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a function evaluated by a quantum computer. Examples include

the quantum approximate optimization algorithm (QAOA) [26, 27]

and the variational quantum eigensolver (VQE) [53] algorithm for

physical simulations. Unlike prominent quantum algorithms such

as Shor’s factoring [58] and Grover’s search [30] algorithms, vari-

ational algorithms can extract useful computation out of noisy

intermediate-scale quantum (NISQ) computer prototypes, which

only support unreliable operations on a limited number of qubits

(the fundamental unit of quantum computing).

A further consequence of the limited capacity, reliability, and

endurance of existing quantum prototypes is that simulation using

classical computers continues to be a critical research tool [50,

Chapter 6.3]. Classical computer simulations of quantum algorithm

circuits are important for developing new quantum algorithms and

for validating results from quantum prototypes.

Thus far, the most advanced quantum circuit simulators are not

geared for simulating important variational quantum algorithms.

Quantum computing research would bene�t from a simulator that

supports variational algorithms speci�cally, which would require

a simulator that 1) supports simulating the e�ect of noise, 2) e�-

ciently supports repeated simulations with di�erent parameters, 3)

o�ers an ability to sample from the output of the quantum computer,

and 4) excels at simulating quantum circuits with many qubits and

relatively few operations per qubit. Unfortunately, leading quantum

circuit simulators have instead focused on simulations that estab-

lish the point at which limitations of classical computing give way

to quantum computers having an advantage, a milestone termed

quantum supremacy [3, 32, 48, 62]. Such simulators can only simu-

late quantum circuits that are ideal (noise-free), and they cannot

reuse computation results across simulation runs. The clear mis-

match between the requirements for variational algorithm versus

supremacy simulations have resulted in simulators that do not

adequately support important variational workloads.

The key insight of our paper is that knowledge compilation—a

technique for e�cient repeated inference originating in arti�cial

intelligence research [22, 23]—can serve as the basis for a quantum

circuit simulation toolchain geared for variational algorithms. In a

knowledge compilation approach to performing inference, knowl-

edge about probabilistic relationships between events is �rst en-

coded in a graphical model such as a Bayesian network [22, 42, 52].

The knowledge compilation techniques convert Bayesian networks

into minimized representations of logical formulas called arith-

metic circuits (ACs, Figure 1) that enable repeated inference and

sampling queries with di�erent parameters and new choices for

inference outcomes [15]. These features of the knowledge compila-

tion approach—namely, 1) the ability to represent and manipulate

probabilistic information, 2) the ability to compile probabilistic

model structural information into minimized formats, 3) the ability

to e�ciently sample from the same model but for varying parame-

ters and evidence—match well with the requirements for variational

quantum algorithm simulation.

We built a toolchain to test this idea of using knowledge compi-

lation for variational algorithms quantum circuit simulation. Our

toolchain consists of:

(1) A front-end for converting noisy quantum circuits (speci�ed

in Google’s Cirq framework1) to complex-valued Bayesian

networks [8, 10, 47, 54, 63, 66], which we extend to correctly

encode quantum noise mixtures and channels. Compared

to conventional quantum circuits where complex-valued

quantum amplitudes and real-valued noise probabilities are

treated separately, the Bayesian network encoding uni�es

quantum states and noise events in a single representation.

(2) A compiler that converts Bayesian networks representing

noisy quantum circuits into conjunctive normal form (CNF)

logic formulas. The CNFs encode the quantum circuits’ struc-

tural information: the sets of logic variable assignments that

satisfy the CNF correspond to all sets of qubit state assign-

ments that are consistent with the original quantum cir-

cuit’s semantics. This structural information can be reused

across simulations independently of quantum amplitude and

noise probability parameters, which vary across simulations,

which is a key bene�t over prior simulation techniques.

(3) A compiler that converts CNFs to ACs. An AC enumerates

and assigns aweight value to each set of variable assignments

that satisfy a logical formula [22]. Summing the weights

across all qubit state assignments results in the output ampli-

tudes that we seek to �nd in the quantum circuit simulation

task. The compiler can factor away the variables that repre-

sent intermediate qubit states, thereby enabling the quantum

circuit simulator to �nd the probability amplitude for an out-

come without incurring the cost of �nding the amplitudes

of intermediate qubit states. The ACs also enable a Markov

chain Monte Carlo procedure for sampling sets of qubit out-

comes according to their measurement probability.

We validate our compilation and simulation approach for both

noise-free and noisy quantum circuits, demonstrating correct re-

sults for a suite of quantum algorithms including Deutsch-Jozsa,

Bernstein-Vazirani, hidden shift, quantum Fourier transform, Shor’s,

and Grover’s algorithms.

We benchmark the performance of our simulator for sampling

outputs for a QAOA algorithm for Max-Cut and a VQE algorithm

for �nding the minimum energy con�guration of a 2D Ising model.

Compared to state-of-the-art simulators for both ideal and noisy

quantum circuits, our simulator excels at sampling from circuits

with at least eight to 20 qubits and with around 12 operations per

qubit—a range of qubit counts and operations that includes many

meaningful variational algorithm problems. And for simulating

ideal shallow quantum circuits with 32 qubits, our simulation ap-

proach o�ers a 66⇥ reduction in sampling cost versus simulators

based on tensor network contraction. The advantages are due to the

more compact representation, the circuit minimization and memo-

ization capabilities of our approach, and due to the storage costs

for conventional simulators based on matrix representations. The

improved simulation performance facilitates studying variational

algorithms and validating prototype quantum computer results in

the NISQ era of quantum computing.

1https://github.com/quantumlib/Cirq

457

https://github.com/quantumlib/Cirq




ASPLOS ’21, April 19–23, 2021, Virtual, USA Yipeng Huang, Steven Holtzen, Todd Millstein, Guy Van den Broeck, and Margaret Martonosi

Table 1: Summary of canonical quantum noise models.
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2.2.2 The Kraus Operator Representation of �antum Noise Chan-

nels. Quantum noise can be modeled as a quantum noise channel

E, which acts on a quantum mixed state d to create a new mixed

state: E(d) =
Õ
: ⇢:d⇢

|

:
, where the Kraus operators ⇢ represent

di�erent e�ects on the quantum state due to the noise channel.

Important noise channel types are listed in Table 1 [51, Chapter

8.3]. The table shows that noise models can be classi�ed along

several dimensions. The �rst dimension is in the type of e�ect the

noise has on the quantum state: Pauli-X type noises disturb the

quantum basis state, while Pauli-Z type noises disturb the phase.

There are also combinations of these types of noise. The second

dimension of classi�cation is in terms of whether density matrices

are needed to model the noisy states. In this work we consider all

of these types of noise.

For example, one type of quantum noise channel is phase damp-

ing noise, which has the Kraus operators:
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where W is a probability parameter describing the strength of the

noise channel. Using Figure 2(a) as an example, the density matrix

representation of qubit state q0m2 after a phase damping channel

(with W = .36) acts on q0m1 from Equation 2 is:
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
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Finally, the two-qubit CNOT gate has a unitary matrix represen-

tation of:
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such that the �nal density matrix is:
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Outside of these canonical quantum noise mixture and channel

models, other types of operational error—such as imprecise gate

operations and measurement error—can be modeled as one of the

canonical noise models in conjunction with an otherwise ideal

operation or measurement.

2.3 Near-Term Variational Quantum
Algorithms as Target Simulation Workload

We focus on quantum circuit simulation for algorithms that are can-

didates for near-term useful quantum computation. Such algorithms

are designed to run on near-term noisy, intermediate-scale quantum

(NISQ) computers [2, 11, 36, 45, 50, 55]. Speci�cally, we evaluate

our simulation approach on two representative NISQ algorithms:

one is a quantum approximate optimization algorithm (QAOA) for

Max-Cut [4, 26, 27, 60], and the other is a variational quantum

eigensolver (VQE) for an Ising model physics simulation [5, 53].

These hybrid quantum-classical algorithms rely on a classical

computer running an optimization routine such as the Nelder-Mead

method to �nd optimal parameters for a quantum circuit. The quan-

tum computer serves only to �nd an objective function from the

system under study to guide the overall optimization loop. The

quantum circuit parameters that minimize the objective function

encode the desired algorithm results.

The quantum circuits involved in these important variational

algorithms have distinct traits, and so simulating these circuits is

also a distinct challenge. Compared to the quantum circuits involved

in other algorithms, variational quantum algorithms:

(1) do not rely on error-corrected ideal qubits and operations,

and are therefore sensitive to the reliability and noise char-

acteristics of the underlying hardware;

(2) require repeated execution or simulation of the same circuit

but with di�erent parameters;

(3) use circuits that are wide but shallow (i.e., they use many

qubits but perform relatively few operations on those qubits);

(4) rely on the quantum computer or simulator to sample from

the �nal quantum wavefunction, which have measurement

probability distributions that are sharply peaked (Figure 3a).

These traits also set variational algorithm circuits apart from those

in random circuit sampling circuits, which have thus far been the

focus for quantum circuit simulators. In order to accelerate the

development of these NISQ variational algorithms, researchers
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Figure 3: The probability distribution for output qubit measurements in variational quantum algorithms is sharply peaked. A

few qubit bitstrings dominate the output probability distribution for this 10-qubit quantum circuit performing QAOA forMax-

Cut. Since a few bitstrings dominate the outcomes, sampling the outcomes is more e�cient than �nding the full probability

distribution.
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Figure 4: Toolchain for noisy quantum algorithm simulation via knowledge compilation of probabilistic program representa-

tions.

need high performance and e�cient simulators that speci�cally

support NISQ algorithms.

3 NOISY QUANTUM ALGORITHM
SIMULATION VIA KNOWLEDGE
COMPILATION

Our approach to quantum program simulation involves a series of

program transformations that enables more e�cient simulation of

variational quantum algorithms.We adapt techniques from classical

Bayesian inference by converting the simulation problem into one

of repeated inference and sampling from a probabilistic graphical

model (PGM). The toolchain comprises three main stages, corre-

sponding to the special traits of variational algorithms (Figure 4).

(1) Conversion of noisy quantum circuits to Bayesian net-

works, (a kind of PGM). This program translation combines

in a single representation the two types of values in noisy

quantum circuits: the real-valued probabilities associated

with noise events and the complex-valued quantum ampli-

tudes associated with qubits and gates. The uni�ed represen-

tation enables more direct manipulation and simulation of

noise e�ects. (Section 3.1)

(2) Knowledge compilation of theBayesiannetworks. This

step borrows techniques originating in arti�cial intelligence

researchmeant for e�cient repeated inference on PGMs. Our

toolchain compiles the structure of Bayesian networks into

conjunctive normal form (CNF) logic formulas to separate

the quantum circuit structure from gate and noise parame-

ters (Section 3.2.1). The toolchain then compiles the CNFs

to arithmetic circuits that can be reused across quantum

program simulations with di�erent parameters as needed in

variational algorithms (Section 3.2.2). Ours is the �rst work

to demonstrate such reuse of computational results across

simulation runs.

(3) Gibbs sampling on the compiled PGM representation.

Following the previous transformations, the task of �nding

the amplitude associated with a given assignment of qubit

values becomes equivalent to the task of �nding the proba-

bility of a given set of evidence in a Bayesian network. For

the wide but shallow circuits typically found in variational

algorithms, doing this type of simulation is more e�cient

than �nding full state vectors (Section 3.3.1). Compiling to

arithmetic circuits further enables the simulator to use a

Markov chain Monte Carlo method to draw measurement

outcomes in the same way a prototype quantum computer

would (Section 3.3.2).

We discuss these program transformations using a detailed example

in the following subsections.

3.1 Converting Noisy Quantum Circuits to
Bayesian Networks

The �rst stage of our program transformation is to convert noisy

quantum circuits into complex-valued Bayesian networks. We per-

form this transformation to combine the real-valued probabilities
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associated with quantum noise events with the complex-valued

quantum amplitudes associated with qubit states and gates. Such a

transformation is possible because quantum programs and Bayesian

networks are both inherently probabilistic; with suitable changes

to the latter’s semantics they can represent ideal quantum circuits

with no loss of generality [1, 10, 33, 63, 66].

In classical inference, Bayesian networks are a basic type of

PGM [22, 42, 43, 52]. They consist of network nodes that in the

classical setting represent probabilistic random variables. Directed

edges in Bayesian networks represent conditional dependence. Ad-

ditionally, each node is associated with a conditional probability

table that describes the conditional probability of that node’s vari-

able given knowledge about that variable’s dependencies.

In the quantum setting, Bayesian network nodes represent qubit

states, and directed edges represent how qubit states depend on

preceding qubit states. In contrast to the quantum circuits repre-

sentation that dominates quantum computing research and teach-

ing [24, 39, 49, 51], a Bayesian network representation of a quantum

program emphasizes the graphical structure of dependencies be-

tween the qubit states and operations on qubits.

In this work, we extend these quantum PGMs [1, 10, 33, 63, 66]

to represent probabilistic events associated with noisy quantum

operations. Figure 2 shows the transformation of a noisy quantum

circuit for creating Bell states to its corresponding Bayesian network

representation. We’ll be using this minimal example throughout

Section 3.

3.1.1 Encoding Ideal �bits & Operations. Quantum Bayesian net-

works encode the unitary matrices associated with quantum gates

as conditional amplitude tables, which are complex-valued gener-

alizations of conditional probability tables. For a single-qubit gate

such as the Hadamard gate in Figure 2, the conditional amplitude ta-

ble (Table 2(a)) at node q0m1 will look like the transpose of the 2⇥ 2

quantum gate unitary matrix. For quantum gates involving more

than one qubit such as the CNOT gate in Figure 2, the conditional

amplitude table (Table 2(c)) at node q1m3 will be a permutation

of the original quantum gate unitary matrix. The permutation is

possible so long as the unitary matrices have only one non-zero

element in each row and column. This permutation property holds

for most elementary quantum gates, and more complex gates can

be decomposed until such translation is possible.

3.1.2 Encoding Noisy�antum Mixtures & Channels. In this paper,

we propose for the �rst time additional semantics for representing

quantum noise mixtures and channels in quantum Bayesian net-

works. For qubit states that follow quantum noise mixtures, the

parameters in the conditional amplitude tables come from the prob-

abilities of the noise mixture possibilities and their e�ect on the

quantum state. For qubit states that follow quantum noise channels,

the probability of whether the noise event occurs is encoded in

a random variable representing spurious measurement outcomes

(Table 2(b)). Such a representation for quantum noise works for all

canonical noise models, including the symmetric and asymmetric

depolarizing, bit-�ip, phase-�ip, (generalized) amplitude damping,

and phase damping types of noise listed in Table 1.

Table 2: Conditional amplitude tables for Figure 2.

(a) Conditional amplitude table at node q0m1 associated with the Hadamard
gate (H in Figure 2). Table rows list input qubit basis state combinations; table
columns list output qubit basis state combinations.

q0m0 �(q0m1 = |0i) �(q0m1 = |1i)

|0i +1/
p
2 +1/

p
2

|1i +1/
p
2 �1/

p
2

(b) Conditional amplitude table at node q0m2rv representing probabilities of
measurement outcomes for the phase damping noise (PD in Figure 2(a) and '~

in Figure 2(b)).

q0m1 �(q0m2rv = 0) �(q0m2rv = 1)

|0i 1 0

|1i +0.8 �0.6

(c) Conditional amplitude table at node q1m3 associated with CNOT gate.

Control q0m1 Target q1m0 �(q1m3 = |0i) �(q1m3 = |1i)
|0i |0i +1 0

|0i |1i 0 +1

|1i |0i 0 +1

|1i |1i +1 0

3.2 Bayesian Network Knowledge Compilation

Now that the semantics of noisy quantum circuits have been com-

piled into our Bayesian network representation, we demonstrate for

the �rst time using inference techniques based on logical formula

minimization to enable e�cient quantum circuit simulation. There

are many algorithms for exact inference on Bayesian networks. Ini-

tially, we used variable elimination [22, 42, 43, 52] to demonstrate

that exact inference on the complex-valued Bayesian networks

leads to correct circuit simulation results. We soon realized that

support for repeated simulation with di�erent parameters was the

key to support important variational algorithms. The need for re-

peated inference motivates using exact inference algorithms based

on knowledge compilation [23, 41].

Knowledge compilation techniques compile Bayesian networks

into logical formulas with associated weight values on satisfying

sets of variable assignments (Section 3.2.1). Then, these formulas

are further compiled into arithmetic circuits that exploit conditional

independences in order to minimize their representation, allowing a

circuit to be compiled once and queried many times e�ciently (Sec-

tion 3.2.2). A sum-of-products process known as weighted model

counting on the compiled representations give exact inference re-

sults [15, 22]. In the quantum setting, exact inference supports

quantum circuit simulation by determining the amplitudes in the

�nal wavefunction (Section 3.3).

3.2.1 Bayesian Networks to Conjunctive Normal Form Logical For-

mulas. The �rst half of the compilation process is to separate the

structural information of the quantum circuit from the amplitude

and probability numerical parameters of the circuit. The compiler

does this extraction by converting the Bayesian networks into CNF
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Table 3: Program transformations converting Bayesian networks to conjunctive normal form (CNF).

Quantum circuit

semantics encoded

The interpreted meaning of logical sentences comprising the CNF for

our noisy Bell state quantum circuit example in Figure 2 and Table 2

Compilation and

simpli�cation rules

Qubits take on binary

values; supply known

initial qubit values

q0m0 = |0i XOR q0m0 = |1i
q0m0 = |0i
q0m1 = |0i XOR q0m1 = |1i

q1m0 = |0i XOR q1m0 = |1i
q1m0 = |0i
q1m3 = |0i XOR q1m3 = |1i

Combine initial value

sentences into binary

constraint sentences us-

ing logical unit resolu-

tion.

Hadamard gate (Condi-

tional amplitude table in

Table 2(a))

q0m0 = |0i ^ q0m1 = |0i =) + 1p
2

q0m0 = |1i ^ q0m1 = |0i =) + 1p
2

q0m0 = |0i ^ q0m1 = |1i =) + 1p
2

q0m0 = |1i ^ q0m1 = |1i =) � 1p
2

Compiler needs to avoid

simpli�cations that as-

sume that amplitudes

sum to 1.0.

Phase damping noise

channel (Conditional

amplitude table in

Table 2(b))

q0m2rv = 0 XOR q0m2rv = 1

q0m1 = |0i =) q0m2rv = 0

q0m1 = |1i ^ q0m2rv = 0 =) +0.8

q0m1 = |1i ^ q0m2rv = 1 =) �0.6
Weight variables stand

in for numerical param-

eters for amplitudes

or probabilities; the

simulator later resolves

the weight variables

with values that can

change for repeated

simulations.

CNOT gate (Conditional

amplitude table in Ta-

ble 2(c))

q0m1 = |0i^q1m0 = |0i =) q1m3 = |0i
q0m1 = |0i^q1m0 = |1i =) q1m3 = |1i

q0m1 = |1i^q1m0 = |0i =) q1m3 = |1i
q0m1 = |1i^q1m0 = |1i =) q1m3 = |0i

Deterministic parame-

ters such as 0.0 or 1.0

can be directly factored

into logic without

weight variables.

logical formulas, which in the case of the tools we use are encoded

in the standard DIMACS format.2

Our translation of the meaning of an example CNF is shown in

Table 3. Each of the Boolean variables in the CNF corresponds to

either the truth value of some qubit state or an indicator variable for

a numerical weight. The table shows logical sentences that encode

information represented in the topology of the quantum circuits and

the Bayesian networks. Some sentences in the CNF represent hard

constraints on logical variables and qubit states, such as q0m0 = |0i.
Other sentences encode a weight value assigned to a combination

of logical conditions, such as q0m1 = |1i ^ q0m2rv = 1 =) �0.6.
The resulting CNF from conjoining all the clauses together ex-

presses all the combinations of qubit states that are consistent with

the quantum circuit semantics. Each set of valid variable assign-

ments that satis�es the CNF represents one valid Feynman path [28]

through the quantum circuit. Aweightedmodel count on theweight

values for these satisfying assignments leads to the amplitudes we

need to perform quantum circuit simulation.

To our knowledge, ours is the �rst work to represent and manip-

ulate quantum circuits as logical formulas; such a representation

enables us to use logical minimization techniques to aid in circuit

simulation.

2We found and extended a Bayesian network to CNF compiler originally intended
for purely classical probabilities for this stage of our toolchain. https://github.com/
gisodal/bayes-to-cnf.

Optimizations. The Bayesian network to CNF compiler applies

various simpli�cation rules on CNFs at this stage.

(1) The compiler substitutes known variable values (e.g., known

initial qubit states) into other sentences containing the same

variable in order to simplify those sentences [12].

(2) The compiler recognizes deterministic probabilities such as

0.0 and 1.0 to eliminate irrelevant sentences.

(3) Numerical parameters, such as �1/
p
2 in the Hadamard gate

and the 0.36 probability in the phase damping channel, are

replaced with variables whose values are resolved later; such

a substitution allows the simulator to e�ciently repeat sim-

ulations with di�erent sets of parameters during simulator

execution.

These simpli�cations lead to a linear reduction in the number of

clauses in the CNFs that lead to a signi�cant reduction in later

compilation results.

In general, the semantics of translating classical real-valued

Bayesian networks to CNFs for knowledge compilation has been

the subject of numerous studies [13–15, 20, 22, 57]. Some of these

optimization techniques assume probabilities that sum to unity [57],

and would therefore lead to an incorrect encoding for quantum

simulation on amplitudes.

3.2.2 CNFs to Minimized Arithmetic Circuits. The second half of

the compilation process is to compile the CNFs into arithmetic

circuits (ACs), such as the ones in Figures 1 and 5, which are data
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Figure 6: Simulation resource requirements vs. quantum cir-

cuit size for three quantum algorithms.

Table 4: Problem size metrics for largest instances in Fig-

ure 6.

# qubits # gates AC �le size

RCS 42 840 82 MB

Grover’s 17 2460 530 MB

Shor’s 13 12247 586 MB

simulation workloads. The horizontal axis counts the number of

variables in the CNF (and in the Bayesian network); this value is

proportional to the number of gates inside the quantum algorithm

quantum circuit. The vertical axis, in log scale, counts the number

of nodes in the compiled AC; this number is proportional to several

measures of the simulation resource intensiveness, including the

number of edges in the AC, the memory and �lesize needed to store

the AC, and the time to compile and perform inference on the AC.

The data points in the plot correspond to simulation instances of

various sizes (Table 4) belonging to three quantum algorithms. Two

of the three algorithms are structured workloads, meaning that they

are designed to perform ameaningful computation. The orange data

points are instances of Shor’s factoring algorithm [58], written in a

style that minimizes qubit count [6]. The circuits here are factoring

either 6 or 15, covering a range of one through four iterations of

the algorithm. The blue data points are instances of Grover’s search

algorithm [30, 31]. In this case the algorithm is searching for the

square root of a number in a simple abstract algebra setting, for a

search space ranging from two to 16 elements. The implementations

are taken from open source quantum algorithm benchmarks,4 and

the simulation results are validated to be correct outputs.

The third algorithm is an unstructured workload, meaning that

the quantum operations are randomly selected and placed in a �xed

template. These problems in random circuit sampling (RCS) are

extremely di�cult to simulate because the qubits rapidly become

entangled with all other qubits [9, 32, 62], leaving little indepen-

dence structure for knowledge compilation to exploit. The gray data

points are simulations of a population of such workloads involving

between 25 and 42 qubits.5

4https://github.com/epiqc/Sca�CC
5https://github.com/sboixo/GRCS

Table 5: Upward pass for �nding amplitudes.

q0m2rv q0m1 q1m3 amplitude density matrix component

0 |0i |0i 1/
p
2 26666664

+ 1

2
0 0 + 0.8

2

0 0 0 0

0 0 0 0

+ 0.8

2
0 0 + 0.64

2

37777775

0 |0i |1i 0

0 |1i |0i 0

0 |1i |1i 0.8/
p
2

1 |0i |0i 0 26666664

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 + 0.36

2

37777775

1 |0i |1i 0

1 |1i |0i 0

1 |1i |1i �0.6/
p
2

The trends here on a semi-log plot show di�erent scaling trends

among the three workloads. The RCS workload exhibits full ex-

ponential growth in simulation di�culty, while the Grover’s and

Shor’s workloads appear to scale sub-exponentially. This is a result

of the knowledge compilation toolchain extracting structure with

di�erent degrees of success for the three classes of workloads. The

signi�cance of this capability is that we can repurpose knowledge

compilation to extract structure and reduce the cost of simulating

a quantum circuit.

3.3 Calculating Amplitudes and Sampling from
Arithmetic Circuits

The ACs that result from the previous program transformations

dictate the minimal sequence of calculations for both �nding ampli-

tudes for a given set of qubit states (Section 3.3.1) and also sampling

outcomes from the �nal wavefunction (Section 3.3.2), for a given

quantum circuit topology and a given variable order. These two

tasks proceed, respectively, as upward and downward traversals of

the AC graph. The ACs memoize calculation results from previous

queries so that only changed nodes have to be recalculated for new

queries.

ACs such as the one in Figure 5 consists of nodes that are either

operations (multiply, add) or leaves. The leaves represent either

numerical parameters—quantum amplitudes (e.g., 1/
p
2) and noise

probabilities (e.g., 0.6)—or logical variables representing qubit states

(e.g., q0m1 = |0i). The actual values describing quantum amplitudes

and noise probabilities can vary between simulation runs as they

vary across variational algorithm iterations. Likewise, the truth

values for the qubit state assignments can vary to �nd the amplitude

of any output qubit state of interest.

3.3.1 Calculating Amplitudes via Inference on ACs. Our simulator

calculates the amplitude for a given output basis state by �nding

the probability amplitude of such evidence in the Bayesian network.

Such a calculation proceeds as an upward traversal of the AC in

Figure 5 following the procedure by Darwiche [21, 22].

Now, let’s see the traversal procedure in action. The white in-

sets in Figure 5 contain a pair of values: the left one tracks the

upward traversal for �nding the amplitude while the right one

tracks the downward traversal for sampling to be discussed next in

Section 3.3.2. Suppose we want to �nd the probability amplitude for

the |11i output state, given that the q0m2rv noise event does occur.

The simulator assigns the value 1 to the logical variable nodes for

464

https://github.com/epiqc/ScaffCC
https://github.com/sboixo/GRCS








Logical Abstractions for Noisy Variational�antum Algorithm Simulation ASPLOS ’21, April 19–23, 2021, Virtual, USA

For each problem combination, we plot the time it takes to draw

1000 samples against the number of qubits. The data points are av-

erages across ~16 Nelder-Mead optimization runs with randomized

problem instances.

At 30 qubits, the qsim state vector simulator has to hold in

memory a vector of 230 ⇡ 1.1B complex numbers, which accounts

for state vector simulation’s exponential cost per simulation run

relative to the number of qubits. The knowledge compilation and

tensor network simulators use circuit representations that avoid

such a storage cost. Table 6 summarizes metrics for the knowledge

compilation intermediate results for the largest problem instances.

The ability for knowledge compilation and tensor network sim-

ulators to handle circuit depth (in the form of algorithm iterations)

depends on the quantum circuit topology: At one algorithm itera-

tion, knowledge compilation needs 66⇥ less time than the tensor

network method per sample for 32-qubit QAOA; at two algorithm

iterations, the two approaches are comparable for QAOA while

qTorch struggles for VQE [29].

The results show that for wide (more than 20 noise-free qubits)

and shallow (~12 gates per qubit) circuits, the knowledge compi-

lation approach excels at drawing samples from the output wave-

function. These time savings accumulate over the course of a full

simulation for a variational quantum algorithm, as the classical

optimizer would draw from these distributions many times in order

to evaluate the objective function for di�erent input parameters.

4.2 Evaluation for Noisy Circuit Simulation
and Sampling

In Figure 9, we compare our simulator against the density matrix

simulator for noisy circuits in Google Cirq. The density matrix

simulator is a NumPy-based simulator that works by multiplying

gate unitary matrices against a large density matrix for mixed

quantum states.

We evaluate on QAOA and VQE as before, this time adding a sym-

metric depolarizing noise channel with 0.5% probability that one of

Pauli-X, Y, or Z noise events may happen after each gate. We further

validate that the knowledge compilation simulator calculates the

same density matrix as the baseline Google Cirq simulator.

At 12 qubits, the Google Cirq density matrix simulator has to

hold in memory a matrix of 212 ⇥ 2
12 ⇡ 17" complex numbers; fur-

thermore the matrix has little sparsity to reduce its representation.

Table 6 again summarizes metrics for the knowledge compilation

intermediate results.

For noisy circuits, the knowledge compilation approach breaks

even with the density matrix simulator at eight qubits, fewer than

the case for ideal circuits. This is due to the even greater cost of

having to perform matrix-matrix multiplication in density matrix

simulation, and also due to less prior focus in developing high

performance simulators such as qsim and qTorch for noisy circuit

simulation. The data suggest that knowledge compilation is well-

suited for the repeated simulation of noisy circuits in variational

quantum algorithms.

5 RESEARCH DIRECTIONS

Compiling noisy quantum circuits to PGMs and logical abstrac-

tions such as CNFs and arithmetic circuits may accelerate the pace

Table 7: Comparison of quantumand probabilistic graphical

models of computation.

Probabilistic Quantum

K
ey

an
al
o
g
ie
s

inference program simulation

random variables qubits

probabilities amplitudes

conditional probability tables operator unitary matrices

joint probability distributions superposition states

dependent random variables entangled qubits

variable elimination tensor network contraction

weighted model counting [41] Feynman path sum

K
ey

d
is
ti
n
ct
io
n
s

probabilities between 0 and 1 amplitudes are complex-valued

probabilities sum to 1 squares of absolute amplitudes

sum to 1

interference impossible interference (canceling of ampli-

tudes) possible

equivalent to Cli�ord set [65] beyond Cli�ord gate set

of quantum computing research by o�ering new ways to analyze

quantum circuits. Table 7 lays out loosely analogous concepts be-

tween probabilistic and quantum graphical models. The fact that

Bayesian networks can be generalized to work on complex-valued

quantum amplitudes [63], along with the insight that knowledge

compilation works on algebraic semirings such as complex num-

bers [41], underpins the validity of our quantum circuit compilation

and simulation toolchain.

This work has focused on �nding amplitudes for qubit state

assignments and sampling from wavefunctions, by performing a

procedure analogous to �nding evidence probabilities and gradi-

ents via weighted model counting in classical PGMs. The fact that

our quantum circuit simulator gives correct results suggests that

other types of PGM query techniques [34, 35] can likewise support

quantum computing research.

Bayesian networks support various other queries such as sensi-

tivity analysis [22, Chapter 16][44] and most probable explanation

(MPE) queries. Sensitivity analysis queries would answer how in-

ternal qubit states in�uence observed qubit states, which may have

applications in mapping the most in�uential qubits variables in an

algorithm to the most reliable hardware qubits in a prototype quan-

tum computer. MPE queries would answer what error event best

explains a given symptomatic observed outcome. MPE queries rely

on the existence of a meaningful operator for �nding the maximum

value of two quantities; while such a MAX operator is unde�ned

for complex-valued amplitudes, it does exist for real-valued error

probabilities. These other types of queries can be made tractable,

depending on the algebraic properties of what the Bayesian net-

works represent, and depending on the choice of the knowledge

compilation target representation [17, 40, 41].

6 CONCLUSION

This paper proposes and evaluates a new quantum circuit simu-

lation technique that focuses on simulating NISQ era variational

quantum algorithms. Our simulation toolchain extends techniques

originating in classical exact probabilistic inference to support this

important quantum simulation workload. Our simulator compiles
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noisy quantum circuits into complex-valued Bayesian networks

in order to combine real-valued noise probabilities and complex-

valued quantum amplitudes in one graphical notation. Our sim-

ulator then uses knowledge compilation, a technique originally

meant for repeated inference, to form an arithmetic circuit that

encodes structure information about the quantum circuit. The pre-

compiled information then allows for e�cient repeated quantum

circuit simulation with di�erent parameters, and allows for e�-

cient Gibbs sampling from the output wavefunction. We validated

the simulation approach for a benchmark suite of quantum algo-

rithms. For wide and shallow quantum circuits found in variational

algorithms such as QAOA and VQE, our simulator performance

compares favorably against both ideal and noisy quantum circuit

simulators. These simulation capabilities may accelerate the de-

velopment of useful quantum computing systems and near-term

quantum algorithms.
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A ARTIFACT APPENDIX

A.1 Abstract

This artifact demonstrates a new way to perform quantum circuit

simulation.We convert quantum circuits into probabilistic graphical

models, which are then compiled into a format that enables e�cient

repeated queries.

The artifact consists of a Docker image which includes Google

Cirq, a quantum programming framework, which we have extended

to use our proposed approach as a quantum circuit simulation back-

end. Also in the Docker image are two quantum circuit simulators

based on existing approaches which we compare against as evalua-

tion baselines.

We o�er the Docker image via three routes: a hosted version on

Docker Hub provides the latest version of our software and requires

minimal setup; a Docker�le is provided to show how to replicate

our environment from scratch; and �nally a stable archival version

is available on Zenodo.

With minimal setup, you can run test cases in our Docker con-

tainer showing the validity of our approach. We test our quantum

circuit simulation approach using the randomized test harness that

Google Cirq uses to test its quantum circuit simulation back ends.

We also demonstrate correct simulation results for a benchmark

suite of quantum algorithms.

The Docker image contains performance benchmarking experi-

ments that replicate results of our paper at reduced input problem

sizes. The experiment scripts generate PDFs showing graphs that

plot simulation wall clock time against input quantum circuit sizes.

The input problem sizes are large enough to show that our proposed

approach achieves a speedup versus existing simulation tools.

A.2 Artifact Check-List (Meta-Information)
• Algorithm: A new algorithm for simulating quantum circuits and

quantum noise models.

• Program: Google Cirq https://github.com/quantumlib/Cirq, UCLA

Ace compiler http://reasoning.cs.ucla.edu/ace/, Google qsim https:

//github.com/quantumlib/qsim, qTorch https://github.com/aspuru-

guzik-group/qtorch.

• Transformations: The quantum circuits and noise models are

converted to complex-valued Bayesian networks. A set of techniques

originating in Bayesian inference, known as knowledge compilation,

converts the Bayesian networks into logical formulas that support

repeated queries.

• Model: A benchmark suite of quantum circuits provided in Google

Cirq.

• Run-time environment: The Docker container has been tested

on Linux (Ubuntu 18.04.5 LTS) and macOS (Big Sur Version 11.1).

• Hardware: 8 GB memory is needed to run the reduced-size valida-

tion test suites. Additional memory (up to 1 TB) is recommended to

replicate the paper results for the largest problem instances.

• Execution: Less than 30 minutes to run the reduced size validation

test suites.

• Metrics: Quantum circuit simulation times for our proposed simu-

lator compared against three baseline simulators from prior work.

• Output: Four PDF �les plotting wall clock times for sampling

outputs plotted against quantum circuit size.

• Experiments: Pull Docker image (or load from tarball), run Docker

container, and call various Python scripts within container.

• How much disk space required (approximately)?: 4 GB

• How much time is needed to prepare work�ow?: 10 minutes

• Howmuch time is needed to complete experiments (approx-

imately)?: 30 minutes

• Publicly available?: https://hub.docker.com/repository/docker/

yipenghuang0302/quantum_knowledge_compilation

• Archived (provide DOI)?:

https://doi.org/10.5281/zenodo.4321945

A.3 Description

A.3.1 How to Access. Our experiment requires setting up Docker

(https://docs.docker.com/get-started/). The Docker container re-

quires about 4 GB of free disk space. We provide three ways to

access our experiment environment:

(1) Pulling the latest Docker image from Docker Hub (recom-

mended);

(2) Downloading Docker image tarball from Zenodo (for artifact

archiving purposes);

(3) Building a new image from a Docker�le which pulls from

GitHub repositories (demonstrates how to replicate the ex-

periment environment).

Below, we provide instructions for accessing our artifact via each

approach.

Pulling from Docker Hub. From the Unix command line:

$ docker pull yipenghuang0302 /\

quantum_knowledge_compilation:latest

Downloading from Zenodo archive.

(1) Obtain the Docker image tarball from Zenodo at this DOI:

https://doi.org/10.5281/zenodo.4321945
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(2) Then, load the Docker image tarball:

$ docker load --input \

quantum_knowledge_compilation.tar.gz

Building from Docker�le.

(1) Download the Ace compiler from http://reasoning.cs.ucla.

edu/ace/download.php.

(2) Obtain the Docker�le on GitHub:

$ git clone \

https :// github.com/ \

yipenghuang0302/Cirq.git

(3) Place the Ace compiler tarball in the same directory as the

Docker�le:

$ mv ace_v3 .0 _linux86.tar.gz \

Cirq/kc_examples

(4) Change your working directory to the same directory as the

Docker�le, and build the Docker image:

$ cd Cirq/kc_examples

$ docker build \

--tag quantum_knowledge_compilation .

A.3.2 Hardware Dependencies.

• We tested our experiment artifact on a Linux desktop and on

an Apple MacBook Pro laptop (2019, with 16 GB of RAM).

• The full experimental results involving the largest problem

instances in our paper were done on a Linux server (Two

Intel Skylake Xeon Gold 6148 CPUs @ 2.40 GHz and 1 TB of

RAM).

A.3.3 So�ware Dependencies. As you can see from the Docker�le,

the experiment relies on various pieces of software outlined in our

checklist:

• Google Cirq, a quantum programming framework: https:

//github.com/quantumlib/Cirq

• bayes-to-cnf, a Bayesian network compiler that outputs con-

junctive normal form logical formulas: https://github.com/

gisodal/bayes-to-cnf

• UCLA Ace compiler, a knowledge compilation tool that sup-

ports e�cient repeated inference: http://reasoning.cs.ucla.

edu/ace/

• Google qsim, a quantum circuit simulator based on matrix

vector multiplication, which we compare against as a base-

line: https://github.com/quantumlib/qsim

• qTorch, a quantum circuit simulator based on tensor network

contraction, which we compare against as a baseline: https:

//github.com/aspuru-guzik-group/qtorch

These software dependencies are automatically downloaded and

compiled in the Docker image.

A.3.4 Data Sets. We use a benchmark suite of quantum circuits

in Google Cirq to validate our simulator and to measure its per-

formance. These input data sets are included in the Google Cirq

repository, and are automatically downloaded in the Docker image.

A.4 Installation

No special installation is needed after you have obtained the Docker

image via one of the sources above. Just enter the Docker container:

$ docker run -ti \

-v $(pwd ):/ common/home/yh804/research/pdfs \

yipenghuang0302 /\

quantum_knowledge_compilation:latest

• The -ti �ag makes the Docker container interactive.

• The -v �ag binds the directory

/common/home/yh804/research/pdfs/ inside the Docker

container to the present working directory of the host ma-

chine. We will be moving the experiment output plots to the

host machine through this volume binding.

A.5 Experiment Work�ow

We will perform two types of experiments in this artifact demon-

stration. First, we will run a set of tests that validate the correctness

of our proposed quantum circuit simulator. Second, we will evaluate

the performance of our simulation approach against three baseline

quantum circuit simulators from prior work.

A.5.1 Validation. From the directory that you �rst arrive in the

Docker container (/common/home/yh804/research/), run the fol-

lowing Python test suites, which should take less than 5 minutes:

$ pytest Google/Cirq/ \

cirq/sim/kc_sparse_simulator_test.py

$ pytest Google/Cirq/ \

kc_examples/kc_examples_test.py

A.5.2 Performance Evaluation. From the directory that you �rst

arrive in the Docker container (/common/home/yh804/research/),

run the following performance benchmarking experiments, which

should take less than 20 minutes combined.

$ python3 Google/Cirq/kc_examples /\

kc_qtorch_qaoa/kc_qtorch_qaoa.py

$ python3 Google/Cirq/kc_examples /\

kc_qtorch_vqe/kc_qtorch_vqe.py

$ python3 Google/Cirq/kc_examples /\

kc_noise_qaoa/kc_noise_qaoa.py

$ python3 Google/Cirq/kc_examples /\

kc_noise_vqe/kc_noise_vqe.py

After running the performance benchmarks, move the experi-

mental result PDF �les to the host machine through the volume

binding:

$ mv *.pdf /common/home/yh804/research/pdfs/

A.6 Evaluation and Expected Result

Here we describe the validation test suites and their expected re-

sults. We then describe the expected trends in the performance

benchmarking results.

A.6.1 Validation. We ran two Python test suites during the valida-

tion step, and both should return no errors. They test the following:
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