
Incremental Maintenance of ABAC Policies
Gunjan Batra

Rutgers University, USA

gunjan.batra@rutgers.edu

Vijayalakshmi Atluri

Rutgers University, USA

atluri@rutgers.edu

Jaideep Vaidya

Rutgers University, USA

jsvaidya@rbs.rutgers.edu

Shamik Sural

IIT Kharagpur, India

shamik@cse.iitkgp.ernet.in

ABSTRACT
Discovery of Attribute Based Access Control policies through min-

ing has been studied extensively in the literature. However, current

solutions assume that the rules are to be mined from a static data

set of access permissions and that this process only needs to be

done once. However, in real life, access policies are dynamic in

nature and may change based on the situation. Simply utilizing the

current approaches would necessitate that the mining algorithm

be re-executed for every update in the permissions or user/object

attributes, which would be significantly inefficient. In this paper, we

propose to incrementally maintain ABAC policies by only updating

the rules that may be affected due to any change in the underlying

access permissions or attributes. A comprehensive experimental

evaluation demonstrates that the proposed incremental approach

is significantly more efficient than the conventional ABAC mining.

ACM Reference Format:
Gunjan Batra, Vijayalakshmi Atluri, Jaideep Vaidya, and Shamik Sural. 2021.

Incremental Maintenance of ABAC Policies. In Proceedings of the Eleventh
ACMConference on Data andApplication Security and Privacy (CODASPY ’21),
April 26–28, 2021, Virtual Event, USA. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3422337.3447825

1 INTRODUCTION
The flexibility, scalability, dynamic nature, portability and identity-

less features of Attribute Based Access Control (ABAC) make it

an attractive choice to be employed as a means to enforce access

control in many traditional and emerging application domains [8].

Under ABAC, security policies (also called rules in this paper) are

specified based on subject, object and environmental attribute con-

ditions. However, a key problem in deploying ABAC is to precisely

configure it for effective access control. The problem of automati-

cally discovering the best set of minimum ABAC rules to configure

the system using existing permissions of users on the resources is

known as ABAC Policy Mining.

While the ABAC mining problem has been well studied in the

literature, all the approaches assume the system to be static in

nature. However, in reality, all systems change in due course of

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CODASPY ’21, April 26–28, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8143-7/21/04. . . $15.00

https://doi.org/10.1145/3422337.3447825

time, which necessitates updating (or maintaining) the ABAC rules

since the original rules may no longer be valid. Such maintenance

requires re-mining of the ABAC policies that reflect the changes,

which is often quite expensive and inefficient, especially when the

number of users and objects is large and changes to the data are

quite frequent.

In this paper, we propose an efficient alternative where ABAC

policy maintenance can be performed in an incremental fashion

whenever a change occurs. In particular, we consider the following

changes (∆). Note that other changes such as adding subjects and

objects do not affect the ABAC policies.

(1) Addition of a permission: This means granting access to a

user on an object that did not previously exist.

(2) Deletion of a permission: This means revoking a user’s ex-

isting permission to access an object.

(3) Addition of an attribute value: This means assigning a new

attribute value to either a subject or an object that currently

is not assigned.

(4) Deletion of an attribute value: This means removing an ex-

isting attribute value assignment from a subject or an object.

Given the current set of ABAC policies and the set of changes ∆,
the two alternative approaches to discover the new set of ABAC

policies have been depicted in Figure 1. More specifically:

(1) Redo ABACMining is an intuitive method to discover new set

of ABAC rules in which ABAC mining process is performed

whenever there is a change.

(2) Incremental Maintenance is an efficient means of handling

changes and discovering new ABAC rules by taking into

account only the part of the data that was affected by the

change. However, this process requires us to first extract and

maintain some intermediary data structures using which we

obtain the new set of rules that cover the changes.

In this paper, we have employed the ABAC-SRM mining algo-

rithm proposed by Talukdar et al. [20] as this is one of the fastest

approaches thus far proposed. We have compared the efficiency of

the above two approaches - the redo ABAC mining and the incre-

mental maintenance. Since the data used to mine the policies in the

latter case is significantly smaller than the former approach, is very

efficient as shown in our experimental evaluation.

The rest of this paper is organized as follows. In Section 2, we

review the preliminaries of ABAC definition and concepts, as well

as the ABAC-SRM mining approach [20]. In Section 3, we discuss

the types of changes and formalize the problem of incremental

maintenance of ABAC policies. We also provide an overview of the

approach to solve the problem. In Section 4 we present the proposed

Session 4: Policies CODASPY '21, April 26–28, 2021, Virtual Event, USA

185

https://doi.org/10.1145/3422337.3447825
https://doi.org/10.1145/3422337.3447825

Figure 1: Alternative Approaches to Maintenance of ABAC
Policies

incremental maintenance approach with detailed algorithms. This

includes a pre-processing phase to extract the necessary interme-

diate data structures and algorithms to handle the four types of

changes mentioned above. In Section 5, we experimentally compare

the cost of maintaining ABAC system using our proposed incre-

mental maintenance approach versus employing the redoing ABAC

mining approach. In Section 6 we discuss the related work and in

Section 7, we present conclusions and future research.

2 PRELIMINARIES
In this section, we briefly review the attribute based access control

model (ABAC) [9], and the ABAC mining approach from Talukdar

et al. [20], called the ABAC-SRM. The notations of ABAC and ABAC

Mining approach have been borrowed from [20].

2.1 ABAC
In an ABAC system, the authorization to perform an operation (e.g.,

read, write) is granted based on the attributes of the requesting

user, requested object, and the environment in which a request is

made. The ABAC policy rules are comprised of the attributes, which

include user attribute conditions and object attribute conditions

that determine granting of a permission to the user.

The basic components of an ABAC system are as follows:

Users (U): Represents a set of authorized users/subjects. ui , for 1 ≤
i ≤ |U | denotes each member of this set.

Objects (O): Represents a set of resources to be protected. Each

member of this set is denoted as oi , for 1 ≤ i ≤ |O |.
Environment (E): Represents a set of environment conditions, inde-

pendent of users and objects. Each member of this set is denoted as

ei , for 1 ≤ i ≤ |E |.
UA: Represents a set of user attribute names. Members of these sets

are represented as uai , for 1 ≤ i ≤ |UA |, Each uai is associated with
a set of possible values it can acquire. For instance, if a user attribute

Title is associated with the values {Instructor, TA, Student}, then for

every u ∈ U, value of the attribute Title can be either Instructor, TA
or Student.
OA: Represents a set of object attribute names. Members of these

sets are represented as oai , for 1 ≤ j ≤ |OA |. Each oai is associated
with a set of possible values it can acquire. For instance, if an object

folder with records of student has object attribute Major associated
with a set of values {Computer Science, Electronics,Mechanical}, then

Table 1:UA

User

(u)

Department
=Computer Science

(uc1)

Title=
Instructor
(uc2)

Department=
Electronics

(uc3)

Title=
TA
(uc4)

u1 0 0 1 1

u2 0 1 1 0

u3 1 1 0 0

u4 1 0 0 1

for every o ∈ O, value of the attributeMajor can be either Computer
Science, Electronics or Mechanical.
EA: Represents a set of environment attribute names. Members

of these sets are represented as eai , for 1 ≤ i ≤ |EA |. Each eai is
associated with a set of possible values it can acquire. For instance, if

an environment attribute Campus is associated with a set of values

{USA, UK, Australia}, then for every e ∈ E, value of the attribute
Campus can be either USA, UK or Australia.
P : A set consisting of all possible permissions/operations on objects

allowed in a system. For example, if read and write are the only two
possible operations on objects, then P = {read, write}. Each member

of P is represented as pi , for 1 ≤ i ≤ |P |.
UC : Represents a set of all possible user attribute conditions de-

noted as ucj , for 1 ≤ j ≤ |UC |. Members of this set are represented

as equalities of the form n = c, where n is a user attribute name

and c is either a constant or any. For instance if user attribute Ti-
tle has possible values {Instructor, TA, Student} and user attribute

Department has possible values as {Computer Science, Electronics,
Mechanical}, thenUC will be a set comprising of {Title=Instructor,
Title=TA, Title=Student, Title=Any, Department=Computer Science,
Department=Electronics, Department=Mechanical, Department=Any}.
Note here, that the condition n = Any does not have to be explicitly

chosen. It is set only if at least one other condition for n is present.

OC : Represents a set of all possible object attribute conditions de-

noted as ock , for 1 ≤ k ≤ |OC |. Members of this set are represented as

equalities of the form n = c, where n is an object attribute name and c
is either a constant or any. For instance if object attributeMajor has
possible values {Computer Science, Electronics, Mechanical} and ob-

ject attribute RecordsOf has possible values {Instructor, TA, Student,
Staff }, thenOC will be a set comprising of {Major=Computer Science,
Major=Electronics, Major=Mechanical, Major=Any, RecordOf=
Instructor, RecordOf=Student, RecordOf=TA, RecordOf=Staff, RecordOf
=Any}. For an attribute name n, if the value of c is any, then the

attribute n is not relevant for making the corresponding access

decision. Therefore, as above, the condition n = Any does not have

to be explicitly chosen. It is set only if at least one other condition

for n is present.

Π: Represents a set of access rules called the rule base of the ABAC

system. Each member of this set is denoted as ri , for 1 ≤ i ≤ |Π |. A
rule r in ABAC is of the form ⟨uc, oc, p⟩.

If a user makes a request to access an object, the rule base is

searched for any rule through which the user can gain access. If

such a rule exists, then the access is granted, otherwise it is denied.

For the sake of simplicity, in this paper, we assume the environ-

ment condition to be any.
UA: User attribute relationUA ⊆ U ×UC is a many-to-many map-

ping of users and user attribute conditions. We use am × n binary

Session 4: Policies CODASPY '21, April 26–28, 2021, Virtual Event, USA

186

Table 2: OA

Object

(o)

Major
=Electronics

(oc1)

Major
=Computer Science

(oc2)

Recordof
=Student
(oc3)

o1 1 0 1

o2 0 1 1

Table 3: Π

Rule ID Rule

1 uc3,oc1
2 uc1,oc2

Figure 2: ABAC Mining Process

matrix to represent UA, where UA[i,j]=1, if user ui satisfies an
attribute condition ucj . An example is shown in Table 1 where user

u1 is a TA whose department is Electronics.
OA: Object attribute relation, OA ⊆ O × OC is a many-to-many

mapping of objects and the set of all attributes conditions, where

an m × n binary matrix represents OA. OA[i,j]=1 if an object oi
satisfies an object attribute condition oc j . Table 2 shows an example

where object o1 is the recordof Student in Electronics Major.

2.2 ABAC Mining
A: An authorization a is of the form of ⟨u,o,p⟩ and represents user

u ∈ U , object o ∈ O , and permission p ∈ P , respectively, where a
denotes that a user u is allowed to perform an operation p on an

object o. We use p.a as the permission associated with a. We denote

the set of all authorizations as A. For each permissions pi ∈ P ,
we define Api ⊂ A such that for every a ∈ Api , p.a = pi . For
example, if P = {read,write}, we have Aread and Awrite such that

Aread ∪Awrite = A.
Given A, we construct a tableUOPp for each permission type p

(read, write etc.). The columns of this matrix are all possible user

attribute conditions and object attribute conditions of users and

objects in A, respectively, a column for p and column for Row Id .
There is a row inUOPp for each user object pair. For each row, if

the user attribute condition (object attribute condition) is true for

a user (object), the corresponding cell is filled with 1, otherwise

with 0. If there exists a a = ⟨u,o,p⟩, we insert a 1 in the p column

of that u − o. For the remaining rows, the p column is 0. Given P =

{p1,p2 . . .pn },UOP = ∪
n
i=1UOPpi .

UOPp : User Object Permission Matrix UOPp , is a M × N matrix,

whereM = |U | × |O | comprising of a row for each user-object pair,

and N = |UC | + |OC | + 1, comprising of a column for each object

attribute condition, a column for each user attribute condition, and

a column for the permission p and a column for Row Id . For the
UA in table 1, OA in table 2 and A in table 4a, table 4b shows the

UOPread constructed.
ABAC Mining: Given the set of authorizations A, the set of user
attribute conditions (UC), the set of object attribute conditions(OC),

ABAC Mining discovers minimum set of access rules Π such that

there exists a rule r ∈ Π where u is allowed to perform p on o iff
a = ⟨u,o,p⟩ ∈ A. Table 3 shows the rules Π corresponding to the

UOPread in table 4b.

In this work, to find out Π, the ABAC-SRM Mining algorithm

has been used. This algorithm finds minimum possible ABAC rules

through subset enumeration. It is being used in the form of the fol-

lowing function: ABAC-SRM(Perm1Rules ,Perm0Rules ,Speci f icRules),
where Perm1Rules are the Permission One rows, Perm0Rules are
Permission Zero rows and Speci f icRules are current ABAC rules.

This function evaluates the ABAC rules Π and returns them.

3 INCREMENTAL MAINTENANCE PROBLEM
In this section, we define the problem of maintenance of ABAC

policies in an incremental fashion, and discuss the basic idea behind

our proposed approach.

3.1 Types of Changes
∆: Represents a set of possible changes allowed in an ABAC system.

Each member is denoted as ∆i for 1 ≤ i ≤ |∆|. The change ∆ could

be to authorization set (A) or User Attribute Relation (UA) or Object
Attribute Relation (OA) in ABAC, and makes the current rules Π
invalid. Types of changes, ∆ are:

(1) Addition of an Access Permission (∆ap): This means autho-

rizing a user access to an object which previously didn’t exist.

∆ap : A← A ∪ a, where a = ⟨m_user ,m_object ,p⟩.
This will lead to the permission column of a row in UOP
corresponding to user m_user and object m_object to be

changed from 0 to 1.

(2) Deletion of an Access Permission (∆dp): This means remov-

ing a user’s existing access to an object. This will lead to the

permission column of a row in UOP to be changed from 1

to 0. ∆dp : A← A \ a where a = ⟨m_user ,m_object ,p⟩.
This will lead to the permission column of a row in UOP
corresponding to user m_user and object m_object to be

changed from 1 to 0.

(3) Addition of an Attribute value (∆aa): This means assigning

a user/object an attribute value which previously it did not

have, i.e., ∆aa :UA[i,j]← 1 where userm_user satisfies user
attribute condition uc j .
This will lead to the attribute condition being 1 for all of the

user’s/object’s rows in the UOP .
(4) Deletion of an Attribute value (∆da) : This means removing

an existing attribute value of a user/ object, i.e., ∆da :UA[i,j]
← 0, where userm_user does not satisfy user attribute con-

dition uc j .
This will lead to the attribute condition being 0 for all of the

user’s/object’s rows in the UOP .

We assume that during the addition and deletion of permission

changes, the user/object attribute values remain the same. Similarly,

Session 4: Policies CODASPY '21, April 26–28, 2021, Virtual Event, USA

187

(a) Authorizations (A)

User

u
Object

o
Permission

pi

u1 o1 p1
u2 o1 p1
u2 o1 p2
u3 o2 p1
u3 o2 p2
u4 o2 p1

(b)UOPRead

Row Id
User -
Object
u - o

Department
=Computer Science

(uc1)

Title=
Instructor
(uc2)

Department=
Electronics

(uc3)

Title=
TA
(uc4)

Major
=Electronics

(oc1)

Major
=Computer Science

(oc2)

RecordOf
=Student
(oc3)

p1=
Read

1 u1 o1 0 0 1 1 1 0 1 1

2 u2 o1 0 1 1 0 1 0 1 1

3 u3 o1 1 1 0 0 1 0 1 0

4 u4 o1 1 0 0 1 1 0 1 0

5 u1 o2 0 0 1 1 0 1 1 0

6 u2 o2 0 1 1 0 0 1 1 0

7 u3 o2 1 1 0 0 0 1 1 1

8 u4 o2 1 0 0 1 0 1 1 1

Table 4: The set of Authorizations and the corresponding UOPRead

we assume that during the addition and deletion of attribute values,

the permissions of users on objects remain unchanged. We would

also like to note that addition/deletion of environment attributes

will be handled similar to user/object attributes.

Definition 1 (IncrementalABACPolicyMaintenance). Given
a set of ABAC rules Π that encapsulate the original access policy, and
the change △, the Incremental ABAC Maintenance Problem aims to
discover a set of rules Π′ that encapsulates the new access policy de-
rived by applying the changes ∆ more efficiently than re-mining the
new policy.

3.2 Overview of the approach
The concept behind performing incremental mining is that when-

ever a change occurs, it impacts only a particular row in the UOP
or a small set of rows in the UOP . We only need to work on that

part of the UOP to update the ABAC rules. Intuitively, we need

to replace a few rows in the UOP with new ones which have the

change incorporated in them. We can have two types of rows in

UOP that can be added or deleted from the UOP :

(1) Rows with value of Permission column as 1, called Permis-

sion One Rows.

(2) Rows with value of Permission column as 0, called Permis-

sion Zero Rows.

For example, in Table 5, the Permission One Rows are [3,5,6,8]

and Permission Zero Rows are [1,2,4,7,9]. For every type of change,

we delete the Permission Zero and Permission One rows impacted

and add the modified/changed Permission Zero and Permission

One rows back to the data set (or data structures that we main-

tain for efficient updation). Our approach to incremental ABAC

maintenance is based on the above concept.

4 INCREMENTAL MAINTENANCE
APPROACH

In this section, we describe in detail our proposed approach to

perform the incremental maintenance of ABAC policies. We first

discuss the steps performed during the pre-processing phase and

then discuss the incremental maintenance algorithms for the four

change types.

4.1 Pre-Processing
The incremental ABAC maintenance approach is based on the idea

that we maintain certain intermediary data structures on which we

can operate to find out the new set of ABAC rules Π′. Specifically,
given the set of ABAC rules Π (i.e, the original policy) and theUOP
derived from the policy, we maintain the following data structures:

(1) ZeroRowIds: The Row Ids of Permission Zero Rows in the

UOP .
(2) ZeroRules: This is a minimum set of Permission Zero Rows

which covers all the Permission Zero rows, such that each

Zero row is a subset of atleast one rule in ZeroRules .
(3) ZeroRowCoveraдe: This is a list of size |ZeroRules | where

each element is a set that gives the Row Ids in theUOP of the

Permission Zero rows that are a subset of the corresponding

ZeroRule (i.e., it provides a mapping of the ZeroRules to

the Rows Ids of the Permission Zero rows covered by the

corresponding rule in ZeroRules).
(4) ZeroRuleIds : The Row Ids in theUOP of theZeroRules rows.
(5) OneRowIds : The Row Ids in theUOP of the Permission One

Rows.

(6) OneRowCoveraдe: This is a list of size |Π | where each el-

ement is a set that gives the Row Ids in the UOP of the

Permission One rows that are a super set of the correspond-

ing ABAC rule in Π (i.e., it provides a mapping of the Π to

the Row Ids of the Permission One Rows authorized by the

corresponding ABAC rule in Π).

Algorithm 1 Pre-Processing Steps

Require: Dataset D = UOP
Require: Π
1: ZeroRowIds ← Row Ids of Permission Zero Rows

2: ZeroRules ← findZeroRules (ZeroRowIds)
3: ZeroRowCoveraдe ← CoveraдeCalc (ZeroRowIds,ZeroRules, 0)

4: ZeroRuleIds ← Row Ids of ZeroRules
5: OneRowIds ← Row Ids of Permission One Rows

6: OneRowCoveraдe ← CoveraдeCalc (OneRowIds,Π, 1)

We will denote the entire set of the above data structures by I .
Algorithm 1 gives the specific steps to construct these, and utilizes

Session 4: Policies CODASPY '21, April 26–28, 2021, Virtual Event, USA

188

Algorithm 2 findZeroRules(ZeroRowids)

1: ZeroRules,ZeroRowList ← ϕ
2: ZeroRowList ← List of set of attribute conditions of Ids in

ZeroRowIds
3: Sort ZeroRowList in descending order based on the number of

attributes in each row

4: for each row in ZeroRowList do
5: if @rule ∈ ZeroRules such that row ⊆ rule then
6: ZeroRules ← ZeroRules ∪ row
7: end if
8: end for
9: return ZeroRules

Algorithm 3 CoverageCalc(RowIds,Rules, type)

1: coveraдe ← {ϕ, . . . ,ϕ}
2: for each rule in Rules do
3: for each Id in RowIds do
4: if (type==0 and attributes conditions of Id ⊆ rule) OR

(type==1 and rule ⊆ attributes conditions of Id) then
5: coveraдe[rule]← coveraдe[rule] ∪ Id
6: end if
7: end for
8: end for
9: return coveraдe

two helper functions: i) findZeroRules (Algorithm 2) and ii) Cover-

ageCalc (Algorithm 3). findZeroRules takes as input ZeroRowIds
and returns the minimum set of Permission Zero Rows that en-

capsulate all the Zero rows such that each Zero row is a subset

of atleast one ZeroRule . This is done by sorting the Zero Rows in

descending order based on the number of attribute conditions in

each row and then by adding each row that is not already covered

by some rule to the ZeroRules .
The CoverageCalc function is used to findOneRowCoveraдe and

ZeroRowCoveraдe . CoverageCalc takes as input theOneRowIds or
ZeroRowIds , Π or ZeroRules and type as 1 for OneRowCoveraдe
and 0 forZeroRowCoveraдe . It returns the corresponding list of sets
called coveraдe in Line 9 (OneRowCoveraдe or ZeroRowCoveraдe
depending on the type). This is accomplished by simply iterating

over each rule and each row provided as input and checking if

the rule is a subset (superset) of the role if the ZeroRowCoveraдe
(correspondingly, OneRowCoveraдe) is requested.

Example 1. Consider the UOP given in Table 5. The existing

ABAC rules in the system are : [(uc3,oc2), (uc1,uc2,oc1)]. By per-

forming the Pre-processing Steps, we get:
ZeroRowIds = [1, 2, 4, 7, 9]

ZeroRules = [(uc1,uc2,oc2,oc3), (uc2,oc1,oc2), (uc1,uc3,oc1)]
ZeroRowCoveraдe = [(7, 9), (1, 4), (2)]

ZeroRuleIds = [9, 4, 2]

OneRowIds = [3, 5, 6, 8]

OneRowCoveraдe = [(3, 6), (5, 8)]

Table 5: Illustrative example: UOP

Row Id u - o uc1 uc2 uc3 oc1 oc2 oc3 p

1 u1 o1 0 1 0 1 0 0 0

2 u2 o1 1 0 1 1 0 0 0

3 u3 o1 1 1 0 1 0 0 1

4 u1 o2 0 1 0 1 1 0 0

5 u2 o2 1 0 1 1 1 0 1

6 u3 o2 1 1 0 1 1 0 1

7 u1 o3 0 1 0 0 1 1 0

8 u2 o3 1 0 1 0 1 1 1

9 u3 o3 1 1 0 0 1 1 0

Algorithm 4 AddPermission(D,Π,m_user ,m_object , I)

1: m_rowid ← Row Id ofm_user andm_object in theUOP
2: m_row ← attribute condition set ofm_row
3: Delete_Perm0Rows ([m_rowid])
4: Add_Perm1Rows ([m_row],[m_rowid])

4.2 Handling Add Permission
Algorithm 4 gives the procedure to grantm_user the permission

to accessm_object . This is done by removing the corresponding

row from the list of permission zero rows and adding to the list of

permission one rows. Two helper functions are used to accomplish

this: i) Delete_Perm0Rows (Algorithm 5) and ii) Add_Perm1Rows

(Algorithm 6).

Algorithm 5 Delete_Perm0Rows(del0rowsIds)

1: R_ZeroRules,R_RuleIds ← ϕ
2: for each Id ∈ del0rowsIds do
3: ZeroRowIds ← ZeroRowIds \ Id
4: for each cover ∈ ZeroRowCoveraдe do
5: if Id ⊆ cover then
6: if Id ∈ ZeroRuleIds then
7: R_ZeroRules ← R_ZeroRules ∪ findZeroRules

(cover \ Id)
8: R_RuleIds ← R_RuleIds ∪ Index of cover
9: else
10: cover ← cover \ Id
11: end if
12: end if
13: end for
14: end for
15: Delete rules in ZeroRules at row numbers in R_RuleIds
16: Delete covers in ZeroRowCoveraдe at row numbers in

R_RuleIds
17: R_ZeroRowCoveraдe ← CoveraдeCalc (ZeroRowIds,R_ZeroRules, 0)

18: ZeroRules ← ZeroRules ∪ R_ZeroRules
19: ZeroRowCoveraдe ← ZeroRowCoveraдe ∪

R_ZeroRowCoveraдe
20: ZeroRuleIds ← findZeroRuleRows (ZeroRules)

Delete_Perm0Rows (del0rowsIds) Algorithm 5 gives the spe-

cific steps for removing a permission. First, we remove the row from

Session 4: Policies CODASPY '21, April 26–28, 2021, Virtual Event, USA

189

the permission zero rows (Line 3). Now, we update the intermediary

data structures. First we update the ZeroRowCoveraдe mapping. If

the permission row to be removed is a rule in ZeroRules then we

need to recompute the rule by removing it from the set of zero per-

mission rows covered by that rule (lines 7-8). Off course, if this is the

only zero permission row represented by that rule, then it is elimi-

nated altogether. Otherwise the permission row is removed from

the cover of every rule in ZeroRules it belongs to (line 10). Lines 15-
20 update the ZeroRules , ZeroRuleIds , and the ZeroRowCoveraдe
by first removing the appropriate rules and affected covers, and

then adding in the additional rules prior calculated (at line 7) and

recalculating the cover corresponding to those rules (line 17).

Add_Perm1Rows(add1rows,add1rowsIds): Algorithm 6 gives

the specific steps for adding a permission one row. This function

adds the rows given in add1rows to the ABAC system and re-mines

the policy. To do this, the ABAC-SRM function is used, but instead of

passing in the entireUOP , only the ZeroRules , add1rows and Π are

used since they encapsulate the entireUOP , and therefore the min-

ing is much more efficient, as confirmed by the experimental eval-

uation. We then update the OneRowIds and the OneRowCoveraдe
using CoverageCalc (Algorithm 3).

Example 2 (Add Permission: u3 gets access o3). Granting u3
access to o3, means we have to make the permission in RowId 9

equal to 1. This effectively means we have to delete the Permis-

sion Zero, Row Id 9 from the UOP and add a Permission One row

with the same attribute conditions. Therefore, Algorithm 4 calls

Delete_Perm0Rows with [9] and Add_Perm1Rows with argument

([(uc1,uc2,oc2,oc3)],[9]), obtaining the output given below:

m_row = (uc1, uc2, oc2, oc3) ,m_rowid = 9

Delete_Perm0Rows([9])
ZeroRowIds = [1,2,4,7]

ZeroRules = [(uc2,oc1,oc2), (uc1,uc3,oc1), (uc2,oc2,oc3)]
ZeroRowCoveraдe = [(1,4),(2),(7)]

ZeroRuleIds = [4,2,7]

Add_Perm1Rows([(uc1,uc2,oc2,oc3)],[9])
Π = [(uc3,oc2), (uc1,uc2)]
OneRowIds = [3,5,6,8,9]

OneRowCoveraдe = [(5,8),(3,6,9)]

4.3 Handling Delete Permission
Algorithm 7 gives the specific steps to revokem_user ’s permission

to accessm_object . This is done by removing the corresponding

row from the list of permission one rows and adding to the list of

permission zero rows. Two helper functions are used to accomplish

this: i) Delete_Perm1Rows (Algorithm 8) and ii) Add_Perm0Rows

(Algorithm 9).

Delete_Perm1Rows (del1rowsIds): Algorithm 8 gives the spe-

cific steps to delete permission one rows from the ABAC sys-

tem. Note that whenever a permission one row is deleted, some

Algorithm 6 Add_Perm1Rows(add1rows ,add1rowsIds):

1: Π← ABAC-SRM (add1rows ,ZeroRules ,Π)
2: OneRowIds ← OneRowIds ∪ add1rowsIds
3: OneRowCoveraдe ← CoverageCalc(OneRowIds,Π, 1)

Algorithm 7 DeletePermission(D,Π,m_user ,m_object)

1: m_rowid ← Row Id ofm_user andm_object in theUOP
2: m_row ← Attribute condition set ofm_rowid
3: Delete_Perm1Rows ([m_rowid])
4: Add_Perm0Rows ([m_row],[m_rowid])

Algorithm 8 Delete_Perm1Rows (del1rowsIds)

1: ridinvalid,minerowids,minerows ← ϕ
2: ridinvalid← Indices of covers inOneRowCoveraдe having any

Id from del1rowsIds
3: for r in ridinvalid do
4: minerowids ←minerowids ∪ (cover ofOneRowCoveraдe at

r \ del1rowsIds)
5: end for
6: Delete rules in Π and covers in OneRowCoveraдe at row num-

bers in ridinvalid
7: minerows ← List of attribute condition sets of rows in

minerowids
8: Π← AbacMining (minerows ,ZeroRules ,Π)
9: OneRowIds ← OneRowIds \ del1rowsIds
10: OneRowCoveraдe ← CoverageCalc (OneRowIds ,Π,1)

Algorithm 9 Add_Perm0Rows(add0rows , add0rowsIds)

1: ridinvalid,minerowids,minerows ← ϕ
2: ridinvalid ← Indices of rules in Π that are subset of any row

from add0rows
3: minerowids ← row Ids covering all ridinvalid (from

OnerowCoveraдe)
4: minerows ← List of attribute condition sets of rows in

minerowids
5: Π← Π \ ridinvalid
6: Delete cover in OneRowCoveraдe at all numbers in ridinvalid
7: for row in add0rows do
8: for zrule in ZeroRules do
9: if zrule ⊂ row then
10: replace zrule with row
11: else if row * zrule then
12: ZeroRules ← ZeroRules ∪ row
13: end if
14: end for
15: end for
16: ZeroRowIds ← ZeroRowIds ∪ add0rowsIds
17: Update ZeroRuleIDs , ZeroRowCoveraдe
18: Π← ABAC-SRM(minerows,ZeroRules,Π)

ABAC rules become invalid. These rules are found in Line 2, us-

ingOneRowCoveraдe . Every Id in del1rowsIds is checked in every

cover of OneRowCoveraдe . If an Id is in a cover, the index of the

cover is added to ridinvalid . The numbers in ridinvalid signify

that those rules in Π have become invalid. Next, in Lines 3 - 5, for

all r in ridinvalid ,minerowids is evaluated, which is cover at r (in
OneRowCoveraдe) after the del1rowsIds are deleted from it. The

Π and covers in OneRowCoveraдe are deleted at row numbers in

ridinvalid in Line 6.

Session 4: Policies CODASPY '21, April 26–28, 2021, Virtual Event, USA

190

The list of attribute conditions of the rows in minerowids is

put inminerows in Line 7. In Line 8, rowsle f tattributes are then
used to mine new Π using the algorithm ABAC-SRM. In Lines 9

- 10, OneRowIds are updated by removing the del1rowsIds from
them andOneRowCoveraдe is also updated by usingCoveraдeCalc
function in Algorithm 3.

Add_Perm0Rows(add0rows, add0rowsIds): Algorithm 9 gives

the specific steps to add permission zero rows. It adds the add0rows
to the ABAC system. When permission zero rows are added, some

rule in Π may become invalid. If an ABAC rule is subset of a Per-

mission Zero row, the rule becomes invalid. In Line 2, we find any

such rules that become invalid. For each row in add0rows , and for

all Π, if any rule in Π is a subset of any row in add0rows , index of
that rule is added to ridinvalid . In Line 3, for all rules in ridinvalid ,
the row Ids in OneRowCoveraдe are added tominerowids and in

Line 4, the attribute conditions of all rows in row Ids ofminerowids
are made into list and added to minerows . Next, in Line 5 and

6, at the row numbers in ridinvalid , we delete the Π and covers
in OneRowCoveraдe . In Lines, 7-15, we update the ZeroRules by
adding the add0rows . If a rule in ZeroRules is a subset of a row in

add0rows , then the rule is replaced with the row in add0rows; the
row in add0rows is added to ZeroRules if it is not subset of any rule
inZeroRules . In Line 16, the add0rowsIds are added toZeroRowIds .
Also in Line 17, ZeroRuleIds and ZeroRowCoveraдe are updated.
Finally, in Line 18, Π are updated using the ABAC-SRM mining

algorithm. As earlier, the mining is much more efficient in practice

since it only utilizes the ZeroRules and the Π as opposed to the

entireUOP .

Example 3 (Removing u2’s access to o3). This means we have

to make the permission in RowId 8 equal to 0. This effectively

means we have to delete the Permission One, Row Id 8 from the

UOP and add a Permission Zero row with same attributes condi-

tions. Therefore, Algorithm 7 calls Delete_Perm1Rows with [8] and

Add_Perm0Rows with [(uc1,uc3,oc2, oc3)],[8]), obtaining the output
given below:

m_row = (uc1,uc3,oc2,oc3),m_rowid = 8

Delete_Perm1Rows([8])
Π = [(uc1,uc2,oc1), (uc3,oc2)]
OneRowIds = [3,5,6]

OneRowCoveraдe = [(3,6),(5)]

Add_Perm0Rows([(uc1,uc3,oc2, oc3)],[8])
ZeroRules = [(uc1,uc2,oc2,oc3), (uc2,oc1,oc2), (uc1,uc3,oc1),

(uc1,uc3,oc2,oc3)]
ZeroRuleRows = [9,4,2,8]

ZeroRowIds = [1,2,4,7,9,8]

Π = [(uc1,uc2,oc1), (uc3,oc1,oc2)]
OneRowCoveraдe = [(3,6),(5)]

ZeroRowCoveraдe = [(7,9),(1,4),(2),(8)]

4.4 Handling Add Attribute Value
Algorithm 10 gives the specific steps to add the attribute value

m_attribute to userm_user . This is done in four steps: i) we extract

all permission zero rows and permission one rows for m_user and

the corresponding attribute sets (lines 1-4); ii) we remove the corre-

sponding rows from the permission zero and permission one rows;

iii) we update the attributes sets; iv) we insert the updated rows into

the permission zero rows and permission one rows. To ensure that

the intermediary data structures are consistently maintained, the

four prior defined functions i) Delete_Perm0Rows (Algorithm 5); ii)

Delete_Perm1Rows (Algorithm 8); iii) Add_Perm0Rows (Algorithm

9) and iv) Add_Perm1Rows (Algorithm 6) are used to accomplish

this. Note that an attribute value can also be added to an object in

exactly the same way.

Algorithm 10 AddAttribute(D,Π,m_user ,m_attribute)

1: m_rowids1 ← List of Row Ids of Permission One Rows of

m_user in the UOP
2: m_rowids0 ← List of Row Ids of Permission Zero Rows of

m_user in the UOP
3: m_rows1 ← List of attribute condition sets of all rows in

m_rowids1
4: m_rows0 ← List of attribute condition sets of all rows in

m_rowids0
5: Delete_Perm0Rows (m_rowids0)
6: Delete_Perm1Rows (m_rowids1)
7: Add them_attribute to them_rows0 andm_rows1
8: Add_Perm0Rows (m_rows0,m_rowids0)
9: Add_Perm1Rows (m_rows1,m_rowids1)

Example 4 (Add Attribute value: u1 gets uc3). Adding at-

tribute condition uc3 to user u1, requires removing all the rows

of user u1, i.e. Row Ids 1, 4 and 7. Then we have to add the at-

tribute condition uc3 to the attribute condition set of these rows

and add them back to the data set. Therefore, Algorithm 10 calls

Delete_Perm0Rowswith [1, 4, 7], Delete_Perm1Rowswithϕ, Add_Perm0Rows

with [(uc2,uc3,oc1),(uc2,uc3,oc1,oc2),
(uc2,uc3,oc2,oc3)],[1,4,7] and Add_Perm1Rows with (ϕ,ϕ) obtaining
the output given below:

m_rowids0= [1,4,7],m_rowids1= ϕ
m_rows0= [(uc2,oc1),(uc2,oc1,oc2),(uc2,oc2,oc3)],m_rows1= ϕ
Delete_Perm0Rows ([1,4,7])

ZeroRowIds = [2,9]

ZeroRules = [(uc1,uc2,oc2,oc3), (uc1,uc3,oc1)]
ZeroRowCoveraдe = [(9),(2)]

ZeroRuleIds = [2,9]

Delete_Perm1Rows (ϕ)
Add_Perm0Rows ([(uc2,uc3,oc1),(uc2,uc3,oc1,oc2),
(uc2,uc3,oc2,oc3)],[1,4,7])

ZeroRules =[(uc1,uc2,oc2,oc3), (uc1,uc3,oc1), (uc2,uc3,oc1,oc2),
(uc2,uc3,oc2,oc3)]

ZeroRowIds = [2,9,1,4,7]

ZeroRuleIds = [9,2,4,7]

Π = (uc1,uc2,oc1) (uc1,uc3,oc3)
ZeroRowCoveraдe = [(9),(2),(4,1),(7)]

OneRowCoveraдe = [(3,6),(5,8)]

Add_Perm1Rows (ϕ,ϕ)

4.5 Handling Delete Attribute Value
Algorithm 11 gives the specific steps to remove attribute value

m_attribute from user m_user . This works exactly the same as

Algorithm 10, except that in line 7, we delete m_attribute from

Session 4: Policies CODASPY '21, April 26–28, 2021, Virtual Event, USA

191

the permission zero and permission one rows form_user , before
updating all the intermediary data structures.

Algorithm 11 DeleteAttribute(D,Π,m_user ,m_attribute)

1: m_rowids1 ← List of Row Ids of Permission One Rows of

m_user in theUOP
2: m_rowids0 ← List of Row Ids of Permission Zero Rows of

m_user in theUOP
3: m_rows1 ← List of attribute condition sets of all rows in

m_rowids1
4: m_rows0 ← List of attribute condition sets of all rows in

m_rowids0
5: Delete_Perm0Rows(m_rowids0)
6: Delete_Perm1Rows (m_rowids1)
7: Delete them_attribute from them_rows0 andm_rows1
8: Add_Perm0Rows (m_rows0,m_rowids0)
9: Add_Perm1Rows (m_rows1,m_rowids1)

Example 5 (Delete Attribute value: u2 loses uc1). Removing

attribute condition uc1 from user u2 requires removing all the rows

of user u2, i.e. Row Ids 2, 5 and 8. Then we have to remove the

attribute condition uc1 from the attribute condition set of these

rows and add them back to the dataset. Therefore, Algorithm 11

calls Delete_Perm0Rows with [2], Delete_Perm1Rows with [5, 8],

Add_Perm0Rows with [(uc3,oc1)], [2] and
Add_Perm1Rows with [(uc3,oc1,oc2),(uc3,oc2,oc3)],[5,8] obtaining
the output given below:

m_rowids1 = [5,8],m_rowids0 = [2]

m_rows1 = [(uc1,uc3,oc1,oc2),(uc1,uc3,oc2,oc3)]
m_rows0 = [(uc1,uc3,oc1)]
Delete_Perm0Rows([2])

ZeroRules = (uc1,uc2,oc2,oc3), (uc2,oc1,oc2)
ZeroRowCoveraдe = [(7,9),(1,4)]

ZeroRuleIds = [9,4]

Delete_Perm1Rows([5,8])
Π = [(uc1,oc1)]
OneRowIds = [3,6]

OneRowCoveraдe = [(3,6)]

Add_Perm0Rows([(uc3,oc1)], [2])
ZeroRules = [(uc1,uc2,oc2,oc3), (uc2,oc1,oc2), (uc3,oc1)]
ZeroRowIds = [1, 4, 7, 9, 2]

ZeroRuleIds = [9, 4, 2]

Π = [(uc1,oc1)]
OneRowCoveraдe = [(3,6)]

ZeroRowCoveraдe = [(7,9),(1,4),(2)]

Add_Perm1Rows([(uc3,oc1,oc2),(uc3,oc2,oc3)],[5,8])
Π = [(uc1,oc1), (uc3,oc2)]
OneRowIds = [3,6,5,8]

OneRowCoveraдe = [(3,6),(5,8)]

5 EXPERIMENTAL EVALUATION
We carried out detailed experiments to study the effectiveness of the

proposed approach in a wide variety of settings, and to understand

the effect of different factors. There are no real datasets available

that capture the incremental change in ABAC policies. So we ran

Parameter Default Value

Users 40

Objects 60

User Attributes 60

Object Attributes 60

Rules 40

Table 6: Default values of Parameters

experiments on synthetic datasets and controlled the degree of

changes and examined the effect of each parameter independently.

We have used the synthetic dataset generator introduced by

Talukdar et al. in [20] to create ABAC policies. The input data set

for the four ABAC maintenance algorithms and ABAC Mining

(using ABAC-SRM) are the same.

ABAC Maintenance algorithms for each type of change were im-

plemented considering a single modification at a time and without

putting constraints to perform a fair comparison with ABAC-SRM

algorithm. The ABAC Maintenance algorithms can handle multiple

permissions and constraints.

For each set of parameter values, synthetic data was created. The

default values for the various parameters are given in Table 6. In

each experiment, we vary one parameter of interest while the rest

are set to the default values given in Table 6.

ABAC rules were mined from the dataset using the ABAC-SRM

algorithm. While using the proposed ABAC Maintenance algo-

rithm, pre-processing steps were carried out and recorded as Pre-

Processing Time. Further, for every change type (four ABAC Main-

tenance Algorithms: Add Permission, Delete Permission, Add At-

tribute value, Delete Attribute value), a random possible input (user

and object or user and attribute value) is identified and both ABAC

Maintenance and ABAC-SRM algorithms are used to accommodate

the change. For all four change types, this process was repeated for

20 random possible inputs on a data set. For Add attribute value and

Delete attribute value, we have performed experiments for addition

and deletion of attribute in users. The results will be similar for

object attributes and environment attributes.

Our objective is to compare the difference in time taken by the

two approaches for different types of changes. Therefore, we ob-

served: (I) the time taken for redoing theABACMining from scratch;

(II) the time taken for pre-processing to generate the intermediary

data structures; and (III) the time taken for incrementally updating

the policy as well as the intermediary data structures.

Note that without incremental maintenance, the time required

for any change is given by (I). If incremental maintenance is used,

then the time given by (II) is a one-time cost, while the time given

by (III) is incurred for each change. From the figures, it is observed

that for all the cases, ABAC Maintenance (III) is more efficient

than ABAC-SRM (I). In fact, ABAC Maintenance (III) with the Pre-

processing steps (II) also performs better than ABAC-SRM (I).

Figure 3 gives the average running time for adding a permis-

sion. Figure 3a shows the time taken when the User-Object Count

is varied. It can be observed that the time taken for mining, pre-

processing and incremental update all increase linearly. However,

the overall time taken by the incremental approach is significantly

less. Figure 3b shows the time taken when the rule count is varied.

Session 4: Policies CODASPY '21, April 26–28, 2021, Virtual Event, USA

192

(a) Varying User-Object Count

(b) Varying Rule Count (c) Varying User-Object Attribute Count

Figure 3: Running Time for Add Permission

Here, it can be observed that the time taken by the incremental

approach is independent of the number of rules, where as the time

taken for mining increases, though it plateaus after about 60 rules.

The overall time taken by the incremental approach is again signifi-

cantly less. Finally, Figure 3c shows the results when the user-object

attribute count is varied. Here, it is observed that the time taken

by the incremental approach is again independent of the number

of attribute values, whereas the time required for mining increases

linearly with it. Figures 4, 5, and 6 give the average running time

for deleting a permission, adding an attribute value, and deleting

an attribute value respectively. The behavior in all three cases is

very similar to that in Figure 3.

Quality of the results:
We also looked at the rules generated by our incremental approach

and compared them to the rules obtained directly through mining.

The experiments show that over the course of all 960 runs, in 598

of the cases, the rules generated are exactly the same, and only in

362 cases are the results different. Furthermore, even in those 362

cases, the number of rules generated by our incremental approach

is no more than 3% more than the number of rules obtained directly

through mining. This clearly shows that the quality of the results

obtained through the incremental approach is very close to that

obtained through mining.

6 RELATED WORK
To the best of our knowledge, maintenance of ABAC policies has

been studied for the first time in this paper. Hence, there are no

previous work directly related to this problem. However, there

are works in field of ABAC Mining, incremental FD mining and

incremental maintenance of databases, which are discussed below.

ABAC Mining: The standard for ABAC model can be found in

[9]. ABAC Mining has been studied by many researchers. Xu.et

al. [23] are the first to propose an approach for ABACMining. Their

approach iterates over tuples in the user-permission relation and

constructs candidate rules. Then it generalizes the candidate rule

to cover additional tuples by using merging techniques. Medvet et

al. [16] have proposed an evolutionary approach that is separate

and conquer algorithm, where at every iteration, a new rule is

generated and the set of access requests is reduced to a smaller

size. The efficiency of this approach is not very different when

compared to that in [23]. Mocanu et al. [17] have proposed a deep

learning model (Restricted Boltzmann Machines) trained on logs to

generate candidate rules. Their system is still under development.

Iyer et al. [10] have presented an approach to mine ABAC policies

having both positive and negative authorization rules. The approach

is based on the rule mining algorithm called PRISM. Gautam et

al. [7] have discussed a constrained policy mining algorithm that

generates a set of ABAC rules, such that the total weight of all

the rules in the mined policy is minimum and no individual rule

Session 4: Policies CODASPY '21, April 26–28, 2021, Virtual Event, USA

193

(a) Varying User-Object Count

(b) Varying Rule Count (c) Varying User-Object Attribute Count

Figure 4: Running Time for Delete Permission

can have weight greater than a pre-specified constraint. Cotrini et

al. [5] have proposed an algorithm for mining ABAC rules from

sparse access logs. The algorithm, called Rhapsody, is built upon

subgroup discovery algorithm called APRIORI-SD.

Karimi and Joshi [13] have proposed an approach to apply cluster-

ing algorithms over the decision examples to predict rules. Karimi

et al. [14] have also proposed an unsupervised learning-based tech-

nique for detecting patterns in a set of access records and extracting

ABAC policy rules from these patterns. They have presented two

algorithms, rule pruning and policy refinement that improve quality

of mined policy. The latter is useful in ABAC policy maintenance.

Bertino et al. [12] have proposed an approach, called Polisma, for

learning ABAC policies. It combines data mining, statistical, and

machine learning techniques, with potential context information

obtained from external sources to learn a better model. Iyer et

al. [11] have proposed an algorithm for mining ReBAC policies,

and an approach to mine graph transition policies. Gupta et al. [8]

have proposed dynamic groups with attribute-based access control

model for smart cars ecosystem.

Talukdar et al. [20] have used a subset enumeration approach to

discover the ABAC rules in a bottom-up fashion. In this paper, we

have chosen to develop our incremental maintenance approach on

the ABAC-SRM mining algorithm proposed by [20] as they have

shown that they take an order of magnitude less time than [23].

Also, both the algorithms ([20] and [23]) discover almost the same

number of rules; whereas [20] has better WSC [18] of the rules than

[23]. It is to be noted that the mining approaches in [20] and [23]

do not consider unrepresented attribute value combinations [2] as

these do not exist in the current authorization set. Better mining

algorithms will need to be devised to tackle this issue. However,

with respect to maintenance, if an existing user is authorized ac-

cess to an object with attribute values from unrepresented set, the

incremental mining approach can handle this in terms of updating

the policy by deleting the previous attribute and adding the new

attribute to the user/object. We require the maintenance algorithm

to be as fast as possible and to the best of our knowledge, the time

results of this algorithm are one of the best. While all the above

approaches focus on mining of ABAC policies, none of them at-

tempt to perform incremental maintenance of the policies when

changes occur. The idea in [20] is that ABAC rules are nothing but

a set of Functional Dependencies. Based on this premise, we have

performed a review of incremental FD mining algorithms which

also inspired us to develop and implement our approach.

Incremental FDMining: Caruccio et al. [1] represent FDs in a bit-

vector. Their approach employs an upward and downward search

strategy, and updates the set of Functional Dependencies on addi-

tion of new tuples to the database. Wang et al. [21] have proposed

to add new set of tuples to the database based on concept of tuple

partitions and the monotonicity of the Functional Dependencies

and avoid re-scanning of the database. In [22], Wang et al. have

Session 4: Policies CODASPY '21, April 26–28, 2021, Virtual Event, USA

194

(a) Varying User-Object Count

(b) Varying Rule Count (c) Varying User-Object Attribute Count

Figure 5: Running Time for Add Attribute Value

also given a Functional Dependency maintenance algorithm which

deals with tuple deletion. Also, Gasmi et al. [6] have proposed an

algorithm to maintain the canonical Functional Dependencies in-

crementally when a new tuple is appended to the original database.

Our approach is mostly inspired by the work of Schirmer et al.’s

DynFD [19]. They maintain Functional Dependencies for a dynamic

dataset using a bottom up and top down approach, and indices to

evolve the Functional Dependencies. For a batch of operations, in-

sert, update and delete of data, the algorithm adapts its validation

data structures, and a positive and negative cover of Functional

Dependencies.

Incremental Maintenance in Databases: Besides the above, in-
cremental maintenance has been studied extensively in data bases.

Cheung et al. [3] use incremental updating technique to update

the association rules in large databases whenever new transactions

are added to the database. Also in [4], Cheung et al. have proposed

algorithms for frequent pattern mining in a database and to allow

mining in a single pass over the database as well as insertion or

deletion of transactions in an efficient manner.

Lin et al. [15] have proposed an efficient incremental algorithm

for transaction insertion. The algorithm reduces computations with-

out candidate generation and is based on the utility-list structures.

7 CONCLUSIONS AND FUTURE WORK
In this paper, we have examined the problem of maintenance of

ABAC policies in an incremental fashion. We have formalized this

problem and proposed an efficient algorithm to maintain ABAC

policies considering four types of changes. We have experimen-

tally evaluated the performance of the proposed algorithm and

showed that it takes significantly less time to perform a change

when compared to redoing ABAC mining from scratch.

In the future, we plan to develop an approach that would allow

batching of changes and optimally switch between incremental

maintenance and re-mining. We plan to study the the consistency

and scalability aspects of this approach. We would also like to

implement the algorithm for negative authorizations and by adding

noise. Also, we plan to implement the ABACmaintenance approach

when there are constraints such as mutual exclusion, preconditions,

obligations, SoD, attribute-attribute conditions, etc.

ACKNOWLEDGMENTS
Research reported in this publication was supported by the National

Science Foundation awards CNS-1564034, CNS-1624503 and CNS-

1747728 and the National Institutes of Health awards R01GM118574

and R35GM134927. The work of Shamik Sural was partially sup-

ported by the Fulbright Program. The content is solely the responsi-

bility of the authors and does not necessarily represent the official

views of the agencies funding the research.

Session 4: Policies CODASPY '21, April 26–28, 2021, Virtual Event, USA

195

(a) Varying User-Object Count

(b) Varying Rule Count (c) Varying User-Object Attribute Count

Figure 6: Running Time for Delete Attribute Value

REFERENCES
[1] Loredana Caruccio, Stefano Cirillo, Vincenzo Deufemia, and Giuseppe Polese.

2019. Incremental Discovery of Functional Dependencies with a Bit-vector

Algorithm.. In SEBD.
[2] Shuvra Chakraborty, Ravi Sandhu, and Ram Krishnan. 2019. On the feasibility of

attribute-based access control policy mining. In IEEE IRI. 245–252.
[3] David W Cheung, Jiawei Han, Vincent T Ng, and CY Wong. 1996. Maintenance

of discovered association rules in large databases: An incremental updating

technique. In International conference on data engineering. IEEE, 106–114.
[4] William Cheung and Osmar R Zaiane. 2003. Incremental mining of frequent pat-

terns without candidate generation or support constraint. In Seventh International
Database Engineering and Applications Symposium. 111–116.

[5] C. Cotrini, T. Weghorn, and D. Basin. 2018. Mining ABAC Rules from Sparse

Logs. In 2018 IEEE European Symposium on Security and Privacy (EuroS P). 31–46.
[6] Ghada Gasmi, Lotfi Lakhal, and Yahya Slimani. 2012. An incremental approach

for maintaining functional dependencies. Intelligent Data Analysis 16, 3 (2012),
365–381.

[7] Mayank Gautam, Sadhana Jha, Shamik Sural, Jaideep Vaidya, and Vijayalakshmi

Atluri. 2017. Poster: Constrained policy mining in attribute based access control.

In Proceedings of the 22nd ACM on Symposium on Access Control Models and
Technologies. 121–123.

[8] Maanak Gupta, James Benson, Farhan Patwa, and Ravi Sandhu. 2019. Dynamic

groups and attribute-based access control for next-generation smart cars. In ACM
CODASPY. 61–72.

[9] Vincent Hu. 2014. Attribute based access control (ABAC) definition and considera-
tions. Technical Report. National Institute of Standards and Technology.

[10] Padmavathi Iyer and AmirrezaMasoumzadeh. 2018. Mining positive and negative

attribute-based access control policy rules. In ACM SACMAT. 161–172.
[11] Padmavathi Iyer and Amirreza Masoumzadeh. 2019. Generalized mining of

relationship-based access control policies in evolving systems. In ACM SACMAT.
135–140.

[12] Amani Abu Jabal, Elisa Bertino, Jorge Lobo, Mark Law, Alessandra Russo,

Seraphin B. Calo, and Dinesh C. Verma. 2020. Polisma - A Framework for

Learning Attribute-Based Access Control Policies. In 25th European Symposium

on Research in Computer Security, Proceedings, Part I. Springer, 523–544.
[13] Leila Karimi, Maryam Aldairi, James Joshi, and Mai Abdelhakim. 2020. An

Automatic Attribute Based Access Control Policy Extraction from Access Logs.

[14] Leila Karimi and James Joshi. 2018. An unsupervised learning based approach

for mining attribute based access control policies. In 2018 IEEE International
Conference on Big Data (Big Data). IEEE, 1427–1436.

[15] Chun-Wei Lin, Guo-Cheng Lan, and Tzung-Pei Hong. 2012. An incremental

mining algorithm for high utility itemsets. Expert Systems with Applications 39, 8
(2012), 7173–7180.

[16] Eric Medvet, Alberto Bartoli, Barbara Carminati, and Elena Ferrari. 2015. Evo-

lutionary inference of attribute-based access control policies. In International
Conference on Evolutionary Multi-Criterion Optimization. Springer, 351–365.

[17] DC Mocanu, Fatih Turkmen, and Antonio Liotta. 2015. Towards ABAC Pol-

icy Mining from Logs with Deep Learning. In proc. of the 18th International
Multiconference, IS2015 (2015), 124–128.

[18] Ian Molloy, Hong Chen, Tiancheng Li, Qihua Wang, Ninghui Li, Elisa Bertino,

Seraphin Calo, and Jorge Lobo. 2008. Mining roles with semantic meanings. In

ACM SACMAT. 21–30.
[19] Philipp Schirmer, Thorsten Papenbrock, Sebastian Kruse, Felix Naumann, Dennis

Hempfing, Torben Mayer, and Daniel Neuschäfer-Rube. 2019. DynFD: Functional

Dependency Discovery in Dynamic Datasets.. In EDBT. 253–264.
[20] Tanay Talukdar, Gunjan Batra, Jaideep Vaidya, Vijayalakshmi Atluri, and Shamik

Sural. 2017. Efficient bottom-up mining of attribute based access control policies.

In IEEE International Conference on Collaboration and Internet Computing. 339–
348.

[21] Shyue-Liang Wang, Ju-Wen Shen, and Tzung-Pei Hong. 2001. Incremental dis-

covery of functional dependencies using partitions. In Proceedings Joint 9th IFSA
World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569),
Vol. 3. IEEE, 1322–1326.

[22] Shyue-Liang Wang, Wen-Chieh Tsou, Jiann-Horng Lin, and Tzung-Pei Hong.

2003. Maintenance of discovered functional dependencies: Incremental deletion.

In Intelligent Systems Design and Applications. Springer, 579–588.
[23] Zhongyuan Xu and Scott D Stoller. 2015. Mining attribute-based access control

policies. IEEE TDSC 12, 5 (2015), 533–545.

Session 4: Policies CODASPY '21, April 26–28, 2021, Virtual Event, USA

196

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 ABAC
	2.2 ABAC Mining

	3 Incremental Maintenance Problem
	3.1 Types of Changes
	3.2 Overview of the approach

	4 Incremental Maintenance Approach
	4.1 Pre-Processing
	4.2 Handling Add Permission
	4.3 Handling Delete Permission
	4.4 Handling Add Attribute Value
	4.5 Handling Delete Attribute Value

	5 Experimental Evaluation
	6 Related Work
	7 Conclusions and Future Work
	References

