Poster Session

CODASPY 21, April 26-28, 2021, Virtual Event, USA

Attribute-Based Access Control for NoSQL Databases

Eeshan Gupta
Indian Institute of Technology
Kharagpur, India
eeshan9815@iitkgp.ac.in

Jaideep Vaidya
Rutgers University
Newark, USA
jsvaidya@business.rutgers.edu

ABSTRACT

NoSQL databases are gaining popularity in recent times for their
ability to manage high volumes of unstructured data efficiently.
This necessitates such databases to have strict data security mech-
anisms. Attribute-Based Access Control (ABAC) has been widely
appreciated for its high flexibility and dynamic nature. We present
an approach for integrating ABAC into NoSQL databases, specif-
ically MongoDB, that typically only support Role-Based Access
Control (RBAC). We also discuss an implementation and perfor-
mance results for ABAC in MongoDB, while emphasizing that it
can be extended to other NoSQL databases as well.

CCS CONCEPTS

« Security and privacy — Access control; « Information sys-
tems — Key-value stores.

ACM Reference Format:

Eeshan Gupta, Shamik Sural, Jaideep Vaidya, and Vijayalakshmi Atluri.
2021. Attribute-Based Access Control for NoSQL Databases. In Proceedings
of the Eleventh ACM Conference on Data and Application Security and Privacy
(CODASPY °21), April 26-28, 2021, Virtual Event, USA. ACM, New York, NY,
USA, 3 pages. https://doi.org/10.1145/3422337.3450323

1 INTRODUCTION

NoSQL databases have the advantage when it comes to managing
high volumes of heterogeneous and unstructured data efficiently,
which is ideal for a large number of applications in use today,
especially web applications and Internet of Things applications
that need significant scalability. Such systems, however, lag behind
relational databases when it comes to data security [4]. A major
security concern is that of effective access control. On the other
hand, Attribute-Based Access Control (ABAC) has started gaining
popularity for a wide range of applications due to its high flexibility
and customized data protection ability at various levels of granular-
ity [3]. This work focuses on addressing the challenge of integrating
ABAC into NoSQL databases. As NoSQL databases are built on a
diverse set of underlying data models, we in particular focus on

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CODASPY 21, April 26-28, 2021, Virtual Event, USA

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8143-7/21/04.

https://doi.org/10.1145/3422337.3450323

317

Shamik Sural
Indian Institute of Technology
Kharagpur, India
shamik@cse.iitkgp.ac.in

Vijayalakshmi Atluri
Rutgers University
Newark, USA
atluri@rutgers.edu

MongoDB since it is one of the most popular NoSQL databases
according to the DB-Engine Rankings [5]. We also discuss an imple-
mentation of enhancing MongoDB’s underlying Role-Based Access
Control (RBAC) system with attributes and dynamic assignments.
The system can be integrated easily into any MongoDB server with
no additional query overhead.

2 PRELIMINARIES

In this section, we discuss the current state of access control in
NoSQL databases and how it can be improved using ABAC. We
also briefly describe some of the basic concepts of MongoDB.

2.1 Access Control in NoSQL Databases

Access control mechanisms form an essential tool for information
security and protection by mediating which users are allowed to
access which components of the organizational resources. The
most powerful form of access control currently available in NoSQL
Databases such as MongoDB is Role-Based Access Control (RBAC)
[6]. It allows system administrators to create roles which broadly
correspond to the various position in the organization hierarchy,
and assign users to those roles.

However, RBAC systems are static in nature, and they depend
heavily on system administrators, as well as the identity of users, as
opposed to their attributes, to be able to map them to a certain set
of roles. Hence, these systems are inherently less powerful, there
being no support for granting of privileges on the basis of user,
object and environmental attributes.

2.2 Attribute-Based Access Control (ABAC)

ABAC allows granting of permissions and privileges to perform op-
erations on objects on the basis of assigned attributes of the user and
object, and on the basis of environmental conditions such as time
of day, day of the week, location of user, etc. A set of policy rules
specified using these attributes and conditions is responsible for
determining any access decision. Attributes are name-value pairs
describing various states and characteristics of the components [7].

ABAC can provide dynamic, fine-grained and identity-agnostic
access control, and is considered to be the next generation of access
control systems. With no NoSQL database currently providing sup-
port for ABAC and hence lacking in data security measures, they
can benefit from such systems.

https://doi.org/10.1145/3422337.3450323
https://doi.org/10.1145/3422337.3450323

Poster Session

ABAC Authenticated
Admin Users
ABAC Policy Qut—Jries ‘
User and Object Attributes
Results

oc—1

[m]i]

oc— >—

0 | —
Flask-based RBAC PyMongo MongoDB
Application Roles

Figure 1: Summary of the ABAC System

2.3 MongoDB

As opposed to relational databases, which support well-defined Data
Definition and Data Modeling languages, NoSQL databases such
as MongoDB operate with a variety of data models and languages.
There is no single language such as the Structured Query Language
(SQL) for relational databases which works for NoSQL databases.
Each vendor instead mandates a specific way for its NoSQL database
to be used. This makes a general approach to integrate ABAC into
NoSQL databases quite impractical. Hence, we focus on MongoDB,
while emphasizing that due to its modular nature, this method
is extendable to other NoSQL databases as well through simple
appropriate product specific changes.

3 ENHANCING ACCESS CONTROL IN
MONGODB USING ABAC

In this section, we discuss the design and implementation of ABAC
for MongoDB databases. A summary of the system is given in Fig-
ure 1. The ABAC system administrator provides the user and object
attributes, and the ABAC policy, which is described in terms of
the attribute values necessary for a particular operation, to the
Flask-based web application. These are then converted into a com-
pact set of roles as described below. The roles are then created in
MongoDB using PyMongo, after which the authenticated users
can communicate with the MongoDB database according to their
permissions.

The PyMongo library allows interaction with a MongoDB data-
base through Python. This allows implementation of the algorithm
mentioned in [1] using Python, and through the interface provided
by PyMongo, one can communicate with the database for creating
new roles based on the mapping produced by the algorithm. Hence,
it is possible to leverage MongoDB’s RBAC system, to develop a
working implementation of ABAC.

The system works with all MongoDB drivers, servers, clients and
versions, and provides easy integration in a MongoDB deployment.
More precisely, it interacts with the MongoDB server with basic
PyMongo commands which require administrative access to the
database. Since PyMongo is the recommended way of interacting
with MongoDB from Python, its compatibility with all versions of
MongoDB is provided by the developers of MongoDB.

318

CODASPY 21, April 26-28, 2021, Virtual Event, USA

3.1 Generation of RBAC Roles From ABAC
Policies

This module follows the algorithm described by Batra et al. [1]. A
Python class ABAC accepts as input the User Attribute relation, the
Object Attribute relation and the ABAC Policy. The User Attribute
relation is encoded as a binary matrix, with a row for each user,
and each column represents an attribute value taken by that user.
Similarly, the Object Attribute relation is also encoded as a binary
matrix, with a row for each object. The ABAC policy is a tuple of
the User Attributes and Object Attributes required for providing a
list of permissions to the user for a particular object.

These are next processed for generating the set of authorizations
using the algorithm described in [1]. The time complexity of this
algorithm is O(num_users X num_objects X num_rules X
num_user_attributes X num_object_attributes).

The set of permissions for each user (User Permission Assign-
ment) is then derived from the set of authorizations using the
algorithm introduced in [1]. The time complexity of this algorithm
is O(num_users X num_objects).

The Permission and User Assignment relations are then derived
from the UPA by performing role mining using the approximation
algorithm suggested by Ene et al. [2]. It generates a compact set
of roles which are disjoint in their permissions. This is done by
finding the minimum biclique cover in the bipartite graph from
users to their permissions by fast graph reductions.

There are also functions to modify and update the set of assign-
ments, User Permission Assignment relations, and corresponding
User and Permission Assignment relations whenever a new user, a
new role or a new attribute is added or deleted.

The output of this module can be interpreted as a set of roles
which the given ABAC policy can be broken down into.

3.2 Generating and Assigning Roles in
MongoDB

The Python program connects to the MongoDB server using Py-
Mongo with an administrative Role to be able to create and assign
roles in the server.

For each role in the Permission Assignment relation, a role is
created in the MongoDB server using the createRole command
of MongoDB, and users are assigned to each role according to the
User Assignment relation using the grantRolesToUser command.
Whenever any modifications are made to the ABAC Policy, or a new
user or object is added, these methods are invoked again according
to the new User and Permission Assignment relations. A system
enforcing ABAC was implemented using the techniques described
in the previous section and a web application was developed for the
same using the Flask framework. The web application provides the
functionality to add, update and delete users, objects and their cor-
responding attributes. System administrators can also add, update
and delete rules for enforcing the ABAC policy.

Initially, before adding any rules into the ABAC Admin system,
attempting to execute the Operation find leads to an Unauthorized
Access Error as demonstrated in Figure 2(a). However, after
adding the rules, the users get the appropriate accesses accord-
ing to the ABAC Policy. Whereas the user was denied access before

Poster Session

adding the rules, when the find command was run again, access is
provided as demonstrated in Figure 2(b).

Thus, this is a fully functional ABAC system for MongoDB. In
addition to that, the main ideas for the integration of ABAC into
MongoDB can be easily extended and adapted to other document-
oriented NoSQL databases with an implementation of RBAC.

> db.inventory.find({item: "canvas"}, {_id: 8})
Error: error: {

"ok" : @,

"errmsg" : "not authorized on test to execute command { find:
\"inventory\", filter: { item: \"canvas\" }, projection: { _id: 8.8 },
1sid: { id: UUID(\"1a4acaPa-fdbo-4ad7-a2aa-d911b6628bas8\") }, $db: \"
test\" }",

"code" : 13,
}
(a)
> db.inventory.find({item: "canvas"}, {_id: @})
{ "item" : "canvas", "qty" : 100, "tags" : ["cotton"] }
(b)

Figure 2: Find operation (a) before, (b) after adding the rules

3.3 Results

This section demonstrates the performance results of the web ap-
plication for providing controlled access to the users.

We present the time taken for the system to process all its inputs,
and enforce the ABAC policy in the MongoDB database. The system
was implemented in Python3 on a 2.2 GHz Intel i7 machine having
16 GB of RAM. Once this is executed, there is no additional overhead
for the users to communicate with the MongoDB database. In figure
3(a), the number of objects, object attributes, and ABAC rules is
fixed, and the variation in execution time is measured with the
number of users (JU]) and user attributes (JUA|), whereas in figure
3(b), the variation is measured with the number of users (JU]) and
rules ([R|).

It is observed that the proposed system is efficient and hence, can
be meaningfully deployed in real-life NoSQL database applications,

4 CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we discussed a method for incorporating ABAC in
NoSQL databases, and provided an implementation of the same for
MongoDB. The implementation is modular in nature, and can be
easily adapted to any NoSQL database having support for RBAC.

While the method for deploying ABAC policies using RBAC roles
covers a variety of features of ABAC, there are still a few aspects in
which it is lacking. This includes the full power of ABAC such as
incorporating environmental attributes and dynamic assignment
of users without prior registration.

To have a native implementation of ABAC in MongoDB, it would
be necessary to intercept each message sent to the MongoDB server
and have a proxy server that connects to the server on behalf of
the client. The interaction between the client and the server in
MongoDB is based on the MongoDB Wire Protocol [6]. The requests
and responses are converted by the MongoDB drivers to MongoDB
Wire Messages. So, intercepting each message, we can build a layer
of access control in the proxy server, thereby implementing native
ABAC. We also plan to work on this in the future.

319

CODASPY 21, April 26-28, 2021, Virtual Event, USA

| User Attributes |

4 m 10 & 50 100 @ 500
—~ 3
o
(7]
2
g 2
=
s
L%
E
= _
o .
0 g — - — A
10 50 100 500 1000 5000 10000 20000
Number of users
(a)
| Rules |
3 =10 450 4100 @ 500
g 2
<2
=4
L
4
3
o 1
£
=
0
10 50 100 500 1000 5000 10000 20000
Number of users
(b)

Figure 3: Time taken to enforce ABAC with varying number
of users and (a) user attributes, (b) rules

ACKNOWLEDGMENTS

Research reported in this publication was supported by the National
Science Foundation awards CNS-1564034, CNS-1624503 and CNS-
1747728 and the National Institutes of Health awards R0OIGM 118574
and R35GM134927. The work of Shamik Sural is supported by
CISCO University Research Program Fund, Silicon Valley Commu-
nity Foundation award number 2020-220329 (3696). The content
is solely the responsibility of the authors and does not necessarily
represent the official views of the agencies funding the research.

REFERENCES

[1] Batra, G., Atluri, V., Vaidya, J., & Sural, S. (2019). Deploying ABAC policies using
RBAC Systems. Journal of computer security, 27(4), 483-506.

Ene, A., Horne, B., Milosavljevic, N., Rao, P., Schreiber, R., & Tarjan, R. (2008).
Fast exact and heuristic methods for role minimization problems. 2008 ACM
Symposium on Access Control Models and Technologies (SACMAT).

Colombo, P., & Ferrari, E. (2017). Towards a Unifying Attribute Based Access Con-
trol Approach for NoSQL Datastores. 2017 IEEE 33rd International Conference
on Data Engineering (ICDE), 709-720.

Okman, L., Gal-Oz, N., Gonen, Y., Gudes, E., & Abramov, J. (2011). Security Issues
in NoSQL Databases. 2011 IEEE 10th International Conference on Trust, Security
and Privacy in Computing and Communications, 541-547.
DB-Engine Rankings. Retrieved January 9, 2021
engines.com/en/ranking

MongoDB Official Documentation. Retrieved January 9,
https://docs.mongodb.com/.

Hu, C., Ferraiolo, D.F., Kuhn, D.R., Schnitzer, A., Sandlin, K., Miller, R., & Scar-
fone, K. (2019). Guide to Attribute Based Access Control (ABAC) Definition and
Considerations [includes updates as of 02-25-2019].

Colombo, P., & Ferrari, E. (2017). Enhancing MongoDB with Purpose-Based
Access Control. IEEE Transactions on Dependable and Secure Computing, 14,
591-604.

[2]

[3]

from https://db-

2021 from

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Access Control in NoSQL Databases
	2.2 Attribute-Based Access Control (ABAC)
	2.3 MongoDB

	3 Enhancing Access Control in MongoDB Using ABAC
	3.1 Generation of RBAC Roles From ABAC Policies
	3.2 Generating and Assigning Roles in MongoDB
	3.3 Results

	4 Conclusions and Future Directions
	References

