
technique. In International conference on data engineering. IEEE, 106-114.
William Cheung and Osmar R Zaiane. 2003. Incremental mining of frequent pat-
terns without candidate generation or support constraint. In Seventh International
Database Engineering and Applications Symposium. 111-116.

C. Cotrini, T. Weghorn, and D. Basin. 2018. Mining ABAC Rules from Sparse
Logs. In 2018 IEEE European Symposium on Security and Privacy (EuroS P). 31-46.
Ghada Gasmi, Lotfi Lakhal, and Yahya Slimani. 2012. An incremental approach
for maintaining functional dependencies. Intelligent Data Analysis 16, 3 (2012),
365-381.

Mayank Gautam, Sadhana Jha, Shamik Sural, Jaideep Vaidya, and Vijayalakshmi
Atluri. 2017. Poster: Constrained policy mining in attribute based access control.
In Proceedings of the 22nd ACM on Symposium on Access Control Models and
Technologies. 121-123.

Maanak Gupta, James Benson, Farhan Patwa, and Ravi Sandhu. 2019. Dynamic
groups and attribute-based access control for next-generation smart cars. In ACM
CODASPY. 61-72.

Vincent Hu. 2014. Attribute based access control (ABAC) definition and considera-
tions. Technical Report. National Institute of Standards and Technology.
Padmavathi Iyer and Amirreza Masoumzadeh. 2018. Mining positive and negative
attribute-based access control policy rules. In ACM SACMAT. 161-172.
Padmavathi Iyer and Amirreza Masoumzadeh. 2019. Generalized mining of
relationship-based access control policies in evolving systems. In ACM SACMAT.
135-140.

Amani Abu Jabal, Elisa Bertino, Jorge Lobo, Mark Law, Alessandra Russo,
Seraphin B. Calo, and Dinesh C. Verma. 2020. Polisma - A Framework for
Learning Attribute-Based Access Control Policies. In 25th European Symposium

196

(13

[14

[15]

=
&

[17]

(18

[19

)
=

[21

[22

(23]

on Research in Computer Security, Proceedings, Part 1. Springer, 523-544.

Leila Karimi, Maryam Aldairi, James Joshi, and Mai Abdelhakim. 2020. An
Automatic Attribute Based Access Control Policy Extraction from Access Logs.
Leila Karimi and James Joshi. 2018. An unsupervised learning based approach
for mining attribute based access control policies. In 2018 IEEE International
Conference on Big Data (Big Data). IEEE, 1427-1436.

Chun-Wei Lin, Guo-Cheng Lan, and Tzung-Pei Hong. 2012. An incremental
mining algorithm for high utility itemsets. Expert Systems with Applications 39, 8
(2012), 7173-7180.

Eric Medvet, Alberto Bartoli, Barbara Carminati, and Elena Ferrari. 2015. Evo-
lutionary inference of attribute-based access control policies. In International
Conference on Evolutionary Multi-Criterion Optimization. Springer, 351-365.

DC Mocanu, Fatih Turkmen, and Antonio Liotta. 2015. Towards ABAC Pol-
icy Mining from Logs with Deep Learning. In proc. of the 18th International
Multiconference, 152015 (2015), 124-128.

Ian Molloy, Hong Chen, Tiancheng Li, Qihua Wang, Ninghui Li, Elisa Bertino,
Seraphin Calo, and Jorge Lobo. 2008. Mining roles with semantic meanings. In
ACM SACMAT. 21-30.

Philipp Schirmer, Thorsten Papenbrock, Sebastian Kruse, Felix Naumann, Dennis
Hempfing, Torben Mayer, and Daniel Neuschifer-Rube. 2019. DynFD: Functional
Dependency Discovery in Dynamic Datasets.. In EDBT. 253-264.

Tanay Talukdar, Gunjan Batra, Jaideep Vaidya, Vijayalakshmi Atluri, and Shamik
Sural. 2017. Efficient bottom-up mining of attribute based access control policies.
In IEEE International Conference on Collaboration and Internet Computing. 339—
348.

Shyue-Liang Wang, Ju-Wen Shen, and Tzung-Pei Hong. 2001. Incremental dis-
covery of functional dependencies using partitions. In Proceedings Joint 9th IFSA
World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569),
Vol. 3. IEEE, 1322-1326.

Shyue-Liang Wang, Wen-Chieh Tsou, Jiann-Horng Lin, and Tzung-Pei Hong.
2003. Maintenance of discovered functional dependencies: Incremental deletion.
In Intelligent Systems Design and Applications. Springer, 579-588.

Zhongyuan Xu and Scott D Stoller. 2015. Mining attribute-based access control
policies. IEEE TDSC 12, 5 (2015), 533-545.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 ABAC
	2.2 ABAC Mining

	3 Incremental Maintenance Problem
	3.1 Types of Changes
	3.2 Overview of the approach

	4 Incremental Maintenance Approach
	4.1 Pre-Processing
	4.2 Handling Add Permission
	4.3 Handling Delete Permission
	4.4 Handling Add Attribute Value
	4.5 Handling Delete Attribute Value

	5 Experimental Evaluation
	6 Related Work
	7 Conclusions and Future Work
	References

