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ABSTRACT

Due to the unreliability and limited capacity of existing quantum
computer prototypes, quantum circuit simulation continues to be a
vital tool for validating next generation quantum computers and
for studying variational quantum algorithms, which are among
the leading candidates for useful quantum computation. Existing
quantum circuit simulators do not address the common traits of
variational algorithms, namely: 1) their ability to work with noisy
qubits and operations, 2) their repeated execution of the same cir-
cuits but with different parameters, and 3) the fact that they sample
from circuit final wavefunctions to drive a classical optimization
routine. We present a quantum circuit simulation toolchain based
on logical abstractions targeted for simulating variational algo-
rithms. Our proposed toolchain encodes quantum amplitudes and
noise probabilities in a probabilistic graphical model, and it com-
piles the circuits to logical formulas that support efficient repeated
simulation of and sampling from quantum circuits for different
parameters. Compared to state-of-the-art state vector and density
matrix quantum circuit simulators, our simulation approach offers
greater performance when sampling from noisy circuits with at
least eight to 20 qubits and with around 12 operations on each
qubit, making the approach ideal for simulating near-term varia-
tional quantum algorithms. And for simulating noise-free shallow
quantum circuits with 32 qubits, our simulation approach offers a
66X reduction in sampling cost versus quantum circuit simulation
techniques based on tensor network contraction.

CCS CONCEPTS

» Computer systems organization — Quantum computing; «
Mathematics of computing — Probabilistic inference prob-

lems; Bayesian networks; Decision diagrams; « Computing method-

ologies — Knowledge representation and reasoning.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPLOS 21, April 19-23, 2021, Virtual, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8317-2/21/04.

https://doi.org/10.1145/3445814.3446750

456

Todd Millstein
todd@cs.ucla.edu
University of California, Los Angeles
Los Angeles, CA, United States

Margaret Martonosi
mrm@princeton.edu
Princeton University

Princeton, NJ, United States

KEYWORDS

quantum circuits, Bayesian networks, conjunctive normal form,
knowledge compilation, exact inference, simulation

ACM Reference Format:

Yipeng Huang, Steven Holtzen, Todd Millstein, Guy Van den Broeck, and Mar-
garet Martonosi. 2021. Logical Abstractions for Noisy Variational Quantum

Algorithm Simulation. In Proceedings of the 26th ACM International Con-
ference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS °21), April 19-23, 2021, Virtual, USA. ACM, New York, NY,

USA, 17 pages. https://doi.org/10.1145/3445814.3446750

Before After

AR

ynnh

sdddaaiora i%"t >0

®u

6 11 SBis

Figure 1: Equivalent knowledge com-
pilation representations of a 4-qubit
| noisy QAOA quantum circuit. In this
~work we calculate and sample ampli-
tudes from arithmetic circuits (ACs)
representing noisy quantum circuits.
To the left, direct compilation results in
ACs where qubit states ordered in time
progresses from top to bottom. Above,
optimizations such as logical minimiza-
tion, qubit state reordering, and eliding
internal qubit states reduce the size of
the AC. The reduced but equivalent rep-
resentation leads to more efficient sim-
ulation and sampling,.
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INTRODUCTION

Consensus among quantum systems researchers is that variational
algorithms are among the most important near-term applications of
quantum computing [50, 55]. Variational algorithms work by using
a classical computer to train for optimal parameters that minimize
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a function evaluated by a quantum computer. Examples include
the quantum approximate optimization algorithm (QAOA) [26, 27]
and the variational quantum eigensolver (VQE) [53] algorithm for
physical simulations. Unlike prominent quantum algorithms such
as Shor’s factoring [58] and Grover’s search [30] algorithms, vari-
ational algorithms can extract useful computation out of noisy
intermediate-scale quantum (NISQ) computer prototypes, which
only support unreliable operations on a limited number of qubits
(the fundamental unit of quantum computing).

A further consequence of the limited capacity, reliability, and
endurance of existing quantum prototypes is that simulation using
classical computers continues to be a critical research tool [50,
Chapter 6.3]. Classical computer simulations of quantum algorithm
circuits are important for developing new quantum algorithms and
for validating results from quantum prototypes.

Thus far, the most advanced quantum circuit simulators are not
geared for simulating important variational quantum algorithms.
Quantum computing research would benefit from a simulator that
supports variational algorithms specifically, which would require
a simulator that 1) supports simulating the effect of noise, 2) effi-
ciently supports repeated simulations with different parameters, 3)
offers an ability to sample from the output of the quantum computer,
and 4) excels at simulating quantum circuits with many qubits and
relatively few operations per qubit. Unfortunately, leading quantum
circuit simulators have instead focused on simulations that estab-
lish the point at which limitations of classical computing give way
to quantum computers having an advantage, a milestone termed
quantum supremacy [3, 32, 48, 62]. Such simulators can only simu-
late quantum circuits that are ideal (noise-free), and they cannot
reuse computation results across simulation runs. The clear mis-
match between the requirements for variational algorithm versus
supremacy simulations have resulted in simulators that do not
adequately support important variational workloads.

The key insight of our paper is that knowledge compilation—a
technique for efficient repeated inference originating in artificial
intelligence research [22, 23]—can serve as the basis for a quantum
circuit simulation toolchain geared for variational algorithms. In a
knowledge compilation approach to performing inference, knowl-
edge about probabilistic relationships between events is first en-
coded in a graphical model such as a Bayesian network [22, 42, 52].
The knowledge compilation techniques convert Bayesian networks
into minimized representations of logical formulas called arith-
metic circuits (ACs, Figure 1) that enable repeated inference and
sampling queries with different parameters and new choices for
inference outcomes [15]. These features of the knowledge compila-
tion approach—namely, 1) the ability to represent and manipulate
probabilistic information, 2) the ability to compile probabilistic
model structural information into minimized formats, 3) the ability
to efficiently sample from the same model but for varying parame-
ters and evidence—match well with the requirements for variational
quantum algorithm simulation.

We built a toolchain to test this idea of using knowledge compi-
lation for variational algorithms quantum circuit simulation. Our
toolchain consists of:
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(1) A front-end for converting noisy quantum circuits (specified
in Google’s Cirq framework!) to complex-valued Bayesian
networks [8, 10, 47, 54, 63, 66], which we extend to correctly
encode quantum noise mixtures and channels. Compared
to conventional quantum circuits where complex-valued
quantum amplitudes and real-valued noise probabilities are
treated separately, the Bayesian network encoding unifies
quantum states and noise events in a single representation.
A compiler that converts Bayesian networks representing
noisy quantum circuits into conjunctive normal form (CNF)
logic formulas. The CNFs encode the quantum circuits’ struc-
tural information: the sets of logic variable assignments that
satisfy the CNF correspond to all sets of qubit state assign-
ments that are consistent with the original quantum cir-
cuit’s semantics. This structural information can be reused
across simulations independently of quantum amplitude and
noise probability parameters, which vary across simulations,
which is a key benefit over prior simulation techniques.

A compiler that converts CNFs to ACs. An AC enumerates
and assigns a weight value to each set of variable assignments
that satisfy a logical formula [22]. Summing the weights
across all qubit state assignments results in the output ampli-
tudes that we seek to find in the quantum circuit simulation
task. The compiler can factor away the variables that repre-
sent intermediate qubit states, thereby enabling the quantum
circuit simulator to find the probability amplitude for an out-
come without incurring the cost of finding the amplitudes
of intermediate qubit states. The ACs also enable a Markov
chain Monte Carlo procedure for sampling sets of qubit out-
comes according to their measurement probability.

We validate our compilation and simulation approach for both
noise-free and noisy quantum circuits, demonstrating correct re-
sults for a suite of quantum algorithms including Deutsch-Jozsa,
Bernstein-Vazirani, hidden shift, quantum Fourier transform, Shor’s,
and Grover’s algorithms.

We benchmark the performance of our simulator for sampling
outputs for a QAOA algorithm for Max-Cut and a VQE algorithm
for finding the minimum energy configuration of a 2D Ising model.
Compared to state-of-the-art simulators for both ideal and noisy
quantum circuits, our simulator excels at sampling from circuits
with at least eight to 20 qubits and with around 12 operations per
qubit—a range of qubit counts and operations that includes many
meaningful variational algorithm problems. And for simulating
ideal shallow quantum circuits with 32 qubits, our simulation ap-
proach offers a 66X reduction in sampling cost versus simulators
based on tensor network contraction. The advantages are due to the
more compact representation, the circuit minimization and memo-
ization capabilities of our approach, and due to the storage costs
for conventional simulators based on matrix representations. The
improved simulation performance facilitates studying variational
algorithms and validating prototype quantum computer results in
the NISQ era of quantum computing.

Uhttps://github.com/quantumlib/Cirq
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(a) Noisy quantum circuit for creating a Bell state consist-
ing of two entangled qubits. The circuit comprises two
qubits, g0 and g1, initialized to initial quantum states

and 1m0 respectively. The noise model in this quantum
circuit is a phase damping (PD) noise channel with a prob-
ability of happening y = 36% of the time. Following a
Hadamard (H) gate and the noise event, qubit g0 has states
qom1 and q@m2 respectively. Following a CNOT gate qubit
q1 has state

qom2rv
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(b) A transformed quantum circuit equivalent to the one
to the left. The phase damping channel is replaced by an
equivalent controlled rotation—f = arcsin(+/y) about
the y-axis—and a measurement on an ancillary qubit [51,
Page 385]. The measurement outcome on the ancillary
qubit represents whether or not the noise event takes
place. The fact that noise channels can be thought of as
spurious measurements makes them difficult to simulate
compared to noise mixtures.
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(c) Bayesian network representation of the noisy Bell
state quantum circuit in the left two subfigures. The node
gom2rv represents the possible noise events associated
with the phase damping noise channel. Each node has
an associated conditional amplitude table shown in Ta-
bles 2(a), 2(b), and 2(c). The directed edges represent de-
pendencies between qubit states.

Figure 2: Noisy Bell state quantum circuit and its Bayesian network representation.

2 BACKGROUND ON QUANTUM CIRCUIT
SIMULATION AND VARIATIONAL
ALGORITHMS

We summarize necessary background on the representation of
noise-free and noisy quantum states, on simulating quantum cir-
cuits, and on variational quantum algorithms.

2.1 Ideal Quantum Circuit Simulation

Quantum circuit simulation entails using a classical computer to
calculate the outputs of a quantum computer. Quantum circuit simu-
lation is useful for discovering new quantum algorithms, validating
the execution of quantum programs on unreliable quantum hard-
ware [3, 19, 37, 38, 56], and understanding the limitations of classical
and quantum computation [3, 32, 48, 62]. To understand quantum
circuit simulation, first we have to understand the representation
of quantum states and operations.

2.1.1 The State Vector Representation for Quantum Pure States. The
fundamental unit of computation in a quantum computer is a qubit.
A single qubit has a state represented by the vector a |0) + §|1) =
[a, ﬁ] T where |0) and |1) are orthonormal standard basis vectors
and a and f are complex-valued amplitudes. It is required that
|et|?+|B)? = 1. The state of N qubits is represented by a state vector
that has size 2V, For example, two qubits have a state represented
by the vector & |00) + f101) + y|10) + 5 |11) = [a,ﬁ, s 5] T where
again |a|? + B + || + 16]* = 1.

Using Figure 2(a) as an example, if qubit state = |0) and
q1me@ = |0), then the state vector of the two qubits is found using
the tensor product (denoted ®):

®q1mo = 0) ® [0) = H ® [;J = || =100

S O O

2.1.2  The Unitary Matrix Representation of Quantum Gates and
Circuits. Quantum computation proceeds by applying quantum
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gates on quantum states encoded on qubits. Quantum gates are
represented by norm-preserving unitary matrices, that is, matrices
that ensure that the sums of squares of amplitudes remain 1. For
example one important quantum gate is the Hadamard gate which
has a unitary matrix representation of:

L L
V2 2

When quantum gates act on pure states, the resulting state is
found via matrix vector multiplication of unitary matrices and state
vectors. Using Figure 2(a) as an example, the qubit state qom1 after
the Hadamard gate is:

1 1 1
_ _ V2 2 [ V2|2 L 1
goml = H =Y 2 [ ] =|Y|=—=I10+—11) (1)
A A G V2 V2

2.2 Noisy Quantum Circuit Simulation

In contrast to simulating noise-free ideal quantum circuits, simulat-
ing realistic quantum circuits requires the ability to represent noisy
quantum mixed states and the ability to model various non-ideal
effects. Existing prototype quantum computers are unreliable due to
various non-ideal effects. The effects include environmental distur-
bance of delicate quantum states leading to decoherence, imprecise
application of operations, and measurement error. The outcome
of quantum states in a noisy quantum circuit varies depending on
whether noise events takes place, so a greater amount of informa-
tion is needed to account for all the possibilities, thereby making
the task of simulating noisy circuits harder than simulating ideal
ones. To understand this challenge we introduce the representation
of noisy quantum states and models of quantum noise.

2.2.1 The Density Matrix Representation of Quantum Mixed States.
Density matrices represent noisy quantum states as probabilistic
ensembles of pure states. A density matrix p for pure states |{/) has
the form: p = 3 pj [;) (¢, where p; is the probability that the
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Table 1: Summary of canonical quantum noise models.

Quantum noise mixtures Quantum noise channels

Pauli-X type  Bit flip noise Amplitude damping
noise (related to T1 time)
Phase damping

noise (related to T2 time)
Generalized amplitude

damping

Pauli-Z type  Phase flip noise

Combinations Symmetric / asymmetric
depolarizing noise

Noise effects

Sim. technique ~ Can model as probabilis-

tic ensembles of state

Requires density matrix
representation
vectors

mixed state is the pure state |¢/;), (/;| is the conjugate transpose
of [j), and 3; pj = 1. Using Figure 2(a) as an example, we may
wish to have a density matrix representation of qém1 in preparation
for calculating the effect of quantum noise on that qubit state. The
density matrix representation of qom1 from Equation 1 is:

paam = (5 100+ 1)) (5 01+ = @)
e bt @
SHERARIN

2.2.2  The Kraus Operator Representation of Quantum Noise Chan-
nels. Quantum noise can be modeled as a quantum noise channel
&, which acts on a quantum mixed state p to create a new mixed
state: E(p) = Xk Eka,: , where the Kraus operators E represent
different effects on the quantum state due to the noise channel.

Important noise channel types are listed in Table 1 [51, Chapter
8.3]. The table shows that noise models can be classified along
several dimensions. The first dimension is in the type of effect the
noise has on the quantum state: Pauli-X type noises disturb the
quantum basis state, while Pauli-Z type noises disturb the phase.
There are also combinations of these types of noise. The second
dimension of classification is in terms of whether density matrices
are needed to model the noisy states. In this work we consider all
of these types of noise.

For example, one type of quantum noise channel is phase damp-
ing noise, which has the Kraus operators:

Eoz[l 0

N

=7 BTl w

where y is a probability parameter describing the strength of the
noise channel. Using Figure 2(a) as an example, the density matrix
representation of qubit state q@m2 after a phase damping channel
(with y = .36) acts on q@m1 from Equation 2 is:

oNI»—l

.8

I=]

ol
Do Nlm
[E—

Pgom2 = S(qum) = [

|
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Finally, the two-qubit CNOT gate has a unitary matrix represen-
tation of:

CNOT =

S O O =
S O = O
_o O O
S = O O

such that the final density matrix is:

Paem2 ® pain3 = CNOT (pgem2 ® pqime) CNOTT
1 0.8
2 00
1o 0o 0 o0 ®)
10 0 0 0
0.8 1
5 0 0 3

Outside of these canonical quantum noise mixture and channel
models, other types of operational error—such as imprecise gate
operations and measurement error—can be modeled as one of the
canonical noise models in conjunction with an otherwise ideal
operation or measurement.

2.3 Near-Term Variational Quantum
Algorithms as Target Simulation Workload

We focus on quantum circuit simulation for algorithms that are can-
didates for near-term useful quantum computation. Such algorithms
are designed to run on near-term noisy, intermediate-scale quantum
(NISQ) computers [2, 11, 36, 45, 50, 55]. Specifically, we evaluate
our simulation approach on two representative NISQ algorithms:
one is a quantum approximate optimization algorithm (QAOA) for
Max-Cut [4, 26, 27, 60], and the other is a variational quantum
eigensolver (VQE) for an Ising model physics simulation [5, 53].

These hybrid quantum-classical algorithms rely on a classical
computer running an optimization routine such as the Nelder-Mead
method to find optimal parameters for a quantum circuit. The quan-
tum computer serves only to find an objective function from the
system under study to guide the overall optimization loop. The
quantum circuit parameters that minimize the objective function
encode the desired algorithm results.

The quantum circuits involved in these important variational
algorithms have distinct traits, and so simulating these circuits is
also a distinct challenge. Compared to the quantum circuits involved
in other algorithms, variational quantum algorithms:

(1) do not rely on error-corrected ideal qubits and operations,
and are therefore sensitive to the reliability and noise char-
acteristics of the underlying hardware;

(2) require repeated execution or simulation of the same circuit
but with different parameters;

(3) use circuits that are wide but shallow (i.e., they use many
qubits but perform relatively few operations on those qubits);

(4) rely on the quantum computer or simulator to sample from
the final quantum wavefunction, which have measurement
probability distributions that are sharply peaked (Figure 3a).

These traits also set variational algorithm circuits apart from those
in random circuit sampling circuits, which have thus far been the
focus for quantum circuit simulators. In order to accelerate the
development of these NISQ variational algorithms, researchers
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Figure 3: The probability distribution for output qubit measurements in variational quantum algorithms is sharply peaked. A
few qubit bitstrings dominate the output probability distribution for this 10-qubit quantum circuit performing QAOA for Max-
Cut. Since a few bitstrings dominate the outcomes, sampling the outcomes is more efficient than finding the full probability
distribution.

N CNF encoding of CNF to . Basis state P
Noisy quantum Bayesian B N ithmetic ci it AC encoding of amplitude Quantum circuit
. _yq Quantum circuit network to ayesian arithmetic CI.rCLII valid sets of qubit Pl u_ simulation and
circuit (quantum to Bayesian Complex-valued conjunctive network (AC) compiler states calculation sampling results
kernel of ) Bayesian iy structure (§3.2.2) (§3.3.1) and pling
iati | network compiler network normal form wavefunction returned to
‘;Tr:frilt%r::) (§3.1) (CNF) compiler ~amplin variational
9 (5 3.2.1) pling algorithm

Parameters for gate amplitudes and noise probabilities (§3.3.2)
I .

gl New parameters from variational algorithm iterations g

Figure 4: Toolchain for noisy quantum algorithm simulation via knowledge compilation of probabilistic program representa-
tions.

the quantum circuit structure from gate and noise parame-
ters (Section 3.2.1). The toolchain then compiles the CNFs
to arithmetic circuits that can be reused across quantum
program simulations with different parameters as needed in
variational algorithms (Section 3.2.2). Ours is the first work
to demonstrate such reuse of computational results across

need high performance and efficient simulators that specifically
support NISQ algorithms.

3 NOISY QUANTUM ALGORITHM
SIMULATION VIA KNOWLEDGE
COMPILATION

Our approach to quantum program simulation involves a series of 3
program transformations that enables more efficient simulation of
variational quantum algorithms. We adapt techniques from classical

Bayesian inference by converting the simulation problem into one

of repeated inference and sampling from a probabilistic graphical

model (PGM). The toolchain comprises three main stages, corre-

sponding to the special traits of variational algorithms (Figure 4).

simulation runs.

Gibbs sampling on the compiled PGM representation.
Following the previous transformations, the task of finding
the amplitude associated with a given assignment of qubit
values becomes equivalent to the task of finding the proba-
bility of a given set of evidence in a Bayesian network. For
the wide but shallow circuits typically found in variational
algorithms, doing this type of simulation is more efficient
than finding full state vectors (Section 3.3.1). Compiling to
arithmetic circuits further enables the simulator to use a
Markov chain Monte Carlo method to draw measurement
outcomes in the same way a prototype quantum computer
would (Section 3.3.2).

=

(1) Conversion of noisy quantum circuits to Bayesian net-
works, (a kind of PGM). This program translation combines
in a single representation the two types of values in noisy
quantum circuits: the real-valued probabilities associated
with noise events and the complex-valued quantum ampli-
tudes associated with qubits and gates. The unified represen-
tation enables more direct manipulation and simulation of
noise effects. (Section 3.1)

Knowledge compilation of the Bayesian networks. This
step borrows techniques originating in artificial intelligence
research meant for efficient repeated inference on PGMs. Our
toolchain compiles the structure of Bayesian networks into
conjunctive normal form (CNF) logic formulas to separate

We discuss these program transformations using a detailed example
in the following subsections.

3.1 Converting Noisy Quantum Circuits to
Bayesian Networks

2

~

The first stage of our program transformation is to convert noisy
quantum circuits into complex-valued Bayesian networks. We per-
form this transformation to combine the real-valued probabilities
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associated with quantum noise events with the complex-valued
quantum amplitudes associated with qubit states and gates. Such a
transformation is possible because quantum programs and Bayesian
networks are both inherently probabilistic; with suitable changes
to the latter’s semantics they can represent ideal quantum circuits
with no loss of generality [1, 10, 33, 63, 66].

In classical inference, Bayesian networks are a basic type of
PGM [22, 42, 43, 52]. They consist of network nodes that in the
classical setting represent probabilistic random variables. Directed
edges in Bayesian networks represent conditional dependence. Ad-
ditionally, each node is associated with a conditional probability
table that describes the conditional probability of that node’s vari-
able given knowledge about that variable’s dependencies.

In the quantum setting, Bayesian network nodes represent qubit
states, and directed edges represent how qubit states depend on
preceding qubit states. In contrast to the quantum circuits repre-
sentation that dominates quantum computing research and teach-
ing [24, 39, 49, 51], a Bayesian network representation of a quantum
program emphasizes the graphical structure of dependencies be-
tween the qubit states and operations on qubits.

In this work, we extend these quantum PGMs [1, 10, 33, 63, 66]
to represent probabilistic events associated with noisy quantum
operations. Figure 2 shows the transformation of a noisy quantum
circuit for creating Bell states to its corresponding Bayesian network
representation. We’ll be using this minimal example throughout
Section 3.

3.1.1  Encoding Ideal Qubits & Operations. Quantum Bayesian net-
works encode the unitary matrices associated with quantum gates
as conditional amplitude tables, which are complex-valued gener-
alizations of conditional probability tables. For a single-qubit gate
such as the Hadamard gate in Figure 2, the conditional amplitude ta-
ble (Table 2(a)) at node q@m1 will look like the transpose of the 2 x 2
quantum gate unitary matrix. For quantum gates involving more
than one qubit such as the CNOT gate in Figure 2, the conditional
amplitude table (Table 2(c)) at node will be a permutation
of the original quantum gate unitary matrix. The permutation is
possible so long as the unitary matrices have only one non-zero
element in each row and column. This permutation property holds
for most elementary quantum gates, and more complex gates can
be decomposed until such translation is possible.

3.1.2  Encoding Noisy Quantum Mixtures & Channels. In this paper,
we propose for the first time additional semantics for representing
quantum noise mixtures and channels in quantum Bayesian net-
works. For qubit states that follow quantum noise mixtures, the
parameters in the conditional amplitude tables come from the prob-
abilities of the noise mixture possibilities and their effect on the
quantum state. For qubit states that follow quantum noise channels,
the probability of whether the noise event occurs is encoded in
a random variable representing spurious measurement outcomes
(Table 2(b)). Such a representation for quantum noise works for all
canonical noise models, including the symmetric and asymmetric
depolarizing, bit-flip, phase-flip, (generalized) amplitude damping,
and phase damping types of noise listed in Table 1.
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Table 2: Conditional amplitude tables for Figure 2.

(a) Conditional amplitude table at node qom1 associated with the Hadamard
gate (H in Figure 2). Table rows list input qubit basis state combinations; table
columns list output qubit basis state combinations.

| A(qom1 =10)) A(gem1 = |1))

|0) +1/V2 +1/V2
|1) +1/V2 -1/V2

(b) Conditional amplitude table at node go@m2rv representing probabilities of
measurement outcomes for the phase damping noise (PD in Figure 2(a) and Ry,
in Figure 2(b)).

qom1 ‘ A(gom2rv =0) A(gom2rv =1)

[0) 1 0
[1) +0.8 —0.6
(c) Conditional amplitude table at node associated with CNOT gate.
Control gom1  Target q1m@ ‘ A( =10)) A( =11))
|0) |0) +1 0
[0) |1) 0 +1
[1) |0) 0 +1
[1) |1) +1 0

3.2 Bayesian Network Knowledge Compilation

Now that the semantics of noisy quantum circuits have been com-
piled into our Bayesian network representation, we demonstrate for
the first time using inference techniques based on logical formula
minimization to enable efficient quantum circuit simulation. There
are many algorithms for exact inference on Bayesian networks. Ini-
tially, we used variable elimination [22, 42, 43, 52] to demonstrate
that exact inference on the complex-valued Bayesian networks
leads to correct circuit simulation results. We soon realized that
support for repeated simulation with different parameters was the
key to support important variational algorithms. The need for re-
peated inference motivates using exact inference algorithms based
on knowledge compilation [23, 41].

Knowledge compilation techniques compile Bayesian networks
into logical formulas with associated weight values on satisfying
sets of variable assignments (Section 3.2.1). Then, these formulas
are further compiled into arithmetic circuits that exploit conditional
independences in order to minimize their representation, allowing a
circuit to be compiled once and queried many times efficiently (Sec-
tion 3.2.2). A sum-of-products process known as weighted model
counting on the compiled representations give exact inference re-
sults [15, 22]. In the quantum setting, exact inference supports
quantum circuit simulation by determining the amplitudes in the
final wavefunction (Section 3.3).

3.2.1 Bayesian Networks to Conjunctive Normal Form Logical For-
mulas. The first half of the compilation process is to separate the
structural information of the quantum circuit from the amplitude
and probability numerical parameters of the circuit. The compiler
does this extraction by converting the Bayesian networks into CNF
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Table 3: Program transformations converting Bayesian networks to conjunctive normal form (CNF).

Quantum circuit
semantics encoded

The interpreted meaning of logical sentences comprising the CNF for
our noisy Bell state quantum circuit example in Figure 2 and Table 2

Compilation and
simplification rules

Qubits take on binary

q1m@ = |0) XOR q1m@ = |1) Combine initial value

values; supply known q1mo = |0) sentences into binary

initial qubit values gom1 = |0) XOR gom1 = |1) constraint sentences us-
ing logical unit resolu-
tion.

Hadamard gate (Condi- Agoml =0) = +‘/L§ Agoml = |1) = +\/lE Compiler needs to avoid

tional amplitude table in Agoml = [0) — +-L Ageml = [1) — —-L simplifications that as-

Table 2(a)) V2 V2 sume that amplitudes
sum to 1.0.

Phase damping noise | gom2rv = 0 XOR gom2rv =1

gom1 = |1) Agoem2rv =0 = +0.8 Weight variables stand

channel (Conditional | gom1 = |0) = g@m2rv =0 goml =|1) Agom2rv=1 = —0.6 in for numerical param-

amplitude table in eters for amplitudes

Table 2(b)) or probabilities; the
simulator later resolves
the weight variables
with values that can
change for repeated
simulations.

CNOT gate (Conditional | gom1 = [0)AqIm@ = |[0) = goml = [1)Aq1ime = [0) = Deterministic parame-

amplitude table in Ta- | gOm1 = [0)AqIm0 = [1) = goml = |1)AqImo = |1) = ters such as 0.0 or 1.0

ble 2(c)) can be directly factored

into logic without
weight variables.

logical formulas, which in the case of the tools we use are encoded
in the standard DIMACS format.?

Our translation of the meaning of an example CNF is shown in
Table 3. Each of the Boolean variables in the CNF corresponds to
either the truth value of some qubit state or an indicator variable for
a numerical weight. The table shows logical sentences that encode
information represented in the topology of the quantum circuits and
the Bayesian networks. Some sentences in the CNF represent hard
constraints on logical variables and qubit states, such as
Other sentences encode a weight value assigned to a combmatlon
of logical conditions, such as gom1 = |1) A gOm2rv =1 = —0.6.

The resulting CNF from conjoining all the clauses together ex-
presses all the combinations of qubit states that are consistent with
the quantum circuit semantics. Each set of valid variable assign-
ments that satisfies the CNF represents one valid Feynman path [28]
through the quantum circuit. A weighted model count on the weight
values for these satisfying assignments leads to the amplitudes we
need to perform quantum circuit simulation.

To our knowledge, ours is the first work to represent and manip-
ulate quantum circuits as logical formulas; such a representation
enables us to use logical minimization techniques to aid in circuit
simulation.

2We found and extended a Bayesian network to CNF compiler originally intended
for purely classical probabilities for this stage of our toolchain. https://github.com/
gisodal/bayes-to-cnf.

Optimizations. The Bayesian network to CNF compiler applies
various simplification rules on CNFs at this stage.

(1) The compiler substitutes known variable values (e.g., known
initial qubit states) into other sentences containing the same
variable in order to simplify those sentences [12].

(2) The compiler recognizes deterministic probabilities such as
0.0 and 1.0 to eliminate irrelevant sentences.

(3) Numerical parameters, such as —1/ V2 in the Hadamard gate
and the 0.36 probability in the phase damping channel, are
replaced with variables whose values are resolved later; such
a substitution allows the simulator to efficiently repeat sim-
ulations with different sets of parameters during simulator
execution.

These simplifications lead to a linear reduction in the number of
clauses in the CNFs that lead to a significant reduction in later
compilation results.

In general, the semantics of translating classical real-valued
Bayesian networks to CNFs for knowledge compilation has been
the subject of numerous studies [13-15, 20, 22, 57]. Some of these
optimization techniques assume probabilities that sum to unity [57],
and would therefore lead to an incorrect encoding for quantum
simulation on amplitudes.

3.2.2  CNFs to Minimized Arithmetic Circuits. The second half of
the compilation process is to compile the CNFs into arithmetic
circuits (ACs), such as the ones in Figures 1 and 5, which are data
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Figure 5: The arithmetic circuit resulting from knowledge compilation of the noisy quantum circuit and Bayesian network in
Figure 2 and corresponding CNF in Table 3. This data structure represents combinations of qubit states that are consistent with
the quantum circuit semantics, and it assigns a weight to each. The arithmetic circuit enables efficient amplitude calculation
in an upward traversal through the tree (Section 3.3.1) and also Gibbs sampling in a downward traversal (Section 3.3.2).

structures that represent the sets of satisfying variable assignments
in a minimized representation. The representation enables calcu-
lating the sum of products of the weights for all paths. In our use
of ACs for quantum circuit simulation here, the data structure rep-
resents all Feynman paths through the quantum circuit consistent
with the given initial qubit states and measurement outcomes, and
it allows the simulator to calculate the amplitude for the assigned
qubit states for each path.

The tasks of calculating and sampling amplitudes both take place
with time complexity linear with respect to the size of the compiled
AC [23, 40, 41], so it is worth discussing the costs of such a compiled
representation next.

Worst-case complexity of path enumeration and quantum circuit
simulation. The number of satisfying assignments to a CNF grows
exponentially in the worst case. As shown in the "Before" picture in
Figure 1, direct enumeration of satisfying assignments of a CNF rep-
resenting a quantum circuit leads to ACs that have combinatorially
many paths through the circuit. The power of quantum algorithms
arises from the parallel and simultaneous traversal of all edges in
the graph, accentuating some basis states in the final wavefunction
while cancelling out other basis states. Such combinatorial explo-
sion in the number of paths is also what makes classical simulation
of quantum algorithms intractable.

Complexity of path enumeration in practice with knowledge com-
pilation. The appeal of the knowledge compilation approach is that
various optimizations enable compilation of CNFs to ACs with-
out resulting in exponentially large ACs in practice. The caveat,
however, is that compiling CNFs to minimized ACs may take time
exponential with respect to the input CNF size due to the inherent
hardness of the factoring and minimization task. Nonetheless, such
a precompilation cost is still worthwhile in simulating variational
quantum circuits, where the simulator can reuse the compiled data
structure for repeated simulation with different parameters.
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Optimizations. In this compilation stage, various optimization
options impact the compiled representations’ size.>

(1) Qubit state elision. Since for the purposes of this paper we
are only interested in the final qubit states, we can instruct
the compiler to use existential quantification to factor away
the variables corresponding to intermediate qubit states. For
example in Figure 5, the nodes corresponding to the known
initial qubit states ( and q1m@) and the intermediate
qubit state (q@m2) are factored out from the compiled AC.
Such elision enables the AC to calculate amplitudes for the
output qubits without incurring the unnecessary cost of
calculating amplitudes for intermediate qubit states.

(2) Qubit state elimination order. The order in which logical
variables corresponding to the remaining qubit states are
enumerated impacts how much factoring the compiler can
perform. Elimination order choices include using a hyper-
graph partitioning algorithm and also one that follows the
lexicographic ordering for qubit states. We observe that us-
ing hypergraph partitioning allows for smaller AC sizes and
therefore faster simulation times when only the final output
qubit states are relevant.

These optimizations, in conjunction with the CNF minimization
rules in Section 3.2.1, lead to a reduction in circuit size demonstrated
in the "After" picture in Figure 1.

3.2.3  Evaluation of Knowledge Compilation on Quantum Algorithm
Case Studies. As we will demonstrate next for a variety of struc-
tured and unstructured quantum circuits, the compiled AC repre-
sentations avoid the worst case and offer reductions in simulation
complexity.

Figure 6 plots the resource requirements of a simulation against
the underlying quantum circuit size for various quantum algorithm

3We use c2p to convert CNFs to ACs. http://reasoning.cs.ucla.edu/c2d/. Alternatives
such as Dsharp and D4 do not have available all the optimizations useful for this work.
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Figure 6: Simulation resource requirements vs. quantum cir-
cuit size for three quantum algorithms.

Table 4: Problem size metrics for largest instances in Fig-
ure 6.

# qubits # gates AC file size
RCS 42 840 82 MB
Grover’s 17 2460 530 MB
Shor’s 13 12247 586 MB

simulation workloads. The horizontal axis counts the number of
variables in the CNF (and in the Bayesian network); this value is
proportional to the number of gates inside the quantum algorithm
quantum circuit. The vertical axis, in log scale, counts the number
of nodes in the compiled AC; this number is proportional to several
measures of the simulation resource intensiveness, including the
number of edges in the AC, the memory and filesize needed to store
the AC, and the time to compile and perform inference on the AC.

The data points in the plot correspond to simulation instances of
various sizes (Table 4) belonging to three quantum algorithms. Two
of the three algorithms are structured workloads, meaning that they
are designed to perform a meaningful computation. The orange data
points are instances of Shor’s factoring algorithm [58], written in a
style that minimizes qubit count [6]. The circuits here are factoring
either 6 or 15, covering a range of one through four iterations of
the algorithm. The blue data points are instances of Grover’s search
algorithm [30, 31]. In this case the algorithm is searching for the
square root of a number in a simple abstract algebra setting, for a
search space ranging from two to 16 elements. The implementations
are taken from open source quantum algorithm benchmarks,* and
the simulation results are validated to be correct outputs.

The third algorithm is an unstructured workload, meaning that
the quantum operations are randomly selected and placed in a fixed
template. These problems in random circuit sampling (RCS) are
extremely difficult to simulate because the qubits rapidly become
entangled with all other qubits [9, 32, 62], leaving little indepen-
dence structure for knowledge compilation to exploit. The gray data
points are simulations of a population of such workloads involving
between 25 and 42 qubits.’

4https://github.com/epiqc/ScaffCC
Shttps://github.com/sboixo/GRCS
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Table 5: Upward pass for finding amplitudes.

gom2rv  qeom1 ‘ amplitude ‘ density matrix component

0 [0y o) 1/V2 +1 0 0 +%8
0 [0y 1) 0 0 0 0 0
0 1y 10) 0 0 0 0 ©
0 1y 1y | 0.8/v2 +%8 0 o0 +28
1 [0y ]0) 0 00 0 0

1 [0y 1) 0 00 0 0

1 1) ]0) 0 00 0 0

1 1) 1)y | —0.6/v2 0 0 0 +%36

The trends here on a semi-log plot show different scaling trends
among the three workloads. The RCS workload exhibits full ex-
ponential growth in simulation difficulty, while the Grover’s and
Shor’s workloads appear to scale sub-exponentially. This is a result
of the knowledge compilation toolchain extracting structure with
different degrees of success for the three classes of workloads. The
significance of this capability is that we can repurpose knowledge
compilation to extract structure and reduce the cost of simulating
a quantum circuit.

3.3 Calculating Amplitudes and Sampling from
Arithmetic Circuits

The ACs that result from the previous program transformations
dictate the minimal sequence of calculations for both finding ampli-
tudes for a given set of qubit states (Section 3.3.1) and also sampling
outcomes from the final wavefunction (Section 3.3.2), for a given
quantum circuit topology and a given variable order. These two
tasks proceed, respectively, as upward and downward traversals of
the AC graph. The ACs memoize calculation results from previous
queries so that only changed nodes have to be recalculated for new
queries.

ACs such as the one in Figure 5 consists of nodes that are either
operations (multiply, add) or leaves. The leaves represent either
numerical parameters—quantum amplitudes (e.g., 1/V2) and noise
probabilities (e.g., 0.6)—or logical variables representing qubit states
(e.g., g@m1 = |0)). The actual values describing quantum amplitudes
and noise probabilities can vary between simulation runs as they
vary across variational algorithm iterations. Likewise, the truth
values for the qubit state assignments can vary to find the amplitude
of any output qubit state of interest.

3.3.1 Calculating Amplitudes via Inference on ACs. Our simulator
calculates the amplitude for a given output basis state by finding
the probability amplitude of such evidence in the Bayesian network.
Such a calculation proceeds as an upward traversal of the AC in
Figure 5 following the procedure by Darwiche [21, 22].

Now, let’s see the traversal procedure in action. The white in-
sets in Figure 5 contain a pair of values: the left one tracks the
upward traversal for finding the amplitude while the right one
tracks the downward traversal for sampling to be discussed next in
Section 3.3.2. Suppose we want to find the probability amplitude for
the |11) output state, given that the g@m2rv noise event does occur.
The simulator assigns the value 1 to the logical variable nodes for
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gom2rv = 1, gom1 = |1), and , indicating that they are
true; and it assigns 0 to the logical variable nodes that indicate
otherwise. The calculations dictated by the operator nodes lead
to a root node value at the top of —0.6/V2, corresponding to the
probability amplitude of the assigned output qubit state and noise
events.

Following the same procedure above, Table 5 completes the
calculation of the probability amplitude for all other sets of noise
event (qOm2rv) and qubit states (qom1, ) assignments, leading
to probability amplitudes for eight different possibilities. The two
different assignments for the noise event, gom2rv = 0 and gém2rv =
1, lead to two density matrix components that sum up to the overall
density matrix of

I
%0

S O =
oS o O

0
~ 0
p= 0

[ i) Ol\bl

0.8
28 0 o0

which is exactly the expected final density matrix result in Equa-
tion 3 for the noisy Bell-state creation circuit in Figure 2(a) with
|00) as the input.

It is worth emphasizing that all of the compilation and simulation
techniques we describe up to this point are exact and involve no ap-
proximations. Because the compilation and simulation is exact, we
can validate that our simulator gives exactly the right probability
amplitude distributions across all of the measurement outcomes.
We validate the overall simulation approach by creating a new sim-
ulator backend for the Google Cirq open-source framework for
quantum programming.® The simulator passes a suite of random-
ized validation tests for ideal noise-free state vector simulation and
also noisy density matrix simulation. We also demonstrate correct
simulation results for a benchmark suite of quantum algorithms,
including the CHSH inequality protocol [18], Deutsch-Jozsa [25],
Bernstein-Vazirani [7], Simon’s [59], hidden shift [64], quantum
Fourier transform, Shor’s [58], and Grover’s [30] algorithms.

3.3.2 Drawing Samples with Distributions Matching the Output
Wavefunction. The final step of our toolchain is to use the com-
piled arithmetic circuits to approximately sample from the final
wavefunction. Such a feature is important in simulating variational
quantum algorithms where a few high-probability quantum mea-
surement outcomes most strongly influence the classical optimizer’s
objective function (Figure 3). Since a few basis states dominate the
output wavefunction, it is easier for the simulator to sample those
high probability outcomes than to calculate the full wavefunction.
This task of obtaining a sequence of outcomes matching the proba-
bility distribution from measuring the final wavefunction amounts
to a Markov chain Monte Carlo (MCMC) problem [16].

The compiled AC representation of noisy quantum circuits facil-
itates Gibbs sampling. Gibbs sampling is a form of MCMC where
the next sample of variable assignments is drawn from the vari-
able assignments that are “one away” from the current assignment.
More concretely, if the present variable assignment is { g@m2rv = 1,
goml = |1), }, then the Gibbs sampling MC would con-
sider the following possibilities as the next sample:

®https://github.com/quantumlib/Cirq
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(b) Sampling error for an 8-qubit noisy QAOA circuit.

Figure 7: Sampling error for ideal sampling and Gibbs sam-
pling versus number of samples

e {gqom2rv =0, gom1 = |1), }
e {g@m2rv =1, gom1 = |0), }
e {@@m2rv =1, gom1 = |1), }

Each of these assignments has one of the variable assignments
flipped with respect to the present sample.

The compiled arithmetic circuit offers a way to compute the
probability of each of the transitions as a downward traversal of
the AC [22]. To find the transition probabilities, we first find the
amplitude for a given set of parameters and evidence via an upward
traversal in the AC as in Section 3.3.1, filling in the left number in
the white insets in Figure 5. Then, in a downward traversal of the
AC, we add to the right number of each node the node’s contribution
to the final amplitude, following the procedure by Darwiche [21].
This right number is the transition probability that helps pick the
next step in the MCMC chain.

3.3.3  Evaluation of Sampling Accuracy for Noise-Free and Noisy Cir-
cuits. Now, we quantify the extent to which the Gibbs MCMC sam-
pling technique facilitated by arithmetic circuits returns the same
distribution, compared to ideal (direct) sampling from a fully-known
final wavefunction. We are interested in this evaluation because this
final sampling step in our simulation toolchain is an approximation
technique, in contrast to the prior steps where the noisy quantum
circuits are exactly translated into Bayesian networks, CNFs, and
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Figure 8: Knowledge compilation vs. state vector (qsim) vs. tensor network (qTorch) performance for ideal (noise-free) circuits

arithmetic circuits with no approximation. As shown in Figure 3,
the distribution given by Gibbs sampling (Figure 3d) introduces
inaccuracy compared to ideal sampling (Figure 3c) from a known
wavefunction (Figures 3a and 3b). This inaccuracy is due to warmup
and mixing requirements for the Gibbs sampling MCMC.

Figure 7 plots the error of Gibbs sampling and ideal sampling ver-
sus the number of samples taken, for simulating both a noise-free
and a noisy quantum circuit. We use the Kullback-Leibler diver-
gence (relative entropy) metric [46, Chapter 2.8] to quantify the
difference between the sampled distribution versus the fully known
distribution. We choose this metric (in contrast to other metrics
such as y?) because the KL divergence discounts any error due
to zero samples being drawn from low-probability outcomes. We
sample outcomes from a QAOA Max-Cut benchmark circuit involv-
ing 16 qubits in the noise-free and 8 qubits in the noisy case. In
the noisy case, the noise model is a symmetric depolarizing noise
channel with 0.5% probability of occurence after each gate. The
trends show that both sampling approaches converge to the same
distribution with increasing number of samples. The Gibbs sam-
pling approach has slightly worse accuracy versus ideal sampling
due to the aforementioned MCMC warmup and mixing issues.

This evaluation shows that, for simulating variational algorithms
where measurement probabilities are sharply peaked, the Gibbs
sampling approach facilitated via knowledge compilation returns a
correct distribution with sufficient samples.
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4 EVALUATION OF SAMPLING
PERFORMANCE FOR IDEAL AND NOISY
CIRCUITS

With the correctness of our knowledge compilation and simulation
approach established, in this section we benchmark our approach on
variational algorithm noisy quantum circuits. We compare against
three existing major classes of quantum circuit simulators: state
vector, density matrix, and tensor network based simulators.

For problem sizes corresponding to near-term quantum appli-
cations (beyond eight noisy qubits with ~12 gates per qubit), we
demonstrate that the knowledge compilation approach has an ad-
vantage over the simulators that tabulate the entire quantum state
(i.e., state vector and density matrix simulators), while knowledge
compilation’s performance advantage relative to tensor network
methods depends on the circuit topology.

4.1 Evaluation for Ideal Circuit Simulation and
Sampling

In Figure 8, we compare our simulator against qsim,’ a state vec-

tor simulator by Google that was a component of their quantum

supremacy validation experiments [61]. gsim is a C-based SIMD

simulator that works by multiplying gate unitary matrices against

7https://github.com/quantumlib/qsim
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Figure 9: Knowledge compilation vs. density matrix simulation performance for noisy circuits
Table 6: Intermediate compilation result metrics for largest problem instances in Figures 8 and 9.
# qubits # gates # CNF clauses  # AC nodes # AC edges AC size
(# BN nodes)
QAOA 1 iteration 32 240 1440 3139 7959 50.7 KB
Ideal QAOA 2 iterations 32 416 2592 3934271 9635580 84.8 MB
(Figure 8) VQE 1 iteration 25 169 839 1334 2975 26.2 KB
VQE 2 iterations 25 309 1579 79056 188328 1.4 MB
QAOA 1 iteration 12 378 3996 5798 9415 43 KB
Noisy QAOA 2 iterations 12 516 5292 18991 39839 304.4 KB
(Figure 9) VQE 1 iteration 9 272 2867 3810 5758 47.9 KB
VQE 2 iterations 9 343 3637 7701 13941 107.5 KB

a large state vector. We also compare against qTorch,? a tensor-
network simulator [29]. We selected qTorch as a comparison base-
line because it is recent, open source, and intended for arbitrary
quantum circuits, in contrast to other tensor network simulators
that have stipulations on qubit connectivity and the type of simu-
lated quantum circuit.

We evaluate the simulators on two representative variational
algorithms, QAOA and VQE. The QAOA workload (Figure 8(a)
and 8(c)) solves a Max-Cut problem on random graphs with varying
number of vertices each having three edges. Each qubit encodes one

8https://github.com/aspuru-guzik-group/qtorch
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vertex, and two-qubit gates between qubits encode the connectivity
of the random graphs [26, 60]. The VQE workload (Figure 8(b)
and 8(d)) finds the minimum energy configuration for a 2D Ising
model problem. Each qubit encodes a grid point in 2D space, and
two-qubit gates between qubits encode couplings between electron
spins [5]. For both problems, we perform one or two iterations of
the quantum circuit, where the two iteration version would have
higher concentration of higher probability outcomes, at the cost of
doubling the circuit depth.



Logical Abstractions for Noisy Variational Quantum Algorithm Simulation

For each problem combination, we plot the time it takes to draw
1000 samples against the number of qubits. The data points are av-
erages across ~16 Nelder-Mead optimization runs with randomized
problem instances.

At 30 qubits, the gsim state vector simulator has to hold in
memory a vector of 2°0 ~ 1.1B complex numbers, which accounts
for state vector simulation’s exponential cost per simulation run
relative to the number of qubits. The knowledge compilation and
tensor network simulators use circuit representations that avoid
such a storage cost. Table 6 summarizes metrics for the knowledge
compilation intermediate results for the largest problem instances.

The ability for knowledge compilation and tensor network sim-
ulators to handle circuit depth (in the form of algorithm iterations)
depends on the quantum circuit topology: At one algorithm itera-
tion, knowledge compilation needs 66X less time than the tensor
network method per sample for 32-qubit QAOA; at two algorithm
iterations, the two approaches are comparable for QAOA while
qTorch struggles for VQE [29].

The results show that for wide (more than 20 noise-free qubits)
and shallow (~12 gates per qubit) circuits, the knowledge compi-
lation approach excels at drawing samples from the output wave-
function. These time savings accumulate over the course of a full
simulation for a variational quantum algorithm, as the classical
optimizer would draw from these distributions many times in order
to evaluate the objective function for different input parameters.

4.2 Evaluation for Noisy Circuit Simulation
and Sampling

In Figure 9, we compare our simulator against the density matrix
simulator for noisy circuits in Google Cirq. The density matrix
simulator is a NumPy-based simulator that works by multiplying
gate unitary matrices against a large density matrix for mixed
quantum states.

We evaluate on QAOA and VQE as before, this time adding a sym-
metric depolarizing noise channel with 0.5% probability that one of
Pauli-X, Y, or Z noise events may happen after each gate. We further
validate that the knowledge compilation simulator calculates the
same density matrix as the baseline Google Cirq simulator.

At 12 qubits, the Google Cirq density matrix simulator has to
hold in memory a matrix of 212 x 212 ~ 17M complex numbers; fur-
thermore the matrix has little sparsity to reduce its representation.
Table 6 again summarizes metrics for the knowledge compilation
intermediate results.

For noisy circuits, the knowledge compilation approach breaks
even with the density matrix simulator at eight qubits, fewer than
the case for ideal circuits. This is due to the even greater cost of
having to perform matrix-matrix multiplication in density matrix
simulation, and also due to less prior focus in developing high
performance simulators such as gsim and qTorch for noisy circuit
simulation. The data suggest that knowledge compilation is well-
suited for the repeated simulation of noisy circuits in variational
quantum algorithms.

5 RESEARCH DIRECTIONS

Compiling noisy quantum circuits to PGMs and logical abstrac-
tions such as CNFs and arithmetic circuits may accelerate the pace
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Table 7: Comparison of quantum and probabilistic graphical
models of computation.

Probabilistic Quantum
inference program simulation
random variables qubits

probabilities amplitudes

conditional probability tables
joint probability distributions
dependent random variables
variable elimination
weighted model counting [41]

operator unitary matrices
superposition states
entangled qubits

tensor network contraction

Key analogies

Feynman path sum

probabilities between 0 and 1
probabilities sum to 1

amplitudes are complex-valued
squares of absolute amplitudes
sum to 1

interference impossible interference (canceling of ampli-
tudes) possible

beyond Clifford gate set

Key distinctions

equivalent to Clifford set [65]

of quantum computing research by offering new ways to analyze
quantum circuits. Table 7 lays out loosely analogous concepts be-
tween probabilistic and quantum graphical models. The fact that
Bayesian networks can be generalized to work on complex-valued
quantum amplitudes [63], along with the insight that knowledge
compilation works on algebraic semirings such as complex num-
bers [41], underpins the validity of our quantum circuit compilation
and simulation toolchain.

This work has focused on finding amplitudes for qubit state
assignments and sampling from wavefunctions, by performing a
procedure analogous to finding evidence probabilities and gradi-
ents via weighted model counting in classical PGMs. The fact that
our quantum circuit simulator gives correct results suggests that
other types of PGM query techniques [34, 35] can likewise support
quantum computing research.

Bayesian networks support various other queries such as sensi-
tivity analysis [22, Chapter 16][44] and most probable explanation
(MPE) queries. Sensitivity analysis queries would answer how in-
ternal qubit states influence observed qubit states, which may have
applications in mapping the most influential qubits variables in an
algorithm to the most reliable hardware qubits in a prototype quan-
tum computer. MPE queries would answer what error event best
explains a given symptomatic observed outcome. MPE queries rely
on the existence of a meaningful operator for finding the maximum
value of two quantities; while such a MAX operator is undefined
for complex-valued amplitudes, it does exist for real-valued error
probabilities. These other types of queries can be made tractable,
depending on the algebraic properties of what the Bayesian net-
works represent, and depending on the choice of the knowledge
compilation target representation [17, 40, 41].

6 CONCLUSION

This paper proposes and evaluates a new quantum circuit simu-
lation technique that focuses on simulating NISQ era variational
quantum algorithms. Our simulation toolchain extends techniques
originating in classical exact probabilistic inference to support this
important quantum simulation workload. Our simulator compiles
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noisy quantum circuits into complex-valued Bayesian networks
in order to combine real-valued noise probabilities and complex-
valued quantum amplitudes in one graphical notation. Our sim-
ulator then uses knowledge compilation, a technique originally
meant for repeated inference, to form an arithmetic circuit that
encodes structure information about the quantum circuit. The pre-
compiled information then allows for efficient repeated quantum
circuit simulation with different parameters, and allows for effi-
cient Gibbs sampling from the output wavefunction. We validated
the simulation approach for a benchmark suite of quantum algo-
rithms. For wide and shallow quantum circuits found in variational
algorithms such as QAOA and VQE, our simulator performance
compares favorably against both ideal and noisy quantum circuit
simulators. These simulation capabilities may accelerate the de-
velopment of useful quantum computing systems and near-term
quantum algorithms.
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A ARTIFACT APPENDIX
A.1 Abstract

This artifact demonstrates a new way to perform quantum circuit
simulation. We convert quantum circuits into probabilistic graphical
models, which are then compiled into a format that enables efficient
repeated queries.

The artifact consists of a Docker image which includes Google
Cirq, a quantum programming framework, which we have extended
to use our proposed approach as a quantum circuit simulation back-
end. Also in the Docker image are two quantum circuit simulators
based on existing approaches which we compare against as evalua-
tion baselines.

We offer the Docker image via three routes: a hosted version on
Docker Hub provides the latest version of our software and requires
minimal setup; a Dockerfile is provided to show how to replicate
our environment from scratch; and finally a stable archival version
is available on Zenodo.

With minimal setup, you can run test cases in our Docker con-
tainer showing the validity of our approach. We test our quantum
circuit simulation approach using the randomized test harness that
Google Cirq uses to test its quantum circuit simulation back ends.
We also demonstrate correct simulation results for a benchmark
suite of quantum algorithms.

The Docker image contains performance benchmarking experi-
ments that replicate results of our paper at reduced input problem
sizes. The experiment scripts generate PDFs showing graphs that
plot simulation wall clock time against input quantum circuit sizes.
The input problem sizes are large enough to show that our proposed
approach achieves a speedup versus existing simulation tools.
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A.2 Artifact Check-List (Meta-Information)

e Algorithm: A new algorithm for simulating quantum circuits and

quantum noise models.

Program: Google Cirq https://github.com/quantumlib/Cirq, UCLA

Ace compiler http://reasoning.cs.ucla.edu/ace/, Google gsim https:

//github.com/quantumlib/qsim, qTorch https://github.com/aspuru-

guzik-group/qtorch.

Transformations: The quantum circuits and noise models are

converted to complex-valued Bayesian networks. A set of techniques

originating in Bayesian inference, known as knowledge compilation,

converts the Bayesian networks into logical formulas that support

repeated queries.

e Model: A benchmark suite of quantum circuits provided in Google
Cirq.

o Run-time environment: The Docker container has been tested
on Linux (Ubuntu 18.04.5 LTS) and macOS (Big Sur Version 11.1).

e Hardware: 8 GB memory is needed to run the reduced-size valida-
tion test suites. Additional memory (up to 1 TB) is recommended to
replicate the paper results for the largest problem instances.

e Execution: Less than 30 minutes to run the reduced size validation
test suites.

Metrics: Quantum circuit simulation times for our proposed simu-

lator compared against three baseline simulators from prior work.

e Output: Four PDF files plotting wall clock times for sampling
outputs plotted against quantum circuit size.

o Experiments: Pull Docker image (or load from tarball), run Docker
container, and call various Python scripts within container.

o How much disk space required (approximately)?: 4 GB

o How much time is needed to prepare workflow?: 10 minutes

o How much time is needed to complete experiments (approx-

imately)?: 30 minutes

Publicly available?: https://hub.docker.com/repository/docker/

yipenghuang0302/quantum_knowledge_compilation

Archived (provide DOI)?:

https://doi.org/10.5281/zenodo.4321945

A.3 Description

A.3.1 How to Access. Our experiment requires setting up Docker
(https://docs.docker.com/get-started/). The Docker container re-
quires about 4 GB of free disk space. We provide three ways to
access our experiment environment:

(1) Pulling the latest Docker image from Docker Hub (recom-
mended);

(2) Downloading Docker image tarball from Zenodo (for artifact
archiving purposes);

(3) Building a new image from a Dockerfile which pulls from
GitHub repositories (demonstrates how to replicate the ex-
periment environment).

Below, we provide instructions for accessing our artifact via each
approach.

Pulling from Docker Hub. From the Unix command line:

$ docker pull yipenghuang@302/\
quantum_knowledge_compilation:latest

Downloading from Zenodo archive.
(1) Obtain the Docker image tarball from Zenodo at this DOI:
https://doi.org/10.5281/zenodo. 4321945


https://github.com/quantumlib/Cirq
http://reasoning.cs.ucla.edu/ace/
https://github.com/quantumlib/qsim
https://github.com/quantumlib/qsim
https://github.com/aspuru-guzik-group/qtorch
https://github.com/aspuru-guzik-group/qtorch
https://hub.docker.com/repository/docker/yipenghuang0302/quantum_knowledge_compilation
https://hub.docker.com/repository/docker/yipenghuang0302/quantum_knowledge_compilation
https://docs.docker.com/get-started/
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(2) Then, load the Docker image tarball:

$ docker load --input \
quantum_knowledge_compilation.tar.gz

Building from Dockerfile.

(1) Download the Ace compiler from http://reasoning.cs.ucla.

edu/ace/download.php.
(2) Obtain the Dockerfile on GitHub:

$ git clone \
https://github.com/ \
yipenghuang0302/Cirq.git

(3) Place the Ace compiler tarball in the same directory as the
Dockerfile:

$ mv ace_v3.0_linux86.tar.gz \
Cirq/kc_examples

(4) Change your working directory to the same directory as the
Dockerfile, and build the Docker image:

$ cd Cirg/kc_examples
$ docker build \
--tag quantum_knowledge_compilation

A.3.2  Hardware Dependencies.

o We tested our experiment artifact on a Linux desktop and on
an Apple MacBook Pro laptop (2019, with 16 GB of RAM).

o The full experimental results involving the largest problem
instances in our paper were done on a Linux server (Two
Intel Skylake Xeon Gold 6148 CPUs @ 2.40 GHz and 1 TB of
RAM).

A.3.3  Software Dependencies. As you can see from the Dockerfile,
the experiment relies on various pieces of software outlined in our
checklist:

e Google Cirqg, a quantum programming framework: https:
//github.com/quantumlib/Cirq

e bayes-to-cnf, a Bayesian network compiler that outputs con-
junctive normal form logical formulas: https://github.com/
gisodal/bayes-to-cnf

e UCLA Ace compiler, a knowledge compilation tool that sup-
ports efficient repeated inference: http://reasoning.cs.ucla.
edu/ace/

o Google gsim, a quantum circuit simulator based on matrix
vector multiplication, which we compare against as a base-
line: https://github.com/quantumlib/qsim

e qTorch, a quantum circuit simulator based on tensor network
contraction, which we compare against as a baseline: https:
//github.com/aspuru-guzik-group/qtorch

These software dependencies are automatically downloaded and
compiled in the Docker image.

A.3.4 Data Sets. We use a benchmark suite of quantum circuits
in Google Cirq to validate our simulator and to measure its per-
formance. These input data sets are included in the Google Cirq
repository, and are automatically downloaded in the Docker image.
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A.4 Installation

No special installation is needed after you have obtained the Docker
image via one of the sources above. Just enter the Docker container:

$ docker run -ti \

-v $(pwd):/common/home/yh804/research/pdfs \
yipenghuang0302/\
quantum_knowledge_compilation:latest

e The -ti flag makes the Docker container interactive.

e The -v flag binds the directory
/common/home/yh804/research/pdfs/ inside the Docker
container to the present working directory of the host ma-
chine. We will be moving the experiment output plots to the
host machine through this volume binding.

A.5 Experiment Workflow

We will perform two types of experiments in this artifact demon-
stration. First, we will run a set of tests that validate the correctness
of our proposed quantum circuit simulator. Second, we will evaluate
the performance of our simulation approach against three baseline
quantum circuit simulators from prior work.

A.5.1 Validation. From the directory that you first arrive in the
Docker container (/common/home/yh804/research/), run the fol-
lowing Python test suites, which should take less than 5 minutes:

$ pytest Google/Cirq/ \
cirq/sim/kc_sparse_simulator_test.py
$ pytest Google/Cirq/ \
kc_examples/kc_examples_test.py

A.5.2  Performance Evaluation. From the directory that you first
arrive in the Docker container (/common/home/yh804/research/),
run the following performance benchmarking experiments, which
should take less than 20 minutes combined.

$ python3 Google/Cirq/kc_examples/\
kc_qtorch_qgaoa/kc_qtorch_qgaoa.py

$ python3 Google/Cirqg/kc_examples/\
kc_qtorch_vge/kc_qtorch_vqge.py

$ python3 Google/Cirqg/kc_examples/\
kc_noise_qgaoa/kc_noise_qaoa.py

$ python3 Google/Cirqg/kc_examples/\
kc_noise_vge/kc_noise_vqge.py

After running the performance benchmarks, move the experi-
mental result PDF files to the host machine through the volume
binding:

$ mv x.pdf /common/home/yh804/research/pdfs/

A.6 Evaluation and Expected Result

Here we describe the validation test suites and their expected re-
sults. We then describe the expected trends in the performance
benchmarking results.

A.6.1 Validation. We ran two Python test suites during the valida-
tion step, and both should return no errors. They test the following:


http://reasoning.cs.ucla.edu/ace/download.php
http://reasoning.cs.ucla.edu/ace/download.php
https://github.com/quantumlib/Cirq
https://github.com/quantumlib/Cirq
https://github.com/gisodal/bayes-to-cnf
https://github.com/gisodal/bayes-to-cnf
http://reasoning.cs.ucla.edu/ace/
http://reasoning.cs.ucla.edu/ace/
https://github.com/quantumlib/qsim
https://github.com/aspuru-guzik-group/qtorch
https://github.com/aspuru-guzik-group/qtorch
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kc_sparse_simulator_test. We show that our simulation approach
passes test cases that the Google Cirq framework uses to validate
simulator back ends.

kc_examples_test. We show that our simulation approach gives
correct results for a benchmark suite of quantum algorithms imple-
mented in Google Cirq, including:

(1) Bernstein-Vazirani algorithm
(2) Bell state creation

(3) Bell inequality

(4) Deutsch’s algorithm

(5) Grover’s algorithm

(6) Hidden shift algorithm

(7) Simon’s algorithm

(8) Quantum Fourier transform
(9) Quantum teleportation

A.6.2 Performance Evaluation. The performance plot PDF files
replicate the results presented in Figures 8 (sampling from noise-
free quantum circuits) and 9 (sampling from noisy quantum circuits)
of the paper submission, albeit at reduced input sizes to reduce time
and hardware requirements. The problem sizes are large enough to
show that our simulation approach has an advantage vs. the baseline
simulators. An example result is included here in Figure 10.

QAOA simulation time vs. qubits (iterations=1)

—— gsim sampling with 1 thread W?
—}— gsim sampling with 16 th
Wwvﬂm%: /

—# §oTch sampling with 16 threads
—— knowledge compilation sampm\*/

[ ' %"’A

P/

/

10 15 20
Qubits, representing Max-Cut problem vertices

10° 4

Time (s)

107t

1T

w

25

Figure 10: Example output of kc_qtorch_gaoa.py: time to
sample outputs from noise-free circuits for the QAOA quan-
tum algorithm.

A.7 Experiment Customization

The experiment input size parameters can be adjusted in the Python
files kc_qgtorch_gaoa.py, kc_qtorch_vge.py, kc_noise_qgaoa.py,
and kc_noise_vge.py:
e The max_length parameter controls the quantum circuit
width, the number of qubits in the input circuit.
e The p or the step parameter controls the quantum circuit
depth, the number iterations of the input circuit.

A.8 Methodology
Submission, reviewing and badging methodology:

e www.acm.org/publications/policies/artifact-review-badging
e cTuning.org/ae/submission-20201122.html
o cTuning.org/ae/reviewing-20201122.html
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