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The molecular composition of soil organic carbon remains contentious. Microbial-, plant-,
and fire-derived compounds may each contribute, but do they vary predictably among
ecosystems? Here we present carbon functional groups and molecules from a diverse
spectrum of North American surface mineral soils, primarily collected from the National
Ecological Observatory Network, quantified by nuclear magnetic resonance spectroscopy
and a molecular mixing model. Soils varied widely in relative contributions of
carbohydrate, lipid, protein, lignin, and char-like carbon, but each compound class had
similar overall abundance. Three principal component axes explained 90% of the variance
in carbon composition: the first showed a tradeoff between lignin and protein, the second
showed a tradeoff between carbohydrate and char, and the third was explained by lipids.
Reactive aluminum, crystalline iron oxides, and pH plus overlying organic horizon
thickness best explained variation along each respective axis; these predictors were
ultimately related to climate. Together, our data point to continental-scale tradeoffs in soil
carbon molecular composition which are linked to environmental and geochemical
variables known to predict carbon mass concentrations. Controversies regarding the
genesis of soil carbon and its potential responses to global change can be partially
reconciled by considering diverse ecosystem properties that drive complementary
persistence mechanisms.

Soil organic carbon (SOC) is generally understood to comprise a diverse suite of
biomolecules representing the decomposition products of plant and microbial biomass and the
imprint of abiotic processes such as fire!2. However, the fundamental mechanisms controlling
the molecular composition of SOC within and among mineral soils remain contentious?. Do

disparate soils converge along a predictable molecular continuum of SOC composition driven by
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the inexorable transformation of plant detritus to a consistent suite of low-molecular-weight
decomposition products!*°? Or conversely, do diverse biogeochemical factors such as climate,
vegetation, or mineralogy lead to distinct molecular differences in SOC among ecosystems’-3?
We can increasingly predict the spatial distribution of SOC as a function of biogeochemical
properties®, as well as the partitioning of SOC between particulate and mineral-associated
pools!®. An equivalent framework for predicting SOC molecular composition among ecosystems
remains elusive but could inform our understanding of the functional properties of SOC and its
dynamics under global change?!!.

Debates on the importance of different mechanisms of SOC persistence rest in part on our
contested understanding of its molecular composition. Plant-derived aromatic compounds like
lignin were historically thought to dominate SOC due to their macromolecular structure'?, which
requires strong oxidants for depolymerization'®. Subsequent work challenged this view by
demonstrating that aromatic and lignin-like moieties may be minor constituents> that decompose
faster than bulk SOC'#!5, Microbial necromass and low-molecular-weight decomposition
products (carbohydrates, proteins, and lipids) have assumed key roles in current SOC paradigms
given the potential for efficient microbial metabolism and recycling of these molecules. In this
view, SOC persistence does not derive from chemical complexity'® or stability but rather from
protective physico-chemical interactions with minerals and aggregates with microbial detritus
playing a dominant role®!72!,

However, the importance of microbial vs. direct plant contributions to SOC could vary
among ecosystems?2. Microbial growth and necromass production may be decoupled from SOC
accumulation in stressful environments where decomposition is inefficient®*. Significant

contributions of lignin and other plant-derived compounds to mineral-associated SOC were
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recently observed?*2°. In fact, lignin-derived C may have been systematically underestimated

25,27,28

due to methodological biases . Finally, char-like molecules presumably derived from

pyrolytic decomposition are prevalent in many ecosystems?*3? despite evidence that the

increased stability of these molecules does not guarantee long-term persistence?!-32

. In spite of
significant theoretical and empirical progress>!%33, we still lack a consistent framework for
reconciling potential controls on SOC molecular composition across diverse ecosystem types.
Such a framework would enhance our conceptual understanding of the origins and persistence of
soil carbon to inform modeling and management of this critical resource.

Here, we leveraged a unique sample archive and datasets provided by the National
Ecological Observatory Network (NEON), along with additional samples, to characterize SOC
molecular composition and its relationships with biogeochemical factors across 42 North
American surface mineral soils (Extended Data Fig. 1). Samples spanned 11 of the 12 US
Department of Agriculture soil orders (all except Histosols, which were explicitly excluded) and
the major ecosystem gradients of North America (tropics to tundra; Supplementary Table 1,
Extended Data Fig. 2). We quantified the molecular functional groups of bulk SOC of
demineralized samples using solid-state '3C cross-polarization magic-angle-spinning (CPMAS)
nuclear magnetic resonance (NMR) spectroscopy. We confirmed the robustness of results by
assessing sample pretreatment and analytical biases in companion measurements employing

cross- and direct-polarization NMR (Supplementary Discussion; Supplementary Tables 1-6,

Supplementary Figures 1-5).

Molecular variation in SOC at the continental scale
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The *C CPMAS NMR spectra (Extended Data Fig. 3) illustrated substantial variability in SOC
molecular composition (Fig. 1a). Across all samples, O-alkyl, alkyl, and aromatic C were the
largest constituents, with mean values of 23%, 22%, and 21% of total SOC, respectively; each
varied as much as 2.5-, 3.4-, and 2.8-fold among samples (Fig. 1a). Amide/carboxyl C was less
abundant (13%; P < 0.05) but was greater than phenolic, N-alkyl/methoxyl, and di-O-alkyl C,
which each comprised 7% of SOC, on average (Fig. 1a). These results challenge a previous
literature synthesis of similar measurements, where disparate soils tended towards a consistent
ranking of C functional groups (O-alkyl > alkyl > aromatic > carbonyl)®. Across our diverse
soils, no constituent was dominant overall, and either O-alkyl, alkyl, or aromatic C could
predominate within an individual sample.

The molecular mixing model implied that five constituent molecules had similar relative
abundance across the dataset as a whole: carbohydrate, lignin, lipid, protein, and char comprised
mean values of 21%, 21%, 18%, 18%, and 17% of SOC, respectively (Fig. 1b). Despite their
similar means, these molecules varied greatly among soils, by as much as 4-, 33-, 46-, 10-, and
6-fold, respectively. Carbonyl C which represented the oxidized products of various molecules
was consistently less abundant (5% of SOC). To illustrate molecular changes during
decomposition, we compared these SOC data with previous litter measurements conducted using
comparable NMR methods (Supplementary Table 7). Although highly variable among
ecosystems, litter is typically dominated by carbohydrates (36—80%; mean 56%), with lesser
contributions from lignin (12—43%; mean 24%), lipids (0-21%; mean 8%) and proteins (0.3—
28%; mean 7%). Litter data available from a subset of the forested NEON sites also had a mean
lignin content of 24% (Extended Data Fig. 2). Therefore, on average, SOC from our surface

mineral soils (Fig. 1b) tended to have less carbohydrate, similar lignin, and more lipid and



116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

protein as compared with typical organic matter inputs, even after accounting for carbohydrate
losses during HF treatment (Supplementary Information). Our data are consistent with the
emerging consensus that readily decomposable biomolecules, especially carbohydrates and
proteins, are often important SOC components®3, and they reinforce the importance of lipids's*.
However, our data challenge the view that lignin is disproportionately lost relative to other
molecules as microbes degrade litter to form SOC>!415, Although variable, mean lignin
abundance in SOC (21%) was similar to the other dominant molecules and similar to mean lignin
abundance in litter.

Some SOC molecules covaried with vegetation and management characteristics
(Extended Data Fig. 4). Lignin was significantly greater (23% vs. 16%) and protein was a
smaller component (15% vs. 23%) of SOC in forests than grasslands/shrublands (P < 0.05). Char
was greater in ecosystems experiencing periodic prescribed fire (22% vs. 16%, P < 0.05), but
intriguingly, char was not limited to fire-prone ecosystems. All soils contained measurable char
(> 6%). Interpretation of char-like C remains contentious, as it might be produced by non-fire-
related processes®*. However, the fact that char significantly increased in soils with a known
history of fire (Extended Data Fig. 4) indicates the importance of pyrogenesis. Five soils were
from perhumid climates where mean annual precipitation (MAP) exceeded potential
evapotranspiration (PET) by > 1 m (Supplementary Table 1). This implicates a plausible role for
ancient or anthropogenic fire in producing extant char. For example, anthropogenic charcoal
production, but not natural fire, was documented in the rainforests of the Luquillo Mountains,

Puerto Rico®’, where two samples were collected.

Consistent molecular tradeoffs linked to ecosystem factors
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Molecules covaried in predictable ways within samples despite high variability in composition
among samples. Lignin and carbonyl C were positively correlated while lignin and protein, and
carbohydrate and char, were each negatively correlated (corrected P < 0.01, P <0.0001, and P <
0.0001, respectively; Extended Data Fig. 5). Principal components analysis showed that the
correlation matrix of SOC molecules was dominantly explained (R? = 0.90) by three axes, which
we rotated orthogonally to maximize interpretability and thus refer to as rotated components
(Fig. 2, Supplementary Table 3). The first rotated component (RC1) scores were positively
correlated with lignin (r = 0.9) and carbonyl (r = 0.8) and negatively correlated with protein (r = -
0.8; Fig. 2a, Extended Data Fig. 6). The second rotated component (RC2) scores were positively
correlated with carbohydrate (r = 0.88) and negatively correlated with char (r = -0.92). The third
rotated component (RC3) scores were strongly correlated with lipid (r = -0.98) and weakly
correlated with other molecules (r < 0.53). The molecular tradeoffs implied by the RC axes
indicated the importance of multiple SOC persistence mechanisms enabling differential accrual
of molecules among ecosystems.

To assess potential mechanisms underlying observed variation in SOC composition, we
analyzed correlations between molecule relative abundance and biogeochemical predictors and
performed multiple regression analyses and structural equation models (SEMs) for each RC axis.
Several SOC molecules showed significant correlations with geochemical, biological, and
climate variables (Fig. 3, Extended Data Fig. 7, Extended Data Fig. 8). Lignin and carbonyl C
correlated positively with concentrations of oxalate-extractable aluminum (Alo), which
represents Al in short-range-ordered (SRO) mineral phases and/or organo-metal complexes that
can protect SOC from microbial decomposition?®. In contrast, protein had a negative correlation

with Alo and with copy numbers of the fungal internal transcribed spacer (ITS) region, and a
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positive correlation with pH. Lipid C correlated negatively with mean annual temperature
(MAT), pH, and sulfate-extractable calcium and magnesium (Cas+ Mgs), which may participate
in cation bridging with clay minerals. Lipid C correlated positively with the thickness of the
overlying organic (O) horizon, which in turn had a strong negative relationship with MAT (Fig.
4).

Consistent with these pairwise correlations, different sets of variables best predicted
variation along each RC axis (Extended Data Fig. 9). We present multiple models fit by
backwards selection using more conservative (P <0.01) and liberal (P < 0.05) variable selection
criteria, respectively (Methods). We also compared models fit to the NEON samples only vs. the
complete dataset, given that not all potential predictors were available for all samples (e.g., root
and microbial data). Across all models, Alo concentration was the best predictor of RC1 (r =
0.63-0.69, P < 0.001), with increasing values reflecting greater lignin vs. protein. The more
liberal models indicated that Cas + Mgs, forest vegetation, and prescribed fire were also
positively correlated with RC1, as was ITS copy number. For RC2, crystalline iron mineral
concentration (Fed-o) was a consistently important predictor across models (r = 0.28-0.48, P <
0.01), which was associated with increased carbohydrate vs. char. The liberal models also
indicated a negative correlation of RC2 with mineral horizon thickness and fine root C:N, and a
positive correlation with fine root biomass. For RC3, soil pH and O horizon thickness were the
strongest predictors (r = 0.40—0.60, P < 0.001); MAP-PET and fine root C:N also correlated
positively with RC3. The more acidic soils with thicker O horizons were associated with greater
lipid relative abundance.

The SEMs showed that the strongest biogeochemical predictors of SOC composition

were ultimately related to climate, either directly, or via proxies for soil development which were
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also related to climate (thickness of the O horizon and surface mineral genetic horizon; Fig. 4).
Concentrations of Al increased with MAP-PET (excess moisture drives dissolution of Al-
bearing minerals3”) and decreased with MAT. Similarly, Fed.o, which accumulates as soils
progressively weather, also increased with MAP-PET. Temperature impacted SOC composition
both directly and indirectly. Increasing MAT decreased O horizon thickness, consistent with
increased decomposition of unprotected organic matter with warmer temperature®®. Organic
horizon thickness was directly linked to RC3, and also indirectly linked via effects on pH (O
horizons may promote acidification by leaching organic acids3®). Thinner O horizons were also
associated with thinner mineral surface genetic horizons in our dataset, possibly reflecting
differences in soil profile development related to litter decomposition rates. Surface mineral
horizon thickness, in turn, was proximately linked to SOC composition (RC2). Including
vegetation type or fire did not improve any of the SEMs, possibly because these factors were
adequately reflected by climate or soil-horizon-related variables.

The relationships between SOC composition and biogeochemical predictors observed
here provide a molecular-level explanation for trends in SOC content among ecosystems noted
elsewhere. The concentration of Alo is among the best predictors of SOC content at local to
global scales®*, reflecting its formation of protective complexes with SOC?3¢. Our data imply
that specific geochemical associations between lignin- and carbonyl-derived SOC and Alo could
explain increases in SOC content with Alo among soils. The finding that lignin was the only
molecule whose relative abundance significantly increased with SOC content (Fig. 3) also
accords with this interpretation. A strong Alo-lignin relationship is consistent with previous
evidence of ligand exchange by carboxylated aromatics on SRO ordered Al phases*' and high

concentrations of lignin-derived C observed in humid tropical soils rich in SRO phases®>4042,
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While lignin was greater in forested than non-forested soils (Extended Data Fig. 4), the
relationship between lignin and Alo—and ultimately, climate—was much stronger than the
relationship with vegetation (Figs. 3,4, Extended Data Table 3). Relationships between Alo and
lignin partially reconcile aspects of old and new SOM paradigms: lignin-derived C may
contribute significantly to SOC in some soils!? (Fig. 1), but not because of inherent
recalcitrance®!-*2. Rather, lignin (and carbonyl C, which was strongly correlated with lignin) may
vary among ecosystems as a function of geochemical context. Our statistical models also
supported a role for Ca and Mg in protecting lignin; these cations can provide protective bridging
between anionic SOC functional groups and negatively charged mineral surfaces®. Minerals and

t3l,36

metals are effective predictors of SOC conten , and interactions with specific SOC molecules

may underlie these patterns.

Complementary mechanisms of SOC persistence

The first observed tradeoff, between lignin and protein (Figs. 2,5), may reflect multiple
underlying mechanisms. First, where SRO mineral phases (i.e., Alo) and physicochemical
protection are scarce, protein relative abundance may increase because it is a major microbial
biomass component that can be efficiently recycled between living and dead microbes, whereas
most lignin C is decomposed to carbon dioxide!®?!. Second, in acidic soils, low abundance of
protein (Fig. 3) vs. lignin may be driven by inefficient litter decomposition and low microbial
necromass production?®. Third, the negative correlation between fungal ITS copies and protein
(Fig. 3) suggests that fungi may play a role in the lignin-protein tradeoff. Fungi are dominant
decomposers of lignin!? but have a higher biomass C:N (lower protein content) than bacteria®3.

Finally, the observed tradeoff between lignin and protein in SOC could reflect the fundamental

10
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role of the lignin:N ratio in controlling litter decay rates. Protein is a dominant soil N pool, and
limited N availability to produce lignin-degrading enzymes could constrain lignin mass loss**.

The second observed tradeoff, between carbohydrate and char (Figs. 2,4), was most
closely linked to Fed-o. Crystalline Fe phases are protective sorbents that may promote soil
aggregation’®*1#2 and these physicochemical protection mechanisms may explain increased
relative abundance of carbohydrate, an easily decomposed molecule. Increasing quality (lower
C:N ratios) and quantity of fine root biomass were also associated with greater carbohydrate. In
contrast, char became more abundant as Fed-o and fine root quantity and quality decreased. We
interpret this second tradeoff as follows: where physicochemical protection is lacking, a complex
molecular structure involving a greater diversity of bond types and more stable bonds (such as
those contained in polyaromatic char-like SOC) becomes increasingly important. Accepting that
molecular structure alone cannot guarantee long-term persistence, the logistical challenges of
char decomposition'®?° may increase its relative contribution to SOC where other protection
mechanisms are unavailable and root C inputs are small.

The third SOC axis was related most strongly to lipid content (Figs. 2,4). Temperature
and pH are known to impact SOC content of mineral soils®*®, and our data indicate that this may
be influenced by lipid accrual (Figs. 3,4). Lipids were largely independent of other molecules
and increased in cold, acidic soils with thick overlying organic horizons, comprising up to 59%
of SOC. Constraints on microbial physiology may promote lipid persistence. Lipids are the most
chemically reduced constituents of SOC, requiring greater activation energy for oxidation than
other compounds*®. Because decomposition reactions are temperature dependent, the Arrhenius
equation predicts that molecules with the highest activation energies (i.e. lipids) exhibit the

greatest increase in decomposition rate with increasing temperature if other protection

11
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mechanisms are unavailable®. As such, accrual of lipids in cold mineral soils is consistent with
thermodynamic expectations.

Collectively, our continental-scale dataset supports a concise new framework for
understanding multiple complementary mechanisms of SOC persistence among ecosystems (Fig.
5). Debates as to the relative importance of microbial necromass vs. lignin in SOC?%-21:2328 can be
reconciled in part by considering the biogeochemical heterogeneity of ecosystems: necromass
may be more important than lignin where reactive Al phases are scarce, and vice-versa.
Similarly, the contested role of molecular stability in SOC persistence!63'-3? is also illuminated
by examination of broad ecosystem gradients: where physicochemical protection mechanisms
mediated by Fe are scarce and high-quality root C inputs are small, char assumes a more
important role. Finally, differences in temperature and pH among ecosystems were ultimately
linked to lipid abundance, informing debates as to which SOC forms may be most impacted by
near-term warming and acidification®®4°. Over longer timescales, temperature and moisture
influence all three axes of this conceptual framework via soil development (Fig. 4). Collectively,
our data point to the power of a macrosystems approach in reconciling paradigmatic

controversies in SOC research.
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Figure Captions

Fig. 1: Boxplots of carbon abundance as the fraction of total SOC in each sample. Values
were determined directly from '*C CPMAS NMR peak areas (a) and by applying a molecular
mixing model (b). Grey dots represent observations (n = 42). Center lines are medians; box
limits are upper and lower quartiles; whiskers are 1.5x the interquartile ranges; points are

outliers.

Fig. 2: Rotated principal components analysis of SOC molecules. RC1, RC2, and RC3
represent rotated components 1-3, which respectively explained 35%, 29%, and 26% of the total
variation (90% overall) in the correlation matrix of SOC molecule relative abundance. Grey dots
represent soil samples, and labeled green arrows indicate correlations between SOC molecules

and RCs, with the correlation coefficient indicated on the top and right axes (carbohyd denotes

18



411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

carbohydrate). Several samples with RC values > 3 (Supplementary Table 3) are not shown for

clarity.

Fig. 3: Heatmap of correlations (r) between SOC molecules and biogeochemical predictors.
The symbols *, ** and **** denote corrected significance at P < 0.05, P <0.01, and P < 0.0001,
respectively. MAT, mean annual temperature; MAP-PET, mean annual precipitation minus
potential evapotranspiration. Additional descriptions of biogeochemical predictors and any data

transformations are provided in the Methods and Supplementary Table 5.

Figure 4: Parsimonious structural equation models of SOC molecular composition. The
response variables (RC1, RC2, RC3) are the rotated principal components of SOC molecule
relative abundance. Solid yellow and blue lines indicate significant positive or negative
piecewise relationships between variables (P < 0.05). Dashed lines indicate non-significant
piecewise relationships that improved overall model fit as indicated by comparing AIC of nested
models. Numbers in boxes are scaled correlation coefficients. Fisher’s C statistic refers to the test

of the overall model fit, where high P values indicate plausibility of the overall model.

Figure 5: Conceptual model of three-dimensional tradeoffs in SOC composition linked to
complementary persistence mechanisms as supported by our data. Soil samples fall within a
spherical space indicating the relative predominance of different SOC molecules, which are
constrained according to three major axes of variation. The location of a sample along each axis
indicates the relative importance of different SOC persistence mechanisms as described in the

text.
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Methods

Soil sampling and analysis. We analyzed the molecular SOC composition of surface mineral
soil samples spanning 32 sites in the NEON Megapit archive, along with 10 additional soils
which were selected to encompass additional diversity in biogeochemical characteristics
(Supplementary Table 1). Vegetation included forests (n = 29) and grasslands or open canopy
shrublands (n = 13), including both managed (burned or grazed) and wildland sites. Soils were
sampled from the upper-most mineral soil horizon at a given site (organic horizons were
excluded); complete soil profile descriptions for the NEON sites are provided in Supplementary
Table 2. Briefly, in the dominant soil and vegetation type at each NEON terrestrial site, a soil
profile was characterized and sampled by horizon with the help of US Department of Agriculture
Natural Resource Conservation (NRCS) staff and archived by NEON*"#, We requested
subsamples of A horizon material from each site in the Megapit archive that was available in
September 2019. The Gellisols had extensive organic (O) horizons, such that we requested
material from the mineral horizon closest to the surface (described as Bg/Oajj, A/Cjj, and Bg at
BONA, HEAL, and TOOL, respectively; Supplementary Table 1). The 10 non-NEON samples
analyzed here were each collected from 0—10 cm depth with a clean shovel after removing any
litter or O horizon material. All soils were air dried to constant mass and sieved to 2 mm. Visible
root fragments were removed with tweezers and soils were finely ground with a mortar and

pestle prior to subsequent analyses.

B3C CPMAS NMR analyses and sample preparation All 42 samples were prepared for NMR

analyses, allowing a comparative characterization of organic C molecular composition. In order
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to increase the NMR sensitivity and remove paramagnetic materials, soils were pre-treated with
hydrochloric acid (HCI, 10% wt.) and hydrofluoric acid (HF, 10%, wt.) to remove any calcium
carbonate and mineral phases, respectively®’. Briefly, 2-3 g of finely ground soil was weighed
into a 50 mL sealed polyethylene centrifugation tube, saturated with 30 mL HCI, and allowed to
settle for 30 min. After centrifugation and discarding HCI, the remaining slurry was then shaken
with 40 ml of mixed HF (10% wt.) and HCI (10% wt.) for 8 h, and subsequently centrifuged. The
supernatant was removed and discarded appropriately. After repeating the procedure four times,
each sample was washed with distilled water three times and dried at 50 °C under a stream of
dinitrogen gas.

Solid-state '*C CP-MAS and '3C DP-MAS NMR spectra were recorded at room
temperature (23 °C) using a 300 MHz Bruker AVANCE III NMR spectrometer equipped with a
4 mm magic angle spinning (MAS) probe (Bruker BioSpin, Billerica, MA) at Baylor University
(Waco, TX). The 60—130 mg HF-treated sample was placed in a zirconium rotor with a diameter
of 4 mm and Kel-F caps to maximize the C mass and signal intensity. A MAS rate of 12 kHz
was used for all NMR measurements. Cross polarization (CP) experiments used a ramped-
amplitude (50% to 100%) contact pulse and rotor synchronized Hahn echo’!. The contact time
and recycle delay were set to 2 ms and 1.2 s, respectively, and composite pulse proton
decoupling was applied during signal acquisition. Direct polarization (DP) 13C spectra were
acquired with a 90-degree excitation pulse and rotor-synchronized Hahn echo??, with a recycle
delay of 180 s. Glycine was used as an external standard for setting pulse angles, chemical shift
and Hartman-Hahn matching conditions. DPMAS spectra were obtained for 11 HF-treated soil
samples as a means against which to assess relative quantitation bias in CPMAS NMR data>>.

These samples were selected to span a broad range of biogeochemical diversity (nine soil orders;
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Supplementary Table 1) and contained sufficient SOC (> 2.9% C in the original samples) to
enable timely analysis by DPMAS.

CPMAS spectra for HF-treated samples were acquired with more than 6000 scans. To
assess potential impacts of HF treatment on SOC composition, 11 untreated samples with
relatively high SOC concentration (> 6%) were also selected for NMR analysis (this set differed
slightly from the CPMAS/DPMAS comparison given the differing selection criteria). These
samples included six soil orders and spanned a broad range of paramagnetic element content
(14-58 mg Fe g'!). Spectra for these untreated samples were recorded using the same operation
conditions of HF-treated samples and were acquired with more than 44000 scans. After baseline
correction, quantification was performed by dividing the spectra into seven chemical shift
regions: 0—45 ppm, 45-60 ppm, 60-95 ppm, 95-110 ppm, 110-145 ppm, 145-165 ppm and
165-215 ppm, assigned to alkyl C, N-alkyl + methoxyl C, O-alkyl C, Di-O-alkyl C, aromatic C,
phenolic C, amide + carbonyl C, respectively. Subsequently, a molecular mixing model was
applied to the seven integrated spectra regions, to estimate the relative abundances of six
molecular SOC constituents (carbohydrate, protein, lignin, lipid, carbonyl and char)!. The
elemental concentrations of C and N were measured on the HF-treated samples by
combustion/elemental analysis at Baylor University (Costech 4010, Valencia, CA) and were

used as additional constraints on the molecular mixing model solutions!.

Biogeochemical analyses Megapit soil samples and vegetation in proximity to the soil pit were
subjected to numerous physical and chemical analyses*. Here, we utilized measurements of total
elemental content and particle size from the Megapit samples. We also used measurements of the

copy number of bacteria/archaea (16S) and fungi (ITS) coding regions calculated by quantitative
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polymerase chain reaction (QPCR), which were conducted on separate fresh soil samples
collected in the vicinity of each sampled Megapit profile>*. Briefly, these soils were flash frozen
in the field on dry ice and shipped to an analytical facility for DNA extraction and amplification.
Soil samples for qPCR analysis were collected periodically (approximately three times per year)
from each site from 0—30 cm depth, and cores were visually separated according to organic and
mineral horizons; only samples from mineral soil were used here. We selected samples from
plots in proximity to each Megapit (i.e., within several hundred m; denoted as Tower plots in
NEON terminology) and averaged the mean 16S and ITS abundance for each site based on the
2016-2018 data. Fine root biomass was measured by depth in three pit profiles within the
Megapit and sorted into live/dead classes for fine (< 2 mm or < 4 mm, depending on the site) and
coarse diameter classes. Here, we denoted the combined < 2 mm and < 4 mm fractions as fine
roots for subsequent analyses. Roots were dried, weighed, and combusted for analysis of carbon
(C) and nitrogen (N) content. We averaged root data from 0—30 cm depth for use in subsequent
analyses. No NEON root data were available from TOOL, so we used previous published data
from the same site>. Samples for foliar and/or litter chemistry were available from a subset of
the NEON sites (15 and 16 sites, respectively), as these are collected from each site on a five-
year rolling schedule. Foliar samples represented clips of bulk herbaceous samples from the plant
community. Litter samples included debris from trees and shrubs. We used measurements of
foliar and litter C:N and a proxy for lignin content (acid-unhydrolyzable residue)>*. No root or
microbial or litter chemistry data were available from the non-NEON samples from which we
collected '*C NMR spectra.

We conducted several additional soil extractions of all samples to quantify reactive

metals. Subsamples were extracted in parallel with sodium dithionite (1:150 ratio of
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soil:solution) to quantify pedogenic iron (denoted Fed) and ammonium oxalate (1:60 ratio of
soil:solution) to quantify Fe and aluminum in short-range-ordered phases and organo-metal
complexes (termed Feo and Alo). The concentration of crystalline Fe minerals was then
calculated as the difference between Fed and Feo (Fed-o). Subsamples were also sequentially
extracted with deionized water and sodium sulfate (1:150 ratio of soil:solution). The calcium and
magnesium concentration of the sodium sulfate extraction (termed Cas + Mgs), which followed
the water extraction, was interpreted as a proxy for Ca and Mg that may have participated in
divalent cation bridging between clays and organic matter*. All metals were analyzed by
inductively coupled plasma optical emission spectroscopy at lowa State University (ICP-OES;
Perkin Elmer Optima 5300 DV, Waltham Massachusetts). Mean annual precipitation and
temperature data were estimated for each NEON site using previously synthesized data’®.
Potential evapotranspiration (PET) data were extracted from a global 1-km resolution mean

annual evapotranspiration dataset from 2000-2014°7.

Statistical analyses Correlation heatmaps were calculated between SOC molecules and
biogeochemical predictors, and some variables were log10-transformed because of skewness
(Feo, Alo, Fed-o, Cas + Mgs, ITS, 16S). Significance of correlations was calculated by multiplying
P values according to a Bonferroni correction to correct for multiple comparisons and an o of
0.10. We used a rotated principal components analysis to assess relationships among the relative
abundances of the six SOC molecules calculated from the molecular mixing model and soil
biogeochemical variables. Principal components were calculated from the correlation matrix of
the C molecule data and rotated orthogonally (varimax rotation) using the “Psych” package’® in

R version 3.6.0. Rotation is commonly used in PCA to simplify interpretation of principal
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components by maximizing/minimizing the correlations between factors and component axes.
These rotated components (RC) of the correlation matrix were used to facilitate interpretation of
each component in terms of dominant C molecule(s). To investigate relationships among RCs
and biogeochemical variables, we fit multiple linear regression models for each RC using the Im
function in R. The global model contained the following potential explanatory variables: mean
annual temperature, mean annual precipitation, mean annual precipitation minus potential
evapotranspiration, forest vs. non-forest vegetation, presence/absence of recurring fire, Alo, Feo,
Feco, Cas + Mgs, fine root biomass, fine root C:N ratio, the ratio of total base cations to
zirconium (a weathering ratio sensu®), and copy numbers of 16S and ITS genes quantified by
qPCR. Most of the non-forested ecosystems were grazed, such that a separate variable for
grazing was not included. Certain predictor variables were only available for the NEON samples
(n = 32; Supplementary Table 3), such that model selection was conducted independently for
both datasets. Candidate models for each RC were carefully investigated for multicollinearity of
predictors and assumptions of normality and heteroscedasticity by calculating variance inflation
factors (VIF) and graphically examining plots of residuals. Prior to model selection, individual
predictors with VIF > 3 were sequentially deleted®, the reduced global model was refit, and VIF
values were calculated again. After removing collinear predictors, we performed model selection
by backwards elimination; more conservative and more liberal models yielded by oo = 0.01 and o
= 0.05, respectively, were presented for completeness. Following multiple linear regression, to
better understand interrelationships among proximate predictors of RC axes and soil forming
factors, we fit SEMs using the piecewiseSEM package v. 2.1.0 in R®!. Candidate SEMs included

the direct biogeochemical predictors identified by multiple linear regressions, along with climate,
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soil, and vegetation variables that might influence those biogeochemical predictors. The

optimum models for each RC were selected by comparing AIC values among nested models.

Data availability
Summarized NMR data are available in the Supplementary Information, and raw NMR spectra
data and sample biogeochemical characteristics are available in the Environmental Data

Initiative digital repository: https://doi.org/10.6073/pasta/2284825ecb8460f056ae5b0e7d355¢c8

Code availability
R scripts used for post-processing data are available in the Environmental Data Initiative digital

repository: https://doi.org/10.6073/pasta/2284825ecb8460f056ae5b0e7d355cc8
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