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We developed coarse-grained models of spike proteins in SARS-CoV-2 coronavirus and
angiotensin-converting enzyme 2 (ACE2) receptor proteins to study the endocytosis of a
whole coronavirus under physiologically relevant spatial and temporal scales. We first
conducted all-atom explicit-solvent molecular dynamics simulations of the recently
characterized structures of spike and ACE2 proteins. We then established coarse-
grained models using the shape-based coarse-graining approach based on the
protein crystal structures and extracted the force field parameters from the all-atom
simulation trajectories. To further analyze the coarse-grained models, we carried out
normal mode analysis of the coarse-grained models to refine the force field parameters by
matching the fluctuations of the internal coordinates with the original all-atom simulations.
Finally, we demonstrated the capability of these coarse-grained models by simulating the
endocytosis of a whole coronavirus through the host cell membrane. We embedded the
coarse-grained models of spikes on the surface of the virus envelope and anchored ACE2
receptors on the host cell membrane, which is modeled using a one-particle-thick lipid
bilayer model. The coarse-grained simulations show the spike proteins adopt bent
configurations due to their unique flexibility during their interaction with the ACE2
receptors, which makes it easier for them to attach to the host cell membrane than
rigid spikes.

Keywords: multiscale modeling, endocytosis, SARS-CoV-2, cell membrane, coarse-graining

INTRODUCTION

Although a significant amount of research effort has been conducted to understand the SARS-CoV-2
coronaviruses and vaccines have been developed the exact infection mechanisms remain unclear [1].
Coronaviruses are spherical viruses with unique surface spikes [2]. The average diameter is about
80-120 nm. The virus is protected by the envelope and nucleocapsid when it is outside the host cell
[3]. The RNAs of the virus are enclosed in an envelope with a diameter of roughly 85nm [1]. The
envelope consists of a lipid bilayer and the membrane (M), envelope (E), and spike (S) structural
proteins embedded in the bilayer. While membrane proteins, envelope proteins, and the lipid bilayer
shape the viral envelope and maintain its size, spike proteins interact with the host cells by binding
with surface receptors such as angiotensin-converting enzyme 2 (ACE2) receptors. Cryo-electron
microscopy (cryo-EM) and x-ray crystallographic techniques have been applied to reveal the new
structures of viral proteins [4-16]. Due to their significance, computational modeling was employed
alongside experimental studies to investigate the properties of these proteins [17], but most of these
existing computational studies are limited to atomistic length and time scales. In this study, we will

Frontiers in Physics | www frontiersin.org

1 June 2021 | Volume 9 | Article 630983


http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2021.680983&domain=pdf&date_stamp=2021-06-04
https://www.frontiersin.org/articles/10.3389/fphy.2021.680983/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.680983/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.680983/full
http://creativecommons.org/licenses/by/4.0/
mailto:zhpeng@uic.edu
https://doi.org/10.3389/fphy.2021.680983
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2021.680983

Leong et al.

investigate the endocytosis of the whole virus under
physiologically relevant spatial and temporal scales by
constructing coarse-grained models of the spike proteins and
ACE2 receptors.

On the one hand, multiscale coarse-grained models of the
whole coronavirus have been developed [15], but they have not
been applied to study the endocytosis. In addition, to build a
minimal model with enough molecular details, we adopted a
more aggressive coarse-graining approach than that used in [15]
for both proteins and membranes. On the other hand, the
endocytosis of nanoparticles has been extensively studied by
computational modeling [18-24], but the endocytosis of
coronavirus has not been explored computationally with
sufficient molecular details. In the current study, we will
explicitly take into account the detailed molecular structures of
the spikes and ACE2 rather than modeling them as abstract
binding points.

We will focus on establishing the coarse-grained models of the
spike proteins and ACE2 receptors. The spikes are unique
structures of coronaviruses and are responsible for their
distinguishing  halo-like surface. A coronavirus particle
typically has about 70 spikes on its surface [25]. Each spike
consists of three spike proteins (a trimer) and its length is about
20 nm. Each spike protein is made of an S1 head subunit and an
S2 stem subunit. The S1 head subunit includes the receptor-
binding domain (RBD). Although one spike has three RBDs, only
one of them is in the up position for binding [26]. The S2 stem
subunit anchors the spike in the viral envelope. Recently, the
crystal structure of the SARS-CoV-2 spike protein has been
characterized using cryo-EM [PDB ID: 6Vestigial sideband
(VSB)] [6], which is responsible for binding to the cell
membrane via the extracellular domain of the ACE2 receptor
(PDB ID: 6M17) [27]. ACE2 receptor is a membrane-bound
carboxypeptidase that forms a dimer and serves as the cellular
receptor for SARS-CoV-2 [27]. Molecular dynamics (MD)
simulations revealed that the spike protein polybasic cleavage
sites, which are distributed approximately 10 nm away from the
RBD, can enhance the binding affinity between the SARS-CoV-2
RBD and ACE2 [28]. We took this into consideration by using the
enhanced binding energy (-177 kcal/mol) between RBD and
ACE2 among the predicted values of -50kcal/mol ~
—177 kcal/mol [28-32].

During the infection, the viral spike proteins first attach to
their complementary host cell receptors such as ACE2. Then the
host cell protease activates the receptor-attached spike proteins.
The virus enters the host cell by either endocytosis or membrane
fusion of the viral envelope with the host membrane, depending
on the availability of the host cell proteases [33]. One of our goals
is to simulate the endocytosis by coarse-grained modeling and
explicit consideration of the structures of spike and receptor
proteins. We will focus on the endocytosis simulation in this
study and extend the model to study membrane fusion in the
future.

Since the coronavirus is more than 80 nm, all-atom molecular
dynamics simulation is prohibitively expensive, not to mention
the long-time scale of the endocytosis. Instead, we will apply a
multiscale modeling approach. We will conduct all-atom MD

CG Modeling of Coronavirus

simulations of the spike protein and the ACE2 receptors based on
their recently characterized crystal structures. Then we will build
coarse-grained models of these proteins using the all-atom
simulation trajectories. After we demonstrate that the coarse-
grained model share similar structural properties with the
original all-atom proteins by matching fluctuations, we will
construct a whole virus model with a realistic number of spike
proteins, and conduct simulations of the endocytosis process of
the virus to investigate the cell entry mechanisms. In addition, we
developed automated scripts and MATLAB code for establishing
these CG models and conducting normal mode analysis. We
made them publicly available so that other users can repeat and
modify these models.

MATERIALS AND METHODS

All-Atom Molecular Dynamics Simulations
All-atom MD simulations of the spike protein and ACE2 receptor
were conducted using Nanoscale Molecular Dynamics (NAMD)
[34]. Explicit solvent is used in order to capture the accurate
fluctuations of the structure in equilibrium. A standard protocol
is applied. Minimization and annealing processes were carried
out first and then equilibrium simulation with the backbone
fixed were done before production MD simulations were run.
Both the fully-glycosylated full-length spike protein model
(Supplementary Figure S1 in the Supplementary Material)
and spike protein head S1 subunit model (Figure 1A) were
conducted by following the procedure described in [35]. The
simulation of the S1 subunit model is used to extract the force
field parameters of the bonds and angles in the S1 subunit, and
the simulation of the full-length spike protein model is used to
estimate the bond and angle coefficients for the stem S2 subunit.
A typical simulation box is 25 by 25 by 38 nm and about 2.3
million atoms were simulated for 20 ns. All-atom MD and CG
simulations were conducted on the supercomputer Theta in
Argonne Leadership Computing Facility (ALCF) in the
Argonne National Lab.

Shape-Based Coarse-Graining and Coarse

Grained Simulations

We utilized a technique called the Shape-Based Coarse Graining
(SBCG) approach to develop the CG models, where large-scale
motions of organic/biological molecules are represented using as
few spherical CG sites (beads) as possible [36]. This decreases
computational demand significantly when performing molecular
dynamics simulations. When it comes to the force-field equation,
atoms are substituted with CG beads. “Intramolecular” bonds
between CG beads are established if the CG beads are within a
certain distance of each other, or if the all-atom domains that
comprise the CG beads are contiguously connected by
intramolecular bonds.

We applied the SBCG tool in Visual Molecular Dynamics
(VMD) to construct the coarse-grained model [37]. First, the CG
sites and bonded interactions (bonds and angles) were established
based on the original all-atom structures. The coefficients of
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FIGURE 1| Coarse-grained models of the spike protein and the Angiotensin-Converting Enzyme 2 (ACE2) receptor. (A) Overlap of the original all-atom structure of
the head unit of spike protein (PDB ID: 6VSB) with the CG model. (B) Overlap of the original all-atom structure of the head unit of ACE2 protein (PDB ID: 6M18) with the
CG model. (C) Numbering of CG sites of the spike CG model. (D) Numbering of CG sites of the ACE2 CG model.

Lennard-Jones (L]) potential and the bonded interactions were
extracted based on all-atom MD simulation trajectories.
Specifically, an initial guess of the coefficients of bonded
interactions was made by matching the root mean square
displacement (RMSD) of internal coordinates, such as bond
lengths and angles. Then iterations of refinements were made
through CGMD simulations and normal mode analysis [38].
Detailed steps are shown in the Supplementary Material. In
addition, we also developed an automated Tool Command
Language (TCL) script for this procedure (“To-CG-File.tcl”)
within the Supplementary Material. The following classical
intramolecular and intermolecular interactions without
dihedrals were used

K K
V= z %(Rk - Ro,k)z + z %(Gk - Qo,k)z

bonds k angles k

12 6
Oji Oji -d:
x| ()] D o
beads i,j Tij Tij beads i,j TIEEY T

where E;= (E; x Ej)‘/’, 03 = (07 + 05)/2.0. The first term in Eq. 1
represents the energy associated with the harmonic oscillation
of a bond connecting two beads. K, i is the proportionality
constant for the harmonic oscillator, and Ry is the
equilibrium distance of the bond, or, the distance where
the elastic force is zero for bond k. The 2nd term represents
the energy associated with the harmonic oscillation of an angle
between the position vectors of two beads that are bonded to a
common bead. Ky | is the proportionality constant, and 8, | is
the equilibrium angle between the three beads for angle k.
Energy arising from electrostatic interactions is modeled

through Coulombic potential energy and the Van der Waals
interaction is modeled using the 6-12 L] potential. r; is the
distance between beads i and j, and q; and qj are the charges of
beads i and j, respectively. ¢, is the vacuum permittivity
constant and ¢ is the relative permittivity of the medium
that beads i and j exist in. oy represents the Van der Waals
radius of the pair of beads i and j, or, the distance where the L]
potential is zero. E;; is a proportionality constant representing
the minima of the L] potential energy graph for the paired
beads i and j, and is proportional to the maximum strength of
the attraction between beads i and j. L] potentials prevent the
overlapping or penetrating of neighboring CG sites. The
equation sums up all of the individual energies obtained
from every intramolecular bond, intramolecular bond angle,
and every combinatorial pair of beads that exist in the
molecule. In addition to the force field approximations, the
following Langevin equation is used to describe the motions of
the CG beads

o'r or

mopm =F—my—+xy(®) ()
where F is the force imparted on the bead by other beads in
the system, r is the position of the bead, m is the mass of the
bead, y is the damping coefficient of the solvent the bead is in, and
x is a fluctuation-dissipation theorem function of the form y =
(ZkaT/m)l/’, where kg is the Boltzmann constant. y(t) is a
Gaussian process used to simulate Brownian motion. As 0°r/
ot" would represent the acceleration of the bead, then this
Langevin equation describes the motion of the bead after
accounting for fluid viscous friction and thermal fluctuations.
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The CG simulations of individual spike proteins and ACE2
receptors were carried out in NAMD for refinement of the
force field parameters.

The detailed procedure is given in the Supplementary Material
for building the CG model based on all-atom MD simulations in
VMD and converting it to the format of molecule files that can be
used in CG simulations of endocytosis using Large-scale Atomic/
Molecular Massively Parallel Simulator (LAMMPS) [39].

Normal Mode Analysis

We also wrote a Matlab code to conduct the normal mode
analysis (NMA) [38] of the two CG models. We constructed
the Hessian matrix V2E (E is the total energy) based on bond and
angle interactions

|V’E - AM| =0 3)

where M is the mass matrix and A = ? is the eigenvalue (w is the
vibration frequency). We diagonalized the mass weighted
Hessian matrix to obtain eigenvalues and eigenvectors. The
fluctuations of the CG bead coordinates are given as

3N6k
B

(Axy = Z M Lol il ()

The mean square displacement (MSD) of the internal
coordinates can be written as function of eigenvalues and
eigenvectors as [38].

g = Z ol Z\ M )

where w? = A and y is the eigenvector and B is the Wilson matrix
relating the CG bead coordinates to the internal coordinate
as A¢ = BAx[38].

Setup of Endocytosis Coarse-Grained

Simulations

We modeled the envelope of the virus as a rigid sphere with a
diameter of 85 nm. Seventy-two spikes are embedded in the
envelope in our model. The end CG sites (CG site 17 in
Figure 1C) of the spike stems are anchored to the envelope.
Morse bonds are formed between the receptor binding site (CG
site 11 Figure 1C) of the spike and the binding sites (CG sites 1
and 13 in Figure 1D) of the ACE2 protein when they get close to
each other. Only one receptor binding site is modeled on each
spike, as the crystal structure of the spike has only one receptor
binding site up [26]. Two binding sites on each ACE2 receptor
were modeled. The virus is given an initial small velocity
towards the cell membrane to initiate the endocytosis
process. Body temperature is used for all simulations, and a
simulation box of 800 by 800 by 1600 nm is applied with the
periodic boundary condition. While there is no direct
measurement of absolute ACE2 surface densities and only
relative ACE2 expressions were measured [40, 41], Chen
et al. measured a density of 480-640/um” for receptors of
various species [42]. We used a surface density of 300/um”

CG Modeling of Coronavirus

which is about 1/10 of the surface density of the spike on the
envelope (3,260/um?). This value was also used in a recent study
to quantify the adhesive strength between the SARS-CoV-2
spike proteins and the human receptor ACE2 [43].

We applied the one-particle-thick lipid bilayer model [44],
which we developed as a LAMMPS package [45], to simulate a flat
cell membrane patch with ACE2 proteins embedded. It gives a
bending rigidity of 50 kyT, and ACE2 proteins can diffuse freely
on the surface of the fluctuating cell membrane. All the CG
simulations of endocytosis were carried out in LAMMPS.

We used the Berendsen thermostat and barostat to control the
temperature and membrane tension. The temperature is set to
T = 0.23 &/kg for all the particles in the simulations, where € is the
energy depth in the one-particle-thick lipid bilayer. We controlled
the membrane tension to zero by setting the coupled XYZ
pressure to zero. Because the out-of-plane stress of the
membrane is always zero, and the membrane is curved in 3D
due to deformation, the coupled XYZ pressure is linearly
proportional to the membrane tension.

The binding energy between the spike RBD and ACE2 is
modeled using the Morse breakable bond as

E=D[1- ]’ (6)

with an energy well depth of D = 68 &, which gives a physical value
of 177 kcal/mol obtained from all-atom simulations [28], and
a=1.0, rp = 1 nm. We used Morse breakable bonds instead of
Morse pair interactions because pair interactions can cause
clustering of ACE2 receptors, as many ACE2 receptors can
bind to the same spike at the same time [18]. This unphysical
problem can be solved by using LAMMPS commands “fix bond/
create” and “fix bond/break”. We set the maximum number of
bonds that can be formed for the spike RBD from ACE2 to be one.
The cutoff for Morse bond formation in “fix bond/create” is set to
20 nm, and the cutoff for Morse bond break in “fix bond/break” is
set to 28 nm. By using the command “fix bond/break”, we not
only make the simulation of binding/unbinding more realistic,
but also avoid numerical instability due to excessive bond stretch.
Because the attraction branch of Morse potential near the cutoff
distance is weak, after the bond is formed the bond can be
stretched beyond the ghost atom cutoff length in LAMMPS in
some cases, leading to errors of missing atoms in multiple CPU
simulations. With “fix_bond/break”, the bond will break if it is
longer than 28 nm before it reaches the ghost atom cutoff length,
which is set to 30 nm in the simulations.

RESULTS

Overview of the Coarse-Grained Models

Although different resolutions of coarse-graining can be
developed by using the SBCG approach, we focused on the
minimal model with a small number of CG sites. The CG
models for the SARS-CoV-2 spike protein and the ACE2
receptor are shown in Figure 1B. In Figure 1A and
Figure 2B, the CG models are superimposed on top of their
respective all-atom structures, and only the head S1 subunit is
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FIGURE 2 | Comparison of Root Mean Square Displacement (RMSD) fluctuations of bond lengths (A) and angles (B) obtained from the original all-atom
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shown for the spike protein. The all-atom systems are colored
based on their secondary structures.

The CG model of the spike protein has 17 CG sites. Sites 1-15
represent the S1 head subunit and sites 16 and 17 present the S2
stem subunit. Within the S1 subunit, CG site 11 represents the
receptor binding domain (RBD) in the original crystal structure
(PDB: 6VSB), and CG sites 3 and 15 present the hidden RBDs.
CG sites 6, 12, and 14 represent the outer beta sheets domains of
each spike protein in the trimer. In the S2 subunit, CG site 17 is
anchored in the viral envelope, and CG site eight is the connecting
region between S1 and S2 subunits.

The CG model of the ACE2 receptor has 15 CG sites. CG sites 3,
4,5,8,10, 11, and 15 represent the transmembrane domains, while
CG sites 1 and 13 represent two binding sites for the spike protein.

Parameters of the Coarse-Grained Model
The CG parameters in Eq. 1, such as bond coefficients and initial
lengths, are listed as Supplementary Tables S1-S8 in the
Supplementary Material for the SARS-CoV-2 spike protein
and the ACE2 receptor. Note that only bond and angle
interactions are used as shown in Eq. 1, while dihedral angles
are not included in this shape-based coarse-graining approach.

Note that the bonded coefficients of the S1 head subunit are
obtained from the all-atom simulations of the S1 head subunit,
while the bonded coefficients of S2 subunits are obtained
from the fully-glycosylated full-length spike protein model
(Supplementary Figure S1 in the Supplementary Material).

The comparison RMSDs of the original all-atom simulations
with the CG models for bond length and angles are shown in
Figure 2A. Figure 2B shows the fluctuation magnitudes of the
CG model match well with the original all-atom model.

Normal mode analysis of the

coarse-grained model
Normal mode analysis (NMA) is also applied to calculate the
fluctuations and vibration modes of the CG models. In Figure 2B,

the fluctuations (yellow curves) obtained by NMA match well
with the all-atom model. The fluctuations calculated from NMA
are different from the fluctuations obtained from direction CG
simulation of the same model due to the anharmonic effect in the
direct CG simulations. In addition, the first three vibration modes
of the spike S1 head unit are shown in Figure 3. The 1st and 2nd
modes involve the motions of the RBD site in two horizontal
directions, respectively, and the 3rd mode involves the motion of
one of the three exterior beta sheet domains.

Modeling of the Endocytosis of the

Coronavirus.
After we established the CG models of the spike protein and ACE2
protein, we applied them to simulate the endocytosis of a whole
coronavirus. As shown in Figure 4A, we modeled the virus envelope
as a rigid sphere with a diameter of 85 nm. The CG models of the
spike proteins (red) are distributed on the surface of the virus with
the stems embedded in the viral envelope (grey). The RBD binding
sites of the spike proteins (CG site 11 in Figure 1A) are highlighted
as blue. The transmembrane domain CG sites of the ACE2 proteins
(green) are embedded in the host cell membrane (orange). The host
cell membrane is modeled by using the one-particle-thick bilayer
model [44, 45]. The same interaction is applied between the cell
membrane particles and the CG particles of the transmembrane
domains of ACE2 so that the ACE2 proteins are anchored in the cell
membrane with the right orientation as shown in Figure 4A. The
binding sites of the ACE2 proteins are also shown as blue. The depth
of the energy well € of the pair interaction in the one-particle-thick
model is set to about 5.0 times thermal energy (kg T) and the
characteristic length and the cutoff length are set to 4 and 10.4 nm so
that the membrane self-assembled into a one-particle-thick layer
with the fluid behavior and bending rigidity of 50ks T. The
attraction and repulsive parameters =2 and (=4, and the
bending parameter ¢ = 3 (see Fu et al. [45]).

As shown in Figures 4C,D, the ACE2 proteins can diffuse on
the fluctuating cell membrane with the correct orientations. The
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FIGURE 3| The first three normal modes of the spike CG model. (Ai) 1st mode (side view). (Aii) 1st mode (top view). (Bi) 2nd mode (side view). (Bii) 2nd mode
(top view). (Ci) 3rd mode (side view). (Cii) 3rd mode (top view). The RBD site (CG site 11) is highlighted as blue.

FIGURE 4 | Simulations of the endocytosis of a whole virus by incorporating the CG models of the spike protein and the ACE2 receptor. (A) A CG model of the
whole virus with 72 distributed spike proteins (red) anchored on its viral envelope (grey). The spike proteins are modeled using the CG model described in Figure 1. ACE2
proteins (green) are anchored in the host cell membrane (orange). Both the binding sites of the spike proteins and ACE2 proteins are marked as blue. (B) The initial
attachment of the virus to the fluctuating cell membrane. (C) The progress of the endocytosis due to spike-ACE2 interaction. (D) Separation of the membrane-
bounded virus from the host cell membrane. Only half of the cell membrane is shown in (B, C, D) for revealing the interior virus and interactions. (E) A close view of the
interactions between the spike proteins (red) and ACE2 receptors (green) through their binding sites (blue). Most ACE2 receptors bind to two spikes. Membrane is not
shown. (F) The same as (E) except the ACE2 receptors and spikes are modeled as rigid bodies without flexibility. All ACE2 bind to one spike only. Membrane is
not shown.
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Berendsen thermostat and barostat are used to maintain a
constant membrane temperature and zero membrane tension.
The rigid body dynamics in LAMMPS is employed for the viral
envelope, and the NVE integrator with Langevin thermostats is
employed for the dynamics of spike and ACE2 proteins under
the same temperature as the membrane. The interaction
between the spike RBD sites and the ACE2 binding sites is
simulated by breakable Morse bonds. The binding energy
between the spike and ACE2 is set to —177 kcal/mol,
obtained from the literature for spike-ACE2 interaction
[28-32].

When the virus is initially attached to the cell membrane, the
spike proteins at the bottom surface of the virus bind to the
ACE2 proteins and are deformed due to their structure
flexibility as shown in Figure 4B, while the spike proteins on
the top surface remain much less deformed, although they
vibrate due to thermal fluctuations. After more ACE2
proteins bind to the spikes, the virus is engulfed by the cell
membrane. This eventually leads to the necking and rupture of
the cell membrane as shown in Figures 4C,D. Our simulations
show that due to the flexibility of the spike proteins and their
actual surface density, it is possible for the two spikes to bend
significantly to bind to the same ACE2 receptor as shown in
Figure 4E. Our simulations show that this is not possible if the
spike and ACE2 proteins are modeled as rigid structures, and
one spike can only bind to one ACE2 as shown in Figure 4F.
Therefore, it is critical to consider the realistic flexibility of the
spike and ACE2 proteins in the simulations, as also
demonstrated in all-atom MD simulations [46-48].

CONCLUSIONS AND DISCUSSIONS

We developed the CG models of the spike proteins and ACE2
receptors using the shape-based coarse-graining approach. The
force field parameters are obtained from the all-atom simulations
by matching the fluctuations. Then these CG models are
incorporated into LAMMPS to simulate the binding of the
spike proteins with the ACE2 receptors during the endocytosis
of a whole virus. We found that the realistic structure flexibility of
the spike proteins and ACE2 proteins is critical for better
interaction between these two proteins. For example, our
results showed that two spike proteins can easily bind to one
ACE2 receptor due to significant bending deformation.

Besides endocytosis, the coronavirus can enter the host cell by
membrane fusion. To model the membrane fusion process in a
future study, we will need to consider the viral envelope as a
flexible membrane using the one-particle-thick lipid bilayer
model. As the connection between the S1 and S2 subunits is
cleaved and the S1 head subunit is removed from the virus during
the membrane fusion process, we also need to refine the CG
model to incorporate this breakable bond mechanism.

In summary, we simulated the endocytosis of the whole
coronavirus with minimal atomistic details of its spike
proteins and corresponding ACE2 receptors. Although the
resolution is coarse and the coarse-graining is aggressive, it

CG Modeling of Coronavirus

can help us understand the biophysical behavior of the
coronavirus at large temporal and spatial scales beyond typical
atomistic simulations. Furthermore, the CG resolutions can be
refined if needed through the same procedure by using the scripts
provided in the Supplementary Material.
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