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ABSTRACT We present an analytical hyperelastic constitutive model of the red blood cell (erythrocyte) membrane based on
recently improved characterizations of density and microscopic structure of its spectrin network from proteomics and cryo-electron
tomography. The model includes distributions of both orientations and natural lengths of spectrin and updated copy numbers of pro-
teins. By applying finite deformation to the spectrin network, we obtain the total free energy and stresses in terms of invariants of
shear and area deformation. We generalize an expression of the initial shear modulus, which is independent of the number of mo-
lecular orientations within the network and also derive a simplified version of the model. We apply the model and its simplified version
to analyze micropipette aspiration computationally and analytically and explore the effect of local cytoskeletal density change. We
also explore the discrepancies among shear modulus values measured using different experimental techniques reported in the liter-
ature. We find that the model exhibits hardening behavior and can explain many of these discrepancies. Moreover, we find that the
distribution of natural lengths plays a crucial role in the hardening behavior when the correct copy numbers of proteins are used. The
initial shear modulus values we obtain using our current model (5.9—-15.6 pN/um) are close to the early estimates (6—9 pN/um). This
new, to our knowledge, constitutive model establishes a direct connection between the molecular structure of spectrin networks and
constitutive laws and also defines a new picture of a much denser spectrin network than assumed in prior studies.

SIGNIFICANCE This work makes significant contributions to our understanding of the physical basis of red blood cell
(RBC) elasticity. We present the first, to our knowledge, microstructure-based elastic model of RBC membranes that
accounts for higher densities of spectrin indicated by recent proteomic analysis of RBC proteins, a distribution of spectrin
natural lengths obtained from cryo-electron tomography, and the capacity for local cytoskeletal density changes. We show
that for the higher spectrin densities indicated by proteomics, accounting for a distribution of molecular lengths in the
resting state is essential for reproducing strain-hardening behavior exhibited by the RBC membrane in experiments.

INTRODUCTION tensor (2). Subsequently, to better separate the shear defor-
mation and the area deformation, Evans and Skalak provided
another strain energy function in terms of the area invariant
o« = AjAr — 1 and shear invariant 8 = (A,/A, + A,/A; — 2)/2,
where A; and A, are the principal stretch ratios (1). For
simplicity, the derivatives of free energy with respect to in-
variants were assumed to be constants and, as such, define
the shear modulus and mean stress resultant (isotropic ten-
sion) in the material. In this formulation, the area modulus
was defined as the second derivative of the free energy with
respect to area, and this was also assumed to be a constant.
Subsequently, the accumulation of experimental evidence
indicates that the shear modulus and area modulus are
certainly not constants, as would be expected based on the

The mechanical properties of the membranes of red blood
cells (RBCs or erythrocytes) have been extensively studied,
but there remains a lack of integrated understanding from
the molecular level to the continuum level. On one hand,
empirical continuum constitutive laws have been well estab-
lished, such as the ones described in the monograph by Evans
and Skalak (1). In this approach, a two-dimensional hypere-
lastic constitutive model is derived from thermodynamics us-
ing invariants based on assumptions such as isotropy. In early
work, Skalak et al. derived a strain energy function of red
blood cell membrane based on the invariants of Green’s strain

Submitted March 6, 2020, and accepted for publication October 15, 2020. highly nonlinear behaviors of biopolymers with mixed
*Correspondence: zhpeng @uic.edu entropic and energetic contributions to free energy (3-5).
Editor: Ana-Suncana Smith. Ironically, Dimitrakopoulos found that the original Skalak

https://doi.org/10.1016/j.bpj.2020.10.025
© 2020 Biophysical Society.

2190 Biophysical Journal 119, 2190-2204, December 1, 2020

uuuuuuu


mailto:zhpeng@uic.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bpj.2020.10.025&domain=pdf
https://doi.org/10.1016/j.bpj.2020.10.025

law (2), which was supplanted by thermodynamically based
models, does a reasonable job of explaining the discrepancy
in the shear modulus measurements due to its hardening
behavior (6), but connections between such models and mo-
lecular events are not defined.

From the molecular perspective, several coarse-grained
molecular dynamics models have been developed to study
the cytoskeletal cortex of RBCs, but no systematic effort
has been made to extract the mechanical properties of these
coarse-grained molecular dynamics models to reconstruct
corresponding continuum strain-dependent constitutive
models that could be used for whole-cell simulations of
in vivo biological processes or in vitro experiments. One
exception is the work of Dao et al., who derived shear and
areal moduli for small deformations using a spectrin-level
model based on the virial stress (7). Another exception is
the work of Svetina et al. (8), who used an energy method
based on a random network of ideal springs to make macro-
scopic predictions of membrane behavior, including micro-
pipette aspirations, and derived expressions for the
deformation dependence of the area and shear moduli,
although explicit stress-strain relationships were not derived.
Thus, although several microscopic models of RBC mem-
branes have been developed, including spectrin-level models
(9-11), with few exceptions, these have not been linked to
mechanical behaviors at large deformation via continuum
models. In addition, there are recent proteomic data from
two independent sources (12,13) showing that whereas the
stoichiometry of spectrins and junctional complex proteins
are consistent with earlier estimates, copy numbers of RBC
proteins such as spectrin are two- to threefold higher than
well-accepted values in the literature (14). The predictions
of any molecularly based model of red cell membrane
behavior need to be re-examined in light of these new data.

In this study, we present a novel, to our knowledge,
constitutive description for arbitrarily large deformation
that is based on, and connects directly to, spectrin-level
behavior as a worm-like chain. In addition, we also derive
a simplified version of the constitutive law and give the cor-
responding analytical solution of the pressure-length rela-
tion in micropipette aspiration. Our approach accounts for
two important characteristics not found in earlier constitu-
tive models; namely, it exhibits strain-hardening behavior,
and it allows for local changes in cytoskeletal density.
This latter feature is in keeping with fluorescence imaging
experiments showing that the cytoskeleton density does
change significantly when cells are aspirated into micropi-
pettes (15), becoming compressed near the pipette entrance
and expanded near the tip of the membrane projection. We
will explore the effect of the area change on the aspiration
curve and measured shear modulus using the microstruc-
ture-based model. With microstructure-based strain hard-
ening and cytoskeletal area change, good comparisons
with our experiments and those in the literature are
demonstrated.

Microstructure-Based RBC Membrane Model

METHODS

Constitutive model of the RBC cytoskeleton with
orientation distributions of spectrins

We consider the relationship between the molecular free energy of the mol-
ecules of the cytoskeletal network and the free energy per unit area of the
skeleton. We follow the development of Discher and colleagues (9), which
was based on a molecular network model developed by Boey et al. (16).
The membrane skeleton was treated as a triangular elastic network in which
the springs connecting network nodes have the characteristics of an elastic,
worm-like polymer modeled after erythrocyte spectrin. The energy of the
triangular network took the form (9)

Ewi = ) [Ver(s) + C/A], (1)

bonds

where A is the area per molecule and C is a coefficient preventing network
collapse. The attractive potential (V. (s)) of the “bonds” that represent the
spectrin molecules was derived from the force-extension relationship of a
worm-like chain (WLC) with both ideal and divergent behavior (17). The
approximate interpolation formula of the WLC potential (17) for a bond
with node-to-node distance s and maximal separation s,,,,, is

kBTsmax s 2 3-2 S/Sm“"
(s) = KeTSmax (8 \"3 =25/ Snan 2
ij(s) 4p <smax> 1— S/Smax ( )

where p is the persistence length of the chain segments, kg is Boltzmann’s
constant, and T'is the absolute temperature. The corresponding force of the
effective WLC potential is given as

OV Ky T 1 1
- i - i __+S/Smwc

f(S) = 4(1 _ S/smax)z 4

ds p
3)

Discher and colleagues applied these molecular models to obtain predic-
tions both for the distribution of skeletal density in pipette aspirated cells
and for the projection length of a biconcave disk being aspirated into a
micropipette at different pressures (9). There are three unknown molecular
parameters in the model: the maximal molecular length s,,.., the persistence
length p, and the area coefficient C. Writing the molecular lengths relative
to their stress-free natural length (s/s,) and imposing the condition that the
system must be in a minimal energy state at rest, one can solve for one of
these parameters (C) in terms of the other two, leaving two coefficients to
adjust to vary the mechanical stiffness of the network, p and 2,4y = Spax/So-

Taking s, as the resting molecular length, the molecular extension
(s/s,) is

N
— = |F . t0| = \/ty+ C * 1y,
So
where ¢, is the filament unit orientation in the reference configuration,

czprp:ﬁ 0}
0o /)

is the right Cauchy-Green deformation tensor, and F is the deformation
gradient. The molecular extension s/s, is related to the material stretch ra-
tios by

2
(Si) = X cos’0y; + A3 sin*fy;, 4)
0/
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where 0y, = im/n, i € (1, n) is the angle between the molecular vector for
orientation i and the principal axis of extension in the resting state. The en-
ergy per unit area must be summed over molecular orientations. Note that in
this formulation, n is the number of distinct molecular orientations in the
resting state, not the number of elements in a network unit. For example,
in a regular hexagonal array, n = 3, but in a random network, n — 0.

In Appendix B in the Supporting Materials and Methods, we show the
detailed derivation of the stress resultants from the energy. The resulting
constitutive equations for the skeleton take the form

2 < s c
sk 24 2. . p.[ 2 o«
T cg P ,E (cos o, P; (S >> Xf/ﬁ )]

=1 0

and

20 <& s C,
sk 2 - 2 o
) Cg A 2 (Slll 0, (So)) /ﬁ;{% (6)

where

600 — Vonax + 4
¢ = uae o T8 ™

(Amax - 1)2

kBTPo

% = 8o 50)homs ®

and

7oy = O = Ihnae(5/5,); + 4(s/50);
Pi(s /$0) e )

Note that ¢, is functionally related to A,,,,, meaning that there are just
two freely adjustable material coefficients (cgz and A, in this model.
The stress resultants can also be written in terms of shear and isotropic
components

sk sk
sk _T1 T

+(% +i—?) li[})i(s/sg) (0052(00#’) . Sinz(ﬁo‘i))] ,

ni3

10)

and

sk sk
ok T+ 7 Ca
TN = — = P sl, -
n ’1 142 ; (Aih)?

)

The expression for 7% can be used to express the dependence of the shear
modulus u on extension as
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ow 2100
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2 2 n
+<A H) 1ZP /s.)cos(200) . (12)

i=1

An important reference point for comparison with other theoretical de-
velopments is the value of the modulus at the resting state uo. Taking the
limit at constant area for A;= 1+ eand A, = 1 — ¢, ¢ — 0, we obtain

+ 3Arznax — Amax
= ¢p |y  max AT
o e Y e — 1)

_ kBTPo 6Aim)~ - 9Am(u + 4 3/13,,‘” - Amax
8(p/S0)AmG«V (Amax - 1)2 4(Amux - 1>3
13)

This expression is identical to one obtained previously by Dao et al. (7)
for the specific case of n = 3. After substituting xo = 1/A,.0c = So/Simaxs
recognizing that for a triangular network py = 2v/3 /s3, and applying alge-
braic manipulation, we find

3k T 3 3 Xo
= — A+ —m—
Mo 2 0 2(1 _X0)3

14
4psmu,\'x0 4(1 — X()) 4 ( )

Note that

L 6A§1LL\' — 9Amax +4 SArzmu — Amax
Amax ()\ma,\/ - 1)2 4(Amax - 1)3
3 3 Xo

- A+ —
41—x)P 4 " 2(1-x)

Remarkably, no assumptions about n were made in deriving Eq. 14,
demonstrating that it is in fact accurate for all n with the same chain density.

Similarly, from the definition of area modulus K™ = (97 /da) g and as
detailed in Appendix C in the Supporting Materials and Methods, the
area modulus can be expressed as the following forms

n 3 312 ¢ Amax (i)
sk __ Cp i max S0/ ;
S e P ) (b= (5))

S0

2cp¢,

—_— 15
(14 )’ (1>

There are two forms of special interest. One is the isotropic case A; =

b=silso=x=+va+1,
2, 1 (32

max - X Amax

K* = ¢
iso 8 (Amax _ x)3

— 4 — 16
% oy ) (16)

and the other is the limit of no deformation at the resting state (s/so); — 1,



32—
K% = cg| 2¢, 4 “max  Tmat 17
0 ’ Z(Amax - 1)3 ( )

Comparing Eq. 17 with Eq. 13, we find that the initial area modulus is
twice the initial shear modulus, Kg" = 2uo.

Simplified shear stress expression

For specific molecular orientations, a simplified expression can be derived
to approximate the material behavior to facilitate analytical solutions to
certain problems, such as micropipette aspiration. As detailed in Appendix
B in the Supporting Materials and Methods, the shear stress resultant in Eq.
10, if the area is incompressible, can be approximated as

2¢ A
sk 8 1
T =— |co+c(h—1)F————], (18)
: 3X0 0 1( ' ) 4(1 — 111(0)2
where ¢y = 4(1:0)2 and
48x3 - 153x8 + 171x§ —Tlxo + 1
cp = .
1 4(xo— 1)’
The shear modulus is given as
27 4cg
M= = co+ei(h —1)
R (-7
Al
+t—— 19
4(1 — Mxo)’

This equation also works for arbitrary n > 2. The detailed derivation and
the case of area compressible cytoskeleton can be found in Appendix B in
the Supporting Materials and Methods.

Constitutive model of RBC cytoskeleton with
natural length distributions of spectrin

When we derived the expressions of the shear stress and energy function,
we applied a single value for the natural end-to-end length s, in the un-
stressed state. Recent tomographic studies demonstrate that the resting
end-to-end distance of spectrin is not single valued but distributed over
some range (18). In this case, we postulate that the energy of the skeleton
and corresponding force resultants can be considered to be a superposition
of networks with different resting end-to-end distances, weighted according
to the frequency at which a given end-to-end distance occurs (at rest). In this
case, the shear stress becomes

sk sk
nh= ) o (20)

where ¢; is the fractional occurrence of a given end-to-end distance s, ;.
Cryo-electron microscopy (cryo-EM) data (18) show that for mouse eryth-
rocytes, the initial length distribution is given as s = [20, 30, 40, 50, 60, 70,
80, 90, 97] nm, with frequencies of f = [1, 17, 30, 38, 19, 17, 6, 1, 1]. Then
the fractional weight is ¢ = [0.00769, 0.13077, 0.23077, 0.29231, 0.14615,
0.13077, 0.046154, 0.00769, 0.00769]. We can also write

Microstructure-Based RBC Membrane Model

Ko = wauo,n w= Zwiun Q1)

where Moi = (ksTpy /8(p /SO<i)A'7lﬂ«\'-i>[(6Ar2nax.i = Yari + 4 /(}‘mmyi_
1)2) + (3151ux.i - Ammx[ /4(Ama,\',i - 1)3)]’ Amcuu: = Srrlax/so,is and Mi is given
in Eq. 12 for specific ;. Note that the maximal contour length s,,,, is
assumed to be the same for all chains regardless of s ;.

Recent efforts have successfully localized junctional complexes on the
red cell membrane using super-resolution microscopy (19), but because
this approach requires sparse labeling, not all junctions are labeled, and in-
terjunctional distances cannot be reliably determined. For example, the
length distributions in this super-resolution imaging study were calculated
as counts/um?, and the summation of the total counts in their figures gives
~110 junctions/um?. This is much lower than the value of ~730 junctions/
um? estimated from proteomic data (13) and even significantly lower than
the traditional number of ~270 junctions/;tm2 (14).

Analysis of micropipette aspiration

Closed form solution using an analytical model with the
simplified constitutive model

Using the simplifying approximation in Eq. 18, a closed form prediction for
the aspirated projection length of the cell as a function of aspiration pres-
sure can be obtained. The cell deformation is approximated as the formation
of a cylinder plus hemispherical cap from an infinite membrane plane
(Fig. 1 A; (1)). For each projection length, the corresponding meridional
tension at the pipette tip 7’}‘},17 is determined, and this in turn is directly
related to the predicted aspiration pressure R,4P = 27'{’:',,-]). In this way, a
prediction for the projection length as a function of aspiration pressure is
generated, in this case from the equilibrium equation in cylindrical coordi-
nates of the flat membrane

d
T‘ik—T;k‘i’ril:O' (22)

In the limit as » — oo, we take fr‘}"‘ — 0. In this case, the stress at the tip
T{’fﬁp can be obtained by integrating Eq. 22,

©

) 275k
o = / ~dr (23)

r
Ry

= (T’\ik -7t ) /2. To evaluate the integral, we make the simpli-

fying assumption that the cytoskeleton is laterally incompressible. From
the definition of the principle stretch, we have A, = r/rp. In the area
incompressible case, we can relate the instantaneous position of a
material element r to is initial location in the undeformed plane ry by
equating the areas: mrg = w(r? +2L,R, — R2). This implies 4; = 2 =

where 7

\/ (r* +2L,R, — Rﬁ) /r?. At the lower limit of the integration, r = R,

we have A, = A|r = R, = /2L, /R,. With these simplifications, recog-
nizing that (dr /dA;) = (A;r /1 —23) and using the expression for the stress
given in Eq. 18, we evaluate the integral (Eq. 23):

K 46‘5 )\ —|—1
Tllfti[l - 3x [DO(XO) + D1 (x0)Ar +D2(Xo)1n< Lz )

+D3(x0)1n< L= % >+

D4 (Xo)
— ] : 24)

1-— XOAL
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FIGURE 1 (A) The analytical model for analyzing micropipette aspira-

tion by assuming an infinite flat membrane outside the pipette is shown.
(B) The ODE model for analyzing micropipette aspiration by assuming a
biconcave shape outside the pipette is shown. A cross section of the axisym-
metric cell contour used in the analysis showing coordinate directions is
given. Key experimental parameters are the pipette radius R, and the length
of the aspirated membrane projection L,,. The meridional distance along the
surface is s, and the radial coordinate is r. The radius of the outer disk R, is
calculated to conserve total surface area. Integration proceeds from the tip
of the projection and the center of the disk outside the pipette. The starting
stretch ratios Ay and A, are found such that the membrane stress resultant at
the pipette tip ﬂk «p 18 continuous and the total mass of the membrane-asso-
ciated cytoskeleton is conserved.

where

A = /2L, /R,,

—1

DO(XO) = 4(1 +X0)2(1 —X0)2X0

—Cy,
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Di(xo) = ¢,
X2 +1
DZ(XO) - - 0 2 2 C1,
4(1 +X0) (1 *X())

Xo

Ds(x0) = )

2(1 4 x0)*(1 — xo)°

and
Dy(x) = ——
T 40— w)

Because R,4P = 273

1y We have the aspiration pressure AP vs. length L,
relation as

8 AL+ 1
R,AP = 3—% |:D0(x0)+D1(x0)AL +D2(x0)ln( L2 )

X0

+D3(x0)1n< ! — 0 ) + (25)

1-— X()AL

Da(x0) } .

1-— X()AL

Effect of natural length distributions of spectrin

With ¢; as the fractional weight of contributions for the end-to-end distance
S0.i» we have

86‘5"1’ 2L,
R,,AP = Z (pl% Do(XOYi)—‘rD](XOJ') Rp[
/2L, /R, + 1
+D2(x07,~)ln f
. (26)
— Xo;
+ D3(x0,)In —
1 —xo44/2L, /R,
D4(X071)

_|_

1 —xo;4/2L, /R, ’

where cg; = kT poxo,i/8(p /50,) and xo ; = 50 i/S;nay- Note that the maximal
contour length s,,,, is assumed to be the same for all chains regardless of

Soy,-.

Effect of adhesion energy between cell membranes and
pipette walls

In a previous study (8), we have provided evidence of an attractive energy
between the cell membrane and the micropipette, o,,. The effect of such an
attractive interaction is to shift the predicted curves for L,/R,, as a function
of 4PR), along the horizontal axis. Effectively, this transforms L,/R,, = f
(4PR,) to L,/R, = f (4PR,, + 0,,). We introduce o, as a fitted constant
for a given pipette on a given day of experiments.

Effect of cytoskeletal area change

We cannot calculate the distribution of cytoskeletal area change analytically
because of mathematical difficulties, but if the cytoskeletal area change of



the flat membrane is assumed to be uniform, a modified analytical solution

can be obtained as
. A+
[Dg + DA, + D, ln< L 5 )

8
R,AP =2
3x;,

1—x D/
D1 0 4 2T 27
+ D) n(l—ng;)Jrl—ng’jJr , 27

where detailed expressions for the coefficients can be found in Appendix C
in the Supporting Materials and Methods.

Numerical solution using an ODE model with the general
constitutive model

For the general expressions (Eqs. 5 and 6), we use a numerical approach to
solve an ordinary differential equation (ODE) model to obtain predictions
for the projection length as a function of aspiration pressure for a micropi-
pette-aspirated biconcave cell (Fig. 1 B). We denote the principal stretches
and stress resultant in the meridional direction as A; and 7 and in the
circumferential as A, and 75. By symmetry, we see that the principal stretch
ratios at the tip of the membrane projection in the pipette Ay, and the center
of the disk opposite the pipette A4 must be isotropic. For a given cell shape
(projection length L, and outer biconcave disk diameter R,), we find values
for A9 and A4 that satisfy the conditions that the meridional tension at the tip
of the pipette TY_(H-F is continuous and the total mass of the membrane cyto-
skeleton is conserved (see Appendix A for details of this ODE model in the
Supporting Materials and Methods).

Experimental measurements

The projection length of a portion of the red cell membrane aspirated into a
micropipette was measured as a function of the aspiration pressure. Mea-
surements were obtained on three different days using large (~0.85 um in-
side diameter) and small (~0.56 um inside diameter) micropipettes. Cells
were obtained from human donors by simple finger stick under a protocol
approved by the Office of Human Subject Protection at the University of
Rochester. Cells were suspended in phosphate-buffered saline with 4% v/
v of fetal bovine serum to avoid attachments between the cells and glass sur-
faces. Micropipettes were formed from glass capillaries using a Kopf
microelectrode puller and a custom-made microforge. Micropipettes were
filled by capillarity with buffer matching the cell suspension buffer, then
connected via a continuous, bubble-free water pathway to a water-filled
manometer. Zero pressure was set by adjusting the height of the manometer
reservoir until suspended particles were motionless in the pipette lumen.
Aspiration pressures were applied by adjusting the height of the reservoir
using a micrometer with a resolution of 0.01 mm. Cells were observed using
an inverted microscope with a 100x oil immersion objective and mono-
chromatic illumination (480 nm). The experiments were recorded using
standard video, and the length of the projection as a function of aspiration
pressure was measured from the recordings. For each day of experiments,
approximately eight cells were measured using the same pressure sequence,
and the projection lengths at each pressure were averaged.

RESULTS

We first present results using a single value of resting end-
to-end distances s for spectrin to illustrate the general be-
haviors of the model and then introduce a distribution of
resting end-to-end distances and demonstrate the impor-
tance of having such a distribution to better approximate
actual cell behavior.

Microstructure-Based RBC Membrane Model

Parameter selection and stress-strain
comparisons

An important advantage of our approach is the ability to see
how changing specific characteristics of the molecular
network affect the behavior of the membrane in deforma-
tion. Some examples of this are shown in Fig. 2. In the
native membrane, the orientation of the network elements
appears to be random. Thus, an important question to
address is how increasing the number of different molecular
orientations in the resting state affects the model predic-
tions. This is shown in Fig. 2 A for a simple uniaxial exten-
sion (7, = 0). For small forces and extension, even a very
small number of initial molecular orientations provides a
prediction consistent with more complex expressions, but
for large extensions, significant differences in the predic-
tions emerge (Fig. 2 B). This implies that the number of
distinct molecular orientations in the resting state only af-
fects membrane behavior when molecular extensions
approach their maximum. Estimates of accuracy for
different numbers of molecular orientations are summarized
in Appendix D in the Supporting Materials and Methods.
For example, for n = 3, errors in the calculated stress exceed
5% when extensions are greater than 70% of A,,,,, whereas
for n = 6, extensions can be up to 90% of 4,,,, before errors
greater than 5% are observed. Similar results were obtained
for purely shear deformation (constant skeleton area). As
might be expected, results for isotropic expansion of the
skeleton showed no dependence on the number of molecular
orientations included in the calculations (data not shown). In
these examples, the maximal end-to-end distance was set to
200 nm, the persistence length was 25 nm, sy = 75 nm, and
the molecular density was 2200/um?.

Dependencies of the predicted stress resultants on molec-
ular density pg, persistence length p, and resting molecular
length s, are straightforward because these only appear in
the coefficient cg, which multiplies the entire expression
for the stress resultant (Eqs. 5 and 6). Thus, if the ratio of
plsg is doubled, the stress resultants for the corresponding
stretch ratios are halved, and conversely, if the density of
molecules is doubled, the stress resultants are doubled.
The dependence of the model predictions on the maximal
stretch ratio 4,,,, is more complex, but, generally, the stress
resultant rises more quickly with extension for smaller
values of 4, and increases asymptotically as the extension
approaches A, (Fig. 2, C and D). Interestingly, at higher
extensions, normalizing the stretch ratio to 2, collapses
the prediction to a single curve (Fig. 2 D). Similar behaviors
are exhibited for pure shear deformation.

It is also of interest to understand how the resistance to
deformation as reflected in the material constants u (shear
modulus) and K (area modulus) vary with membrane defor-
mation. We have already shown that the ratio of K/u is 2.0
for small deformations relative to the resting state. This ratio
changes substantially, however, as the membrane deforms

Biophysical Journal 119, 2190-2204, December 1, 2020 2195
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FIGURE 2 (A) Stress resultant 7, as a function of
stretch for a uniaxial extension (7, = 0), py = 2200/
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found for fewer than 12 molecular orientations,
but for n > 12, there is less than a 1% difference
in the calculated values when the extension is
95% of its maximum. This is shown for 4, =
2.6 but true for all values tested. (C) Increasing
Amax decreases the corresponding stress resultant.
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(Fig. 2 E). Indeed, both moduli vary significantly with mem-
brane expansion. The variation in the area modulus K is
shown in Fig. 2 F, and the variation in u is shown in Appen-
dix D (Fig. S7) in the Supporting Materials and Methods.
Note that when the membrane is extended (increasing A,/
A2), the resistance to dilation increases more rapidly because
of the nonlinear increase in resistance to stretch as the
maximal stretch ratio is approached.

Comparison of the stresses (Fig. 3 A) and shear modulus
(Fig. 3 B) obtained using the full model (Eqgs. 10 and 12) and
the simplified formula (Eqs. 18 and 19) show good agree-
ment over a wide range of extensions.

Effects of natural length distributions of spectrins

A recent study using tomographic imaging of intact red cells
revealed that there is a distribution of end-to-end distances
for spectrin molecules in the undeformed cytoskeleton
(18). The reported distribution is reproduced in Fig. 4 A.
Even though large values of sq; occur rarely, they can have
a significant impact on stress-strain behavior at larger exten-
sions because of the singularity in molecular force as a func-
tion of extension when molecular lengths (s) approach s,,,,.
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This is illustrated in Fig. 4 B, where the dependence of the
force resultant (7;) on extension is shown for three different
but similar distributions, truncated at different values for 5.
The distributions with larger values for s, exhibit the greatest
strain-stiffening behavior. Contributions from each individ-
ual value of s in the distribution are shown for both small
(Fig. 4 C) and large (Fig. 4 D) extensions.

Comparison of the prediction with micropipette
aspiration experiments: analytical models

We consider three versions of the analytical models in com-
parison to experimental measurements. In the first version,
we assume a single value for s, and fit s and pipette adhe-
sion energy o,, by least-squares regression with a fixed
persistence length p and a fixed maximal molecular length
Smax- We plotted three fits in Fig. 5 A. The best-fit values
(black curve in Fig. 5 A) were so = 59.25 nm and 7,, =
10.17 pN/um for fixed p = 25 nm, s,,,, = 200 nm, and
po = 2200 molecules/um?. This version of the model does
not show obvious hardening unless a small s,,,, = 140 nm
and an extremely large p = 60 nm is used (red curve in
Fig. 5 A). This is due to the high density of spectrin we
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used based on proteomic data (2200 molecules/,u,rnz)
(12,13). If we use earlier estimates of chain density calcu-
lated from a triangular network with an edge length of
75 nm, i.e., po = 2v/3/s3 = 616 molecules/um?, it shows
hardening at s,,,, = 173 nm and p = 25 nm (cyan curve
in Fig. 5 A). Although this result is appealing from the
perspective that we observe the expected strain hardening
for more reasonable molecular characteristics, the underly-
ing molecular assumptions are inconsistent with recent pro-
teomic results (13). Next, we consider the case in which the
values of s, are fixed but distributed according to electron
microscopic tomography (Fig. 4 A; (18)). In this case, we
consider three different fixed values for p = 10, 15, and
25 nm, and the values of o,, and s,,,, were determined
from least-squares regression (Fig. 5 B). Increased persis-
tence length p gives smaller fitted s,,,, and more obvious
hardening behavior. Finally, we take into account the possi-
bility that the density of the network may change locally
when it is deformed. The ODE model with the general
constitutive model (see Comparison of the Prediction with
Micropipette Aspiration Experiments: ODE Model) predicts

Microstructure-Based RBC Membrane Model

a net compression of the skeleton in the region of the mem-
brane outside the pipette. In keeping with this finding, we
postulate an average compression of up to ~0.65% in the
membrane plane outside the pipette. We considered three
cases with compressions of 0.0, 0.35, and 0.65%. With fixed
p = 25 nm, we obtained s,,,, and o, from the fit (Fig. 5 C).
When the compression of the cytoskeleton outside the
pipette is larger, we obtain smaller s, (and larger ug).
This implies that allowing redistribution of skeletal density
to the membrane portion outside the pipette reduces the
appearance of strain hardening (indicated by a downward
curvature to the fitted curve) such that smaller values of
Smax are required to achieve the level of strain hardening
(downward curvature) exhibited by the data.

Comparison of the prediction with micropipette
aspiration experiments: ODE model

We then apply the ODE model, described in Appendix A in
the Supporting Material, to solve the micropipette aspiration
numerically by considering the more realistic cell shape
shown in Fig. 1 B and employing the full constitutive model
(Egs. 5 and 6) instead of the simplified one. In Fig. 6, A and
B, we show the effects of varying the maximal molecular
length s,,,, or the persistence length p on the predictions
for micropipette aspiration experiments. The initial molecu-
lar lengths so; were distributed as shown in Fig. 4 A. We
observe that both constants affect the slope of the predicted
curve, implying that it is possible to compensate for changes
in one parameter with changes in the other. On the other
hand, although the persistence length p only changes the
slope, the maximal molecular length s,,,, changes both the
slope and the curvature of the predicted curve. Introduction
of the adhesive energy between the cell membrane and the
micropipette, o,,, enables fitting of the data with a range
of value pairs for p and s,,,,. This is illustrated in Fig. 7,
in which predicted curves based on three different pairs of
values show comparable agreement with the data for each
of the 3 days of experiments. In Fig. 7, A and C, the pipette
diameter was 1.12 um, and in Fig. 7 B, the diameter was 1.7
wm. For the fitting procedure, the density of molecules on
the surface was set to 2200 molecules/,u.m2, based on prote-
omic measurements indicating ~300,000 tetramers per cell
(12,13) and using an average cell area of ~135 um?. The
distribution of s, values was fixed according to Fig. 4 A.
The value of s,,,, was set at a constant value (140, 160,
and 200 nm), and least-squares regression was performed
with two free parameters: p and ¢,,. Depending on the value
chosen for s,,,4,, different values for p and 7, were obtained.
The value of o, is subject to significant measurement un-
certainty because although changes in L, can be measured
very accurately, uncertainty in the location of the pipette
tip can lead to errors in its absolute magnitude, and these er-
rors contribute directly to the value of o, Therefore,
changes in the value of g, between different experiments
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do not necessarily reflect differences that have physical sig-
nificance. The value of the persistence length p, on the other
hand, is of interest because it reflects a molecular property
that contributes directly to macroscopic cell behavior. The
relationship between the value chosen for s,,,, and the
best-fit value for p is given in Fig. 7 D, in which the corre-
sponding initial shear modulus is shown for each pair of p
and s, The initial shear modulus wq increased from 5.9
to 15.6 pN/um with increasing s,,,,. The goodness of fits
as reflected by the sum of squared residuals in Fig. 7 for
different values of persistence length and maximal length
is summarized in Appendix E in the Supporting Materials
and Methods.

DISCUSSION

Derivation of a constitutive model based on molecular pa-
rameters facilitates an understanding of how molecular attri-
butes affect membrane deformability. Key molecular
characteristics include the density of spectrin on the mem-
brane in the resting state po, the molecular persistence length
p, the molecular lengths in the resting network sy, and the
maximal molecular extension s,,,,. In the model, the density
and the persistence length appear explicitly only in the co-
efficient cg, which is directly proportional to the magnitude
of the stress for a given deformation. Consequently, the
membrane modulus is expected to increase in direct propor-
tion to spectrin density and inversely to the persistence
length. In a previous study, a direct proportionality between
the membrane shear modulus and the density of spectrin on
the membrane has been documented (20), and this is consis-
tent with the formulation we have developed here.

Best-fit values for the persistence length p in our experi-
ments range from 10 to 50 nm. The highest values corre-
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spond to the lowest values for s,,,. (Fig. 7 D), the highest
degree of strain hardening, and the smallest initial shear
modulus (~5.9 pN/um). Previously reported values for
persistence length fall into the lower end of this range. For
single molecules or intact cytoskeletons separated from
the bilayer in solution, estimates of persistence length range
from 10 to 25 nm (21,22). The persistence length for mole-
cules constrained to remain near the membrane surface
might be expected to be slightly smaller or up to 25% larger,
based on estimates of the effects of confinement on this
characteristic (23). Although the highest values we obtain
are above this range, this might be expected given the con-
straints on spectrin conformation because of multiple mem-
brane attachments. For an intermediate value of p around
25 nm, the fitted s,,,,, is around 145 nm and the correspond-
ing initial shear modulus ug = 9.37 pN/um. For the smallest
value of p around 8.5 nm, the fitted s,,,, is around 200 nm
and the corresponding initial shear modulus uy = 15.6
pN/um, but this case shows very limited hardening for the
size of the aspiration lengths studied here.

Strain hardening and the distribution of resting
molecular lengths

An important characteristic of the red cell cytoskeleton is
strain hardening. In addition to evidence based on determina-
tion of the shear modulus using techniques that impose
different magnitudes of strain, the pipette aspiration data re-
ported here also show evidence of this in a downward curva-
ture of the data for larger extensions (Fig. 7). Strain hardening
is expected for models based on worm-like chain theory
because these molecules become asymptotically stiff as
they approach their maximal extension. However, the magni-
tude of the stretch ratios at which this behavior occurs
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depends critically on the ratio of s, to s,,,,. Values for the
fully extended lengths of spectrin tetramers (s,,,,,) are based
on rotary-shadowed electron micrographs, which indicated a
maximal end-to-end distance of 180-200 nm (24,25). The
resting length s, is typically calculated from estimates of
spectrin density and the relationship between density and s,
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in triangular networks: po = 2+/3/ s(z). It is important to appre-
ciate the implications of recent proteomic and ultrastructural
findings on these values (12,13,18). Until recently, estimates
of the number of spectrin molecules on the cell surface were
based on density analysis of polyacrylamide gels, which put
the number of spectrin tetramers on the surface of a cell at
80,000-120,000 (14). This corresponds to a density of
600-900/um? and implies that s, ranges from 60 to 75 nm.
To our knowledge, all existing molecular models of the red
cell cytoskeleton assume resting molecular lengths of
~70 nm. However, recent studies using more modern prote-
omic techniques put the number of tetramers much higher,
~300,000 per cell or ~2200 tetramers/,u,m2 (12,13). This
density corresponds to a value of so of ~40 nm for a triangular
network. This much-lower resting sy will have significant in-
fluence on the predictions of existing molecular models.

In relation to strain hardening, the value of sy = 40 nm
implies that maximal molecular extensions in a network
could approach a stretch ratio of 4.5-5.0 before significant
worm-like stiffening would be observed. In this case, molec-
ular models based on uniform networks would not predict
the downward curvature that is evident in the micropipette
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aspiration data. This dilemma is solved by recent tomo-
graphic evidence that end-to-end distances of tetramers in
the resting state are not uniform (18). Accounting for this
distribution, our molecular-based constitutive model leads
to predictions of strain stiffening for extensions of ~2.0,
and results in model predictions for pipette aspiration
behavior much closer to what is observed. Additionally, if
one reverses the calculation and estimates resting state den-
sity from the reported distribution of molecular lengths (us-
ing the relationship py = 2v/3 /s% for triangular networks
and performing a weighted sum over the values of s(), one
obtains a density of 1740/um?, a value in excellent agree-
ment with densities based on proteomic results. This last
point is strong validation for using both the distributed
values for sy and the higher densities of spectrin indicated
by the proteomic measurements.

Literature values for shear modulus

Values reported for the red cell membrane shear modulus in
the literature differ significantly. For example, in micropi-
pette aspiration experiments, in which the cell experiences
moderate deformation, the shear modulus was measured
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as values (6-9 pN/um) (26) or 4.2 pN/um (27). The shear
modulus measured using optical tweezers to stretch red
blood cells and produce small deformations was 2.5 pN/
wm (28,29), although some other measurements using opti-
cal tweezers gave a shear modulus of 5.7 pN/um (30), 11.1-
30 pN/um (31), or 200 pN/um (32). In addition to direct
measurements of shear modulus, computational modeling
studies also required a small shear modulus (~2.5 pN/um)
to predict the resting biconcave shape and the correct stoma-
tocyte-discocyte-echinocyte shape transition (4,33,34). The
ability of different constitutive laws to match experimental
measurement are compared in several studies (6,35), but
most do not account for strain-hardening behavior. Esti-
mates based on membrane fluctuation measurements
(36,37) or tank-treading phenomena (5,38,39), both of
which involve relatively small deformations, also tend to
produce smaller values. In one interpretation of thermal
fluctuation experiments, the shear modulus appears to be
very small or almost zero (36,37), whereas experiments on
tank treading give a range of shear moduli from 2.81 to
8.95 pN/um depending on the deformation (5). Although
differences in experimental approaches and associated mea-
surement uncertainties as well as different approximations
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and methods of interpretation likely account for much of the
differences in literature values, the strain stiffening captured
using the microstructure-based model we present here may
also help explain those differences. The value of the
modulus in Eq. 21 approximately triples when the stretch ra-
tio increases from 1.0 to 1.4 for s,,,. = 140 nm (Fig. 8).
Consistent with this, tank-treading experiments showed
that the shear modulus can be tripled when the stretch ratio
increases from 1.2 to 1.64 as shown in Fig. 8, although the
absolute value of the shear modulus is at least twofold lower
than those extracted from micropipette aspiration using this
model.

The original analysis of micropipette aspiration, which
did not consider strain hardening or cytoskeletal density
changes, gave a prediction for the relationship between
projection length and aspiration pressure: R,4AP =
w/R,12L, /R, — 1 + In(2L, /R,)]. Using this approach,
the calculated shear modulus was in the range of 6-9 pN/
um (1,26). Our current analysis shows that failing to ac-
count for strain hardening results in an overestimate of the
initial shear modulus because it reflects an “averaged” value
of the increasing shear modulus with deformation. On the
other hand, our analysis also shows that failing to account
for local changes in skeletal density leads to underestima-
tion of the shear modulus because the constraint of constant
density leads to higher shear stresses at the same macro-
scopic deformation (projection length) (Fig. 5 C). There-
fore, these two effects tend to compensate for each other
such that the initial shear modulus values we obtain using
our current model (5.9-15.6 pN/um) are not much different
than early estimates (6-9 pN/um).

Values obtained using the simplified models

The simplified models we have derived vastly reduce the
computational costs for analyzing experimental data. How-

25 : : : : :
_so=[20 ... 97] nm, smax=200 nm, p=8.45 pN/um
§,=[20 ... 97]nm, s __ =160 nm, p=16.26 pN/um :
20 |---8,=[20 ... 97] nm, s =140 nm, p=30.82 pN/um ' il
©Top 10% fraction of RBCs (Sutera et al. 1989) H
-©O-Bottom 10% fraction of RBCs (Sutera et al. 1989)| !
€15+ ,
3 :
z
o} ]
8
5 4
0 I I I I I I I I
0.8 0.9 1 1.4 1.2 1.3 1.4 1.5 1.6 1.7

FIGURE 8 Shear modulus as a function of the principal stretch from the
current model (area incompressible case) and tank-treading experiments.
For the curves predicted from the model, parameters from the three cases
in Fig. 7 A are used, and p, = 2200/um?. The shear modulus calculated
from tank-treading motion of RBCs under shear is from (5). To see this
figure in color, go online.
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ever, this simplicity comes with some loss of consistency for
the molecular coefficients. The approximate model without
cytoskeletal area change shows stronger strain stiffening
and appears to match two of the three experimental data
sets with high accuracy (Fig. 5). It is important to note, how-
ever, that maintaining constant cytoskeletal density intro-
duces an important constraint on the deformation, and this
accounts for the increased strain stiffening for this model.
Indeed, in Fig. 5 C, increasing the assumed cytoskeletal
area change for the simplified model results in less hard-
ening. From other experimental evidence, it is clear that
local changes in density do occur when the membrane is
deformed.

Dynamic remodeling, prestress of the spectrin
network, and deformation mechanisms of
spectrin

Prior studies considering the molecular basis of red cell
membrane elasticity have introduced important potential at-
tributes of the network that we do not consider here, namely
dynamic remodeling of the network and the possibility of
prestress of the skeleton in the resting state. For example,
Fai et al. built a cytoskeletal network model based on
cryo-EM tomography (10,18) and demonstrated that faster
cytoskeletal reorganization leads to more irreversibly
broken spectrin tetramers and a smaller dimensionless
tank-treading frequency for a cell undergoing tank treading
in shear flow. They also found that when the cell is placed
under repeated strains, cytoskeletal dynamics may play a
protective role by allowing spectrin tetramers to disconnect
before they would break. Zhu and Asaro showed that the un-
folding of spectrin can play a significant role in strain-soft-
ening of a spectrin network (40). Although these concepts
are important considerations, Discher and colleagues report
that there was no change in spectrin distribution in their
fluorescence-imaged microdeformation experiments over
periods of 30 min (15), indicating that if remodeling does
occur, it does not have a substantial effect on the distribution
of strain in deformed membranes over extended times.
Therefore, we believe that our decision not to consider dy-
namic remodeling in micropipette experiments with much
smaller extensions and shorter duration is justified.

It has long been recognized that the red cell membrane is
a composite structure and that both the spectrin network and
the lipid bilayer contribute to its overall mechanical
behavior (1). For the analysis presented here, the bilayer
is not expected to make substantial contributions, except
to constrain the membrane to a constant surface area,
because it offers no resistance to shear deformation, and
its resistance to bending is small compared with the force re-
sultants generated as a result of the network deformation
during pipette aspiration (1). The composite nature of the
red cell membrane, coupled with the very high resistance
of the bilayer to surface dilation or compression, raises
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the theoretical possibility that the skeleton itself may be
slightly stretched or slightly compressed at rest, with the
bilayer providing a counterbalance to make the net stress
in the membrane zero at rest (41,42). The concept of a
prestress in the spectrin network was introduced by Discher
and colleagues to obtain agreement between their molecu-
lar-level red cell network simulations and experiments
(9,43). More recently, we have identified a small adhesive
energy between the membrane and the pipette surface that
likely accounts for the discrepancy they observed for aspira-
tions of biconcave cells (8), making the postulate of a skel-
etal prestress unnecessary for this case. (Predictions of the
network density distribution in aspirated cells with long pro-
jections were also improved by inclusion of prestress, but
this has not yet been addressed using the microstructure-
based model we present here). The possibility of skeletal
prestretch was also posited by Turlier et al. in a theory to
explain how low-frequency cell fluctuations might be driven
by spectrin because of changes in its phosphorylation state
(44). Since then, a significant presence of myosin has
been documented in red cells (45), which could provide
an alternative explanation for the nonequilibrium, low-fre-
quency fluctuations they observed. It could also be argued
that long-term stress relaxation should cause network stress
resultants to relax to zero over time. In summary, there is no
clear evidence to confirm or refute the possibility that
prestress may exist.

We consider each spectrin tetramer as a worm-like chain
entropic spring in this study. Alternate models of spectrin
behaving as a straight helical spring (46) or a Chinese finger
trap (47), have been proposed. These models are based on
electron micrographs of purified spectrin tetramers or min-
ispectrins. Unfortunately, force-length relationships have
not been derived for these cases. If such a force-length rela-
tionship existed, it would be straightforward to use the
approach described here and incorporate it into our model
by changing the potential in Eq. 2. Indeed, a similar
approach to the one used here has been used with a model
for spectrin as a helical spring to predict membrane behavior
(8). That said, there are many experimental images of native
spectrin in the actual RBC from quick-freeze, deep-etch, ro-
tary replication procedure (48) or cryo-EM, in which the
molecules appear to adopt random worm-like configurations
(18), supporting the use of the worm-like chain potential
not only here but in many theoretical and computational
studies (10).

We note that the stiffening of the membrane at large ex-
tensions is reflected in both the thermodynamically defined
shear modulus, u, and the area modulus, K, both of which
increase substantially with membrane dilation. It is also of
interest that the value of the ratio K/u also varies substan-
tially from its resting value of 2.0, increasing with compres-
sion but decreasing for moderate extensions before
increasing at very large extensions. Observations of the dis-
tribution of skeletal density in the projections of micropi-
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pette-aspirated cells indicated that this ratio should be
~2.0, but a definitive value was not provided (15). This es-
timate of the K/u ratio appears more or less consistent with
the predictions of our model, but more detailed calculations
would be required to draw a firm conclusion.

CONCLUSIONS

The work presented here makes several impactful contribu-
tions to our understanding of the physical basis of red blood
cell membrane elasticity. First, we have derived a constitu-
tive expression based on molecular properties that allows for
local density changes in the deformed red cell cytoskeleton.
We have generalized an expression for u,, the shear
modulus for a network near the undeformed shape, previ-
ously derived for a network with just three chain orienta-
tions (n = 3) (7), and have shown that it is valid for
arbitrary n > 3. Furthermore, we have developed the first,
to our knowledge, molecularly based elastic model of the
red blood cell membrane that accounts for both higher den-
sities of spectrin indicated by proteomic analyses and
distributed values of the resting molecular lengths obtained
from electron-micrographic tomography. We have shown
that for higher spectrin densities indicated by proteomics,
accounting for a distribution of resting molecular lengths
is essential for reproducing strain-hardening behavior ex-
hibited by the red cell membrane in experiments. We have
also obtained a relationship between the values for the
maximal extended length of the spectrin tetramer and its
persistence length that are consistent with membrane
behavior in micropipette aspiration experiments. In addi-
tion, an analytical form of the micropipette aspiration with
the simplified version of the constitutive law is derived.
We find that the model exhibits hardening behavior and
can help explain discrepancies found in the literature. In
addition, this model can be also used to model other two-
dimensional networks of flexible polymers with distribu-
tions of orientations and natural lengths, such as nuclear
lamins.
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APPENDIX A. Numerical solution of pipette aspiration using an ODE model
The deformation of the aspirated cell is assumed to be radially symmetric. An initial resting state

is defined as a biconcave disc according to the formulations of Fung (1)

z(r) = (co + c11p” + 210"/ 1 — (1o/Ro)? (51)
where z is the half thickness of the cell, 7o is the radial coordinate, and R, is the cell radius.
(Note, the subscript “0” indicates that this is the radial position of a material element in the
undeformed shape.) This expression is integrated to obtain the distance along the surface, so(70),
and the area of the surface inside the coordinate value Ao(70). This information is saved in a look-
up table for determination of 7o for a given Ao. (Note that once the integration passes the edge of
the undeformed cell, the relevant area is the area of one half of the cell plus the area outside the
coordinate value ro.)

To solve for the distribution of stress and density on the deformed surface we integrate the
tangential force balance as

otk
ds

= — % (z$* — 75%)cos(0) (S2)

where s is the distance along the surface of the deformed shape, r is the radial coordinate of the
deformed shape 75% and 75 are the meridional and the circumferential principal force resultants,
and @ is the angle between the surface normal and the axis of symmetry (cos@ =dr/ds). The
integration must be completed under the constraint that the mass of membrane skeleton is constant

¢ pdA = p2nrds = § pydA, (S3)
Note that the resting density py is assumed to be constant and that p/pp = 1/(4142). The constraint
can be written as

$£ 2mrds = A, (S4)

Po



This relationship is also the basis for determining ro, the radial position of the instantaneous
material element in the undeformed state. This is needed to calculate A> = r/ro. Therefore, we

use the fact that

d4, Zmr
ds 144,

(S5)

and use the look-up table constructed from the unstressed geometry to find ro(4o). The
integration of the tangential force balance proceeds with s as the independent variable. The shape
of the surface is assumed to be known: a hemispherical cap radius Ry, a section of cylinder with
radius Ry and length L, - R, and a biconcave shape described by Eq. S1 with the maximum radius
calculated to maintain the total area of the shape a constant

2nR,% + 2nR,(L, — Ry) + Agisk = Ao (S6)
Because the shape is fixed, for any s, the radius » and the angle to the surface normal #are known.
It is fairly straightforward to integrate the three simultaneous first order differential equations for
the dependent variables Ao and 7.

Starting the integration at the tip of the pipette, a guess is made for the starting value of A, =
A=Az atthetip. One approach is to use this starting value to integrate over the entire cell surface
and adjust the value of 4, in repeated tries until the mass conservation condition is met. This
approach is problematic because of singularities that occur when A is too small and the integrated
value of Ao is smaller than the cell area. In this case 7o goes to zero, and A2 becomes infinite. A
more robust approach is to choose a location (for example the base of the projection at the edge of
the pipette), and calculate two sets of solution values for 4o and 7; at the chosen location, one

starting from the tip of the projection for a range of starting values for Ao, and one starting at the



opposite pole at the center of the disk for a range of starting values As. If we let the integrated Ao
on the disk be Ao4, and the integrated Ao of the projection be Agp, then we require that

Ay —Apg = Agyp (S7)
We can then plot two curves, one of (4o - 4oa) as a function of 75¥ (or equivalently, A/) at » =R,
determined from the disk integration, and one of Ay as a function of 7$¥ (or equivalently, A/) at
the base of the projection from the integration over the projection. The solution occurs where
these two curves cross. The corresponding values for A, and As are the starting values for the
solution satisfying continuity of stress and mass conservation over the cell surface. Curves
showing the solution intersections for a series of projection lengths is shown in Figure S1, and the
distribution of density and shear force resultant are shown in Figures S2 and S3.  The distribution
of the principal stretch ratios is shown in Figure S4. The reader is advised that this method is not
efficient, and may require significant computing time, particularly for cases where the values of

initial molecular lengths are distributed.
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APPENDIX B. Detailed derivations of the constitutive models

Derivation of the simplified constitutive model

Ao ' A

L 2
v

al

Figure S5. Network elements having six different molecular orientations in the resting state. Directions
of the principle stretch directions are as shown. Letters of the segments correspond to those in the energy
expression (Eq. S8).

For a unit cell with two orientations shown in Figure S5, i.e. n = 6, the free energy density is:

1 C
w =—"Vyc(a) + 2Viyrc(b) + Viyrc(f) + 2Viypc(d) +—

o 44
 2cg 323x3 —2M3x§  3(AE+323)xg — (A2 +323)%/2x3
S

32%x2 — 2A3x3 N 3(A3+322)xZ — (A2 + 322)3/2x3 N Cc s8)
2 - 2129{0 AZ 312 4A

kgTpoSo __ \/§kBT

8PAmax 4PSmax

where cg = , and the principal stress resultants are given by Eq. 5 and Eq. 6 as



1 1 _ A 34
sk 4%1%M1—1MQ2+Aﬂb_Z+4<1 7 4x0 1
sh = — -
1 3 AZ Ale /’{% 3){% 2
EE
1 1
AZ 3/12 2 +Alxo_z
_ |Z2 4 71
+4<1 2t x0> 3] CpCq
22372 20 M
[
1 1
> > >+ 41X 2z
1 1 A3 | 34
_= 411- |-F=+—F
k 465’12 4(1 — Ax)? 42X 4 ( 4 " 4 x0> 1
gt = =22 + >
3 A4 Azxg A2 312 2
EE
1 1
AZ 3/12 2 +11XO_Z
_ |22 427
+4<1 " + Z x0> 3 csca
2 372 2 2123

The shear stress, mean stress, shear modulus, and area modulus are given as

g _T-m 1 ow 1l ow 1
T T2, o,
g T+ 1 ow 1l 0w 1
o = T2, o,
_ 215k 22 22
A
_ 01, 0*w

T da  0a?

(59)

(510)

(S11)

(S12)

(S13)

(S14)



75k 2¢p [4(1 — A1 X _/1%
S 30,4, A% . Ao
! 7+ 1950_l ! >+ %o — 3
2 322 4 FERNEYY: 4
4(1_ T+Tx°> % 3% 4<1_ T+T"°) W%
22 322 22 372
EE EE
1 1 1 1
o 26 B =A%) + Aaxo = 1, , ML= Zpx) + 2% = Z
@ T304, P ! Ayxo z
1 1
> > 2 + Alxo - Z
22 312
+4<1‘ i) B33
2 32 2 2
4 T 7%
1 1
/12 3A2 2 + Alxo - Z
— |22 =71
. 4 <1 2T 77 x0> (3&% A3 | CpCa (516)
22 372 2 27 (MAp)?
EE

To simplify the stress expressions, we explore the fact that Eq. 3 is an interpolation formula to
the original worm-like chain model. In other words, Eq. 3 gives exact results for low and high
force limits, but only gives an approximate result in intermediate force range (15% relative
error). To obtain a simplified strain energy function, we will make it exact for low and high force
limits, but construct an interpolation formula of stress in terms of stretches rather than the force

in terms of chain length s in Eq. 3.

Simplified constitutive model with area change
To simplify the expression of the shear stress resultant in Eq. S15, assume it can be

approximated as the following interpolated forms



doo A
(1 - Aslaxo)z

sk
Tss =

[do +di(A; — 1) + ] (8517)

‘g
3x,
where the deformation is expressed in terms of isotropic (1,) and shear (15) coefficients
Aa = \//11/12 =\Va + 1, /’tS = ‘//11//12.

To determine the three coefficients (do, di, d-) we match the slope of Eq. 18 with Eq. 10 with n =
6 for the low force limit and the high force limit.
At the high force limit, A;4,x,~1, where the protein chain is close to its contour length, with

asymptotic expansion at the high force limit or Laurent expansion, we get:

TSk~ ZCI; Aalls
$ 3XOAé 4(1 - ASAaXO)Z

+ 0(1)] (518)

At the same time the simplified shear stress near the high force limit:

sk ZCﬁ doolls
fos 3xo [(1 _/15/1axo)2

+0(1)]
By matching them we can get

d,=— (519)

sk —
s

Enforcing t 0 for A, = 1,which means no shear stress when there is no shear deformation,

we found that:

sk ZCﬁ dw
Tss = 3—x0 dO + m =0 (520)
a

SO

-1
d, = , S21
O 42 x2 (g — 1/%)? (521)

We obtain d; by matching slopes in terms of A near A; = 4, = 1,which is equivalent to

matching the initial shear modulus p,. At the low shear force point, where there is no shear



deformation,

EARYEVE ¢ 1+ Agx
PTTETIE |, T 3%0 (L - 2axe)?

+ dy (AaX0)]
1

Assuming the shear modulus under area deformation is only a function of expanded chain length
AaxO'
= pu(AqXo),

which indicates ;TB d,= f (A4x,) is also a function of A,x,. This means that during area
0

expansion, the shear modulus hardening is independent of s, and depends only on the expanded

chain length 4,s,. Then we have

+ dy (%0)]

[4(1 — Xp)3

3xo— x5\ _ ¢ 1+x
3%,

Ho = Cp <ca +

di(xo)  48(x)* — 153(x)® + 171(x0)* — 71(x,) + 1

XO 4‘X0(.X0 - 1)3
then:
dy (Agxp) _ 48()lax0)4 — 153(/1ax0)3 + 171()Lax0)2 —71(Agx0) +1 (522)
Xo a 4l qxo(Agxy — 1)3
So
48(A,x)* — 153(A,x0)3 + 171(A,x0)% — 71(A,x0) + 1
d1 — ( a O) ( a 0) ( a 0) ( a 0) (523)

4,(Agxg — 1)3
Although the above equations were derived from the case of n = 6, it works for arbitrary n > 2,

assuming isotropy.

If the area is incompressible, our formulation is reduced to

2¢c
sk = —Llcy+ ¢, - 1)

— 524
3%, (524)

1
+ 4(1 - Ale)z]

10



-1

where Co = m

_ 48xp" —153xp° + 171xp% — 71x + 1
T 4(xy — 1)?

_ 275k _ 4cp te - 1)
TE-B 3@ -l

I (525)

1
+ 4‘(1 - Ale)Zjl

This equation also works for arbitrary n>2.

Finite thermoelasticity and stresses of 2D hyperelastic membranes
Let's consider the cytoskeletal network as a 2D hyperelastic material without any remodeling or

dissipation. The Cauchy stress of a hyperelastic material is given as
_2powor
o= F v F (526)

where w = H-TS = w(F,T) is the free energy density (measured per unit volume), € = FTF is
the right Cauchy-Green deformation tensor, F is the deformation gradient, and J = det(F). H is
the enthalpy (internal energy, per unit volume), 7 is the temperature, and S is the entropy (per
unit volume). If the material is isotropic, invariants of the deformation can be used to simplify
the stress expression, so that the Cauchy stress resultant of a 2D isotropic hyperelastic material in

Eq. S26 is reduced to

T=0oh =1+ (B _ trace(8) 1) (527)

(ax+1)2 2

where

_ow W p _ ppT p_ 0X
_aa'”_as’B_FF’F_ax

where 7, and p are defined as the mean stress resultant and shear modulus and Bis the left Cauchy-

Green deformation tensor. The area invariant, « = A;42 — 1, and the shear invariant = (1;/42> +

11



A2/A1 - 2)/2 are those defined by Evans and Skalak (1), where A; and A2 are the principal stretch
ratios and 7 is the thickness. X is the current coordinate vector and X is the initial coordinate
vector.

The principal stress resultants in the skeleton are related to the energy by:

sk — 1 4w
U = (S28)
sk — L dw
2 = nan (S29)

To convert from the discrete form of the potential (expressed in terms of individual molecules) to
a continuous form, the different deformation experienced by molecules having different
orientations relative to the principal axes of deformation must be considered. We apply the affine
assumption, namely, that the endpoints of the molecule follow the corresponding points in the
continuum deformation. With this affine deformation assumption, we do not need to be concerned
about the detailed connectivity between molecules. Taking s, as the resting molecular length, the
molecular extension (s/so) is related to the material extension ratios by
s? = Nxg; + A3¥5;
s

2
(£) " = 4% cos? 0y, + A3 sin? By, (S30)
i

So
where 6,, = lf ,1 € (1, n) is the angle between the molecular vector for orientation i and the

principal axis of extension in the resting state. The energy per unit area must be summed over

molecular orientations.

From Eq. I and. Eq. 2 we obtain

2
kgTs s 3-2s/s
n n B! Smax max 2
w = i— [/ S A = i— ( ) - coS 9 i
total Zl—l eff( )/ Zl_l 4pA Smax 1-S/Smax 0.

Substituting this into Eq. S28 and Eq. S29 we arrive at

12



w_ ldw 10w ds A 0wsy? 2 g
T dA, A, 0504, A, 0s s (0% Vo
keT A4 1 1

S
B 1, ——+s/s ]—cosze -
=1 4(p/Se)A A, 14(1 — S/Sppax)? 4 max | < 0,i

(o]

n

kBT £6A$nax - 9Amax(5/so)i + 4(5/50)1'2

2
= cos“ B,
= 4(p/SO)AAmax AZ (Amax - (S/So)i)z ot
Since py = % in this case,
_2/'1 s Cq ]
o = o |22TR, <cos2 0o, - P (?)) - (S31)
-ZA . s Cq ]
T;k = C[g ;ﬁ ?=1 (smz 9011' . Pi (;)) - W (832)
where
6 nax—9maxt4
Ca - (Amax_l)z
Co = kgTpo
B 8w/s0)Amax
and,
_ 6/11271ax_9llmax(5/50)i+4'(5/50)12
Pi (S/SO) B (/Imax_(s/so)i)z
Derivation of the area modulus K
For this 2D isotropic hyperelastic material, we can calculate the area modulus as:
a.[sk
K5k = < 2 ) (533)
Jda 8

with the stress expression

n
21 S c
sk 1 2 a
= -2 op =) = —
71 C,B [TL /12 Z (COS 90,1 i (SO)) 112122]:

13



n
2A S C
sk _— 22 E in2e .-pP(=—)] = —*_
E 6 [n Ay 4 (sm Boi Py <So>> /112/122]'

the tension can be calculated and simplified:

5k + 13k 1w (2 sy A s c
sk - T _ _2 21 Zg..p.(_)+_2'23..p.<_) _ _Ca
ta 2 “ [n i=1 A2 o8 Yot So/ M S ot 1 So A2,

n
1 Z S c
22 cos? 60, ; + 1% sin? 0, ; P-(—) - %
n/’ll/lz izl( 1 0,1 2 0,1) i So /112/122

L,
c
= 2P- — a =
| Ex . (x) ] Cp

_ B34
PRI (B34)

1 . 5 Cq
n(1+a);x P = G2

i=1

2
Z = (i) = Af cos? 6,; + A3 sin? B,;. From the expression of @ and B in terms of
i

Ay and A,, we can know:

o, 1 a1, 1
= 2= S35
da 21, da 21, (535)

then Z—zi can be gained from Eq. S30

ox
25 = 24 05 00, /(22) + 245 sin? B0, /(2A)

axi — 2 29 1, + 1 . 20 21 = xiz _ Xi (536)
Ep = A4 COS O,i/ 2 2 Sin O'i/ 1= inll)lz Bl 2(1 + CZ)

Also from Eq. 9, we have

0P;(x) _ 3nax — Amw;xi (837)
ox; (Amax - xi)

Everything can be expressed in terms of «, therefore,

14



1 = ) Cq
K:aCB mle- Pl'(X') - m /O(a)
i=1
1 < 2 0 1 ~o0x; 0P,
—_ — 2 xl xl 2
= —— 2D (x: — N P -
“p n(1+a)2izlx‘ (1) +n(1+a) £ da " (0) + (1+a) aa axl
2¢,
HRCETHE
n n

-1 1 1 ax daP; 2c

S — E 2p. S E 2p. — Y L _Lyx? @

B ln(1 + a)2 4 - X ") + n(l + a)? ¢ - x P + n(l+ a) aa 6x + (1+ )3 (538)
1= 1=

So

aPi 2 ZCO_,

I+ L2+ @y ox, HCETSE
i=

n 2
_ o N 3Amax — AmaxX N 2cﬁca ($39)
2n(1 + a)? Z - Amax — x)3 1+ a)s
=

Two special cases of Eq. S39 are of interest. The first is the purely isotropic deformation (no

shear). In this case x = x; = A1 = A2 = si/so = Aiso, and the expression reduces to:

Kkl = cﬁ 3/1,2nax AmaxX| | 2€pCq €8 3Max = AmaxX | 2€gCq 40
liso = —x)3 x6  2x (1 —x)3 * x6 ( )
max max

The second is the value for this coefficient in the resting state Ko™, i.e. in the limit as x=Aiso —>

1.0:

3Agnax - Amax) (541)

k _
K™ = Cp (260, + 2y — 1)3

15



We can also derive an expression for the modulus x for an isotopic deformation:

Uiso = C, x2 <6A$nax - 9x/1max + 4x? + x(3/112nax - xAmax))
e A (Amax - x)z 4'(/1max - x)3

(542)
APPENDIX C. Analysis of micropipette aspiration with cytoskeletal area change

Here we consider the area change of the cytoskeleton when deriving the relationship between
pressure and aspiration length in micropipette experiments. Assuming the area change of the
cytoskeleton outside of the pipette is a uniform small constant «, the deformation can be obtained

from the mass conservation and total area conservation as

n(r? - Rzzn)Po

TREpy = ————— + My 543
oro0 1+ @ inside ( )
Since
1+ ay)R
A = A+ ao)R (544)
r

then we have

dr MT

= S45

16



38 dr
T1 tip = f )

1/1'|'050

j kdr

r d/l1

AL

1+0£0

f Y do + dy (s — dots 1M
2_ 3x0 0 1( ) ( _Aslaxo)z 1+a0_li 1

L

1

—f4 do + dy(Ag — doos As dA

3y o T (A =D+ (1—;1521ax5)2]1—;1§ s
AL
4 A +1 1—x/ D;

B 1 L ’ 0 4

D!+ D D.In(=——) + D!l S46
A T e R e e (10)

Thus
8c|l - . . (1 +1 , 1—x, D
RyAP = =Dy + D4, + D, In{ 2=— | +D;1n O |+ —2— |+ 2T, (547)

3x0 1-— xOAL 1- xOAL

where /1; = A, /+/ @y + 1 is the stretch at the entrance of pipette, and

-1
Dl — _ !
O T A +xp)2(1 — xp)2xy

4 ,3 ,2 ,
D’ e 48x0 — 153x0 + 171x0 — 71x0 +1
1 1 ] 3
4(x0 — 1)
2
’ X, +1 .
D, =— - —-C
4(1+x,)%(1 —x,)
. X
_ 0
D, = 2 2
2(1+x0> (1—x)
1
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\/Acellao +2R. L
T T p=p
A = R

p

where «, is the average area change of the flat membrane and A_,; = 135um? is the surface
area of the RBC. T,, = Ky, and K, is the initial area modulus of the cytoskeleton. We choose

Ko = 2u,, since o is small.

A} is a function of o
By assuming the total membrane area is constant (4ce = 135 um?) due to the total area
constraints from lipid bilayer and the membrane outside of the pipette has a uniform small

constant @, we have

Area conservation:  Agey = 2TL, R, + Agyt,

. A
Mass conservation:  poAceyr = Minside + ;“—fj",
0
. =5 A
Mass conservation: poAcey = PoTRE + ;u—fj",
0

Aout represents for the deformed membrane area outside of the pipette, minsize/py 1s the initial area

of the membrane inside pipette.

By using Ac.i1 = constant and eliminating Aouws, We get

Ace”ao + ZT[Rpr

Minsige = 2o+ 1 Po (548)
Since
mRGpy = %ﬁf)po + Minside (549)
then
2R = n(r* — R}) -I;z‘:fzz“o + 2mR, L, (550)
0

In particular, if » = Rp, we have

18



Acellao

=2 2 Minside T + ZRPLP
R = Rgly=r, = = (551)
TPo ag+1
Since
(1+ ag)Ry
A =—
r
we can solve A; as
\/—1 Acellao 2R. L
(1+ ag)R, ao + T T 4Rply
A =———— = (552)
r R
=Ry p
\/Acellao + ZRpr
A=A /Jap+1= R (853)
P
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APPENDIX D. Cytoskeletal area change and effect of the number of orientations
Additional details on stress-strain behavior: Area change with stretch

One important difference between uniaxial extension (72 = 0) and pure shear (constant area) is
that the area of the skeleton does change with extension, as would be expected for a
compressible material. This is illustrated in Fig. S6, where a biphasic change in skeletal area is
predicted, increasing for smaller extensions and decreasing as the extension approaches Amax.
For small extensions, the corresponding change in area does not depend strongly on the
maximum stretch ratios (Fig. S6A), but unlike the stress resultants at large extensions, the
changes in area expressed as a function of the extension normalized to Amnax do not collapse to a
single curve, but rather reflect larger area expansions for larger values of Anaxr over the entire

range of values (Fig. S6B).
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Figure S6. A. The compressibility of the skeleton is reflected in increasing skeletal area with
extension. Interestingly, the area increase reaches a maximum, and decreases at very high
extensions. B. Unlike the stress resultant, the area change remains dissimilar for different
values of Ai/Amax Over the entire range of values. These curves reveal, however, that the
maximum area increase occurs at approximately 86% of maximum extension for all Amax.

Changes in shear modulus with area expansion
In Figure 2 of the manuscript we illustrate how the area modulus and the ratio of the area

modulus change with membrane expansion. The shear modulus is also a function of both area
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expansion and shear deformation. Both shear deformation (4:/42) and skeletal dilation ()
cause molecules in the skeleton to approach their maximum length. Therefore, for larger ratios
of 11/22, the modulus approaches its asymptotic limit for smaller values of .  This is illustrated

in Figure S7.
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Figure S7. Dependence of the shear modulus on the area expansion for different ratios
of stretches. The unit of the shear modulus is pN/ um.

Increasing n to approximate a random network

Figure 2A in the main text shows how the calculated values of the stress resultant z; vary with
increasing n from 3 to 48. In this section we examine the dependence of the “error” introduced
in calculating the stress resultant for different n, so and smax. For a given value of smax the

persistence length p is calculated according to the relationship given in the legend of Figure 7D:

p=c1(6— 9¢;/Smax + 4522/57%1ax)/(5max/cz - 1)2 (554)
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where c; =0.0275 and c2=101.85. We consider a simple uniaxial extension, both for the case
of pure shear (12 = 1/41) and for the case 72=0. As noted in the main text (Figure 2B),
differences in calculated values of 7 for different n increase as the extension approaches Amax =
so/smax. Therefore, we characterize the accuracy of the calculations in terms of the maximum
extension of the material for which the difference in the calculated 7 is less than 1%. We find
that this extension is within 0.5% of Amax for all cases when comparing n = 48 with n = 96,
indicating that n = 48 is a good approximation for » — oo.  Therefore, the calculations were

made for the maximum extension at which the calculated z; is within 1% of the value calculated

for n = 48.

We find that the maximum extensions for errors less than 1% depend on the specific value of so,
but that the extensions expressed as a function of so/smax fall on a single curve that is independent
of smax (Figure S8A). The maximum allowable extension increases with increasing # as
expected (Figure S8B, Table S1). Similar results were obtained for pure shear deformations
(Figures S8C and S8D). For modeling the skeleton with distributed values of so, we performed
the weighted sum of contributions to z; for the different values of so. The maximum allowable
extensions for distributed values of so are shown in Table S2. Note that when # is small (n = 3),

significant errors can occur even for relatively modest extensions.
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When the extension and the values of s¢ are normalized by their maximum values, the curves
are independent of smax. B. The maximum allowable extension increases with increasing n. C
and D. Similar results were obtained for pure shear deformation (4, = 1/4)).

Table S1. Maximum allowable extension for 1% and 5% error (Ai1/Amax, Smax = 180 nm)

Pure Shear
1% error
n\so 20 30 40 50 60 70 80 90 97
3 0.5041 | 0.5012 | 0.4979 | 0.4953 | 0.4957 | 0.503 | 0.521 | 0.5502 | 0.5762
6 |0.8298 | 0.8298 | 0.8298 | 0.8302 | 0.8312 | 0.833 | 0.8361 | 0.8407 | 0.8451
12 10.9532 | 0.9534 | 0.9534 | 0.9536 | 0.954 | 0.9545 | 0.9552 | 0.9564 | 0.9575
24 1 0.9874 | 0.9875 | 0.9876 | 0.9877 | 0.9878 | 0.988 | 0.9883 | 0.9886 | 0.9889
5% error
3 0.5785 1 0.5745 | 0.573 | 0.5686 | 0.5684 | 0.5685 | 0.5755 | 0.589 | 0.605
6 |0.8677 | 0.8659 | 0.8686 | 0.8686 | 0.8668 | 0.8695 | 0.871 | 0.8744 | 0.8782
12 10.9656 | 0.9632 | 0.9649 | 0.9633 | 0.9654 | 0.9646 | 0.9671 | 0.9672 | 0.9671
24 10.9896 | 0.99 |0.9905 | 0.9909 | 0.9914 | 0.9919 | 0.9924 | 0.9906 | 0.9911
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Table S2. Maximum allowable extension (A1/Amax, Smax = 180 nm), Uniaxial (12 = 0)

1% error
n\so 20 30 40 50 60 70 80 90 97

3 0.5041 | 0.5149 | 0.5244 | 0.5323 | 0.54 | 0.5497 | 0.5645 | 0.5865 | 0.6065
0.8471 | 0.8458 | 0.8453 | 0.8459 | 0.8475 | 0.8503 | 0.8542 | 0.8594 | 0.8639
12 |1 0.9569 | 0.9571 | 0.9571 | 0.9574 | 0.9579 | 0.9585 | 0.9593 | 0.9605 | 0.9614
24 1 0.9885 ] 0.9886 | 0.9886 | 0.9888 | 0.9889 | 0.9891 | 0.9893 | 0.9896 | 0.9898

5% error
3 10.5963 | 0.5977 | 0.6046 | 0.6076 | 0.6132 | 0.6195 | 0.6277 | 0.6413 | 0.6522
0.8787 | 0.8799 | 0.8784 | 0.8813 | 0.882 | 0.884 | 0.8872 | 0.8896 | 0.8926
12 ] 0.9662 | 0.9676 | 0.9692 | 0.9673 | 0.9692 | 0.9682 | 0.9704 | 0.9703 | 0.9700
24 1 0.9898 | 0.9902 | 0.9906 | 0.9911 | 0.9915 | 0.992 | 0.9925 | 0.993 | 0.9913

Table S3. Maximum allowable extension for distributed sy values, Pure Shear

Smax 200 180 160 140
Amax 2.0619 1.8557 1.6495 1.4433
n Maximum allowable extension for error < 1%
3 1.31 1.20 1.11 1.05
6 1.84 1.66 1.48 1.31
12 1.99 1.79 1.59 1.40
24 2.04 1.84 1.63 1.43
Maximum allowable extension for error < 5%
3 1.47 1.33 1.20 1.09
6 1.89 1.71 1.52 1.34
12 2.00 1.81 1.61 1.41
24 2.04 1.84 1.64 1.43

Table S4. Maximum allowable extension for distributed sy values, Uniaxial (t2 = 0)

Smax (NM) 200 180 160 140
Amax 2.0619 1.8557 1.6495 1.4433

n Maximum allowable extension for error <1%

3 1.41 1.29 1.18 1.09

6 1.86 1.68 1.50 1.33

12 1.99 1.80 1.60 1.41

24 2.04 1.84 1.64 1.43
Maximum allowable extension for error < 5%

3 1.56 1.42 1.28 1.15

6 1.91 1.72 1.53 1.35

12 2.01 1.81 1.61 1.41

24 2.05 1.84 1.64 1.43
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Appendix E. Goodness of fit for different values of persistence length and maximum length.
Ideally one should be able to choose the best combination of molecular parameters (persistence
length p and maximum molecular length smax) based on the goodness of fit for the least squares
regressions. Unfortunately, the resolution in the data is not sufficient to identify the best
ordered pairs in the present case. The calculated sum of squared errors for each of the three
different experiments presented in Figure 7 are tabulated below for the series of solution pairs for
p and smax. In two of the cases in Fig. 7, the lowest sum of squared errors occurs for small values
of smax and large values of p, but in the third case, the opposite is true. Which solution gives the
lowest sum of squared errors depends critically on the data point at the highest pressure. Given
this sensitivity, it would be inappropriate to infer too much about which of the possible
combinations of smax and p most accurately reflect true membrane properties.

Table SS Fitting Error of Fig. 7A in the main text.

Smax p Oap SSE SSEp
130 48.5213 0.013069 0.99867 0.199734
135 37.12 1.07 1.122 0.2244
140 29.54 2.16 1.109 0.2218
145 24.19 3.38 0.911 0.1822
150 20.67 4.17 0.813 0.1626
160 15.54 6.28 0.674 0.1348
170 12.58 7.60 0.566 0.1132
180 10.61 8.74 0.498 0.0996
190 9.05 10.00 0.482 0.0964
200 8.03 10.64 0.4595 0.0919

Ry =0.85 um. SSE: sum of the squared error.
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Table S6 Fitting Error of Fig. 7B in the main text.

Smax p Oup SSE SSEp
130 52.3648 | -3.4339 | 0.45421 | 0.090842
133 441032 | -2.7385 | 0.37607 | 0.075214
135 39.8566 | -2.3664 | 0.48052 | 0.096104
140 31.19 -0.89 0.5313 | 0.10626
145 26.26 -0.46 0.615 0.123
150 22.30 0.50 0.782 0.1564
160 16.71 2.56 1.083 0.2166
170 13.63 3.61 1.334 0.2668
180 11.39 4.80 1.54 0.308
190 9.82 5.77 1.948 0.3896
200 8.71 6.36 2.235 0.447

Rp=0.55 um. SSE: sum of the squared error. SSEp: sum of the squared error per data point.

Table S7. Fitting Error of Fig. 7C in the main text.

Smax p Oap SSE SSEp
130 55.0781 -0.37773 3.5905 0.51292857
131 51.49 0 3.839 0.54842857
133 43.6 1.51 2.617 0.37385714
135 39.99 1.69 2.941 0.42014286
140 30.82 3.39 3.024 0.432
145 25.58 4.17 3.108 0.444
150 21.80 4.95 3.388 0.484
160 16.26 7.07 4.092 0.58457143
170 13.34 8.06 4.441 0.63442857
180 11.16 9.23 5.100 0.72857143
190 9.48 10.68 5.821 0.83157143
200 8.45 11.14 6.418 0.91685714

Ry =0.55 um. SSE: sum of the squared error. SSEp: sum of the squared error per data point.
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