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Abstract—An emergency response process outlines the workflow of different activities that need to be performed in response to an

emergency. Effective emergency response requires communication and coordination with the operational systems belonging to different

collaborating organizations. Therefore, it is necessary to establish information sharing and system-level interoperability among the

diverse operational systems. Unlike typical e-government processes that are well structured and have a well-defined outcome,

emergency response processes are knowledge-centric and their workflow structure and execution may evolve as the incident unfolds. It

is impractical to define static plans and response process workflows for every possible situation. Instead, a dynamic response should be

adaptable to the changing situation. We present an integrated approach that facilitates the dynamic composition of an executable

response process. The proposed approach employs ontology-based reasoning to determine the default actions and resource

requirements for the given incident and to identify relevant response organizations based on their jurisdictional and mutual aid

agreement rules. The Web service APIs of the identified response organizations are then used to generate an executable response

process that evolves dynamically. The proposed approach is implemented and experimentally validated using an example scenario

derived from the FEMA Hazardous Materials Tabletop Exercises Manual.

Index Terms—Business process composition, Emergency response processes, Knowledge-centric business processes, process evolution.

F

1 Introduction

An emergency response process is a workflow of different
activities that need to be performed in response to an
emergency situation. Effective emergency response plan-
ning requires communication and coordination with the
diverse operational systems belonging to different collab-
orating organizations, including government agencies, non-
government organizations (NGOs), and private sector en-
tities. Therefore, a major requirement for the development
of an emergency response process is to establish informa-
tion sharing and system-level interoperability among the
operational systems of collaborating organizations. Unlike
the traditional business processes (e.g., e-government and
e-commerce processes) which have well-defined and pre-
dictable workflow structure and outcomes, emergency re-
sponse processes are knowledge-driven and are executed in
a dynamic and non-deterministic environment. Their work-
flow structure emerges and evolves dynamically depending
upon the environmental context, user decisions, availability
of resources, and the rules and policies of response organi-
zations. Establishing interoperability is particularly chal-
lenging in such an environment, as not only the workflow
structure but also the collaborating organizations, data
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sources, and resource providers may not be known a priori
and may need to be discovered at runtime. Moreover, there
can be new organizations that may not have collaborated
earlier. Therefore, we need an approach to enable on-the-fly
composition of emergency response processes by enabling
information sharing and interoperability among the infor-
mation systems of relevant response organizations.

Service-oriented architecture provides the key enabling
technology to establish interoperability and coordination
among the applications and systems of response organi-
zations for the composition and management of emer-
gency response processes. There are some service-oriented
platforms and systems for interoperable information ex-
change for emergency management and response planning
including, XchangeCore1, formerly known as Unified In-
cident Command Decision Support System (UICDS) [1],
[2], FEMA Incident Resource Inventory System (IRIS)
[3], Service-Oriented ArchiteCtures Supporting Networks
of Public Security (SoKNOS) [4], and social media alert
and response to threats to citizens (Smart-C) [5]. Table 1
provides a comparison of these platforms/systems with re-
spect to their capabilities to support dynamic composition
of emergency response processes. Specifically, we compare
the capabilities of these platforms/systems in terms of: (i)
information sharing among diverse systems; (ii) reasoning
support for response planning; (iii) dynamic discovery of
response organizations; and (iv) automated process com-
position by interfacing with the diverse operational systems
of response organizations. Although these systems employ
semantic-based reasoning for emergency response planning
and decision support, they do not support on-the-fly com-

1. https://www.saberspace.org/xchangecore-home.html
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TABLE 1: Comparison of Interoperable systems for emergency management and response planning

Information sharing Reasoning support Dynamic discovery
of response organi-
zations

Automated process
composition

UICDS/XchangeCore Yes No No No

IRIS Yes Yes No No

SoKNOS Yes Yes Yes No

Smart-C Yes Yes Yes No

Proposed Approach Yes Yes Yes Yes

position of response processes that may evolve based on the
situation at-hand.

Fig. 1 shows the composition environment for emer-
gency response process management. The response organi-
zations provide access to their operational systems through
Web services and publish the corresponding application
programming interfaces (APIs). The response process is
composed by integrating the diverse systems and Web
service APIs of response organizations, as depicted in Fig.
1. The response process may need to be updated and
recomposed with the addition of new activities due to
evolving situation and new requirements. This requires
evaluating the latest situation, identifying the agencies
and organizations that can provide the required resources,
and integrating their Web services into the instantiated
response process.

The following example scenario illustrates the need for
supporting such a dynamic composition of the response
process.

Fig. 1: Composition environment for emergency response
process management.

Rail incident scenario: Consider a rail incident scenario
similar to FEMA Hazardous Materials Tabletop Exercises
Manual Rail Incident Scenario [6], in which a freight train is
reported to collide with a car at a crossing over the tracks.
First responders approach the area to find a large greenish
smoke cloud emanating from the wreckage. An initial in-
cident command structure is established, and the incident
commander (IC) determines the following response actions:

• Request dispatch of initial response resources locally
from the city (including EMS, law enforcement, fire
and HazMat teams).

• Determine the risks posed by the hazards and identify
the threat zones and safe distances.

• Order evacuation of the hazard area as per the identi-
fied threat zones.

• Notify appropriate regulatory agencies, schools, and
the general public within the area through Emergency
Alert System (EAS) about the evacuation and shelter-
ing information.

• Activate other public warning systems (e.g., social
media and radio alerts, etc.).

• Identify local resources that can be committed and are
ready to dispatch.

The situation further evolves when the city Dispatch Cen-
ter informs the IC of the expected arrival of a northbound
passenger train in half an hour. Responders assisting with
the evacuation also report that numerous people need spe-
cialized transportation (i.e., wheelchair-bound, on oxygen,
bedridden, hearing, and vision impaired). Based on the
current situation, IC decides to take the following actions:

• Evaluate the need for additional resources to deal with
traffic control (portable road signs, redirect traffic flow
patterns, and limit access).

• Instruct the railroad company to take steps for halting
all incoming train traffic.

• Request resources to assist with special needs evacua-
tion.

• Request additional resources from other states to assist
with the evacuation (transportation, food, and medical
supplies).

Similarly, the incident commander may take additional
actions as the situation evolves. These actions correspond
to extending the instantiated response process with more
activities.

Currently there is no unified system that supports
automatic interfacing with the operational systems of re-
sponse organizations for response process composition and
management. Moreover, existing approaches for adaptive
process composition [7], [8], [9] are limited to structured
BPs, which employ event-condition-action rule based rea-
soning for process adaptation. The rules are defined for
different type of events e.g., replacing a failed service by a
pre-defined service. However, emergency response process
management involves certain types of events for which the
concrete actions may not be known a priori. For example,
if a given resource request cannot be satisfied by a local
agency, then the request is sent to a state-level agency.
However, the specific state-level agencies and their service
APIs need to be determined at runtime. Such events trigger
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re-composition of the emergency response process which
is the main focus of this paper. Our key contribution is
to ensure that the needed process recomposition can be
automatically and dynamically performed as the situation
evolves.

Our proposed approach provides an integrated frame-
work for dynamic composition of an executable response
process. It employs ontology-based reasoning to determine
the default actions and resource requirements for the given
incident and to identify relevant response organizations and
APIs of their operational systems based on their jurisdic-
tional and mutual aid agreement rules. The discovered Web
service APIs of the different response organizations are
then used to generate an executable response process that
evolves dynamically based on any changes in the environ-
mental context as well as the availability of resources. We
experimentally validate the effectiveness of the proposed
approach using an example scenario derived from FEMA
Hazardous Materials Tabletop Exercises Manual.

The remainder of this article is organized as follows.
Section 2 presents a review of related works. Section 3
provides a formal statement of the problem. Section 4
presents the proposed approach. Section 5 presents the
results of the experimental evaluation. Section 6 presents
a prototype implementation of the proposed framework.
Finally, Section 7 concludes the article and discusses future
work directions.

2 Related Work

Automated business process composition and management
has been extensively studied in the literature. Significant
work has been carried out on dynamic service composition,
process adaptation and schema evolution in the context
of structured business processes. However, there is a lack
of integrated approaches that address the dynamic com-
position requirements for knowledge-driven processes that
are unpredictable and emergent, as discussed in the Intro-
duction. Below we discuss the key requirements [8], [10]
and related approaches for dynamic process composition.
For completeness, we discuss the work that tackles the
issues of schema evolution, runtime process adaptation, and
knowledge-driven business process development. However,
our work primarily tackles the issues in knowledge-driven
business process development. We do not handle schema
evolution, or service failure/replacement issues since these
can be directly handled using prior work.
Schema evolution requirements mostly arise due to
process re-engineering efforts, e.g., due to changes in busi-
ness rules, policies, regulation, business strategy, and con-
tinuous process improvement. Such changes in schema
typically require developing a new version of process
schema/model, which, in turn affects the running instances
of the process as well [8]. Schema change problem has
been extensively studied, and several approaches have been
proposed. These include graph based model matching and
merging techniques [11], [12], [13], [14], as well as rule-based
techniques [7], [15], [16], [17]. Graph-based techniques sup-
port flexibility in process models to enable process de-
signers to compare and reuse configurable elements [11] in
existing process models. These approaches mainly address

design time variability in process workflows. Rule based
approaches mostly support dynamic changes in process
schema by enabling different kinds of ad-hoc deviations
from a given process model.
Runtime process adaptation requirements mostly
arise due to abnormal termination or failure of tasks (e.g.,
due to underlying web service failure or unavailability),
and/or violation of any constraints related to data (e.g.,
missing input), tasks (e.g., pre/post-condition not satis-
fied), and/or temporal requirements (expiration of a dead-
line), etc. [8]. These requirements have been addressed
by flexible and adaptive service composition approaches
that mostly rely on exception handling mechanisms with
the associated recovery procedures built manually by a
process designer at run-time. ADEPT2 [15], for example,
supports handling of unanticipated exceptions by enabling
different kinds of ad-hoc deviations from a given process
model.MoDAR [7] is a rule-based model-driven develop-
ment approach for adaptive service composition. Similarly,
Sabatucci et al. [9] proposed a rule-based approach employ-
ing static analysis of the global workflow state to support
adaptive workflows.

We consider process adaptation only in the sense of
dynamic recomposition of emergency response processes in
order to respond to changes in the environment or emer-
gence of new requirements. In this paper, we do not focus
on the issue of service replacement/failure as well as schema
changes and assume that the existing approaches discussed
above can be employed for handling such issues. However,
from an implementation perspective, we also utilize a rule-
based adaptive process composition approach to handle
such issues.
Knowledge-driven business process development in-
volves taking into consideration three main characteris-
tics of knowledge-driven processes which differentiate them
from structured business processes; (i) Unpredictable and
emergent process workflow structure - The activities and
process structure are not predefined and is determined
dynamically based on the knowledge of environmental
context, situation, and case-specific parameters that are
not known a priori and are subject to change at runtime;
(ii) Goal-oriented composition - Composition goals may
change, and new goals may arise as new data or actions
emerge during process instantiation and execution; and
(iii) Constraint & rule driven composition - policies, rules,
and regulations can influence the process structure and
constrain its execution. While there is a lack of integrated
approaches addressing these requirements, some works ad-
dress different requirements in knowledge-driven business
process development in a piecemeal manner.

Marella et al. proposed the SmartPM framework [16],
which builds on Knowledge Representation and Reasoning
techniques using situation calculus, logic-based program-
ming, and planning. SmartPM framework supports mon-
itoring and run-time adaptation of existing compositions
and does not include support for automated service com-
position and process evolution. Its current implementation
relies on a process designer for specification of the process
participants and model. However, an automated composi-
tion approach can be integrated with SmartPM to replace
the BPMN-based manual process design approach.
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In another work, Bucchiarone et al. [18] proposed a goal-
oriented business process adaptation approach based on
context evolution. At a high level, the proposed approach
verifies the evolution of the process context and process
execution against a desired model that encodes the business
policies over some domain elements. Upon detection of any
deviation, the adaptation process is triggered. Adaptation
involves automatic service composition and execution, con-
sidering the current state of the process and its context. In
a recent work, Bucchiarone et al. proposed another frame-
work for context-aware dynamic composition of process
fragments [19], [20]. In this work, reusable process frag-
ments [11] are considered as composable components [21]
to support the composition of adaptive-by-design business
processes. The underlying idea is that different entities
(service providers) in the system publish their functions
through process fragments that can be used in new process
compositions as well as for dynamic process evolution. The
approach is quite similar to our work, but it does not
consider the problem of search and selection of existing
fragments related to required service composition. More-
over, with respect to execution support, in these existing
frameworks, the composition logic can only be interpreted
and executed by the internal execution engines developed
for the specific platforms. On the contrary, our proposed
approach provides an integrated framework for composi-
tion and executable code generation for knowledge-driven
business processes. The executable process can be deployed
on any process execution engine.

3 Problem Statement

We address the problem of automated composition and
management of emergency response process considering a
dynamic environment. We formalize this problem as fol-
lows:

Given:

i. the contextual information of the incident including
incident type, severity, and location;

ii. the default actions or static response plans pre-defined
for specific emergency events;

iii. response organizations, their jurisdictional and mutual
aid agreement rules and the resources they can provide;

iv. available Web services/ APIs of the operational systems
of response organizations to request their resources;

compose an executable response process that can be
instantiated for the incident at-hand, and that can adapt
and evolve as the incident unfolds or as the environmental
context changes.

Here an executable response process refers to a business
process in which each activity is bound to the appropriate
operational system Web service/ API and is deployed on a
process engine for instantiation. We assume that the func-
tionality of the underlying operational systems of response
agencies and resource provider organizations is exposed
through their respective Web service operations. Therefore,
each activity in the abstract workflows of default actions is
realized through a composition of Web service operations
of the potential response organizations.

4 Proposed Approach

The proposed approach for dynamic composition of an
emergency response process is a multi-step approach that
incrementally generates an executable response process and
enables adaptability to a changing situation as the incident
evolves. Fig. 2 depicts the architectural view of our pro-
posed framework. This framework employs ontology and
reasoning engine for response planning for a given incident.
The ontology characterizes incidents based on type, sever-
ity and location; the default actions and resources required
for resolving different incident types; and the response
agencies and organizations.

Based on the given contextual information of the in-
cident at hand, the reasoning engine searches the ontol-
ogy and retrieves the default actions, required resources,
and the response agencies responsible for performing these
actions and providing the resources. The default actions
are encoded in the ontology as abstract process fragments
which are essentially workflows of activities that need to be
performed in response to specific situations. For example, in
case of a train crash, the default actions include dispatching
EMS responders to the crash site, obtaining the train
consists (i.e., the train and wagon numbers, and the type
and quantity of material in containers) from the railroad
company, finding the hazard classes and risks, establish-
ing hazard control zones and requesting transportation
resources for evacuation, etc. [6]. In addition, the reasoning
engine also discovers and selects the APIs of the operational
systems/Web services of the relevant response agencies
and resource providers based on their jurisdictions, rules,
policies.

Given the default actions and the operational systems/
service APIs of the resource provider systems identified
by the reasoning engine, the process composition model-
ing component generates an integrated response process
that enables the incident commander to request resources
from the selected resource provider agencies by interacting
with their appropriate operational systems. Essentially,
this component determines an execution order of activities
in the default actions and binds each activity to appro-
priate operational systems and services of the response
agencies. We employ a reachability analysis based service
composition approach for the generation of such an exe-
cutable response process. This executable response process
is then presented to the user for any customizations (e.g.,
adding/removing some activities). Code generation compo-
nent of the system then generates executable process code
(e.g., in BPEL language) for deployment and instantiation
on a process execution engine.

We utilize a rule-based adaptive process composition
approach to handle service replacement/failure issues as
well as schema changes [22]. Essentially, our process com-
position approach is an event-condition-action rules based
approach considering different types of events including, (i)
service failure/unavailability; (ii) error messages returned
by a service (e.g., due to service interface changes, input
validation error) (iii) change in process execution status
(e.g., updated availability status of requested resources,
updated threat zone); and (iv) user actions (e.g., addi-
tion/removal of a response activity, making resource re-
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Fig. 2: Architectural view of proposed framework for dynamic composition & management of emergency response
processes.

quest to a specific response organization). Similar to ex-
isting works [16], [22], our approach includes a rule base
and a rule engine. The rule base includes event-condition-
action rules defining the actions for each event type. For
example, failure or unavailability of a service will trigger a
service replacement action. Similarly, rules can be defined
for compensation actions in case of service failures. For
example, roll-back or cancellation of previously executed
service(s) by invoking the appropriate service API. In
addition, there are certain types of events, for which the
concrete action may not be known a priori. For such events,
our proposed approach enables extension and recompo-
sition of an instantiated response process based on the
changes in environmental context (e.g., a chemical leakage
incident evolves into a fire incident) or emergence of new
requirements (e.g., more fire trucks are needed, etc.). As
the incident evolves, the proposed approach extends and
recomposes the instantiated process in an iterative manner
until the incident is resolved.

In the following subsections, we discuss each component
of the proposed system in detail.

4.1 Emergency Management Ontology

A key component of our proposed system is the emergency
management ontology, which describes the essential con-
cepts and their relationships in the emergency management
domain. The key concept in the ontology is the ‘incident ’
class, which describes an emergency situation in terms of
the incident type, location, severity, and potential hazards
etc. An incident is associated with an ‘incident-type’ class
which describes different types of incidents e.g., a railroad
accident, a chemical plant fire, hurricane or earthquake.
Each incident-type is associated with: (i) ‘default actions’;
(ii) required ’resource types’; and (iii) response organiza-
tions.
Default actions are abstract process fragments modeling
high-level workflow of response activities. We represent the
default actions in the standard Business Process Model
and Notation (BPMN). Fig. 3 shows an example abstract
process fragment of default actions for a HazMat train

accident. Note that the activities in default actions are
only defined at an abstract level and lack any information
about the specific operational systems for communication
and coordination with the response organizations.

Fig. 3: Default actions for hazardous materials carrying
train accident.

EmergencyManagement Resources: Emergency man-
agement resources are described in the ontology based on
NIMS standard resource types. Each resource has an owner
agency/ organization that operates in a given jurisdiction
and can potentially provide the resource for assignment to
an incident e.g., a firefighting helicopter resource owned by
a county fire department.

Response organizations: A response organization rep-
resents a government agency, non-governmental organi-
zation, or a private entity that is directly or indirectly
involved in emergency management activities. An organiza-
tion has properties including, name, roles, jurisdiction (city,
town, county, state, or federal), location, rules/policies, the
type of resources it can provide, as well as the links to their
operational systems/ Web services APIs (WSDL files).
These APIs can be used to query the internal databases
and operational systems of the response organizations for
resource availability and commitment.

Rules: The emergency management ontology also encodes
the rules of response organizations for responding to emer-
gencies. These rules can generally be categorized into the
following two types:

• Jurisdictional Rules – These rules specify the jurisdic-
tions and responsibilities of the response organizations.
For example, consider the following rules for deter-
mining relevant government agencies for the response
process:

Authorized licensed use limited to: Rutgers University. Downloaded on August 11,2021 at 16:15:32 UTC from IEEE Xplore.  Restrictions apply. 



1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3030211, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 10, NO. 2, JUNE 2019 6

– Local agencies must respond to a disaster within
their jurisdiction

– If local agencies have their resources exhausted, then
the request should be escalated to county, state and
federal level agencies in the same order.

• Mutual Aid Agreement Rules – All emergencies orig-
inate at the local level; however, they can escalate,
warranting the need for mutual aid from outside of the
affected county and contiguous counties. Mutual aid
agreement rules specify the agreements between agen-
cies for collaboration with other public and private
agencies operating in the same or different jurisdiction.
As an example, consider a county-level mutual aid
agreement rule which states that the Bergen county
fire department in New Jersey state will support fire-
fighting operations in a neighboring county in the New
York state when requested.
There are several types of mutual aid agreements in-
cluding basic contracts between government/private
organizations, local, regional, inter-state, intra-state,
and international agreements for assistance in the form
of personnel, equipment, materials, and other associ-
ated services [23].

We encode the jurisdictional and mutual aid agreement
rules of response agencies in the ontology using the Seman-
tic Web Rule Language (SWRL). These rules are consid-
ered for identifying the response agencies, as discussed in
the following section.

4.2 Reasoning engine

The ontology reasoning engine is one of the core com-
ponents of the system. Given the incident’s contextual
properties including incident type, severity and location,
the reasoning engine performs reasoning on the incident on-
tology to determine the default actions, resources required,
and the response organizations based on their jurisdictions
and mutual aid agreement. As discussed in section 4.1, the
default actions are only abstract process fragments that
define a set of activities that need to be performed for a
particular incident type. Each activity in the default action
is realized through a composition of multiple Web services
that expose the functionality of the operational systems of
the response agencies and resource provider organizations.
Reasoning engine is responsible for the discovery and selec-
tion of relevant APIs of the response organization systems,
for the realization of activities in the default actions. This
step involves taking into account the jurisdictional rules
and mutual aid agreements between organizations.

Given the default actions and APIs of the identified re-
sponse organizations’ systems, the next step is to compose
a response process that enables the incident commander to
request resources from the response agencies by interacting
with their appropriate operational systems. We discuss our
approach for this step in the following subsection.

4.3 Process composition modeling

Process composition modeling involves elaborating the de-
fault actions identified for the situation at hand into a
concrete response process. As discussed earlier, the default

actions are only abstract workflows of response activities,
which lack information about their execution order and
the specific operational systems of response organizations
for execution of the underlying response activities. In or-
der to compose a concrete response process, we employ a
reachability analysis based approach that determines the
execution order of the activities in the default actions, and
bind these activities to appropriate operational systems
and service APIs.

Below we provide the important definitions followed by
a detailed description of the approach.

Definition 1. (Web service operation): A Web service
operation is defined as a 5-tuple [24],

s = (op-name, Ain, Aout, Cpre, Cpost), where

• op-name corresponds to the name of the Web service
operation;

• Ain is the set of input parameters/ attributes;
• Aout is the set of output parameters/ attributes;
• Cpre represents preconditions of s, defined with respect

to the values of some attributes before execution of s;
• Cpost represents postconditions of s, defined with respect

to the values of some attributes after execution of s.

Our proposed approach builds on the Colored Petri
net (CPN) reachability analysis based service composition
approach [25]. The idea is to explore those paths in the
CPN reachability tree that satisfy a particular goal state
of the system given some initial state. Such paths denote
the possible execution orders of Web services for response
process composition.

Definition 2. (Colored Petri net): A colored Petri net [25]
is a tuple CPN = (Σ, P, T,A,N,C,G,E, I), where:

• Σ is a finite set of non-empty types, called color sets.
• P is a set of places.
• T is a set of transitions.
• A is a set of arcs, such that P ∩T = P ∩A = T ∩A = ∅.

The arcs are categorized as normal arcs, read arcs, and
inhibitor arcs.

• N is a node function, N : A→ P × T ∪ T × P .
• C is a color function C : P → Σ
• G is a guard function defined from T into expres-

sions such that , ∀t ∈ T : [Type(G(t)) = Bool ∧
Type(V ar(G(t))) ⊆ Σ].

• E is an arc expression function defined from A into
expressions such that , ∀a ∈ A : [Type(E(a)) =
C(p(a))MS ∧ Type(V ar(E(a))) ⊆ Σ].

• I is an initialization function defined from P into
closed expressions such that , ∀p ∈ P : [Type(I(p)) =
C(p)MS ].

A distribution of tokens on the places is called a
Marking. An initial marking is determined by evaluating
the initialization expressions: ∀(p, c) : initMrkg(p, c) =
(I(p))(c), where (p, c) denotes a token element, p ∈ P and
c ∈ C(p).

In the response process composition context, we model
the set of selected service operations as a set of transi-
tions T in the CPN model. A transition is linked to its
corresponding input and output places. Each place can
hold certain colored tokens. A colored token corresponds
to the object class associated with the input or output
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parameter of a service operation. The attributes of a col-
ored token correspond to the attributes of an object class.
The preconditions of a service operation are specified as
guard function and the postcondition as an arc expression
to the output place(s) in the CPN model. A transition
can fire if its input places have the required tokens and its
guard function evaluates true. Firing of a transition implies
invocation of the corresponding service operation when all
its input parameters are available, and its preconditions are
satisfied.

Example 1 illustrates our process composition ap-
proach.

Fig. 4: Example: Computing initial state from contextual
attributes

Example 1. For the train incident scenario discussed in
Section 1, we first determine an initial state of the
system by considering the contextual attributes of the
incident, as shown in Fig. 4.
In order to compute a goal state for process compo-
sition, we consider the system state after successful
execution of activities in the retrieved default actions.
For example, consider activities A, B, and C in the
default actions of Fig. 3 for finding train consists,
hazard classes & risk, and establishing control zones,
respectively. Each of these activities has associated
input and output attributes. For example, activity A
requires train id as input and returns materials as
output, B requires materials as input and returns
hazardClass and risks as output, similarly C requires
materials, latitude and longitute as input and returns
safeDistances and controlZones as output. The com-
bined effect of the output attributes of these activi-
ties determine the goal state of the default action as
shown Fig. 5, where the output attributes material,
hazardClass, safeDistances, and controlZones are
assigned a “not-null” value in the goal state.

Fig. 5: Example: Computing goal state from activities in
the default actions.

Fig. 6 illustrates our CPN reachability analysis based
service composition approach. Given the initial state,
goal state, and the CPN models of the selected Web
service operations, state-space reachability analysis is
performed to determine an execution order of services
that satisfies the composition goal. Fig. 6(a) shows the

CPN structures, including the places corresponding to
the input/output object classes, and the transitions cor-
responding to the selected service operations. As shown
in the figure, firing of transition t0, which does not
have any guard condition places the tokens in the initial
state in their corresponding places Train and Location.
Once the token train id becomes available, transition
t1’s guard condition is satisfied and it is fired. Thus,
tokens material and quantity are added to the place
Train Consists. The transition firing process contin-
ues until the placement of tokens (current marking)
satisfies the goal state, or there are no more transitions
that can be fired. Fig. 6(b) shows the corresponding
transition firing sequence for the CPN structures given
in Fig. 6(a).

Note that we assume that there is no syntactic and
semantic heterogeneity between the attributes of the
response activities in the default actions, and the in-
put/output parameters of service operations of response
organizations i.e., these attributes are specified using the
same terms in the default actions as well as in the appropri-
ate Web service operations. If heterogeneity does actually
exist between attribute names, we can employ the existing
attribute-based matching approaches [24], [26] to resolve
differences in attribute names before continuing with the
reachability analysis.

Given the default actions determined by the ontology
reasoning component, Algorithm 1 computes the workflow
of the concrete response process. The algorithm takes as
input, a default action F , CPN model of the selected Web
services ∈ S, and the set C = {〈a1, v1〉, . . . , 〈ak, vk〉}, con-
taining the contextual attributes (ai) with their respective
values (vi). The output is a composition of services that
satisfies the goal state. The algorithm first computes the
initial and goal states for required service composition in
S. computeInitialState() function computes the state of the
system from contextual attributes in C as follows:

a. All the attributes whose values are given in C are
assigned abstract values, “null”/ “not-null” or original
values in case of enumerated data types.

b. All the attributes whose values are not-known are
assigned “X”.

c. Relevant tokens are identified and inserted in their
respective places with their values - This placement
of tokens corresponds to the input marking or initial
state.

In the next step, the computeGoalState() function com-
putes the expected state of the system after successful
execution of activities in the given default action, F as
follows:

a. Find the post-condition attributes of each default ac-
tion ∈ F by considering the expected output of com-
ponent activities.

b. Assign “null”, “not-null” or original value to the identi-
fied attributes according to the post-conditions of their
respective activities.

c. Identify relevant tokens and insert in their respective
places with the computed attribute values - This place-
ment of tokens corresponds to the output marking or
goal state.
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Fig. 6: Response Process Composition

Given the initial state, goal state, and the CPN model,
the reachability analysis algorithm (Algorithm 2) is then
invoked to compute a possible composition of selected Web
services (line 3). If reachability analysis algorithm returns a
non-empty sequence of transitions, then the corresponding
sequence of services is considered a valid service composi-
tion workflow R for the given default action.

ALGORITHM 1: FindServiceComposition

Input: F : A default action
Input: CPN : Colored Petri net structures of available service

operations ∈ S
Input: C = {〈a1, v1〉, . . . , 〈ak, vk〉}: The set of contextual

attributes (ai) with their respective values (vi).
Output: R: Workflow of the concrete response process
1: Init← computeInitialState(C)
2: Goal← computeGoalState(F)
3: R← ReachabilityAnalysis(Init,Goal, CPN )
4: return R

Algorithm 2 provides the pseudo-code of our CPN
reachability analysis algorithm, which uses the occurrence
graph method proposed in [25]. Given an initial state
Init, goal state Goal, and the CPN model of the available
service operations, Algorithm 2 performs the reachability
analysis by constructing the CPN occurrence graph to find
a service composition. The returned service composition is
represented as a sequence of transitions fired to reach from
the initial state to the goal state. If no such path exists, the
algorithm returns an empty set. The algorithm maintains a
queue (Q), which is a set of nodes in the occurrence graph
that need to be explored for transition firing. Q is initialized
as an empty set (line 1). Graph nodes are inserted in Q
as new markings are generated. createNode() procedure
creates a new occurrence graph node from a given marking

ALGORITHM 2: ReachabilityAnalysis

Input: CPN – Colored Petri net of selected service operations
∈ S

Input: Init – Initial state
Input: Goal – Goal state
Output: T ′ = {t0, . . . , tq} - Sequence of transitions fired to

reach from the initial state Init to the goal state Goal
1: Q← ∅
2: createInitialMarking(Init)
3: m0 ← getCurrentMarking()
4: createNode(m0)
5: parent(m0)← NULL
6: enqueue(m0, Q)
7: while m1 ← dequeue(Q) do
8: setCurrentMarking(m1)
9: for all (transition t) do

10: if (isEnabled(t)) then
11: fireTransition(t)
12: m2 ← getCurrentMarking()
13: setCurrentMarking(m1)
14: if (isNewMarking(m2)) then
15: createNode(m2)
16: enqueue(m2, Q)
17: if (isEqualMarking(m2, Goal)) then
18: return T ′ /* sequence of transitions fired in

the current path from root to m2 */
19: return ∅

string. Lines 2-6 compute the marking string from the
initial state, creates the root node and inserts in Q. The
algorithm then proceeds to perform reachability analysis
by extracting markings from Q as follows: An unprocessed
node (m1) is dequeued from Q, and the current marking
string is extracted from m1 (lines 7-8). Given the current
marking string, isEnabled() procedure checks to see which
of the available transitions can be fired (lines 9-10). If a
transition is enabled (all required tokens are present in
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input places, and guard evaluates true), it is fired, and
a new marking string m2 is computed (lines 12-13). The
procedure isNewMarking() traverses the current path to
see if the fired transition has updated the system state (line
14). If so, a new node is created from m2 and inserted in Q
(lines 14-16). isEqualMarking() procedure compares the
new marking string m2 with Goal. If isEqualMarking()
returns true, then the graph is traversed from the root
to the current node to return the sequence of transitions
fired along the path, T ′ = {t0, . . . tq}. When the goal state
is reached, the algorithm returns T ′. If the goal state is
unreachable, the algorithm returns an empty sequence.

4.4 Executable process code generation

Given the response process workflow synthesized through
the CPN reachability analysis-based approach, the next
step is to generate an executable response process. The ex-
ecutable process code generation component first identifies
any control-flow dependencies between the different process
fragments and then generates a workflow that includes
parallel structures for all activities that can be executed
concurrently. Based on the mapping information of each
process activity to appropriate operational system/service
API, the code generation component then generates ex-
ecutable process code (e.g., in BPEL language) of the
developed workflow for deployment and instantiation on a
process execution engine.

Note that multiple response organizations may have
their independent deployments of the same system. For
example, a fire department and a law enforcement agency
both using FEMA IRIS system [3] for resource manage-
ment. To reduce the state-space complexity in the CPN
reachability analysis for process composition, we do not
create multiple Petrinet structures for same systems of
different agencies. Once we identify the service composition
model for a given system, we replicate that fragment in our
process workflow for multiple agencies using that system.

4.5 Deployment, instantiation and execution

In this step, the executable BPEL process generated in
the previous step is first deployed on a process execution
engine then instantiated and brought to execution in the
runtime environment. We keep track of the process state
in a collection of variables. These include, (i) User-specific
variables, which correspond to user inputs and decisions
taken by the user; (ii) Service-specific variables which in-
cludes all the elements in the service request and response
messages; (iii) Emergency Response process-specific state
information such as, response activity status (e.g., assigned
or completed), response provider agencies and their as-
signments, resource status (e.g., requested, committed, or
dispatched), incident status, and events, etc. Changes in
the state act as triggers for subsequent changes in the
response process.

4.6 Dynamic process re-composition and evolution

Depending on the execution results of the process (e.g.,
current resource availability status) as well as the dynamic
changes in the environmental context due to incident evo-
lution (e.g., a chemical leakage incident evolves into a fire

incident) and user decisions, workflow of the instantiated
response process may need to be extended to include ad-
ditional activities. As the incident evolves, the proposed
system extends and recomposes the instantiated response
process by performing ontology-based reasoning to:

• search for additional organizations that can provide
the resources which could not be committed by or-
ganizations contacted in the previous iteration. For
example, if an air ambulance is required and is not
available with the local and county-level agencies, then
state level agencies may be contacted, and

• discover response activities and associated default ac-
tions, required resources, and response agencies for any
new event.

The process composition modeling and code generation
components in Fig. 2 are invoked again for executable
code generation and redeployment of the extended response
process. As shown in Fig. 2, response process extension
and recomposition is performed in an iterative manner. In
each iteration, the current process instance is executed to
completion, and based on its output and current environ-
mental context, the process is recomposed by adding new
activities and executed again. This process extension and
recomposition is continued until the incident is resolved.

We utilize a rule-based adaptive process composition
approach to deal with any conflicts between the already
executed part of the old process and the activities in
the new composition. We assume that if there are any
modifications made to the existing response process, then
appropriate service APIs that allow us to perform compen-
satory actions (i.e., actions that would result in a partial
or complete rollback and/or appropriate replacement) are
available. Moreover, these compensatory actions are prede-
fined in the rule base with respect to different events (e.g.,
service failure, change in the alert severity level). This is
consistent with the Emergency Data Exchange Language
(EDXL) messaging standards that facilitate emergency
information sharing between the government entities and
non-governmental organizations that provide emergency
response and management services. For example in the
EDXL standard for resource management (EDXL-RM)
[27], if a request for a particular resource has already been
placed but as the incident evolves, we realize the requested
resource is not needed anymore and a different resource is
required, the earlier request can be canceled by sending a
request recall message which is made available through a
service API. In addition, the request for the new resource
need to be made with a service request to the appropriate
agency.

5 Experimental Evaluation

In this section, we describe the datasets used and the ex-
periments performed to investigate the practical usability
of the proposed system. We validate the effectiveness of the
proposed approach using an example scenario derived from
FEMA Hazardous Materials Tabletop Exercises Manual.
Specifically, we consider the scenario of hazardous chemical
leakage in a train derailment incident. Response activities
need to be performed based on the scenario specification.
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TABLE 2: Ontology Rules Inference Execution Time

Total No. of Response Organizations 20 40 80 160 320 640 1280

Avg. No. of Resources per Organization 5 5 5 5 5 5 5

No. of Identified Organizations 9 10 33 44 44 174 464

Rules Inference Time (sec.) 6.511 8.601 8.657 8.692 15.672 36.736 157.13

Total Execution Time (sec.) 20.381 24.147 24.613 24.21 35.398 62.981 225.903

Note that the abstract response activities need to be real-
ized through concrete services provided by the operational
systems of the different response organizations. For this, we
need to have the specific Web service APIs that can be used
to implement different tasks such as: i) requesting resources
(both material and personnel); ii) notifying commitment
and deployment of resources; iii) monitoring hospital bed
availability; iv) notifying hospitals of incoming patients and
injury information. However, since there are no publicly
accessible APIs of operational systems used for disaster
management, we simulate some of the necessary APIs and
make use of the available systems and services related to
emergency response planning, as described in detail later.

The objective of the experimental evaluation is to show
how an effective response can be composed by dynamically
integrating with the systems of response organizations that
may not have pre-established collaboration. Towards this,
we need to measure parameters such as the amount of
time it takes to identify the response organizations and to
integrate with their systems, as well as any limiting factors.
In specific, we evaluated the following two sub-systems:

1) Ontology-based reasoning
2) Process composition and executable code generation

Below we discuss the experiments and the datasets in each
dimension. Note that our experimental evaluation does not
take into account schema changes or service failures since
that is not within the scope of this work.

5.1 Ontology-based Reasoning

We measure the time it takes the reasoning engine to create
the new incident, identify relevant default actions, required
resource types and potential response organizations, and
discovering the APIs of operational systems of the identi-
fied organizations.

Dataset Description: For the experimental evaluation,
we created an incident ontology in Ontology Web Language
(OWL) by building on the structure of the emergency
management ontology presented in [2]. We considered the
train accident scenario presented in Section 1 with varying
ontology domain sizes for measuring the rules inference
time. We employed Apache’s Jena inference subsystem [28]
for reasoning and inference with our emergency manage-
ment ontology.

We considered the following parameters for experimen-
tal evaluation:

• Total number of response organizations – The total
number of agencies and organizations in the ontology
that can potentially provide resources/services to re-
spond to an incident on a local level, county level, state

level, and federal level. We varied this number for the
experiments.

• Average number of resources per organization – the
resources that individual response organizations can
offer.

• Number of resource types – total resource types en-
coded in the ontology.

• Number of identified organizations – response orga-
nizations identified as potential responders through
ontology rules inference.

A total of 95 resource types and 5 resource instances per
agency were registered in the ontology.

Table 2 provides the dataset statistics and computation
time results for the ontology rules inference experiments.
The total execution time from incident creation to ontology
update includes the following: (i) reading the ontology file,
(ii) creating a new incident instance, (iii) determining the
default actions, and (iv) updating the ontology and saving
to the file.

The ‘Rules inference time’, is the ontology rules infer-
ence time without considering file reading and saving time.

As depicted in the results in Table 2, the ontology rules
inference time is directly correlated with the number of
response organizations and resources found in the ontology.
The rule inference time increases as it needs to evaluate
more organizations, their jurisdictions, mutual aid agree-
ment rules, and available resources. However, the increase
is linear, and even with over 1000 organizations, requires no
more than 2 minutes for inference and 4 minutes for total
execution. Therefore, this is quite usable in practice.

5.2 Process Composition and Executable Code Gener-
ation

The objective is to measure the time it takes to generate the
executable code of the response process from the default
actions and the APIs of response organizations identified
through ontology-based reasoning. This computation in-
cludes the time to run the Petri net based reachability
analysis for service composition and the time to generate
executable process code.

Dataset Description: Our experiment involved five re-
sponse organizations’ systems. We selected these organi-
zations based on the activities in the scenario described
in Section 1. Specifically, we have considered the following
types of systems:

• Incident Resource Inventory System (IRIS) pro-
vided by the Federal Emergency Management Agency
(FEMA) [3]. Various government agencies, jurisdic-
tions, and communities use IRIS to inventory resources
into their databases and to share information with
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TABLE 3: Available Systems and Services related to Emer-
gency Response Planning

Activity Available Systems/Services

Resource Management NIMS Incident Resource Inven-
tory System (IRIS) ‡

Weather Information Weather Web Service (Cdyne)†

Hazard Modeling ALOHA air hazard modeling
program‡

Chemicals Information CAMEO Chemicals †

Schools Information IES NCES Public Schools Infor-
mation System †

e-Procurement Coupa eProcurement System§,
Magento§

Cargo Trains Tracking AskRail†

§ Open source systems, † Publicly available Web services, ‡ Publicly available
commercial systems

TABLE 4: Response Process Composition Time Results

Systems Rcount C len T comp T code

IRIS [3] 16 5 2 sec

5 sec

Webfleet [29] 18 8 2 sec

IES Schools [30] 20 6 22 sec

Coupa [31] 23 10 329.33 sec

Magento [32] 26 13 53 sec

other agencies for incident response and mutual aid
purposes.

• Electronic Procurement System for requisition of relief
goods from private organizations such as medicines,
water, and food supplies.

• Public Schools Information System [30] for querying
schools in affected areas to estimate the number of
school children and staff for evacuation purposes.

• Fleet management system for transportation-related
resource ordering.

• Weather and environment information services to get
contextual information.

• Cargo train tracking services for rail incident response
organizations.

• Hazardous chemicals information services to get re-
sponse and management recommendations and haz-
ards, such as toxic fumes.

• Plume modeling system to get threat zone estimates
for various types of hazards.

The specific systems that we considered for performing
our experiments are listed in Table 3.

An important point to note here is that different govern-
ment agencies and organizations which provide similar ser-
vices but have different jurisdictions such as city, county, or
state, often use similar operational systems (e.g., FEMA’s
IRIS system [3] to inventory their resources and share
information with other organizations). Similarly, several
private organizations often use the same e-procurement
system for processing their customer orders. Even if these
organizations are using different systems, there is work
done on API mapping, e.g., [24] that can be utilized to
resolve any heterogeneity in the APIs of different organi-
zations beforehand, as discussed in Section 4.3.

Table 4 provides the dataset statistics and computa-

tion time results for the process composition experiments.
Rcount denotes the total number of Web service operations
modeled as CPN transitions in the given dataset. Clen

denotes the number of service operations in a composition
determined through the CPN reachability analysis algo-
rithm (Algorithm 2) for a given default action such as the
one shown in Fig. 6(b). Tcomp denotes the execution time
of reachability analysis based service composition averaged
over three runs. Tcode denotes the time to generate the
process workflow and executable code.

Since our approach executes reachability analysis on all
default actions in parallel, therefore the overall execution
time for process composition is the maximum of all the
compositions. Thus, the total time for the generation of the
response process is 329.33 sec + 5 sec = 334.33 sec.

We can see that the reachability analysis time for service
composition is much higher in the case of Coupa system as
compared to IRIS and Webfleet. The main reason behind
this is that the preconditions of service operations are very
well defined in the case of IRIS and Webfleet. At any given
state only a single operation can be applied. Whereas,
in the case of Coupa, the preconditions of 3 to 4 service
operations are simultaneously satisfied and because of this
the number of branches in state reachability analysis tree
in Coupa are way more than IRIS and others. Hence, it
takes more time. An example is shown in Table 5. We
can see that upon the availability of requisition id and
requisition status in a given state (e.g., after the exe-
cution of requistion create), the preconditions of three
operations are satisfied simultaneously, resulting in the
creation of four parallel branches in reachability tree in a
single state thus incurring increased computational time.
Moreover, once the execution sequence of the Web ser-

TABLE 5: Coupa Requisitions API [31].

Operation Name: requsition create

Precondition: {〈requester6=“null”〉, 〈req lines6=“null”〉}
Postcondition: {〈requisition id6=“null”〉},
〈req status6=“null”〉

Operation Name: submit for approval

Precondition: {〈requisition id6=“null”〉}

Operation Name: requisition show

Precondition: {〈requisition id6=“null”〉}

Operation Name: requisition getRequester

Precondition: {〈requisition id6=“null”〉}

vices is determined for an default action associated with a
particular organization, the determined execution sequence
is added to the knowledge base for future reference to
avoid the need for recomputing the reachability tree for
generating response processes in future incidents.

A typical resource requisition system involves a compo-
sition of 3 to 8 services as depicted in the case of the IRIS
system. In an earlier work [24], we reviewed eCommerce
and procurement business processes in several open source
ERP systems. We observed that a typical procurement
order process involves 3 to 14 service calls mainly for
resource querying, request processing, and order/dispatch
confirmation.
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Combining the ontology-based reasoning and reacha-
bility analysis/code generation results, we note that the
generation and deployment of an executable response pro-
cess may take between 5 to 10 minutes depending on the
number of response organizations involved. This time over-
head for executable response process composition seems
reasonable considering that the collaborating response or-
ganizations may not be known a priori and may not have
pre-established system-level interoperability.

6 Implementation and Deployment

In this section, we provide a brief overview of the prototype
implementation that has been developed for the proposed
framework to illustrate its functionality.

Fig. 7: Recommended response actions and resources for
the freight train derailment incident

We have developed an emergency management ontol-
ogy in Ontology Web Language (OWL) for the prototype
system by building on the ontology presented in [2]. For rea-
soning and inference with the ontology, we used Apache’s
Jena inference subsystem [28]. The Web-based application
has been developed in Java (J2EE) with Apache Tomcat
Web server. Apache ODE has been used for the deployment
and execution of BPEL based response processes.

The user (Incident commander) is provided an interface
that facilitates the creation of a new incident in the ontol-
ogy. The initial input to the system requires basic incident
information as given in the incident report (incident type,
date, and location, etc.). Based on this information, the
system recommends default response actions along with the
types of resources required, as shown in Fig. 7. The user
can then modify the recommended actions and resources
as required. Based upon the user’s decision and the in-
formation available in the ontology, the system identifies
potential response organizations and the APIs of their
operational systems/ services for requesting the required
resources. Upon the user’s confirmation, a complete re-
sponse process is generated and deployed to enable inter-
action between the incident command system and response
agencies/organizations for: (i) checking availability status
of needed resources; (ii) making resource requests; (iii)
committing resources against requests; and (iv) tracking
the status of committed resources.

Fig. 8 shows a partial view of the generated response
process with fragments for acquiring information about the

chemical hazards and assessment of any threat areas that
may require rescue and evacuation operations for example
due to fire potential shown in red block, requesting fire en-
gines from local fire department shown in blue block, evac-
uation vehicles shown in green block from a local private
company. The right side of the figure shows the execution
results of the response process fragment for the assessment
of hazards and threat zones. On the left, resource com-
mitment status is presented to the user. Thus, deploying
the developed system is quite seamless since the proposed
framework is designed to provide additional capabilities in
terms of recommending the relevant response activities as
well as interfacing with the relevant operational systems of
the various response organizations.

7 Conclusion and Future Work

In this article, we present an integrated approach for the
on-the-fly composition of emergency response processes by
enabling information sharing and interoperability among
the information systems of relevant response organiza-
tions. Our proposed approach does not require any pre-
established collaboration among the response organizations
and employs ontology-based reasoning to identify the re-
quired response activities, needed resources, and response
organizations who can provide such resources. It then uses
the Web service APIs of the operational systems of these
organizations to generate an executable response process
to enable interaction between the incident command sys-
tem and response organizations for resource management
operations. We have also experimentally validated the ef-
fectiveness of the proposed approach using an example sce-
nario derived from FEMA Hazardous Materials Tabletop
Exercises Manual. The experimental evaluation separately
considers the time taken for the ontology based reasoning
and for the process composition and executable code gener-
ation. It is clear that the time taken to generate and deploy
an executable response process is reasonable considering
that the collaborating response organizations may not be
known a priori and may not have pre-established system-
level interoperability. It is worth noting that the experi-
mental evaluation does not explicitly test the proposed ap-
proach for correctness since the evaluation is driven by the
scenario and we assume that all of the necessary operational
system APIs are available. Overall, the conclusions are that
as long as the ontology is sufficiently comprehensive, it is
indeed feasible to dynamically compose a response process
based on the evolving situation. While the quality of the
results is clearly dependent on the quality of the underlying
ontology, evaluating this requires extensive analysis by
domain experts.

In the future, we plan to conduct such qualitative
evaluations by working with the emergency management
community. We also plan to extend the capabilities of the
proposed framework to support response process composi-
tion by learning from the knowledge of response processes
instantiated for past incidents. Essentially, this involves
updating the default actions based on the actual processes
instantiated earlier. This may considerably reduce the re-
sponse process composition time. In addition, we plan
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Fig. 8: Partial view of the generated response process (in the middle) and execution results (on left and right)

to evaluate the effectiveness of our proposed approach in
application domains other than emergency management.
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