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ABSTRACT
The ability to deploy a planar surface to a desired convex

profile can enhance foldable or morphing airfoils, deployable
antennae and reflectors, and other applications where a specific
profile geometry is desired from a planar sheet. A model using a
system of rigid links joined by torsional springs of tailorable stiff-
ness is employed to create an approximate curved surface when
two opposing tip loads are applied. The physical implementation
of the model uses compliant torsion bars as the torsion springs.
A multidimensional optimization algorithm is presented to mini-
mize the error from the rigid-link approximation and account for
additional manufacturing and stress considerations in the tor-
sion bars. A proof is presented to show that equal torsion spring
spacing along the horizontal axis of deployed parabolic profiles
will result in minimizing the area between the model’s rigid-link
approximation and smooth curve. The model is demonstrated
through the physical construction of a deployable airfoil surface
and a metallic deployable parabolic reflector.

∗Address all correspondence to this author.

1 Introduction

The objective of this research is to present a model which
can be used to create a deployable surface that closely approx-
imates a generalized cylindrical surface, such as the one shown
in Fig. 1. The ability to transition from a flat sheet to a predeter-
mined shape can lead to advances in applications such as stow-
able reflectors incorporated in space mechanisms, tunable optical
devices, morphing aerodynamic or hydrodynamic structures, and
conforming components like circuit boards to curved shapes.

A generalized cylindrical surface is one of the three classes
of curved developable surfaces. A developable surface can
be formed from a planar surface through bending without any
stretching or tearing [1]. A generalized cylinder is formed by
translating a straight line, called the generator line, along a path
in a plane perpendicular to the generator line. The path is called
the directrix of the generalized cylinder. For example, a circular
directrix would give rise to the common right circular cylinder.
The model presented in this research enables the design of de-
ployable, approximate generalized cylindrical surfaces where the
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FIGURE 1. A generalized cylinder with ruling lines (black) and a
convex directrix (green).

directrix is a convex curve that does not self-intersect. Further-
more, the model is extended through optimization techniques to
minimize error in the approximation of the surface and to include
constraints on various parameters to ensure the functionality and
manufacturability of the surface.

Surfaces which can be controlled or predictably changed of-
fer advantages in situations where a change in occupied space or
a dynamic response to an environment is desired [2–5]. Origami
and origami-inspired mechanisms provide examples of surfaces
where a change from one state, perhaps a tightly compacted state,
to another state, a deployed state, is desired. Examples of these
include bio-inspired wing structures [6], a diameter-changing
origami wheel [7], and an origami-based heart stent [8]. Mor-
phing wings and flight surfaces have also been investigated to
create structures which can be dynamically modified to achieve
geometries which perform well under varying environments or
conditions [9–13]. Deployable reflectors also use the principle
of morphing or changing surfaces to create the desired collection
shape while still having the ability to stow compactly [14–18].
Optimization is commonly employed to assist in the determina-
tion of geometry for morphing geometries [19, 20].

This work specifically looks at generalized cylindrical sur-
faces, which are one of the four possible developable surfaces re-
sulting from curved folds or creases in a surface [1]. The results
of this work could possibly be incorporated into mechanisms and
structures derived from curved-fold origami patterns to facilitate
specific panel shapes or further increase the propensity of a panel
to take a certain shape during deployment [21].

2 Method
2.1 Spring and Rigid-link Model for Generalized

Cylindrical Deployable Surfaces
A model for creating generalized cylindrical deployable sur-

faces uses a system of rigid links joined by torsional springs that
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FIGURE 2. Rigid link and torsion spring model showing (a) a flat
position and (b) an actuated position for a rigid-link system of N = 3.

is actuated from a flat state by opposing tip loads to form a de-
sired directrix in a deployed state. The desired directrix is used to
calculate the required stiffness of the torsional springs between
each rigid link.

Let L1, L2,...,LN+1be the lengths of N + 1 rigid links in the
system and N is the number of joints between the links. Let
k1,k2,...,kN denote the equivalent stiffness of the torsion springs
between the rigid links as shown in Fig. 2(a). By placing the
rigid-link system in the desired curved shape, represented by the
function ydesired(x), where all of the endpoints of the rigid links
lie upon the curve, the deployed link angles θ1, θ2,..., θN and the
deployed heights y1,y2,...,yN , as shown in Fig. 2(b), can be de-
termined. This can be accomplished using vectors that represent
each of the links to calculate the angle between these vectors to
obtain the deployed link angles, and using ydesired(x) to find the
deployed heights for each x corresponding to a joint location.

With the system of rigid links in the desired curved shape
the moment at the i-th joint, Mi, can be expressed as

Mi = kiθi (1)

The free body diagram drawn for the i-th joint in Fig. 3 with
opposing tip loads, F , shows that the moment, Mi, can also be
expressed as

Mi = Fyi (2)

By equating Eq. 1 and 2 we can find an expression for the
stiffness of each torsion spring in terms of known geometry as

ki =
Fyi

θi
(3)

The Lamina Emergent Torsion (LET) is a compliant joint
that allows for a twisting motion [22–24]. A full LET joint con-
sists of four torsion bars, a set of two parallel torsion bars (also
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FIGURE 3. Free-body diagram of the structure cut at the i-th joint

called a torsional parallel joint [25]) in series with another set of
two parallel torsion bars. LET joints can be chained together to
form lines of torsion bars [21, 26]. The lines of parallel torsion
bars can act as the torsion springs in the model. An example of
the geometry of a LET joint chain with two torsion bars on each
ruling line is detailed in Fig. 4. The torsion bars of the LET
joints are well suited to the model for deployable surfaces as the
joints can be planar manufactured as part of a sheet, have a rel-
atively stable axis of rotation, and have geometry which can be
modified to change the stiffness of the joint in a predictable way
using a spring models [22,27]. For example, the length, width, or
thickness of the torsion bars can be changed to specify a certain
stiffness.

Chen et al. developed expressions for the stiffness of a rect-
angular torsion bar, the basic torsional element of the LET joint,
that are symmetric (t and w are interchangeable) [28]. This is
helpful for design situations where the geometry is not known
a priori. The stiffness expression of a single rectangular bar is
repeated here for reference [28]:

k =
GJ
Lt

(4)

where G is the shear modulus of the material, Lt is the length of
the torsion bar, and in terms of the width w and thickness of the
torsion bar t

J =

(
2t3w3

7t2 +7w2

)(
1.17t2 +2.191tw+1.17w2

t2 +2.609tw+w2

)
(5)

The second grouped term in the expression for J can be re-
placed by a fifth degree polynomial for greater accuracy (see
[28]) and this more accurate form of the equation was used in
the implementation sections of this paper.

Because the value for the stiffness can be determined from
the desired geometry with Eq. 3, this can be set equal to the ex-
pression for the stiffness of the torsion bar from Eqs. 4 and 5.
Moreover, the expression from Eq. 4 is multiplied by a factor m
which corresponds to the number of parallel torsion bars along
the ruling line of the torsional spring ki. Rearranging to move all
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FIGURE 4. A chain of LET joints with important dimensions shown
with the corresponding model schematic shown below. This chain has
five rigid links and four torsion springs.

terms to a single side results for joint i,

0 =
Fyi

θi
− mGJ

Lt
(6)

There is some flexibility in determining which geometric pa-
rameter(s) are allowed to vary to satisfy this equation. For exam-
ple, all terms could be defined except for w and the equation can
be solved numerically to find the width of the torsion bar.

2.2 Joint Placement Optimization
Multidimensional optimization can be used to determine

joint locations for a specified number of torsion joints, N, which
will minimize the error in approximating the desired profile with
a series of rigid links and allow for the introduction of additional
constraints in the design problem.

The distances between joint locations, δi, are the design vari-
ables where i = 1 to N. To simplify the optimization, problem
constraints are added such that the design variables must be pos-
itive, represented as:
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δi > 0. (7)

These constraints ensure that the ordering of the torsion bars does
not change through the optimization process. The design vari-
ables, δi, can be related to di, the distances of the torsion springs
from one end of the deployed surface where i = 1 to N as shown
in Fig. 5.
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FIGURE 5. The design variables, δi, are the distances between tor-
sional springs (three shown here). The objective to be minimized, the
areal profile error between the desired and actual surface, is shown
shaded in red. The lineal profile error which can be limited with a con-
straint is also shown.

The objective function for the optimization problem can be
defined as a minimization of the areal profile error, the area be-
tween the desired directrix ydesired(x) and the actual deployed
shape’s directrix ypoly(x) where the subscript poly stands for
polyline or polygonal chain. The objective function to be mini-
mized is thus written as

F (δ ) = Areal Pro f ile Error

=
∫ L

0

(
ydesired(x)− ypoly(x)

)
dx

(8)

where ypoly(x) is determined from the vector of design variables,
δi, to create a piecewise function of straight lines representing
the rigid links. During implementation numerical integration was
used to evaluate the areal profile error.

It is best to pair this objective function with a constraint on
the maximum deviation of the system from the desired curve, the
lineal profile error. The lineal profile error can be expressed as

Lineal Pro f ile Error

= max
(
shortest distance between ydesired(xarb) and ypoly

)
(9)

where xarb represents an arbitrary point along the desired curve.
The constraint on this error’s maximum allowable value is de-
fined as

Lineal Pro f ile Error ≤ Allowable Lineal Pro f ile Error. (10)

This prevents the shortest distance from an arbitrary point
on ydesired to ypoly from growing too large. If this constraint is
not in place, the optimization process tends to aggregate all of
the areal profile error to the location where the curvature of the
desired function is the greatest, even if the distance from the de-
sired curve to the actual deployed surface becomes large.

By imposing a limit on the maximum lineal profile error, the
minimum areal profile error is increased, but distributed more
evenly throughout the system. To gain an appropriate under-
standing of the range of this constraint the optimization can be
performed with a large value for the allowable lineal profile error
such that the constraint is not binding. The value of the constraint
can then be reduced until it reaches at the other extreme a value
which will cause the optimization problem to have no feasible
solution.

In the implementation to evaluate this constraint, the lineal
profile error was found by locating the largest lineal profile error
for each segment described by δi. This was accomplished with
another optimization routine where a single free variable, the x
coordinate on ydesired(x), was determined to maximize the objec-
tive function of the distance between the point (x,ydesired(x)) and
the line segment (found using a form of the distance formula for
the shortest length between a point and a line).

In addition to the lineal profile error constraint, to maintain a
feasible geometry another constraint should limit the sum of the
design variables to a value smaller than the maximum value of x
for ydesired , that is

N

∑
i=1

δi ≤ xmax (11)

If desired, additional constraints can also be introduced such
as the maximum angular rotation of a torsional spring and the
minimum or maximum lengths of the rigid links. Once a mecha-
nism, such as a torsion bar, is decided upon to serve as the torsion
spring, further constraints can be imposed to limit stress or size
of the mechanism.

To illustrate these additional constraints consider a rigid link
system which uses N torsion springs, which corresponds to the
number of design variables. Let’s assume a geometry similar to
the one shown in Fig. 4, where the number of torsion bars on
each ruling line is two (m = 2) and the only geometric parameter
we are allowing to change is the torsion bar widths wi.
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Several constraints can be added to ensure functionality and
the ability to be manufactured for the torsional joint system. Con-
straints can be added to require each torsion bar width, wi, to be
greater than or equal to a minimum feasible width, wmin,allow,
represented as

wmin,allow ≤ wi for i = 1 . . .N (12)

Constraints can be added to ensure the widths of the torsion
bars of the torsion joints, wi, fit into the dimensions for the link
lengths, Li, while accounting for the kerf from constructing the
torsion joints. These constraints can be expressed as

w1
2 + ker f

2 −L1 ≤ 0
wi−1

2 + wi
2 + ker f −Li ≤ 0 for i = 2 . . .N

wN
2 + ker f

2 −LN+1 ≤ 0

(13)

The highest stress in any torsional bar with a displacement
angle, θi, is a shear stress occurring in middle of the widest side
of the torsion bar when stress concentrations are ignored. The
highest shear stresses in each torsional bar, τi, can be constrained
to be less than an allowable shear stress value, τallow.

τi ≤ τallow (14)

To calculate the highest shear stresses in each torsion bar a
symmetric formula has been developed and can be used where t
and w are once again interchangeable [29] as

τi =

(
Mi(2.4w+2.4t)

w2t2

)(
1.271v2 +0.2829v+0.0498

v2 +0.27v+0.0496

)
(15)

where v =
∣∣log t

w

∣∣. Similar to Eq. 5, a more accurate higher or-
der term is available for the second grouped term (see [29] for
details) and this more accurate term was used in the implemen-
tation sections of this paper.

Scaling of the desired profile and constraints was used to
increase the convergence rate for the optimization during imple-
mentation. For example the desired profile and allowable lineal
profile error were scaled by a factor such that the maximum x-
axis length of the desired profile was one, though care was taken
to use the full-scale geometry when calculating dimensions such
as widths, stresses, or the constraints in Eq. 13. Several con-
straints, such as Eq. 10, 12, and 14, were scaled by their allow-
able values.

2.2.1 Joint Placement for Parabolic Profiles Dur-
ing the implementation of the optimization algorithm for
parabolic profiles it was noted that when the additional con-
straints for lineal profile error, stress, and manufacturing were
not binding that the minimum areal profile error was achieved
through equal δi spacing of the torsion springs. This can be
shown mathematically as follows.

Proposition 1. Let f (x) be a function whose graph is a
parabola on the interval [α,β ]. Let P be the polyline consisting
of n line segments with endpoints, (x0 = α, f (x0)), (x1, f (x1)),
(x2, f (x2)), . . . ,(xn−1, f (xn−1),(xn = β , f (xn)). If P minimizes
the areal profile error between itself and the parabola, then
xi+1 − xi =

β−α

n for i = 0,1, . . . ,n−1; i.e. the points are equally
spaced along the x-axis.

Proof. Without loss of generality, we suppose that α = 0 and
that the parabola is above the x-axis on the interval [0,β ]. The
function f (x) can be written f (x) = ax2 + bx+ c for some real
numbers a, b and c. We give a proof by induction on n.

If n = 2 then P consists of the points (0, f (0)),(x1, f (x1)),
and (β , f (β )). Let T1 denote the trapezoid formed from the
points (0,0), (0, f (0)), (x1, f (x1)), and (x1,0). Let T2 denote the
trapezoid formed from the points (x1,0),(x1, f (x1)),(β , f (β ))
and (β ,0). Let A(T1) and A(T2) denote the areas of the two trape-
zoids respectively. The sum of these two areas can be expressed
as as function of x1 as follows

A(T1)+A(T2) =
1
2
( f (0)+ f (x1))x1 +

1
2
( f (x1)+ f (β ))(β − x1)

=
1
2
(c+ax2

1 +bx1 + c)x1

+
1
2
(ax2

1 +bx1 + c+aβ
2 +bβ + c)(β − x1)

=
1
2
(cx1 +ax3

1 +bx2
1 + cx1 +βax2

1 +βbx1

+βc+aβ
3 +bβ

2 + cβ

−ax3
1 −bx2

1 − cx1 −aβ
2x1 −bβx1 − cx1)

=
1
2
(βax2

1 −β
2ax1 +βc+β

3a+β
2b+βc)

To maximize or minimize this function we take a derivative
with respect to x1 which results in 1

2 (2βax1 −β 2a). Setting this
equal to 0 gives x1 = β

2 . The second derivate of the function is
βa. Recall β > 0. Thus if a is negative, then the area function
above is concave down and thus the function is maximized at
x1 = β

2 . When a is negative, the parabola given by f (x) is also
concave down. Thus, in this case, maximizing A(T1)+A(T2) is
equivalent to minimizing the areal profile error between P and
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the parabola. If a is positive, then the second derivative of the
area function is positive and thus the area function is minimized
at x1 =

β

2 . In this case the parabola is concave up and minimizing
A(T1)+A(T2) is equivalent to minimizing the areal profile error
between P and the parabola. Therefore, in either case, the areal
profile error between the parabola and P is minimized when x1 is
placed half way between a and b. This completes the base case.

Suppose the result holds when n = 1,2,3, . . . ,k for some in-
teger k. Let P be a polyline consisting of k + 1 line segments
that minimizes the areal profile error. Consider the first k line
segments. The x coordinates of the endpoints are 0,x1,x2, . . . ,xk.
Note that the polyline consisting of these k line segments, call
it Pk, must minimize the area profile error between Pk and the
parabola given by f (x) on the interval [α,xk]. This is because if
Pk did not minimize the areal profile error, then taking a polyline
that did minimize this error and attaching the k+1 line segment
from P would produce a polyline with a smaller areal profile er-
ror than P, a contradiction. Thus by the inductive hypothesis,
0,x1,x2, . . . ,xk are equally spaced along the x-axis.

Now consider the last 2 line segments of P, line segments
k and k+ 1. The x coordinates of the endpoints are xk−1,xk and
xk+1 = β . By a similar argument as above, the polyline con-
sisting of these line segments minimizes the areal profile error
between itself and the parabola given by f (x) on the interval
[xk−1,β ]. Thus by the inductive hypothesis, xk−1,xk and β are
equally spaced along the x-axis.

Since the numbers in the overlapping lists (0,x1,x2, . . . ,xk)
and (xk−1,xk,β ) are equally spaced, the numbers in the list
(x0,x1,x2, . . . ,xk,β ) are equally spaced. Therefore xi+1 − xi =
β−α

k+1 for i = 0,1,2,3, . . . ,k. This completes the inductive step
and thus the result holds for all positive integers n. �

3 Results
The methodology described above was used to create pro-

totypes of a deployable airfoil surface and deployable parabolic
reflector.

3.1 Deployable Airfoil Surface
A deployable airfoil surface was designed using torsion bars

as the torsion springs in the model with optimization to place the
joint locations and ensure constraints for the lineal profile error
and for manufacturing were met. The desired directrix was cho-
sen to be the top surface of a Clark Y airfoil with a 10 inch chord
length [30]. The optimization and constraint set-up parameters
are reported in Table 1.

After the optimization was completed the resulting LET
joint pattern was cut from a polypropylene sheet using an abra-
sive waterjet. The pattern is shown in the flat and deployed states
in Fig. 6. The optimization results and experimental measure-
ments taken on the prototype are summarized in Table 2. Basic

TABLE 1. Optimization parameters for a deployable airfoil surface
made from polypropylene.

Parameter Value

Number of Torsion Springs (N) 12

Tip Load Force (F) 0.5 lb

Shear Modulus (G) 64.4 ksi

thickness of panel (t) 0.063 in

Lt 1.3 in

m 2

wmin,allow 0.06 in

ker f 1/16 in

τallow 1,590 psi

Allowable Lineal Profile Error 0.04 in

photogrammetry was carried out using MATLAB to measure ap-
proximate lineal profile error in the deployed shape. The largest
error occurred in the leading edge where some parasitic or un-
wanted motion occurred due to compression of the LET joints
by the tip loads. A thin PET adhesive film (2.5 mils thick) was
then applied to the top layer of the pattern to decrease the para-
sitic motion while minimally affecting the torsion performance,
similar to a technique investigated by Chen et al. [31]. This ap-
peared to reduce some of the parasitic motion, yet increased the
lineal profile error. The pattern with the PET covering is shown
in Fig. 6(c).

The force to deploy the pattern to the profile was measured
using a small digital scale. Accurate, repeatable measurements
were limited with the current measurement set up and more rig-
orous instrumentation is recommended for future work. There
is some discrepancy between the designed tip load force and the
measured force. This could be due to a number of factors in-
cluding errors in the shear modulus value used, manufactured
kerf width, and perhaps most importantly bending observed from
compressive forces in the structure that accompanied the tor-
sional deflection.

3.2 Deployable Parabolic Reflector
The model was also used to design a deployable parabolic

reflector made of Aluminum 7075-T6. The target deployed shape
has a focal point four inches from the vertex. The flat, unde-
ployed dimensions are 18.36 in by 10.2 in. The parameters used
to set up the optimization are shown in Table 3. The resulting
values after optimization and from experimental testing are de-
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(a)

(b)

(c)

FIGURE 6. Deployable top surface of a Clark Y airfoil made from
polypropylene using an abrasive water jet, where (a) is the flat surface,
(b) is the deployed surface, and (c) is the deployed surface with a PET
membrane to reduce parasitic motion.

scribed in Table 4. The optimized parabolic reflector was manu-
factured from the aluminum using a water jet and is shown in the
flat and deployed states in Fig. 7.

The deployed profile and desired profile matched quite well
with a small observed lineal profile error. However, once again
a substantial discrepancy between the desired tip load force and
the measured tip load force was observed. It is thought that sim-
ilar to the polypropylene airfoil, bending unaccounted for in the
torsion model, inaccuracies in material property estimates, and
variations between the expected and actual kerf caused this dis-
crepancy.

4 Discussion
Certain tradeoffs from employing torsion bars to create de-

ployable surfaces can be illuminated by rearranging Eq. 6 as

(F)

(
1
G

)(
yi

θi

)
=

(
mJ
Lt

)
(16)

From left to right these terms are determined by the desired
actuation force, the material used, the desired profile curve, and
on the right side of the equation all the factors in the term are

TABLE 2. Optimization and experimental results for a deployable air-
foil surface made of polypropylene.

Parameters Min value Max Value

Deployed Spacing δi 0.181 in 1.142 in

Link Lengths, Li 0.298 in 1.155 in

widths wi 0.084 in 1.081 in

wi/t ratios 1.33 17.16

Parameters from optimization results Value

Lineal Profile Error 0.023 in

Areal Profile Error 0.0462 in2

τmax 795 psi

Shear stress factor of safety 2.004

Undeployed (Flat) length 10.315 in

Experimentally Measured Values Value

Lineal Profile Error (from Photogrammetry)

without PET covering ≈ 0.036 in

with PET covering ≈ 0.057 in

Force to deploy to profile (from scale) 0.35±0.1 lb

functions of the geometry of the torsion bar pattern. By grouping
these terms we can see relationships such as if the geometry of
a pattern is maintained (the right side of the equation), changing
the material will scale the actuation force as long as the stresses
do not exceed the new material’s stress limit. Similarly, errors
in estimating the value used for the shear modulus of a material
should not affect the ability to achieve a desired profile shape as
long as one is willing to adjust the actuation force to compensate
for the modulus error.

It is also informative to look at an expression for the an-
gular deflection of a torsion bar in terms of shear stress. Since a
prescribed profile results in a displacement-limited design, rather
than torque-limited design, the maximum stress in the system can
be lessened by requiring smaller angular deflections and reduc-
ing the stiffness. Using Eqs. 1, 4, 5, and 15 we can write the
angular deflection for a torsion bar as

θi =
τiLt

G
f (t,w) (17)
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TABLE 3. Optimization parameters for a deployable parabolic sur-
face made of aluminum.

Parameter Value

Number of Torsion Springs (N) 22

Tip Load Force (F) 5.25 lb

Shear Modulus (G) 3,910 ksi

thickness of panel (t) 0.040 in

Lt 0.9 in

m 6

wmin,allow 0.1 in

ker f 1/16 in

τallow 38,800 psi

Allowable Lineal Profile Error 0.060 in

where f (t,w) is a function of t and w that depends on which
form of J in Eq. 15 is selected (the higher order more accurate
expression or expression presented in the equation). From this
form we can see that there are several options to achieve the
required deflections. The first is to reduce the required deflec-
tions θi themselves. This can be accomplished by increasing the
number of torsion joints N which in turn lowers the θi magni-
tudes. The maximum number of joints N that can be introduced
reaches a limit imposed by the manufacturing constraints that the
widths of the torsion bars must fit within the link lengths. A sec-
ond option to achieve required deflections is to choose a material
with a high maximum shear stress to shear modulus ratio. Sev-
eral materials and these ratios are shown in Table 5 to provide a
comparison of how amenable a material is to large deflection of
torsion bars. The third option to obtain the required deflections
is to increase the torsion bar lengths, Lt . This can be limited by
space constraints and also the introduction of unacceptable para-
sitic motions other than torsion when the torsion bar lengths are
extended. Finally, t and w can be selected such that f (t,w) re-
sults in as large as values as possible. Chen et al. recommend a
ratio of t/w to be ≤ 0.35, = 1, or ≥ 2.86 to accomplish this [29].

Equation 16 implies that the number of torsion bars along a
ruling line m can be changed to affect the magnitude of the tip
load, yet m has no effect upon the stress, as m is not present and
doesn’t affect any of the terms in Eq. 17.

Minimizing the areal profile error in the model pushed all of
the error between the desired and deployed directrix to the area
of greatest curvature of the desired directrix. This was corrected
by placing a constraint on the lineal profile error. The effect of

(a)

(b)

FIGURE 7. Deployable parabolic reflector made of aluminum, where
(a) is the flat state, (b) is the deployed state with light reflecting off the
surface.

minimizing the lineal profile error with a constraint on the areal
profile error was also investigated with similar results, though
the optimizer required more iterations to converge. Further in-
vestigation of definitions of profile error and suitable objective
functions to minimize the error for the model present possible
directions for future work.

As seen in the results from the physical prototypes, it ap-
peared that bending accompanied the torsional deflection. Work
can be done to incorporate bending effects into the analytical
modeling for more accurate design estimates.

Both prototypes were deployed by moving two smooth bar-
riers towards one another to create a compressive force. Tension
elements, such as cables or strings, could be used to pull the two
edges of the panel together to create an ultra-lightweight actua-
tion method, though the effects of the point loads caused from
the elements should be considered.

The model constructed using chains of torsion joints results
in a deployable surface that can function as the final surface or
as a structure underneath a flexible skin. Further studies need to
be conducted to see how well the deployed surface would behave
if used in an application with multiple loading conditions, such
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TABLE 4. Optimization and experimental results for a deployable
parabolic surface from aluminum.

Parameters Min value Max Value

Deployed Spacing δi 0.696 in 0.696 in

Link Lengths, Li 0.696 in 0.963 in

widths wi 0.158 in 0.460 in

wi/t ratios 3.94 11.49

Parameters from optimization results Value

Lineal Profile Error 0.008 in

Areal Profile Error 0.081 in2

τmax 15,070 psi

Shear stress factor of safety 2.57

Undeployed (Flat) length 18.361 in

Experimentally Measured Values Value

Lineal Profile Error (from Photogrammetry) ≈ 0.018 in

Force to deploy to profile (from load cell) 1.8±0.1 lb

as with a distributed pressure load from an aerodynamic load-
ing. Because aerodynamic loads fluctuate, it poses a challenge to
design a single structure for multiple load cases where both the
deployed structure’s stability and aerodynamic stability are con-
sidered. One possible path forward to address a more complex
loading scenario would be to use a support structure underneath
the deployed surface where hard stops align during deployment
to resist compression loads on the surface of the structure.

5 Conclusion
A model has been presented as a way to create general-

ized cylindrical deployable surfaces with convex directrices con-
ducive to being implemented with compliant joints. The model
is demonstrated using the torsion bars of LET joints as torsion
springs. A multidimensional optimization model was used to
efficiently locate a given number of compliant joints along the
directrix to minimize the error between the desired and actual
directrix. Constraints were also enforced to ensure performance
and a manufacturable geometry. The model was demonstrated
through the physical creation of several prototypes in various
materials. While the methodology shows potential for advancing
the design of precise deployable surfaces, further investigation of

TABLE 5. A small sample of possible materials for torsion bars. Ma-
terials with high shear yield stresses, τyield to shear modulus ratios, G,
are good candidates for maximizing deflection in deflection-limited tor-
sion bar geometries (property values from supplier data sheets and [32],
with approximations as required for shear modulus by G=E/(2(1+ν))

and shear yield strength τyield ≈ 0.577σyield where σyield is the tensile
yield strength). *While PMMA has an excellent ratio, it is a brittle ma-
terial and susceptible to stress concentrations.

Material 1000× τyield/G

PMMA (Acrylic) 24.5*

Polypropylene 24

Titanium (Ti-6Al-4V) 11.7

Steel (4340) 11

Aluminum (7075-T6) 9.9

the effects bending accompanying the torsion and the effects of
various loading conditions upon the deployed surfaces should be
conducted. Actuation methods could also be incorporated into
the material itself to create a compact package that can morph
when a stimulus is applied.
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