
This paper is included in the
Proceedings of the 18th USENIX Symposium on

Networked Systems Design and Implementation.
April 12–14, 2021

978-1-939133-21-2

Open access to the Proceedings of the
18th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Don’t Yank My Chain: Auditable NF Service Chaining
Guyue Liu and Hugo Sadok, Carnegie Mellon University;

Anne Kohlbrenner, Princeton University; Bryan Parno, Vyas Sekar,
and Justine Sherry, Carnegie Mellon University

https://www.usenix.org/conference/nsdi21/presentation/liu-guyue

Don’t Yank My Chain: Auditable NF Service Chaining
Guyue Liu, Hugo Sadok, Anne Kohlbrenner,⇤ Bryan Parno, Vyas Sekar, Justine Sherry

Carnegie Mellon University ⇤Princeton University

Abstract
Auditing is a crucial component of network security practices
in organizations with sensitive information, such as banks
and hospitals. Unfortunately, network function virtualization
(NFV) is viewed as incompatible with auditing practices
which verify that security functions operate correctly. In
this paper, we bring the benefits of NFV to security-sensitive
environments with the design and implementation of AuditBox.

AuditBox not only makes NFV compatible with auditing, but
also provides stronger guarantees than traditional auditing
procedures. In traditional auditing, administrators test the sys-
tem for correctness on a schedule, e.g., once per month. In
contrast, AuditBox continuously self-monitors for correct be-
havior, proving runtime guarantees that the system remains in
compliance with policy goals. Furthermore, AuditBox remains
compatible with traditional auditing practices by providing
sampled logs which still allow auditors to inspect system behav-
ior manually. AuditBox achieves its goals by combining trusted
execution environments with a lightweight verified routing pro-
tocol (VRP). Despite the complexity of routing policies for
service-function chains relative to traditional routing, Audit-
Box’s protocol introduces 72-80% fewer bytes of overhead per
packet (in a 5-hop service chain) and provides 61-67% higher
goodput than prior work on VRPs designed for the Internet.

1 Introduction
Modern networks contain a myriad of network functions

(NFs) such as firewalls, intrusion detection systems, normal-
izers, exfiltration detectors, and proxies. Beyond security and
performance benefits, a key driving factor for NFs is that
they are mandated by legal and policy requirements; e.g.,
HIPAA [8], FERPA [7], and PCI [13], among others.

While network functions virtualization (NFV) promises
potential benefits in cost, elasticity, and richer poli-
cies [32, 58, 63], there is significant resistance to adoption
of NFV [6] for such regulatory use cases. Conversations with
industry experts suggest that this reluctance stems from the in-
ability to audit NFV deployments to demonstrate compliance
as mandated by standards [15, 41]; i.e., show that the service
function chains (SFC) are correctly implemented and packets
traverse the intended sequences of NFs in the right order.

With legacy hardware NF deployments, administrators
and auditors can simply look at static wiring and hardware
placement to intuitively verify (‘what you see is what you
get’) if the network meets intended requirements.1 In contrast,
NFV introduces new dimensions of dynamism, virtualization,

1As we argue later, this is indeed a weak guarantee, but today’s NFV
deployments lack tools even for this weak property.

and multiplexing in the environment. For instance, VMs
running NFs may be ephemeral, virtual switches may
multiplex several services, and servers may host multiple
services. Enhanced dynamism and a larger attack surface
make NFV systems harder to reason about and as such,
regulators do not have suitable tools for auditing. This lack of
auditing is a fundamental stumbling block for NFV adoption.

To this end, we propose (1) formal models of correct
SFC routing which clarify ‘correctness’ in the context of
dynamic NF scheduling and routing; and (2) a protocol which
provably provides continuous assurance that packets follow
the (formally specified) policy-mandated paths.

Realizing this vision in a practical system, however, is
challenging. To see why, consider traditional verified routing
protocols [46, 55] (VRPs). At a high level, VPRs crypto-
graphically ensure that packets are not modified in flight and
do not deviate from a traversal of a prespecified sequence
of routers. Unfortunately, VPRs fail to provide the required
capabilities for our setting. First, VRPs assume that packets
will traverse their path unmodified, but NFs can legitimately
modify packets. Second, VRPs assume that the correct route
for packets is fixed and known a priori, but in SFC the correct
route for a packet may only be revealed mid-flight. Third,
these approaches focus on per-packet behavior, whereas NFV
often involves stateful NFs whose semantics depend on cross-
packet state. Furthermore, VRPs have prohibitively high
performance overhead; e.g., OPT [46] increases min-sized
packets by 3⇥ for a 4-NF chain, and even the most recent work
EPIC [47] incurs 1.69⇥ overhead for a strong attack model.

In this paper, we present the design and implementation
of AuditBox, which (1) re-enables status-quo ‘what you see
is what you get’ auditing practices, and (2) raises the bar
by enforcing at runtime that the system operates correctly.
AuditBox builds on four key ideas:
• Using secure enclaves: To ensure that the correct NF soft-

ware is running, AuditBox runs them atop hardware en-
claves (e.g., Intel’s SGX [25]). By changing the trust model,
we reformulate verified routing to audit actions between
trusted NFs, with an untrusted network in between.

• Trusted PacketIDs: To tackle dynamic packet modifica-
tions, immutable packetIDs are carried by an AuditBox
packet trailer. This enables us to logically bind modified
packets to incoming packets when creating audit trails.

• NF-hop-by-hop protocols: Given trusted NFs, we devise
a simplified path attestation protocol that focuses on the
packets at individual “NF hops”. This hop-by-hop attesta-
tion has the dual benefit of addressing dynamic paths and
reducing the size of attestation headers.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 155

• Lightweight simplified operations: The use of trusted NFs
inside enclaves enables a number of simple-yet-effective
cryptographic optimizations such as the use of symmetric
keys and updatable MAC computations to significantly
improve data plane performance.
To realize these ideas with minimal modifications to

NF implementations, AuditBox embeds a trusted SFC
routing shim in the enclave alongside the NF. The shim
receives inbound/outbound packets to/from the NF and
is simultaneously responsible for generating audit trails
for traditional auditing practices and for our new goal of
enforcing runtime checks that the untrusted components of
the system behave as expected. Relative to verified routing
protocols for the Internet, AuditBox introduces 72-80% less
per-packet header overhead (assuming a 5-hop service chain)
and offers 62-67% higher goodput in the dataplane.

Nonetheless, auditability in AuditBox (or any such
framework) does come at a cost relative to an uninstrumented
NFV cluster (e.g., 3%-38% overhead for s single NF as shown
in Figure 16). That said, for security-sensitive settings, regu-
latory compliance is a fundamental requirement for NFV de-
ployment. Hence, AuditBox’s essential advantage is in bring-
ing the benefits of ease of management, lower-cost equipment,
faster upgrades and security patches, and flexibility that are
associated with NFV to new markets where it would not have
been viable previously. Indeed, we estimate that AuditBox,
despite its overheads relative to uninstrumented NFV, can
still result in capital savings of 1.9-60⇥ (depending on the ap-
pliance) relative to traditional hardware middlebox solutions.

2 Background and Motivation
We begin by discussing network compliance today (§2.1),

our problem statement (§2.2) and threat model (§2.3), and
finally discuss why compliance for NFV is challenging (§2.4).

2.1 Tussle Between Compliance and NFV
Modern organizations need to satisfy a number of security

standards for compliance with government and industrial
regulations (e.g., HIPAA, FERPA, FISMA, GDPR, and PCI,
among others) [66]. In this paper, we focus on requirements or
controls related to network security under NIST 800-53 [41]
in the United States:2

• Middleboxes must be deployed to protect sensitive data and
systems: Control SC-7 mandates the need for protection de-
vices (e.g., proxies, gateways, firewalls, guards, encrypted
tunnels) arranged in an effective architecture.

• Administrators must periodically test that security infras-
tructure is running properly: Control SI-6 demands that
these inspections be performed periodically, with ‘once a
month’ as an example acceptable frequency.

• Systems must provide logs of anomalies and past behavior:
Control AU-2 requires systems to keep such records for
later analysis for auditing.

2ISO 270001 [15] has similar international standards.

SW & HW
Switches

NF4NF3

Switch

Gateway

NF2

Switch

NF1

Switch

External
Network

Controller

2

3

Commodity
Servers 1

4

5

Figure 1: Components of a basic NFV cluster.
• Independent ‘auditors’ must certify that security mecha-

nisms are in place and running correctly: Control CA-7
mandates that organizations be ‘certified’ by outside au-
ditors (e.g., third-party IT consulting companies) that the
above requirements (among others) are being met.

Reluctance to adopt NFV: To meet the above compli-
ance requirements, there is a large regulatory technology
(‘RegTech’) industry [66] (expected to surpass $55.28B by
2025). One might expect then that this RegTech market would
be an early adopter of NFV to reduce capital and operating
expenses. However, our conversations with representatives
from NIST and a RegTech firm revealed that this industry
is hesitant to adopt NFV. The key reason is that while NFV
lowers the bar for some aspects of compliance (e.g., SC-7),
it makes other requirements such as SI-6, AU-2, and CA-7
difficult, if not impossible.

In hindsight, this reluctance is not surprising. NFV
introduces new dimensions of dynamism and multiplexing
(e.g., shared hosts running VMs, dynamic overlay routing,
dynamic load balancing). This makes it harder to reason
about the deployment and introduces an increased attack
surface for threats (and misconfigurations). In contrast,
a simple statically-wired NF deployment with hardware
boxes seems intuitively easy to test, audit, and demonstrate
compliance to external auditors.

2.2 Problem Setup
We consider an NFV cluster managed by a framework

such as E2 [58], AT&T Domain 2.0 [2], or Blue Planet [3]. At
a high level, NFV clusters consist of five basic components
(Figure 1): (1) Commodity servers on which containerized
or virtualized NFs run; (2) Network Functions such as
firewall, proxy, or IDS; (3) Software and Hardware Switches
that steer traffic between a sequence of NFs; (4) Gateways
where cluster traffic enters; and (5) a Controller responsible
for provisioning NFs on the servers and defining routes
through them. NF instances are composed to create service
function chains (SFC) policies for specific traffic classes (e.g.,
Gateway! Firewall! Proxy! IDS! Gateway).

To make these systems auditable, we need to verify that:
(1) the correct and untampered NFs are running correctly
and (2) packets traverse these NFs according to policy.
We formally define what it means for traffic to traverse
NFs ‘according to policy’ in §4. Furthermore, to meet the
compliance requirements, operators must be able to inspect
and demonstrate that the correct behavior is happening; e.g.,
trigger tests to observe that packets follow policies (SI-6) and

156 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

S1 S2

Servers

Load Balancer

H1

Hn

...

modify packets

Firewall

tagPacket

Figure 2: MACs for integrity are
invalidated by rewritten packets.

S1 S2

ServersH1

Hn

...

Light IPS

reroute packets

Heavy IPS

tagPacket

Figure 3: Rerouting traffic and
bypassing the heavy IPS.

S1 S2

ServersH1

Hn

...

NAT

reorder packets

tPkt0tPkt1

Load Balancer

tPkt2

Figure 4: Reordering packets effects
NF state and future packets.

produce audit trails for external inspectors.
To ‘raise the bar’ for auditability, we add two additional

requirements. First, rather than merely enabling admin-
istrators to test on demand or post-facto whether or not
the system is or was running correctly, we also want to
enable the system to audit itself, continuously, at runtime for
deviations from correct behavior, and to alert administrators
if such a deviation is detected. Second, we also want to
support rich dynamic SFC policies as opposed to traditional
static service-chain policies; e.g., steering packets tagged as
suspicious by earlier NFs for deeper inspection [32].

In this context, we note that while auditability may seem
related to network verification (e.g., [44, 45, 60, 74], the
requirements are fundamentally different on two fronts. First,
most existing network verification efforts simply look at the
configurations of the network elements such as NFs/switches
and formally verify if the configuration meets intended
policies. It does not typically provide any runtime guarantees
about data plane actions. Second, network verification can
be used to provide evidence of correct operation [45] but it
does not provide ‘what you see is what you get’ audit trails;
in this regard, verification could be coupled with audit trails
to provide additional evidence of compliance.

2.3 Threat Model
Although most operators are primarily concerned with

cluster misconfiguration rather than outright attacks, we
target a stronger threat model as follows. First, what is trusted:
the controller is the arbiter of correct policy and how NFs
should be scheduled; we assume that the controller is trusted,
and we do not consider attacks where a ‘lead’ administrator
(that is, an administrator charged with configuring policies
at the controller) provides invalid or malicious policies to
the controller. In the case of the gateway and the NFs, we
assume there exists vendor-certified code which is digitally
signed. This code is privileged to drop or rewrite packets, and
we exclude NFs that can inject packets.

Most other components of the network are untrusted. An
attacker may attempt to corrupt server software (including the
operating system and/or VMM), NF and gateway software,
and the software and hardware of the switches. The attacker
can cause one or more corrupted components to inject, drop,
or rewrite packets.

Our solution builds on the ‘abstract enclave assumption’
defined by prior research [17, 18, 61]: the attacker cannot
observe or modify any data or program code running within

an enclave, and the enclave is trusted to attest to the integrity
of the code running therein. While existing enclave solutions
– such as SGX, which we build on – fall short of meeting
the abstract enclave assumption perfectly [22, 24, 36, 54, 73],
fixing the shortcomings of current enclave solutions is out
of scope for this work, as such fixes are an active area of
research in their own right [26, 34].

2.4 Challenges
At first glance, it would appear that we can borrow

from prior work on verified routing protocols (VRPs)
that cryptographically guarantee that a packet takes a
pre-specified intended path and is not modified in flight
(e.g., [46,49,55,77,80–83]). We use OPT [46] as an exemplar
state-of-art solution from this class. Specifically, OPT extends
each packet with: (a) a cryptographic hash of the packet
contents and (b) its expected switch-level path. Every router
along the path verifies that the packet’s current hash matches
the header and also adds attestations to ensure the packet
has matched the expected sequence. As we will see next, our
NFV auditability problem introduces new dimensions outside
the scope of these prior efforts.
Mutable Packets: Figure 2 shows two NFs: a load balancer
that modifies the destination IP to distribute the load across
multiple backend servers and a firewall configured to block
packets from malicious IPs. Consider the scenario where
switch S2 (either adversarially or via misconfigurations)
modifies the IP header to bypass the firewall. Because NFs
can legitimately modify packet headers, it is difficult to
distinguish whether this action was malicious or an intended
NF action. OPT-like VRPs assume that most packet fields
are immutable and perform crypto operations by excluding
a few mutable packet fields (e.g., TTL), and hence would
generate a large number of false positives by flagging all
legitimate NF modifications.
Dynamic Paths: Consider a dynamic SFC scenario in
Figure 3, where a lightweight IPS performs basic detections
and then routes suspicious packets to the heavy IPS for further
processing. Again, an adversarial or misconfigured device
could reroute all suspicious packets to bypass the heavy IPS,
and it is hard to tell whether this was the result of the light
IPS’s action or a malicious switch. Because the intended path
cannot be determined until the light IPS finishes processing,
OPT-like VRPs – which must pre-specify the end-to-end
route of the packet – are not applicable to this network.
Stateful Behavior: NFs’ stateful semantics mean that

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 157

per-packet auditability may not be sufficient. We may also
need to ensure that all packets in a given flow follow the
same path and that they arrive in order if we wish to ensure
the stateful semantics are not compromised. To see why,
consider Figure 4, which shows two stateful NFs: a layer
4 load balancer to distribute packets based on source IP
and port and a NAT that maps public ports to private ports.
Consider an adversary (or misconfiguration) that reorders
packets and sends the FIN packet before the data packets.
This could cause all following data packets to be discarded by
the load balancer. This highlights a fundamental limitation of
VRPs: because they reason about correctness of each packet
independent of the others, there may be cross-packet policy
violations which they cannot capture.

3 AuditBox Overview
Our goal in designing AuditBox is to provide auditing

capabilities for NFV deployments. In practice, we also want:
R1) minimal modifications to existing NFs and R2) low
overhead on the data/control paths. In this section, we discuss
some of the key ideas in AuditBox and its overall architecture.

3.1 Key Ideas
We first discuss the main ideas that enable AuditBox to

tackle the challenges of packet modifications (C1), dynamic
paths (C2), and stateful actions (C3) while meeting the
practical requirements of minimal NF modifications (R1) and
low overhead (R2).
A) Running NFs in enclaves atop a shim: Inspired by the
trust guarantees provided by prior work [39,61,70], AuditBox
runs NFs in trusted enclaves. This enables AuditBox to trust
those modifications that are validly introduced by NFs (C1).
To avoid modifying existing NFs (R1), we introduce a trusted
shim in each enclave to perform auditing (§5.4). This shim
also ensures that the next-hop NFs are chosen based on the
intended policy (C2).
B) Trusted Packet ID: Mutable packets (C1) make it hard to
generate audit trails as we cannot causally relate NF-modified
packets to their inputs (§4). To tackle this, we introduce
an immutable packet ID, carried by the packet header (§5).
We envision a trusted gateway (running in an enclave) that
generates and assigns this ID when the packet first arrives
in the NFV cluster; the packet ID is carried through NFs even
if the packet itself is modified or rewritten by NFs.
C) NF-Hop-by-hop updated attestations: We leverage
the trusted shim in each enclave to develop a hop-by-hop
attestation protocol in which each pair of shims attest that the
packet was delivered, without improper modification between
an NF and its policy-compliant successor. Compared to the
end-to-end approach taken by traditional VRPs, hop-by-hop
attestation has the dual benefit of supporting dynamic paths
and also reducing packet overheads.
D) Efficient crypto mechanisms: By using trusted enclaves,
we can use one symmetric key for all NFs in the same policy

Controller
Control
Plane

Data
Plane

Secure Channels

Trusted Execution
Environment

(e.g. Intel Enclave)

Untrusted Network (e.g., switches) (§2)

AuditTrailerpkt (§5)

Auditor

Service Chain
Policies (§3)

Correctness
Model (§4)

Unmodified NF

Verification Shim (§6.1)

Hop-by-hop
Protocols (§5)

Updable
MAC (§6.2)

Secret
Logging
(§6.2)

Unmodified NF

Verification Shim (§6.1)

Hop-by-hop
Protocols (§5)

Updable
MAC (§6.2)

Secret
Logging
(§6.2)

Unmodified NF

Verification Shim (§6)

Hop-by-hop
Protocols (§5)

Logging &
Auditing (§5)

Audit
Trails
(§3)

Modified
component

Unmodified
component

New
component

Updatable
MAC (§6)

Figure 5: AuditBox Architecture.
pipelet (§3.3), to simplify the cryptographic operations and
also introduce new opportunities for efficiency. For example,
we implement an efficient updatable MAC algorithm to
improve the performance of repeated attestations to the
packet at each hop (§6.1).

3.2 AuditBox Architecture: Data Plane
The key components of the AuditBox architecture are

illustrated in Figure 5.
In the data plane, AuditBox runs unmodified NFs in

trusted execution environments (TEEs) to isolate them from
other untrusted network components (e.g., switches, OSes).
Although our current implementation (§6) uses Intel SGX
enclaves, our design in principle can be realized using other
TEE technologies such as Arm TrustZone [1]. The key
capabilities we leverage are attested memory isolation and
integrity during program execution. In each enclave, we
add a shim which intercepts the traffic entering/exiting the
NF to serve three purposes. (1) The shim determines the
correct next-hop NF according to a policy it received from
the controller; this is no different than any other NFV policy
manager such as FlowTags [32] or E2 [58].

The second two tasks for the shim are novel to AuditBox
and form the entirety of sections 4, 5, and 6 and so we only
introduce them briefly here. (2) The shim checks each incom-
ing packet to verify that the packet has not been improperly
routed or modified while traversing the untrusted network
between enclaves; on egress the shim attaches a custom
trailer (called AuditTrailer) along with a MAC attesting to
the contents of the packet and trailer so that the next-hop NF
can similarly verify the packet was routed correctly. (3) The
shim logs any packets to local storage which either appear to
violate policy, or are tagged via a secret ‘log bit’ for recording.

3.3 AuditBox Architecture: Control Plane
The controller serves two key purposes: NF deploy-

ment and management, and serving as an interface for an
administrator to inspect logs and audit trails.
NF Deployment: NF deployment includes scheduling NFs

158 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Firewall

IPS

Ingress
Gateway

Egress
Gateway

dst port 80, !safe, alert *, safe, drop-pkt

dst port 80, safe, drop-pktsrc ip wan_net, -, alert

Traffic class: src ip wan_net
Properties: Packet-level

Figure 6: An annotated policy graph.
on servers, verifying enclave attestations that the correct NF
software is running at each NF, distributing and updating
the global symmetric key used for dataplane verification, and
installing the correct next-hop policies at each enclave.

Policies are roughly similar to other DAG-based policy lan-
guages [31, 32, 58]: network operators specify policy pipelets
where nodes represent NFs and edges are annotated with
traffic classes and where they should be routed according to
policy (illustrated in Figure 6). AuditBox augments this tra-
ditional policy with two new parameters: a correctness model
which defines what behavior in the network constitutes a viola-
tion (presented in §4) and violation annotations on each edge
to determine whether packets which violate the correctness
model should be dropped or raise an alert. From this policy,
the operator can define a function which, for a given packet
egressing an NF, can determine what the correct next-hop NF
to deliver the packet to is; this function is installed in the shim
at each enclave along with the assigned violation action to take
in case, e.g., a packet is corrupted inflight between enclaves.
Logging and Audit Trails: Auditors and administrators can
use the controller to query for logs (records of any anomalies
or policy violations) and audit trails (the end to end path
a packet takes through the cluster, and all intermediate
rewritten states of the packet between NFs). By default,
each enclave stores logs and audit trail records to local
storage, encrypted with a symmetric key that is local to that
NF; the controller sets up pairwise keys with each NF for
log and audit storage. Because it is infeasible to log every
packet through the system, the administrator configures a
sampling policy; we discuss the sampling policy, the logging
mechanism, and the security of the logs in §5.4.

4 Formalizing Correctness
We begin by formally defining what it means for a system

to (a) obey correct routing, and (b) support auditing.
Correct Routing: Since networked forwarding elements
are untrusted, we rely on a trusted shim in each SGX enclave
to verify at runtime that the network has not deviated from
correct behavior. §4.2 defines ‘correctness’ with regard to
network forwarding behaviors, i.e., those verified by the shim.
Auditability: Our verified routing approach operates on a
hop-by-hop basis; as we discuss in §5 this simplifies our pro-
tocol and limits its size overhead. However, auditors expect
end-to-end evidence (upon inspection) that the system is oper-
ating correctly. An ‘audit trail’ consists of a recorded sequence
of causally connected operations across devices – e.g., packet
p entered at the gateway, was processed by NFi resulting in
p0, which was processed by NF j, and resulted in p00, which

was released through the gateway. Due to space constraints,
we defer our formal definition of an ‘audit trail’ to §B.2.

Prior to introducing our formal definitions (§4.2), we
define our model of the network (§4.1). We make a few
assumptions for the sake of simplifying our presentation. All
can be relaxed at the cost of additional notational complexity.
First, we assume that the cluster has a single ingress/egress
‘gateway’ where packets transit to/from the primary network.
We similarly assume that each NF has only one ingress/egress
port. Finally, we assume that forwarding within the cluster
is performed at L2, and hence it is not necessary for network
switches to update any TTL values or checksums, i.e., there
is no need for the network to modify packets.

4.1 Definitions
Time: We model time as an ordered sequence E, the set of
all events in the system. E is initialized to [], that is, empty.

As the (modeled) system runs, NFs in the system populate
E with 4-tuples containing the following named values:
• pktin: a packet received (2P, defined below).
• pktout: a packet sent (2P).
• NF: the network function (2F , defined below).
• t: the logical ‘time’ the packet was received or sent (i.e.,

the index in E); represented as a positive integer (2N).
We may refer to members of e2E as e.pktin, e.pktout, e.NF,

or e.t. We index E using array notation e.g., E[43] = (⇤,⇤,⇤,43).
We may also search E for events matching the specified value
at a specified field using the function get-eventE (field, value)
! [E], for example, get-eventE (pktin, pi) returns the sequence
of all events in E where pi was received as input at an NF.

Note that, although AuditBox provides some logging mech-
anisms, there is no globally ordered event log in the system
implementation – the event sequence defined here is merely
an abstraction to help reason about time while modeling.
Packets: P is the set of all 64-9000 byte binary strings, that
is, P is the set of all (up to jumbo framed) Ethernet packets.
Each packet p contains an Ethernet header and an IP header.
Depending upon the NFV framework, the packet may also
contain a collection of ‘metadata’ fields such as FlowTags [32]
or a Network Service Header (NSH) [64]. If the packet
represents a TCP or UDP packet, we represent the classic flow
5-tuple (source IP address, destination IP address, source port,
destination port, protocol) through the function FLOW(p).

As a packet p traverses the network, it may be transformed
into some p0 or p00 through modifications to the payload or
metadata fields. If the data anywhere in the packet – that
is, the 64-9000 byte binary string it represents – has been
changed, then p 6= p0. In the event log, e.pktin,e.pktout2P.
NFs: There is a set of Network Functions F . Each NFi2F
is a function,3 NFi :P!P[{?}. That is, it takes in a packet
and produces another packet (or null).

3Called a ‘transfer function’ elsewhere in the literature [44, 60].

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 159

In our model, we assume NFi encloses some NFi-specific
function fi : P ! P [{?}, which may keep state, modify
packet contents, etc. When NFi takes in a packet and fi
returns null, this represents a drop. We exclude NFs that
could inject new packets.

With respect to the event log E, we log each operation at
NFi as follows:
Algorithm 1 NF Model

1: function NFi(input)
2: output fi(input)
3: if output 6= ? _ input 6= ? then
4: E.append(input, output, NFi, E.length + 1)
5: return output

Switches: Like prior work in SDN and formal model-
ing [44], we consider the network as ‘one big switch’ or a
‘fabric’ and we model its behavior with a single function
F : P [{?} ! P [{?}. In our threat model, F is the
untrusted part of the system. F is not considered an NF
(F 62F), and F does not append to E.
Gateway: Packets enter and exit the cluster – and hence
enter and exit the model – via a dedicated NF, GW which,
like other NFs, also appends to the event sequence. We model
the Gateway as GWin when a packet enters the cluster via the
gateway as follows:
Algorithm 2 Model of Packets Entering the Cluster

1: function GWIN(input)
2: if input 6= ? then
3: E.append(?, input, GWin, E.length + 1)
4: return fin(input)

Like normal NFs, the gateway applies a gateway-specific
function fin to the packet before transmitting it. We define
GWout, for when a packet exits the cluster similarly (§B.1).
Path: Packet processing occurs via traversal of a sequence
of NFs and switches. Whenever an NF sends a packet, it is
passed to the network which is expected to steer the packet
to the next NF specified by the service-chain policy. When
a new packet arrives at GWin, we model traversal of the
network via a nested function of F and elements of F , for
example: GWout�F�NFi�F�NF j�F�...�F�GWin.
Policy: There are many languages [32, 58] and services for
specifying service-chain policy. Here we assume that for
a packet and an NF which just produced that packet, that
there exists some policy function (policy : P⇥F ! F) that
can determine the NF that should next process the packet.
Importantly, we assume that the information necessary to
determine the right next hop relies only in the packet fields
(e.g., IP header, metadata) and the departing NF.

4.2 Correctness
We give two possible definitions of “correct” forwarding

below, based on properties of the modeled event log E.

4.2.1 Packet Correctness
Our first definition, packet correctness, is based on

the UDP service model of packet delivery. Under the
packet-correctness definition, the system is ‘correct’ even
if packets are reordered, dropped, or duplicated between
NFs. The behaviors which are incorrect under this model
are limited to (a) injecting packets which were not sent by
an end host, or (b) modifying/corrupting packets between
sender and receiver.

Packet correctness holds iff Property 1 holds over E.
8eb2E s.t. : eb.pktin 6=?, (1)
9ea2E s.t. :ea.t<eb.t^ ea.pktout=eb.pktin (2)
^policy(ea.pktout,ea.NF)=eb.NF (3)

Property 1: No Injection or Modification
To summarize the above: for all events eb in which an NF

eb.NF receives and processes a packet, there exists a prior
event ea in which ea.NF sends the same packet to eb.NF.

4.2.2 Flow Correctness
Flow correctness is based on the TCP service model. Like

packet correctness, a network where packets are injected
or corrupted by the network is not correct. To meet flow
correctness, the network also must not drop packets, reorder
packets within a flow, or duplicate them. Hence, the network
obeys Flow Correctness iff it respects Property 1 and the
following three properties.

The first additional property aims to verify that the network
has not dropped any packets in flight. An absolute guarantee
that no packets are dropped is impossible, as the NFs cannot
force hostile network elements to deliver packets. Hence, we
instead define our ‘no drops’ property to state that packets
in a given flow that do arrive at their own destination may
only be accepted if all packets previously transmitted from
that flow to that destination have already arrived. To achieve
this, Property 2 (‘No Drops’) says in English that if a packet
ea2.pktin is sent by ea2.NF and received at eb2.NF, then any
other earlier packet ea1.pktout belonging to the same flow and
also destined for eb2.NF should have already been received
by eb2.NF prior to eb2.pktin.

8NFa,NFb2F,8ea1,ea2,eb22E s.t. : (4)
(ea1.t<ea2.t^ea1.pktout 6=? ^ea2.pktout 6=? (5)
^ea2.pktout=eb2.pktin (6)
^policy(ea1.pkt,ea1.NF)=policy(ea2.pkt,ea2.NF) (7)
^ea1.NF=ea2.NF=NFa ^ eb2.NF=NFb (8)
^flow(ea1)=flow(ea2)) =) (9)

(9eb12E s.t. : (10)
(eb1.t<eb2.t^ eb1.NF=NFb ^ eb1.pktin=ea1.pktout)) (11)

Property 2: No Drops
Property 3 ensures that packets within a flow are not

reordered between NFs. In English, the property specifies
that if an NFa transmits a packet ea1.pktout before a packet

160 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ea2.pktout to the same NFb, then ea1.pktout should also be
received by NFb before ea2.pktout.

8NFa,NFb2F, (12)
8ea1,eb1,ea2,eb22E s.t. : (13)
(ea1.pktout=eb1.pktin ^ ea2.pktout=eb2.pktin (14)
^ea1.pktout 6=? ^ea2.pktout 6=? (15)
^ea1.NF=ea2.NF=NFa ^ eb1.NF=eb2.NF=NFb (16)
^flow(ea1)=flow(ea2)) =) (ea1.t<ea2.t() eb1.t<eb2.t)

(17)
Property 3: No Reordering Within the Same Flow

8ea2E,@eb2E\{ea}s.t. :ea.pktin=eb.pktin (18)
Property 4: No Duplication

Finally, we ensure that packets are not duplicated in the
networks (‘replay attacks’) with Property 4. We note that
the Property 4 formalization assumes that the same packet is
never sent by any NF more than once. This seems to be a rea-
sonable assumption. As we are forwarding under L2, an NFA
and an NFB will always have different Ethernet headers even
if the IP, TCP/UDP, and payload are identical. And it seems
reasonable to assume that an NFA will never transmit the same
packet twice either – even a re-transmitted TCP packet will
come with a different IPID value. However, we discuss how to
revise this formalism to allow NFs to duplicate packets in §A.

5 AuditBox Protocol
In this section, we focus on the dataplane protocol. We

begin by providing a high-level view of the actions that each
AuditBox-enabled node performs at each hop (§5.1). Then
we discuss the detailed construction of the attestation check
and update logic we use for packet- (§5.2) and flow-level
(§5.3) correctness. We envision different NFV deployments
can flexibly choose one of these levels of correctness as
desired. Finally, in §5.4 we describe the secure logging
mechanisms which allow auditors to observe audit trails
demonstrating that the system is operating correctly.

5.1 High-level workflow
AuditTrailer: AuditBox adds an AuditTrailer, carried by
the packet, to verify integrity. We discuss the contents of
AuditTrailer in packet-level and flow-level form in detail
in §5.2 and §5.3 respectively; here we briefly present the
two foundational fields for auditing and runtime correctness.
These fields are present in both the packet-level and flow-level
versions of the AuditTrailer.
pktID is a unique, immutable ID assigned to a packet; when
a packet enters an NF and is modified or rewritten, the pktID
allows us to identify for each input packet which output
packet (if any) is a result of its processing. This tracing is
the key mechanism which enables us to generate audit trails
– the causal sequence of events we present in §B.2.
tag is a message authentication code (MAC) which allows us

to identify if a packet has been improperly modified while in
flight between two (trusted) shims. Operationally, the tag is
a Galois Message Authentication Code (GMAC), computed
using a symmetric key over various packet fields (discussed
below in §5.2 and §5.3). The tag field enables us to perform
runtime correctness checks while running with untrusted
operating systems, switches, etc..
Data Plane Actions (Shim and Gateway): The AuditBox
dataplane protocol is implemented at the gateway to/from
the cluster and at the shims inserted into each NF enclave.
At the Gateway: For each incoming packet, the ingress
gateway generates an AuditTrailer (including a unique pktID
field) and appends it to the packet, and then forwards it to
the next NF. At the end of the service chain, as packets leave
the cluster, the egress gateway validates the AuditTrailer
(assuming the validation passes), and then removes the
AuditTrailer and forwards the packet out of the cluster.
At the Shim: At each hop, the shim receives the incoming
packet and performs the following four operations: Check,
Process, Update, and Log. Check validates the received
packet, including verifying the MAC stored in the tag field, to
verify that the received packet was not incorrectly modified
by the network. Process hands the packet to the actual NF
code; when the packet is returned from the NF, the shim then
Updates the AuditTrailer (e.g., computing the new attestation
field). Finally, in certain cases the shim Logs the packet and
certain metadata to produce an audit trail; the packet is then
released to its next hop in the service chain.

5.2 Packet Correctness Protocol
As presented in §4.2.1, the goal of our packet correctness

protocol is to ensure that packets are not injected or modified
by the network, i.e., that all packets received and processed
by an NF were transmitted to that NF by another NF or the
ingress gateway.

tag = MAC (key, pkt || pktID || srcNF || dstNF)

AuditTrailer
srcNFpktIDpkt dstNF tag

Figure 7: The AuditTrailer for packet-level integrity.
For packet correctness, the AuditTrailer (Figure 7) contains

the following fields: pktID (6 bytes), tag (16 bytes), srcNF
(2 bytes), dstNF (2 bytes). As discussed above, the pktID
is required for generating audit trails so we do not discuss
it further here other than to require that it be transmitted
alongside other packet fields (IP header, payloads, etc.)
uncorrupted by the network. Naïvely, one might simply
compute the MAC over the packet and pktID to compute the
tag. However, this would only meet a portion of the clauses
from Property 1 – that there exists some valid NF which
transmitted this packet. If a malicious or misconfigured
switch delivers a valid packet, intended for some NF A, to
NF B, the packet would appear to have a valid tag.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 161

Adding the srcNF and dstNF fields explicitly to the header
bind the packet to the policy-compliant route, meeting the
final clause of Property 1. The sender explicitly encodes
its own NF ID and the intended destination NF ID into the
packet and computes the MAC over the packet, pktID, srcNF,
and dstNF fields. The receiver, by validating the MAC stored
in the tag, can be sure that the sending NF intended to send
the packet to the receiver; the receiver can also (redundantly,
as a sanity-check) re-compute the policy compliant next-hop
NF for the received packet and the source NF to further verify
that it is indeed the correct recipient.

We specify this protocol in Algorithm 5 and prove that it
meets the requirements of Property 1 in Appendix D.

Theorem 1 (Packet Correctness) Consider the game
described in §D.3 with adversary A and instantiated with the
AuditBox packet-correctness protocol. Specifically, looking at
Algorithm 5, we instantiate fin with the function GENERATE
and fi with PROCESSi. The probability that the game outputs
an event log E that violates Property 1 is negligible.

5.3 Flow Correctness Protocol
We now discuss the implementation of the Flow Correct-

ness Protocol, which in addition to Property 1 also meets
Properties 2, 3, 4. We envision that networks that use only
stateless or order-insensitive NFs will prefer the lighter
packet-correct protocol, but those with stateful NFs whose
operations are sensitive to packet ordering may use the
stronger flow-correctness protocol.

tag = MAC (key, pkt || pktID || srcNF || dstNF || flowID || seqNum)

seqNumsrcNFpktID tagflowIDpkt dstNF

AuditTrailer

Figure 8: The AuditTrailer for flow-level integrity.
As shown in Figure 8, to extend the AuditTrailer for

flow-level semantics, we add two additional fields over the
packet-level version: a flowID field (4 bytes), and a seqNum
field (4 bytes). The tag is now computed over the packet and
all fields including flowID and seqNum.

When packets enter the cluster through the gateway, the
gateway hashes the classic ‘5-tuple’ and looks this up in a
flow table mapping 5-tuples to flowIDs. If a flowID already
exists for this flow, the gateway appends the existing flowID
to the AuditTrailer. If a flowID does not exist for this flow,
the gateway assigns an unallocated ID number to the flow and
inserts this into the flow table and the packet. For non-TCP
and non-UDP packets, the flowID is simply set to 0. Like
the pktID, the flowID is unmodified as packets flow through
the network – even if header values and port numbers are
rewritten, the flowID remains the same across NFs; as we will
show, this is important for the creation of audit trails (§5.4).

seqNum values are maintained per-hop and represent the
ordering of packets between a sending NFA and a receiving
NFB for a given flow. The sending NF maintains an incre-
menting per-flow counter, and, for each packet from the same

flow, appends the sequence number to the seqNum field in the
AuditTrailer. At the receiver, there is a corresponding table
of per-flow counters with the next sequence number expected.
In our implementation, there is no reason for in-network
reordering within a flow and hence the receiver raises an alert
for any out-of-order packets; we could configure the receiver
to maintain a small buffer to wait for reordered packets and
put them back in order for processing in a cluster (and to
only raise an alert after multiple out of order arrivals) where
reordering were for some reason possible. Thus, packets are
discarded at the receiver if they either fail the tag verification
or fail the expected-next-sequence number test.

Because the protocol rejects out-of-order packets, it easily
meets Property 3. Since duplicate packets will have the same
sequence number, they are detected. Thus, the protocol also
meets Property 4. Finally, if a packet is dropped, the arrival
of subsequent packets will induce alerts due to out-of-order
sequence numbers, meeting Property 2.4 We specify this
protocol in Algorithm 6 and formally prove its security in
Appendix D.

Theorem 2 (Flow Correctness) Consider the game de-
scribed in §D.2 with adversary A and instantiated with the
AuditBox flow-correctness protocol. Specifically, looking at
Algorithm 6, we instantiate fin with the function GENERATE
and fi with PROCESSi. The probability that the game outputs
an event log E that violates Properties 1-4 is negligible.

Why not use existing TCP sequence numbers? Rather than em-
bedding an additional sequence number, one might attempt to
naïvely re-use the sequence number already embedded in TCP
flows to save additional bytes in the header. However, packets
may already be missing when they enter the cluster (leading to
sequence number gaps which are not the result of misbehavior
within the cluster) and NFs may choose to drop packets (also
creating legitimate sequence number gaps). Hence we need
a new sequence number whose role is only to detect gaps that
are the result of drops between NFs in our cluster.
Why not one sequence number per pair of NFs, rather than
per-flow? At first glance, it may seem simpler to keep a
sequence number across all flows rather than a sequence num-
ber per-flow. However, many NF implementations use receive
side scaling (RSS) at the receive NIC to fan out packets across
multiple cores; in such an architecture a unified sequence
number becomes a performance bottleneck; per-flow counters
are more parallelizable and hence more scalable.

5.4 Logging & Auditing
Traditional logging (as mandated by AU-2 in §2) focuses on

recording packets which resulted in alerts, policy violations,

4However, an attacker who blocks all packets from a flow may go undetected
– to avoid this noncompliance, a receiver detecting a flow with over a minute
without transmissions will query the sender for its sequence number to detect
any dropping behavior.

162 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

and anomalies. At each shim, any packet which results in a vio-
lation is logged in its entirety, including all fields of the Audit-
Trailer; the log is written to local storage and encrypted with
an NF-local symmetric logging key provided by the controller.

AuditBox also records additional logged events to produce
an ‘audit trail’, which restores ‘what you see is what you get’
confidence in the correctness of the underlying system. As
defined in §B.2, an audit trail consists of a hop-by-hop trace
of a packet (or all packets in a flow) through a sequence of
NFs as well as their intermediary rewritten states.

The basic idea is as follows. The gateway probabilistically
samples incoming packets and tags them with a ‘log bit’
which follows the packet through the cluster along with the
AuditTrailer. Any packet whose log bit is set to true is logged
at each shim, including all metadata or AuditTrailer fields.
The administrator or inspector specifies three parameters
to define which packets are sampled: (1) a Berkeley Packet
Filter (BPF) to match for selected packets, (2) a sampling
rate (e.g., 0.001%), and (3) whether to log at the packet- or
flow- granularity. Logging at the flow granularity is only
permitted if the policy is in flow-correctness mode.

Upon querying, the administrator can then inspect man-
ually (or via an automated script) the path of packets or flows
throughout the entire system. Even if packet headers or fields
are changed, the packetID or flowID are preserved between
NFs; even in traditional service chain deployments such trac-
ing is not possible today when NFs modify packets in a way
that they cannot be connected to their corresponding inputs.

There is only one ‘trick’ to this very simple design: in a
truly malicious environment, the network could selectively
treat logged packets according to correct policy and only
manipulate unlogged packets. Although we would still expect
our runtime checks at each shim to detect the error, auditors
would no longer be able to retrieve an audit trail associated
with the violation. Hence, it is important that we hide the
logging bit at the gateway so that that the attacker cannot
mount such an attack. In the following section, as we discuss
our implementation, we describe how the logging bit is stored
virtually in a way that is cryptographically secure while
consuming 0 bits of overhead in the AuditTrailer.

6 AuditBox Implementation
We now discuss two performance optimizations to our

protocol (§6.1) and our end-to-end prototype (§6.2).

6.1 Optimizing Verification
Updatable GMAC: To support mutable packets and dynamic
paths, AuditBox computes the MAC twice for each packet
at each hop: first to verify the packet when receiving it, and
second to authenticate the packet before sending it out (§5). In
our implementation, we use the GMAC algorithm [53]. While
GMAC is one of the fastest authentication algorithms (thanks
in part to acceleration from Intel’s AES-NI instructions [40]),
it still adds non-trivial overhead to packet processing.

AuditBox Enclave (trusted)

NICs NF

Verification shim

Host
(untrusted)

NF threadI/O thread

Host I/O Enclave I/O

Verify Log

Sign Logtrailerpkt

trailerpkt

trailerpkt

trailerpkt

trailerpktTX

RXtrailerpkt

Figure 9: AuditBox software architecture (white boxes
denote existing Safebricks components).

To reduce AuditBox’s overhead, we implement a
proven secure [52] updatable version of GMAC on top of
EverCrypt [62], a formally verified cryptographic library. We
use EverCrypt because it is easy to port into SGX and it is
fast; its verified properties are a pleasant bonus. We defer to
future work the extension of EverCrypt’s formal verification
to our updatable API.

The key optimization of updatable GMAC is to take ad-
vantage of GMAC’s algebraic structure to securely reuse the
first MAC when computing the second MAC [52]. With this
optimization, the second MAC’s cost is proportional to the
number of modified data blocks, rather than the total packet
length. In practice, this improves performance for NFs that
only read the packet or that modify a small portion of it (§7).

In addition to a key and a message, GMAC requires as input
an initialization vector (IV) that must be unique for each MAC
invocation with a given key. For this we use the concatenation
of the srcNF and pktID fields. This leads to a bound on how
long we can use the same key Ks. At 100Gbps, we would
expect to overflow the pktID once every 22 days and hence
we use we use a 14 day key rotation which ensures that the
same IV is never used twice. When the pktID wraps around,
one can use timestamps to differentiate entries in audit trails.
Secret Logging: In §5.4 we discussed that we must encrypt
the bit used to mark which packets should be logged for audit-
ing; we now describe how we introduce 0 bits of overhead and
0 computational overhead for unsampled packets. Our idea
is to embed a virtual logging bit in the AuditTrailer. When
the ingress gateway generates the tag, it appends this virtual
logging bit as the last field when computing the MAC. For
example, tag = MACKs(pkt||pktID||srcNF ||dstNF || 1) for
a packet that should be logged. When the packet arrives at
the verification shim, it verifies the MAC by appending a 0
(assuming most packets will not be logged). If the verification
fails, the NF then appends 1 and performs a second MAC ver-
ification. The success of the second verification means the NF
should log the packet, while failure indicates a malicious/man-
gled packet. We formally prove this approach is secure in §D.

Theorem 3 (Secret Logging Security) Consider the game
described in §D.5 with adversary A . When the MAC algorithm
is GMAC, the adversary’s advantage is negligible.

6.2 Prototype Details
We implement an end-to-end prototype using

Safebricks [61]. Safebricks is an NFV framework that

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 163

builds on top of DPDK [5] and runs NFs in Intel En-
claves [25]. While the idea of AuditBox could be applied to
other NFV frameworks [48, 58, 59, 79], we choose Safebricks
mainly to leverage its I/O optimization to avoid expensive
enclave transitions. We modified approximately 4k lines of
Rust to implement our protocols, and added 2.5k lines of
C and 100 lines of x86 assembly to implement and test the
updatable GMAC implementation. Here, we focus on the
implementation of the verification shim and the AuditTrailer,
which are the key enablers to avoid any NF changes.
Verification Shim: As shown in Figure 9, AuditBox inserts
a verification shim that sits between the enclave I/O interface
and the NF in each enclave. The shim implements our custom
verification protocol using two modules: one verifies the
incoming packets by checking the AuditTrailer, and the other
updates the AuditTrailer on outgoing packets. Both modules
use our updatable GMAC algorithm, and both modules have
access to the logging function to save logs for offline auditing.
Packet Trailer: Typically, to carry a wrapper or metadata
header through unmodified NFs, one incurs two overheads.
First, one must strip the header from the packet and copy the
packet (starting from the IP or Ethernet header) to the first byte
of the packet buffer; the packet can then enter the NF as if it
had come in off the wire. Second, one must restore the header
to the packet; when packets have been modified by the NF
this step may require complex algorithms to infer the correct
mapping from original input packet to final output packet [32].

By using a trailer, AuditBox sidesteps these challenges in
many cases. Before passing the pointer to the packet buffer
into the NF, the shim adjusts the packet length to the end of
the encapsulated packet, leaving the trailer at the bottom of
the buffer and invisible to the NF code. Even if the packet has
been modified or shortened, when the packet egresses the NF,
the shim can simply restore the trailer sitting at the bottom
of the allocated memory. When NFs extend the length of the
packet, this overwrites the trailer and so the trailer must be
restored similarly to the header operations above, however,
we find for most NFs leaving the trailer at the base of the
buffer is an effective way to improve performance (§7.3).

7 AuditBox Evaluation
AuditBox aims to enable real-time auditing for NFV

deployments with low overhead. In this section, we evaluate
its overhead using a testbed and traces and show that:
• AuditBox correctly detects a broad class of practical

policy violations (§7.1).
• AuditBox enables auditing for unmodified NFs while

adding less overhead than existing verification protocols
(§7.2). We discuss our optimizations in §7.3.

Setup: Our testbed has four severs: three SGX servers
(4-core 3.80 GHz Intel Xeon E3-1270 v6 CPUs, 64 GB RAM,
Intel XL710 40Gb NICs) run AuditBox, and one server
(dual-socketed Intel Xeon E5-2680 v2 GHz Xeon CPUs, with

Blue Team Policies Attacks AuditBox OPTPacket Flow

1 Mutable packets (Fig. 2):
Load balancer modifies packets - no no yes

2 Mutable packets (Fig. 2):
Load balancer modifies packets modify yes yes yes

3 Dynamic paths (Fig. 3):
Light IPS reroutes packets - no no yes

4 Dynamic paths (Fig. 3):
Light IPS reroutes packets reroute yes yes yes

5 Stateful NFs (Fig. 4):
NAT tracks flow states reorder - yes no

6 Stateful NFs (Fig. 4):
NAT tracks flow states drop - yes no

Table 1: Example scenarios that use AuditBox and
OPT [46] to verify whether policy violations happen;
"yes"/"no" indicate whether the system reports a
violation. Shaded cells are correct auditing results.
10 cores, 128 GB RAM, Intel XL710 40Gb NICs) is used as
a traffic generator. Each server runs Ubuntu 18.04 with Linux
kernel 4.4.186. We use Moongen (DPDK-based) [30] to gener-
ate synthetic test traffic, as well as replay empirical traces [10]
of varying packet sizes. We enable jumbo frames to allow the
trailer to be added to large packets (which makes them larger
than the default 1500 byte MTU). For each experiment, we
report the median value of 20 tests, error bars represent one
standard deviation (which in some cases are too small to see).

Sample NFs: AuditBox supports all existing NFs in
Safebricks without any NF changes. To evaluate the
performance of AuditBox, we choose three sample NFs with
varying complexity: (1) NAT rewrites IP and TCP headers,
representing NFs that modify packets (Figure 2); (2) Stateful
Firewall which tracks connection states (Figure 4), configured
with a campus ruleset (643 rules); and (3) DPI, which rep-
resents the most computationally expensive NF in Safebricks,
configured with the Snort Community ruleset [14].

7.1 Functionality Evaluation
To validate the end-to-end effectiveness of AuditBox, we

run different red-blue team exercises. In each scenario, the
blue team (operator) chooses a service chain policy and the
protocol (AuditBox packet, AuditBox flow, or OPT). The red
team (attacker) randomly picks an attack vector. Then, we
emulate this scenario with generated traffic. Finally, we reveal
the ground truth and the audit trails to check if the protocol
helped the blue team correctly identify/diagnose the attack.

We run these scenarios in a combination of a real testbed
and a custom simulator. For the testbed we use one server
to generate traffic, and three to run NFs. We introduce attacks
(e.g., modifying packets) using the I/O thread (Figure 9), and
apply them when packets arrive at the NF. We built a custom
simulator, where all NFs are connected via “one big switch”
and this switch executes one or more adversarial actions (e.g.,
rerouting) when forwarding packets between NFs.

Table 1 shows a subset of the scenarios, including the moti-
vating examples from §2. In all scenarios, with AuditBox, the
blue team successfully detects the policy violations and has
correct auditing trails for doing so. OPT [46] detects some

164 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

FW NAT DPI
0

10

20

30

G
o
o
d
p
u
t

(G
b
p
s)

NetBricks

SGX only

OPT (trailer)

AB packet

AB flow

OPT

Figure 10: Cost of auditing for a
single NF using empirical packet
traces (AB represents AuditBox).

3 Firewalls FW-DPI-NAT
0

5

10

15

20

G
o
o
d
p
u
t

(G
b
p
s)

AuditBox packet

AuditBox flow

OPT (trailer)

OPT

Figure 11: Cost of auditing for dif-
ferent chains of NFs using empirical
packet traces.

0 10 20 30 40 50

Latency (µs)

0.00

0.25

0.50

0.75

1.00

C
D

F

NetBricks

SGX Only

AB packet

AB flow

Figure 12: RTT at 80% load using
empirical packet traces.

scenarios (scenarios 2 and 4), but has both false positives
(1 and 3) and false negatives (5 and 6). Note that this is not
unique to OPT; other VRPs [55] have the same issues as well.

7.2 Performance Evaluation
We first measure the performance of AuditBox for a single

NF and a chain of NFs using empirical traffic [10]. For all
tests, we run the NF using one core, and we report the goodput
by excluding extra bytes used for verification. In these experi-
ments, we compare against three alternative baselines, none of
which are an apples-to-apples comparison with AuditBox (in
that each was designed for a different purpose) but nonetheless
we believe the comparison helps to put our results in context.

The first baseline is ‘NetBricks’ [59], which is a Rust-based
NFV framework and does not use SGX. The second baseline
is ‘SGX-only’, which runs NFs in enclaves but does not use
any special protocol for verified routing. Our third and final
baseline is OPT, which, as we have discussed (§2.4) is most
closely related to AuditBox’s use case but nonetheless cannot
provide correct routing in the presence of dynamic routing
and packet modifications.
Single NF: Figure 10 shows the goodput for running a single
NF. The red dotted line shows the maximum rate of our
traffic generator. NetBricks is able to process packets at the
packet generator rate for both firewall and NAT. Compared
to running NFs outside the enclave, the SGX baseline (‘SGX
only’) incurs up to 15% overhead. Relative to running NFs
in the enclave alone, AuditBox incurs 19% overhead for the
firewall, 38% for the NAT, and 3% overhead for the DPI. The
flow-level incurs slightly more overhead than the packet-level
as it involves flow-table updates to track flow states.

AuditBox achieves up to two times higher goodput than the
strawman OPT due to our reduced packet overhead (24B for
AuditBox-pkt, 32B for AuditBox-flow vs. 84B for OPT) and
our use of a trailer, instead of a header. We hypothesize that
OPT’s high overhead stems from its need to strip and restore
large headers at each hop. To test this hypothesis, we imple-
ment OPT using our trailer optimization (‘OPT-trailer’). The
optimized OPT achieves a higher throughput than AuditBox,
which is expected as it requires fewer MAC computations.
NF Chains: We also ran experiments to evaluate the perfor-
mance of AuditBox under different NF chains across multiple
nodes, similar to prior work [61]. As shown in Figure 11, for

a chain of 3 firewalls AuditBox has 67% better goodput than
OPT. Unlike AuditBox, which has a constant packet-size
overhead regardless of chain length, OPT’s header grows with
chain length (116B for 3 NFs and 148B for 5 NFs), which
contributes to the drop in goodput. Our optimized version,
‘OPT-trailer,’ gets better goodput after eliminating the header
stripping and restoring overhead. We also evaluated a chain
with a Firewall, followed by a DPI and a NAT. For this chain,
both AuditBox and OPT achieve similar performance since
the entire chain is bottlenecked by the heavy DPI.

Cost Analysis: It is worth putting the performance numbers
in context to see the effective “cost” of auditability. Consider
an organization deploying specialized hardware appliances
for regulatory compliance. Today, this costs roughly
$600-$3500 per-Gbps for firewalls and $6000-$12000
per-Gbps for IPS (e.g., Cisco FirePOWER 8140 [4], Juniper
Networks SRX345 [9]). If this organization shifts to NFV
on commodity servers because of the auditability offered
by AuditBox, we estimate the cost will be 12X-60X lower
for the firewall, and 1.9X-9X lower for the IPS.While we
acknowledge that any such cost analysis is fraught with
uncertainties (e.g., cost at scale, reliability, service contracts,
power), this rough estimate suggests that RegTech customers
can still achieve financial gains through NFV.

Latency Overhead: Figure 12 shows the latency overhead
of AuditBox using empirical packet traces. For each test,
we measure the RTT at 80% of the maximum throughput of
the system under test as a metric for latency. Compared to
the SGX baseline, AuditBox-pkt adds around 18µs for 99th

percentile latency, and AuditBox-flow adds another 6µs.

Sweep packet size and NF type: Figure 16 (Appendix E)
shows the overhead of AuditBox for varying packet sizes
and NF types. Across all NFs, the overhead of AuditBox
decreases as packet sizes increase. Since NAT modifies the
packet, we do not use our updatable GMAC, making the
overhead of AuditBox more noticeable.

7.3 Impact of Our Optimizations
Header vs Trailer: Figure 13 shows the benefit of imple-
menting AuditTrailer as a trailer instead of a header. Unlike
our trailer which can be made invisible inside the NF (shown
in Figure 9), the shim needs to strip off the added header

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 165

FW NAT DPI
0

10

20

30

G
o
o
d
p
u
t

(G
b
p
s)

SGX only

AuditBox trailer

AuditBox header

Figure 13: Effect of using trailer vs.
header to carry verification data.

0 100 1000 10000

Cycles per packet

0

10

20

30

G
o
o
d
p
u
t

(G
b
p
s)

SGX only

AB Upd. GMAC

AB GMAC

Figure 14: Effect of using updatable
GMAC as NF complexity scales.

64 128 256 512 1024 1518

Packet size (bytes)

0

10

20

30

G
o
o
d
p
u
t

(G
b
p
s)

SGX only

AB Upd. GMAC

AB GMAC

Figure 15: Effect of using updatable
GMAC for varying packet sizes.

before delivering the packet to the NF to avoid modifying the
NF. After the packet is processed, the shim needs to prepend
the header before sending it to the next NF. These header
manipulations slow down packet processing and verification,
resulting in decreases of goodput by up 2⇥.
Regular GMAC vs Updatable GMAC: In Figures 14 and
15, we compare the performance of AuditBox when using
our implementation of the updatable GMAC with the regular
GMAC that is used by popular cryptographic libraries (e.g.,
OpenSSL [12], NSS [11]). When varying the NF complexity
(cycles/pkt), using updatable GMAC improves goodput by up
to 23%. When varying the packet sizes, our updatable GMAC
outperforms the regular GMAC by up to 25% for large pack-
ets. These improvements can largely be attributed to reusing
the first MAC to compute the second MAC, which avoids
the recomputing overhead for non-modified data blocks.
Dedicated log bit vs Virtual log bit: We compared our
virtual logging bit with an approach with a real encrypted bit.
On average, using a virtual log bit improves goodput by 4-5%.

8 Related Work
We have already discussed existing VRPs (e.g., [46, 55]),

service chaining policies and mechanisms (e.g., [32, 58]), and
how auditing is different from network verification (e.g., [44,
45, 50, 60]). Here, we focus on other classes of related work.
Traditional NFV Frameworks: Prior NFV [6] frame-
works focus on management [35, 42, 58, 65, 67], perfor-
mance [28, 43, 51, 79], and programability [23, 48, 59]. We
argue auditability should be added as a first-order feature
of the NFV framework, which would relieve enterprises’
concerns about deploying the NFV for security-critical
services or outsourcing them to a third-party provider [33,68].
Securing NFs: Prior work has proposed the use of SGX to
protect an NF’s source code [61,72], an NF’s state [69], traffic
metadata [29], and to support end-to-end encryption [39, 56].
While these enhance security for NFs, they only focus on
individual NFs on a single server, and they do not provide
mechanisms to audit the entire service chain.
NF Verification: NF verification [27, 75, 76, 78] guarantees
that a certain NF implementation is correct (memory-safe,
crash-free, etc.). AuditBox assumes that vendors have ‘certi-
fied’ NF implementations as secure, and we expect this class
of work would strengthen trust in such vendor certifications.

Verifiable fault localization and measurements: In addi-
tion to VRPs, auditing is also related to prior work on secure
fault localization (e.g., [81, 82]), robust sampling algorithms
(e.g., [57]), verifiable performance measurements (e.g., [16]),
and secure network provenance (SNP) (e.g., [37, 84]). Some
of our building blocks share conceptual similarity with these
efforts. However, they focus on different goals. For example,
SNP leverages tamper-evident logging [38] to identify mis-
behavior offline, unlike the runtime guarantees we provide.

9 Conclusions
In this paper, we have presented AuditBox, a framework

that brings NFV to security-critical environments that require
auditing. By leveraging enclaves to run NFs and continuously
verifying the traffic between NFs, AuditBox provides a strong
run-time guarantee that the NFV system remains in compli-
ance with policy goals. AuditBox also supports traditional of-
fline auditing by generating audit trails for manual inspection.

We see AuditBox as a first step in a conversation with
regulators. Would our audit trails be more trustworthy if
they included additional data? Should we combine our SGX
protection with formal verification of the NF code [27]?
In practice, should AuditBox be combined with formal
verification of operator policies [60]? We expect, and hope, to
see considerable evolution in supporting the RegTech space
beyond AuditBox’s current capabilities.

In the long run, adoption only comes when human auditors
feel comfortable trusting the guarantees provided by any
particular system. Our hope is that by not only replicating the
capabilities that auditors have today, but also strengthening
SFCs with runtime correctness guarantees, AuditBox will
merit the trust of auditors and hence hasten the adoption of
NFV in security-sensitive networks.
Acknowledgements: We thank our shepherd Alex Snoeren
and the anonymous reviewers for their insightful comments.
We also thank Rishabh Poddar, Limin Jia and Sze Yiu Chaus.
This work was supported in part by the CONIX Research
Center, one of six centers in JUMP, a Semiconductor
Research Corporation (SRC) program sponsored by DARPA,
ERDF Project AIDA (POCI-01-0247-FEDER-045907),
in part by the NSF/VMware Partnership on Software
Defined Infrastructure as a Foundation for Clean-Slate
Computing Security (SDI-CSCS) program under Award No.
CNS-1700521, and by NSF awards 1440056 and 1440065.

166 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] ARM TrustZone. https://developer.arm.com/technologies/

trustzone.

[2] AT&T Domain 2.0 Vision White Paper. https://www.att.

com/Common/about_us/pdf/AT&T%20Domai%202.0%20Vision%

20White%20Paper.pdf.

[3] Blue Planet NFV Service Orchestration. https://www.blueplanet.
com/products/nfv-orchestration.html.

[4] Cisco-FirePOWER-8140. https://www.cdw.com/product/

Cisco-FirePOWER-8140-security-appliance.

[5] Data Plane Development Kit (DPDK). http://www.dpdk.org/.

[6] European Telecommunications Standards Institute. NFV whitepaper.
https://portal.etsi.org/NFV/NFV_White_Paper.pdf.

[7] Family Educational Rights and Privacy Act (FERPA). https://www2.
ed.gov/policy/gen/guid/fpco/ferpa/index.html.

[8] HIPAA Security Rule. https://www.hhs.gov/hipaa/

for-professionals/security/laws-regulations/index.

html.

[9] Juniper Networks SRX345 Services Gateway . https:

//www.cdw.com/product/juniper-networks-srx345\

-services-gateway-security-appliance/4739102?pfm=srh.

[10] Malware Capture Facility Project. https://www.stratosphereips.
org/datasets-normal.

[11] Network Security Services. https://hg.mozilla.org/projects/

nss.

[12] OpenSSL-Cryptography and SSL/TLS Toolkit. https://www.

openssl.org/.

[13] Payment Card Industry Security Standards Council. https://www.

pcisecuritystandards.org/.

[14] Snort Community Rulesets. https://www.snort.org/downloads.

[15] ISO/IEC 27001 Information Security Management. https://www.iso.
org/isoiec-27001-information-security.html, 2013.

[16] Katerina J. Argyraki, Petros Maniatis, and Ankit Singla. Verifiable
network-performance measurements. In Proceedings of the 2010 ACM
Conference on Emerging Networking Experiments and Technology,
CoNEXT 2010, Philadelphia, PA, USA, November 30 - December 03,
2010, page 1. ACM, 2010.

[17] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre
Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan
O’Keeffe, Mark L. Stillwell, David Goltzsche, Dave Eyers, Rüdiger
Kapitza, Peter Pietzuch, and Christof Fetzer. SCONE: Secure Linux
Containers with Intel SGX. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pages 689–703,
Savannah, GA, November 2016. USENIX Association.

[18] Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding applica-
tions from an untrusted cloud with haven. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14), 2014.

[19] M. Bellare and P. Rogaway. Entity authentication and key distribution.
In Advances in Cryptology. CRYPTO, 1993.

[20] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions
for message authentication. In Advances in Cryptology - CRYPTO

’96, 16th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 18-22, 1996, Proceedings, volume 1109 of
Lecture Notes in Computer Science, pages 1–15. Springer, 1996.

[21] Dan Boneh and Victor Shoup. A Graduate Course in Applied
Cryptography. Jan 2020.

[22] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen,
Srdjan Capkun, and Ahmad-Reza Sadeghi. Software Grand Exposure:
SGX Cache Attacks are Practical. In 11th USENIX Workshop on
Offensive Technologies (WOOT 17), 2017.

[23] Anat Bremler-Barr, Yotam Harchol, and David Hay. OpenBox: A
software-defined framework for developing, deploying, and managing
network functions. In Proceedings of the 2016 conference on ACM
SIGCOMM 2016 Conference, Florianopolis, Brazil, August 22-26,
2016, 2016.

[24] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang
Lin, and Ten H Lai. SGXSpectre attacks: Leaking enclave secrets via
speculative execution. arXiv preprint arXiv:1802.09085, 2018.

[25] Victor Costan and Srinivas Devadas. Intel SGX Explained. Cryptology
ePrint Archive, Report 2016/086 (2016). https://datatracker.

ietf.org/doc/draft-brockners-proof-of-transit/.

[26] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal
hardware extensions for strong software isolation. In 25th USENIX
Security Symposium (USENIX Security 16), 2016.

[27] Mihai Dobrescu and Katerina Argyraki. Software dataplane verification.
Communications of the ACM, 2015.

[28] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun,
Kevin Fall, Gianluca Iannaccone, Allan Knies, Maziar Manesh, and
Sylvia Ratnasamy. Routebricks: Exploiting parallelism to scale
software routers. In Proceedings of the ACM SIGOPS 22Nd Symposium
on Operating Systems Principles, SOSP ’09, 2009.

[29] Huayi Duan, Cong Wang, Xingliang Yuan, Yajin Zhou, Qian Wang,
and Kui Ren. Lightbox: Full-stack protected stateful middlebox at
lightning speed. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’19, 2019.

[30] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian
Wohlfart, and Georg Carle. Moongen: A scriptable high-speed packet
generator. In Proceedings of the 2015 ACM Internet Measurement
Conference, IMC 2015, Tokyo, Japan, October 28-30, 2015, pages
275–287. ACM, 2015.

[31] Seyed K. Fayaz, Tianlong Yu, Yoshiaki Tobioka, Sagar Chaki, and Vyas
Sekar. Buzz: Testing context-dependent policies in stateful networks.
In Proceedings of the 13th Usenix Conference on Networked Systems
Design and Implementation, NSDI’16, 2016.

[32] Seyed Kaveh Fayazbakhsh, Luis Chiang, Vyas Sekar, Minlan Yu, and Jef-
frey C Mogul. Enforcing Network-Wide Policies in the Presence of Dy-
namic Middlebox Actions using FlowTags. In 11th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 14), 2014.

[33] Seyed Kaveh Fayazbakhsh, Michael K Reiter, and Vyas Sekar.
Verifiable network function outsourcing: requirements, challenges,
and roadmap. In Proceedings of the 2013 workshop on Hot topics in
middleboxes and network function virtualization, pages 25–30, 2013.

[34] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan
Parno. Komodo: Using verification to disentangle secure-enclave
hardware from software. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), October 2017.

[35] Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash,
Robert Grandl, Junaid Khalid, Sourav Das, and Aditya Akella. Opennf:
enabling innovation in network function control. In ACM SIGCOMM
2014 Conference, SIGCOMM’14, Chicago, IL, USA, August 17-22,
2014, 2014.

[36] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller.
Cache attacks on Intel SGX. In Proceedings of the 10th European
Workshop on Systems Security, pages 1–6, 2017.

[37] Andreas Haeberlen, Ioannis Avramopoulos, Jennifer Rexford, and Peter
Druschel. NetReview: Detecting when interdomain routing goes wrong.
In Proceedings of the 6th Symposium on Networked Systems Design
and Implementation (NSDI’09), Apr 2009.

[38] Andreas Haeberlen, Petr Kuznetsov, and Peter Druschel. PeerReview:
Practical accountability for distributed systems. In Proceedings of the
21st ACM Symposium on Operating Systems Principles (SOSP’07), Oct
2007.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 167

https://developer.arm.com/technologies/trustzone
https://developer.arm.com/technologies/trustzone
https://www.att.com/Common/about_us/pdf/AT&T%20Domai%202.0%20Vision%20White%20Paper.pdf
https://www.att.com/Common/about_us/pdf/AT&T%20Domai%202.0%20Vision%20White%20Paper.pdf
https://www.att.com/Common/about_us/pdf/AT&T%20Domai%202.0%20Vision%20White%20Paper.pdf
https://www.blueplanet.com/products/nfv-orchestration.html
https://www.blueplanet.com/products/nfv-orchestration.html
https://www.cdw.com/product/Cisco-FirePOWER-8140-security-appliance
https://www.cdw.com/product/Cisco-FirePOWER-8140-security-appliance
http://www.dpdk.org/
https://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://www2.ed.gov/policy/gen/guid/fpco/ferpa/index.html
https://www2.ed.gov/policy/gen/guid/fpco/ferpa/index.html
https://www.hhs.gov/hipaa/for-professionals/security/laws-regulations/index.html
https://www.hhs.gov/hipaa/for-professionals/security/laws-regulations/index.html
https://www.hhs.gov/hipaa/for-professionals/security/laws-regulations/index.html
https://www.stratosphereips.org/datasets-normal
https://www.stratosphereips.org/datasets-normal
https://hg.mozilla.org/projects/nss
https://hg.mozilla.org/projects/nss
https://www.openssl.org/
https://www.openssl.org/
https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/
https://www.snort.org/downloads
https://www.iso.org/isoiec-27001-information-security.html
https://www.iso.org/isoiec-27001-information-security.html
https://datatracker.ietf.org/doc/draft-brockners-proof-of-transit/
https://datatracker.ietf.org/doc/draft-brockners-proof-of-transit/

[39] Juhyeng Han, Seongmin Kim, Jaehyeong Ha, and Dongsu Han.
SGX-Box: Enabling Visibility on Encrypted Traffic using a Secure
Middlebox Module. In Proceedings of the First Asia-Pacific Workshop
on Networking - APNet’17, 2017.

[40] Gael Hofemeier and Robert Chesebrough. Introduction to Intel
AES-NI and Intel Secure Key instructions. https://software.

intel.com/en-us/articles/introduction-to-intel\

-aes-ni-and-intel-secure-key-instructions, 2014.

[41] Joint Task Force Transformation Initiative. Security and privacy
controls for federal information systems and organizations. Technical
Report Special Publication 800-53 (Revision 4), NIST, April 2013.

[42] Murad Kablan, Blake Caldwell, Richard Han, Hani Jamjoom, and Eric
Keller. Stateless network functions. In Proceedings of the 2015 ACM
SIGCOMM Workshop on Hot Topics in Middleboxes and Network
Function Virtualization, HotMiddlebox@SIGCOMM 2015, London,
United Kingdom, August 21, 2015, 2015.

[43] Georgios P. Katsikas, Tom Barbette, Dejan Kostić, Rebecca Steinert,
and Gerald Q. Maguire Jr. Metron: NFV service chains at the true speed
of the underlying hardware. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), 2018.

[44] Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese,
Nick McKeown, and Scott Whyte. Real time network policy checking
using header space analysis. In Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
13), 2013.

[45] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and
P Brighten Godfrey. VeriFlow: Verifying Network-Wide Invariants
in Real Time. In Proceedings of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13), 2013.

[46] Tiffany Hyun-Jin Kim, Cristina Basescu, Limin Jia, Soo Bum Lee,
Yih-Chun Hu, and Adrian Perrig. Lightweight source authentication
and path validation. In Proceedings of the 2014 ACM Conference on
SIGCOMM, SIGCOMM ’14, 2014.

[47] Markus Legner, Tobias Klenze, Marc Wyss, Christoph Sprenger, and
Adrian Perrig. Epic: Every packet is checked in the data plane of a
path-aware internet. In 29th USENIX Security Symposium, USENIX
Security ’20, 2020.

[48] Guyue Liu, Yuxin Ren, Mykola Yurchenko, K. K. Ramakrishnan, and
Timothy Wood. Microboxes: High performance nfv with customizable,
asynchronous tcp stacks and dynamic subscriptions. In Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data
Communication, SIGCOMM ’18, 2018.

[49] Xin Liu, Ang Li, Xiaowei Yang, and David Wetherall. Passport:
Secure and adoptable source authentication. In Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Implementation,
NSDI’08, 2008.

[50] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar,
P. Brighten Godfrey, and Samuel Talmadge King. Debugging the
data plane with anteater. In Proceedings of the ACM SIGCOMM 2011
Conference, SIGCOMM ’11, 2011.

[51] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu,
Michio Honda, et al. ClickOS and the art of network function
virtualization. In USENIX NSDI, 2014.

[52] D. McGrew. Efficient authentication of large , dynamic data sets using
Galois/counter mode (GCM). In In Security in Storage Workshop. IEEE,
2005.

[53] D. McGrew and J. Viega. The Galois/counter mode of operation (GCM).
In Submission to NIST Modes of Operation Process, 2004.

[54] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. Cachezoom:
How SGX amplifies the power of cache attacks. In International
Conference on Cryptographic Hardware and Embedded Systems, pages
69–90. Springer, 2017.

[55] Jad Naous, Michael Walfish, Antonio Nicolosi, David Mazières, Michael
Miller, and Arun Seehra. Verifying and enforcing network paths
with icing. In Proceedings of the Seventh COnference on Emerging
Networking EXperiments and Technologies, CoNEXT ’11, 2011.

[56] David Naylor, Richard Li, Christos Gkantsidis, Thomas Karagiannis,
and Peter Steenkiste. And then there were more: Secure communication
for more than two parties. In Proceedings of the 13th International
Conference on Emerging Networking EXperiments and Technologies,
CoNEXT ’17, 2017.

[57] Pavlos Nikolopoulos, Christos Pappas, Katerina J. Argyraki, and Adrian
Perrig. Retroactive packet sampling for traffic receipts. POMACS,
3(1):19:1–19:39, 2019.

[58] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit Panda,
Sylvia Ratnasamy, Luigi Rizzo, and Scott Shenker. E2: A framework
for NFV applications. In SOSP ’15. ACM, 2015.

[59] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Rat-
nasamy, and Scott Shenker. NetBricks: Taking the V out of NFV. In 12th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI ’16, pages 203–216, Savannah, GA, November 2016. USENIX
Association.

[60] Aurojit Panda, Ori Lahav, Katerina Argyraki, Mooly Sagiv, and Scott
Shenker. Verifying Reachability in Networks with Mutable Datapaths.
In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), 2017.

[61] Rishabh Poddar, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy.
SafeBricks: Shielding Network Functions in the Cloud. In 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
18), 2018.

[62] Jonathan Protzenko, Bryan Parno, Aymeric Fromherz, Chris Hawblitzel,
Marina Polubelova, Karthikeyan Bhargavan, Benjamin Beurdouche,
Joonwon Choi, Antoine Delignat-Lavaud, Cedric Fournet, Natalia
Kulatova, Tahina Ramananandro, Aseem Rastogi, Nikhil Swamy,
Christoph Wintersteiger, and Santiago Zanella-Beguelin. EverCrypt:
A fast, verified, cross-platform cryptographic provider. In Proceedings
of the IEEE Symposium on Security and Privacy (Oakland), May 2020.

[63] Zafar Ayyub Qazi, Rui Miao, Cheng-Chun Tu, Vyas Sekar, Luis Chiang,
and Minlan Yu. SIMPLE-fying Middlebox Policy Enforcement Using
SDN. In Proceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM, SIGCOMM ’13, 2013.

[64] P. Quinn, U. Elzur, and C. Pignataro. Network Service Header (NSH).
RFC 8300, January 2018.

[65] Shriram Rajagopalan, Dan Williams, Hani Jamjoom, and Andrew
Warfield. Split/merge: System support for elastic execution in virtual
middleboxes. In Proceedings of the 10th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2013, Lombard,
IL, USA, April 2-5, 2013, 2013.

[66] Grand View Research. RegTech Market Size
Worth $55.28 Billion by 2025. https://www.

bloomberg.com/press-releases/2019-08-14/

regtech-market-size-worth-55-28-billion-by-2025\

-cagr-52-8-grand-view-research-inc, Aug 2019.

[67] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K. Reiter, and
Guangyu Shi. Design and implementation of a consolidated middlebox
architecture. In Presented as part of the 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 12), 2012.

[68] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy,
Sylvia Ratnasamy, and Vyas Sekar. Making middleboxes someone
else’s problem: Network processing as a cloud service. In Proceedings
of the 2012 Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM), SIGCOMM ’12, pages 13–24, New
York, NY, USA, 2012. ACM.

168 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[69] Ming-Wei Shih, Mohan Kumar, Taesoo Kim, and Ada Gavrilovska.
S-NFV: Securing nfv states by using SGX. In Proceedings of the 2016
ACM International Workshop on Security in Software Defined Networks
& Network Function Virtualization, SDN-NFV Security, 2016.

[70] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. T-SGX:
Eradicating Controlled-Channel Attacks Against Enclave Programs.
In 24th Annual Network and Distributed System Security Symposium,
NDSS, 2017.

[71] V. Shoup. Sequences of games: a tool for taming complexity in security
proofs. In IACR Cryptology. ePrint Archive, 2004.

[72] Bohdan Trach, Alfred Krohmer, Franz Gregor, Sergei Arnautov, Pramod
Bhatotia, and Christof Fetzer. ShieldBox: Secure Middleboxes using
Shielded Execution. In Proceedings of the Symposium on SDN Research
- SOSR ’18, 2018.

[73] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F Wenisch, Yuval
Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to the Intel
SGX kingdom with transient out-of-order execution. In 27th USENIX
Security Symposium (USENIX Security 18), pages 991–1008, 2018.

[74] Yifei Yuan, Soo-Jin Moon, Sahil Uppal, Limin Jia, and Vyas Sekar.
NetSMC: A custom symbolic model checker for stateful network
verification. In Proceedings of the 17th Usenix Conference on
Networked Systems Design and Implementation, NSDI’20, 2020.

[75] Arseniy Zaostrovnykh, Solal Pirelli, Rishabh Iyer, Matteo Rizzo, Luis
Pedrosa, Katerina Argyraki, and George Candea. Verifying Software
Network Functions with No Verification Expertise. In Proceedings of
the 27th Symposium on Operating Systems Principles - SOSP ’19), 2019.

[76] Arseniy Zaostrovnykh, Solal Pirelli, Luis Pedrosa, Katerina Argyraki,
and George Candea. A Formally Verified NAT. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication
- SIGCOMM ’17, 2017.

[77] Fuyuan Zhang, Limin Jia, Cristina Basescu, Tiffany Hyun-Jin Kim,
Yih-Chun Hu, and Adrian Perrig. Mechanized Network Origin and
Path Authenticity Proofs. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security - CCS ’14, 2014.

[78] Kaiyuan Zhang, Danyang Zhuo, Aditya Akella, Arvind Krishnamurthy,
and Xi Wang. Automated verification of customizable middlebox
properties with gravel. In Proceedings of the 17th USENIX Conference
on Networked Systems Design and Implementation, NSDI ’20, 2020.

[79] Wei Zhang, Guyue Liu, Wenhui Zhang, Neel Shah, Phillip Lopreiato,
Gregoire Todeschi, K.K. Ramakrishnan, and Timothy Wood. Open-
NetVM: A platform for high performance network service chains. In
HotMiddlebox. ACM, 2016.

[80] Xin Zhang, Abhishek Jain, and Adrian Perrig. Packet-dropping
adversary identification for data plane security. In Proceedings of the
2008 ACM CoNEXT Conference on - CONEXT ’08, 2008.

[81] Xin Zhang, Chang Lan, and Adrian Perrig. Secure and Scalable Fault
Localization under Dynamic Traffic Patterns. In 2012 IEEE Symposium
on Security and Privacy. IEEE, May 2012.

[82] Xin Zhang, Zongwei Zhou, Geoff Hasker, Adrian Perrig, and Virgil
Gligor. Network fault localization with small TCB. In 2011 19th IEEE
International Conference on Network Protocols. IEEE, 2011.

[83] Xin Zhang, Zongwei Zhou, Hsu-Chun Hsiao, Tiffany Hyun-Jin Kim,
Adrian Perrig, and Patrick Tague. ShortMAC: Efficient Data-Plane
Fault Localization. In 19th Annual Network and Distributed System
Security Symposium (NDSS)’12, 2012.

[84] Wenchao Zhou, Qiong Fei, Arjun Narayan, Andreas Haeberlen,
Boon Thau Loo, and Micah Sherr. Secure network provenance. In
Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles - SOSP ’11, 2011.

A Modeling Duplicate Packets
The formalization of Property 4 assumes that the same

packet is never sent twice. This seems to be a reasonable
assumption. As we are forwarding under L2, an NFA and
an NFB will always have different Ethernet headers even if
the IP, TCP/UDP, and Payload are identical. And it seems
reasonable to assume that an NFA will never transmit the
same packet twice either – even a re-transmitted TCP packet
will come with a different IPID value.

Nonetheless, we could remove these requirements and
allow NFs to transmit the same packet repeatedly by defining
correctness as follows:
Let SEND-TOF,P(E)!{0,1} be defined:

function SEND-TO NFi,pi (e)
if e.op = SEND ^ e.pkt = pi ^ policy(pi, e.NF) = NFi

then
return 1

else
return 0

Let RECV-PKTF,P(E)!{0,1} be defined:
function RECV-PKT NFi,pi (e)

if e.op = RECV ^ e.pkt = pi ^ e.NF = NFi then
return 1

else
return 0

To allow identical packets, we could then say the system
was correct under packet correctness iff:

8e2E s.t.e.op=RECV :
e.t

Â
i=1

SEND-TOe.NF,e.pkt(E[i])=
e.t

Â
i=1

RECV-PKTe.NF,e.pkt(E[i])

B Additional Definitions
B.1 Modeling Packet Exit

We define GWout for when a packet exits the cluster as
follows:
Algorithm 3 Model of Packets Exiting the Cluster

1: function GWOUT(input)
2: input fin(input)
3: if input 6= ? then
4: E.append(input, ?, GWout, E.length + 1)
5: return input

B.2 Audit Trail Definition
While our routing protocol provides hop-by-hop guaran-

tees, auditors are familiar with end to end ‘what you see is
what you get’ evidence that packets are indeed following the
correct route. To provide auditors the confidence of proven
correctness with empirical evidence, AuditBox provides
empirical evidence in the form of audit trails. Following the
model of our event log E, one can take a packet in any of
its states (prior to entry, between two NFs, post exit) and

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 169

compute the forms the packet took on and all NFs it traversed
across its entire traversal of the system. While 5.4 describes
how this works in practice, we describe audit trails in the
context of our model with Algorithm 4.
Algorithm 4 Audit Trail Definition

function CAUSED-BY(event)
if event.pktin = ? then

return [(event.NF, event.pktout)]
trail (event.pktin, event.NF, event.pktout)
prev get-eventE (event.pktin, pktout)
return caused-by(prev) + trail

function LEADS-TO(event)
if event.pktout = ? then

return [(event.pktin, event.NF)]
prev get-eventE (event.pktout, pktin)
prev_trail (prev.pktin, prev.NF, prev.pktout)
return prev_trail + leads-to(prev)

function AUDIT-TRAIL(event)
return CAUSED-BY(event) + LEADS-TO(event)

Note that the definition assumes that all transmitted
packets are unique.

C Pseudocode
In the algorithms below, we expand the notion of a packet

to also include the AuditBox trailer.
In the flow-verification algorithm (Algorithm 6), we

assume each NF, including the gateway, maintains a flow-
counter table FC which maps a flow ID and destination NF
to a counter value:

ctr FC[f lowID,NF]

Performing a lookup with a new f lowID,NF pair implicitly
initializes the counter to zero. Comments highlight differences
relative to the packet-verification algorithm (Algorithm 5).

Algorithm 5 Packet Verification Protocol
Input: The shared symmetric key Ks for the current epoch s.
1: . Generate an AuditTrailer for each packet at the gateway GWin
2: function GENERATE(pkt)
3: out.pkt= pkt
4: out.pktID=genPktID(pkt)
5: out.srcNF = GWin
6: out.dstNF =Policy(pkt, GWin)
7: out.tag=MACKs(out.pkt|out.pktID|out.srcNF |out.dstNF)
8: return out
9:

10: . Process a packet in at NFi
11: function PROCESSi(in)
12: ok in.dstNF =NFi ^
13: VerifyKs(in.pkt|in.pktID|in.srcNF |in.dstNF,in.tag)
14: if ok then:
15: out.pkt= fi(in.pkt)
16: out.pktID= in.pktID
17: out.srcNF =NFi
18: out.dstNF =Policy(out.pkt,NFi)
19: out.tag=MACKs(out.pkt|out.pktID|out.srcNF |out.dstNF)
20: else
21: out ? . Drop packet and raise alert

return out

Algorithm 6 Flow Verification Protocol
Input: The shared symmetric key Ks for the current epoch s.
1: . Generate a flow AuditTrailer for each packet at the gateway GWin
2: function GENERATE(pkt)
3: . Same as Packet Verification
4: out.pkt= pkt
5: out.pktID=genPktID(pkt)
6: out.srcNF = GWin
7: out.dstNF =Policy(pkt, GWin)
8: . New for Flow Verification
9: out. f lowID=computeFlowID(pkt)

10: out.seqNum=FC[out. f lowID,out.dstNF]++
11: out.tag=MACKs(out.pkt|out.pktID|out.srcNF |out.dstNF

|out. f lowID|out.seqNum)
12: return out
13:
14: . Process a packet in at NFi
15: function PROCESSi(in)
16: ok in.dstNF =NFi
17: ^ VerifyKs(in.pkt|in.pktID|in.srcNF |in.dstNF |in. f lowID

|in.seqNum,in.tag)
18: ^ in.seqNum=FC[in. f lowID,in.srcNF] . New
19: if ok then:
20: FC[in. f lowID,in.srcNF]++ . New
21: out.pkt= fi(in.pkt)
22: out.pktID= in.pktID
23: out.srcNF =NFi
24: out.dstNF =Policy(out.pkt,NFi)
25: . New for Flow Verification
26: out. f lowID= in. f lowID
27: out.seqNum=FC[out. f lowID,out.dstNF]++
28: out.tag=MACKs(out.pkt|out.pktID|out.srcNF |out.dstNF

|out. f lowID|out.seqNum)
29: else
30: out ? . Drop packet and raise alert

return out

170 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

D Security Proofs
D.1 Cryptographic Assumptions

We introduce the standard notation we use and the standard
cryptographic assumptions we make.

We write x|y for the uniquely delimited (either via tags or
fixed widths) concatenation of x and y. Hence, x0|y0==x1|y1
implies x0==x1 and y0==y1.

Our scheme relies on a Message Authentication Code
(MAC) scheme, which consists of three algorithms. A
symmetric key K is generated by the KeyGen() algorithm.
We write t MACK(m) to indicate using key K to compute a
MAC tag t on message m, and VerifyK(m,t) for the algorithm
that uses key K to check the validity of tag t for message m.

We assume that the MAC scheme is existentially un-
forgeable under chosen-message attacks (EUF-CMA) [21].
Intuitively, the definition says that an adversary who can re-
quest validly computed tags for n adaptively chosen messages
cannot produce a new pair (m,t) 62 {(m1,t1), ... ,(mn,tn)}
which passes VerifyK(m, t). Standard algorithms, such as
HMAC [20] and GMAC [53], are EUF-CMA secure.

D.2 Security Definition
To formalize AuditBox’s security, we take the standard

approach of defining our desired security property via a cryp-
tographic game involving a challenger C , and a probabilistic,
polynomial-time adversary A , which intuitively corresponds
to the untrusted network, F. The game can be instantiated
with an audit protocol that supplies NF functions fi.

The challenger begins the game by creating an empty
event log E and calling KeyGen() to produce key K. The
adversary is then allowed to run and can call the following
oracles which represent the various NFs in the system.

1. pout Oracle-GWIN(pin) allows the adversary to
introduce a new packet pin to the gateway and obtain
the packet pout produced by the gateway.

2. pout Oracle-NFi(pin) invokes NFi on the adversarially
supplied input packet pin and gives the adversary the
resulting packet pout .

The challenger instantiates these oracles using the models
described in §4.1. Specifically, Oracle-GWIN(pin) runs
Algorithm 2 using the protocol-supplied function fin, and
Oracle-NFi(pin) runs Algorithm 1 using the protocol-supplied
function fi. Note that both oracles append to the event log E

When the adversary terminates, the game ends and outputs
E.

D.3 Security Proof of Packet Correctness
Theorem 1 (Packet Correctness) Consider the game de-
scribed above with adversary A and instantiated with the Au-
ditBox packet correctness protocol (§5.2). Specifically, looking
at Algorithm 5, we instantiate fin with the function GENERATE
and fi with PROCESSi. The probability that the game outputs
an event log E that violates Property 1 is negligible.

Proof of Theorem 1: We prove security by reducing the

security of our protocol to the EUF-CMA security of our MAC
algorithm though a series of cryptographic games [19, 71].
The initial game matches the game defined in §D.2, and each
subsequent game idealizes a portion of the protocol. At each
step, we calculate the adversary’s success in distinguishing
between the two games.
Game 0 is defined as in §D.2 with an adversary A which
queries its oracles a total of a times.
Game 1 is the same as above, except that the NF oracle,
when given an input packet pin, computes

m pin.pkt|pin.pktID|pin.srcNF |pin.dstNF

and immediately rejects the packet if m was not previously
passed as an argument to MACK(·) (i.e., C keeps a list L of all
values passed to MACK(·), and upon receiving a packet pin on
which it would normally call VerifyK(m,t), it looks up m in L
and accepts/rejects based on the lookup, without looking at t).

The adversary can distinguish Game 1 from Game 0 only if
it can forge a valid tag t for m. This happens with probability
at most EUF-CMA(a), the probability of breaking our unforga-
bility assumption given at most a chosen-message tags.

From Game 1, we show that Property 1 perfectly holds,
which means that the probability that an adversary can break
Property 1 is at most EUF-CMA(a), which is, by definition,
negligible when we employ a secure MAC scheme.

In Game 1, consider any eb 2 E such that eb.pktin 6= ?.
By the construction of the NF model (Algorithm 1)
an event eb is only added to E after the NF runs fi,
which we instantiated with PROCESSi. PROCESSi ensures
eb.pktin.dstNF == eb.NF (Line 12 of Algorithm 5). In
Game 1, instead of running the MAC’s verification algorithm
on Line 13, it checks that the computed m is on the list
L of previously MAC’ed messages. For this check to
succeed, there must have been a logically earlier MAC call,
which must have occurred during a previous invocation of
Oracle-GWIN or Oracle-NFi, which each compute a tag on
their outbound packet. For the verification lookup in L to
succeed, that MAC call must have computed an m0 for its
output packet, where m0==m. This earlier oracle invocation
would have produced event ea=(p,eb.pktin,eb.pktin.srcNF,i)
for some other input packet p and index i, with i<eb.t, since
this was an earlier invocation, and the log E was necessarily
shorter. Hence, the equality of m and m0 implies that we have
ea.pktout = eb.pktin, and policy(ea.pktout ,ea.NF) = eb.NF
(note Lines 6 and 18 of Algorithm 5), satisfying Property 1.

D.4 Security Proof of Flow Correctness
Theorem 2 (Flow Correctness) Consider the game de-
scribed in §D.2 with adversary A and instantiated with the Au-
ditBox flow-correctness protocol (§5.3). Specifically, looking
at Algorithm 6, we instantiate fin with the function GENERATE
and fi with PROCESSi. The probability that the game outputs
an event log E that violates Properties 1-4 is negligible.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 171

Proof of Theorem 2:
We prove Theorem 2 by considering each property in turn.

Proof of Property 1 We begin by observing that compared
with the packet-verification protocol, the flow-verification
protocol

1. Includes in its AuditTrailer a superset of the packet-
verification fields.

2. Computes the values the packet-verification fields in an
identical manner.

3. Computes MACs over a superset of the packet-
verification fields. algor

4. Performs a superset of the validation checks (compare
Lines 16-18 of Algorithm 6 with Lines 12-13 of
Algorithm 5).

Hence, we can apply an identical set of arguments as we
did in our proof of Theorem 1 to show that Property 1 still
holds when we employ a secure MAC. In the discussion,
Property 1 allows us to assume that all packets in E originated
from an NF, and hence we no longer need worry about
adversarially mangled or injected packets.

Proof of Property 2 To show that Property 2 (i.e., no
packet injection or modification) holds, choose an arbitrary
NFa,NFb 2 F , and ea1,ea2,eb2 2 E such that Lines 5-9 of
Property 2 hold. We will show that there must exist eb12E
such that

eb1.t<eb2.t^eb1.NF=NFb^eb1.pktin=ea1.pktout

When ea1.pktout was produced by PROCESSa,
it was assigned a flow sequence number
FCa[ea1.pktout. f lowID, ea1.pktout.srcNF] (Line 27 of
Algorithm 6), and NFa immediately increments the counter.

When we subsequently call PROCESSa to produce
ea2.pktout (we know this is a subsequent invocation of
PROCESSa because ea1.t < ea2.t), we can show that it will
read the same counter from FCa, which by observation
always increases monotonically. Hence, it must be that
ea2.pktout.seqNum>ea1.pktout.seqNum.

We can show that PROCESSa accesses the same counter
by showing that ea1.pktout. f lowID = ea2.pktout. f lowID ^
ea1.pktout.srcNF = ea2.pktout.srcNF . The first is straight-
forward, since ea1.pktout = ea2.pktout =) f low(ea1) =
f low(ea2), and the second follows from Line 7 of Property 2.

For ea2.pktout to have passed the “ok” check
in PROCESSb, and hence to have generated eb2, it
must have passed the check on Line 18, which
means that at the time, ea2.pktout.seqNum =
FCb[ea2.pktout. f lowID, ea2.pktout.srcNF]. Now consider
the set Eb1 ✓ E of all eb1 such that eb1.t < eb2.t^ eb1.NF =
NFb^ eb1.pktin.srcNF = NFa^ f low(eb1) = f low(ea1); i.e.,
all previous events generated by NFb that came from NFa
and are part of the same flow as ea1 (and hence ea2 and eb2).

The crucial observation is that each such eb1 increments
FCb[eb1.pktin. f lowID, eb1.pktin.srcNF], and these are the
only events that do so prior to eb2.t. Hence, it must be the
case that |Eb1| = eb2.pktin.seq, and each eb1 2 Eb1 has a
unique sequence number (as guaranteed by the monoton-
ically increasing counter value). Since we know that 0
ea1.pktout.seqNum < ea2.pktout.seqNum = eb2.pktin.seqNum,
there must be an eb1 2 Eb1 with eb1.pktin.seqNum =
ea1.pktout.seqNum. Furthermore, the monotonic counter
on the sending side (NFa) guarantees that NFa must have
only assigned the sequence number ea1.pktout.seqNum to
a single packet, namely ea1.pktin. Since we have proven
Property 1 holds (i.e., the attacker cannot inject or modify
packets), if NFb received a packet eb1.pktin with sequence
number ea1.pktout.seqNum from NFa, it must be the case
that ea1.pktout = eb1.pktin. Hence, we have identified an eb1
such that eb1.t< eb2.t^eb1.NF=NFb^eb1.pktin = ea1.pktout,
proving that Property 2 holds.

Proof of Property 3 To show that Property 3 (no packet
reordering) holds, choose an arbitrary NFa,NFb 2 F and
ea1, eb1, ea2, eb2 2 E such that Lines 14-17 of Property 3
hold. Suppose for the sake of contradiction that ea1.t<ea2.t
but eb1.t � eb2.t (i.e., NFb received the packets in reverse
order). Since each NF increments its flow counter after
sending a packet (Lines 10 and 27 in Algorithm 6), and
we know that flow(ea1) = flow(ea2), it must be the case
that ea1.pktin.seqNum < ea2.pktin.seqNum. Since we
supposed eb1.t � eb2.t (and eb1.t 6= eb2.t because each
entry in E has a unique position) it must be the case
that PROCESSb was called on ea2.pktout before it was
called on ea1.pktout. For ea2.pktout to have passed the “ok”
check in PROCESSb, it must have passed the check on
Line 18, which means that at the time, ea2.pktout.seqNum=
FCb[ea2.pktout. f lowID, ea2.pktout.srcNF]. The counter
is then incremented on Line 20, and continues to
increase monotonically on subsequent invocations.
Hence, when PROCESSb was later called on ea1.pktout,
to have passed the “ok” check, it must be the case that
ea1.pktout.seqNum>ea2.pktout.seqNum. This contradicts our
starting point that ea1.pktout.seqNum < ea2.pktout.seqNum.
Hence we can conclude that if ea1.t<ea2.t then eb1.t<eb2.t.

To prove the other direction of the implication, namely
that if ea1.t� ea2.t then eb1.t� eb2.t. we can apply the same
argument as above, swapping a2 for a1 and b2 for b1.

Proof of Property 4 To show that Property 4 (no packet
replay) holds, choose an arbitrary ea2E. Suppose for the sake
of contradiction that 9eb 2 E such that ea.pktin = eb.pktin.
Since each entry in E has a unique position, we know
ea.t 6= eb.t, so without loss of generality, assume ea.t < eb.t.
Since we know that ea.pktin.dstNF = eb.pktin.dstNF ,
both entries must have been produced by invocations of
PROCESSea.pktin.dstNF , and it was invoked on ea.pktin before

172 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

eb.pktin (because ea.t<eb.t). Since PROCESS did not raise an
alert on ea.pktin, it must be the case that it passed the check
on Line 18, which means that at the time, ea.pktin.seqNum=
FCb[ea.pktin. f lowID, ea.pktin.srcNF]. The counter is then
incremented on Line 20, and continues to increase mono-
tonically on subsequent invocations. Hence, when PROCESS
was later called on eb.pkt, to have passed the “ok” check,
it must be the case that eb.pktin.seqNum> ea.pktin.seqNum.
But we supposed that ea.pktin = eb.pktin, which means
eb.pktin.seqNum=ea.pktin.seqNum. This contradiction show
that eb.pktin.seqNum 6=ea.pktin.seqNum.

D.5 Security of Secret Logging
As described in §6.1, AuditBox implements secret logging

via a virtual bit that is appended to the real data carried in
the AuditTrailer when computing a MAC. For this approach
to effectively sample packets even in the presence of an
adversary, it should be computationally difficult to distinguish
packets with the virtual bit set to one (indicating a packet that
should be logged) from those with the virtual bit set to zero.

Security Definition We capture this security notion
with the following game involving a challenger C , and a
probabilistic, polynomial-time adversary A . When the game
begins, C chooses a random bit b and then runs KeyGen()
to produce key K. The adversary is then allowed to run and
given access to Oracle-MAC(·), which when given a message
m, returns MACK(m|b). A eventually terminates and outputs
its guess b0. The game returns 1 if b==b0 and 0 otherwise.

We define A’s advantage after making a queries to its
oracle as 2

��P� 1
2

��, where P is the probability that the game
returns 1.

Security Proof The game above is not secure for arbitrary
MACs. In other words, given a EUF-CMA secure MAC
scheme M , we can construct a new scheme N that is also
EUF-CMA secure, but where an adversary can achieve
advantage 1 in the game above. For example, we could define
N .MACK(m)=M .MACK(m)|m. This is EUF-CMA secure
(since the adversary still cannnot produce a forgery against
M), but message secrecy is entirely broken.

Fortunately, we can prove security for specific MAC
algorithms, including HMAC and, crucially for our imple-
mentation, GMAC. In particular, we leverage the fact that

GMAC is defined (simplifying slightly) as:

GMACK(IV,m)=PRFK(IV)�GHASH(m)

Theorem 3 (Secret Logging Security) Consider the game
described above with adversary A . When the MAC algorithm
is GMAC, the adversary’s advantage is negligible.

Proof of Theorem 3: We prove security via the following
two games.
Game 0 is defined as described above with an adversary A
which queries its oracle a total of a times.
Game 1 is the same as above, except that Oracle-MAC(m)
returns

GMACK(IV,m)=R�GHASH(m)

where R is a randomly sampled value.
The adversary can distinguish Game 1 from Game 0 only

if it can distinguish the output of the PRF from the output
of a truly randomly selected function. This happens with
probability at most PRF(a), the probability of breaking the
security of GMAC’s PRF given at most a queries.

From Game 1, we show that the adversary has no informa-
tion about the underlying message (and hence about the value
of b), which means that the adversary’s advantage in the
security game is at most PRF(a), which is, by definition, neg-
ligible when we employ a secure PRF, which is also necessary
for the standard EUF-CMA security of GMAC to hold.

In Game 1, the output of GHASH (which is the only infor-
mation derived from m) is XOR’ed with a randomly chosen
value of the same length. In other words, the output is the
result of applying a one-time pad to GHASH(m), which is an
informationally secure encryption scheme. Hence the adver-
sary learns nothing about m from the output of its oracle.

E Performance Sensitivity Analysis

64 128 256 512 1024 1518

Packet size (bytes)

0

10

20

30

G
o
o
d
p
u
t

(G
b
p
s)

SGX only

Packet

Flow

(a) Firewall.

64 128 256 512 1024 1518

Packet size (bytes)

0

10

20

30

G
o
o
d
p
u
t

(G
b
p
s)

(b) NAT.

64 128 256 512 1024 1518

Packet size (bytes)

0

1

2

3

4

G
o
o
d
p
u
t

(G
b
p
s)

(c) DPI.
Figure 16: Sensitivity analysis across NFs for different packet sizes.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 173

	Introduction
	Background and Motivation
	Tussle Between Compliance and NFV
	Problem Setup
	Threat Model
	Challenges

	AuditBox Overview
	Key Ideas
	AuditBox Architecture: Data Plane
	AuditBox Architecture: Control Plane

	Formalizing Correctness
	Definitions
	Correctness
	Packet Correctness
	Flow Correctness

	AuditBox Protocol
	High-level workflow
	Packet Correctness Protocol
	Flow Correctness Protocol
	Logging & Auditing

	AuditBox Implementation
	Optimizing Verification
	Prototype Details

	AuditBox Evaluation
	Functionality Evaluation
	Performance Evaluation
	Impact of Our Optimizations

	Related Work
	Conclusions
	Modeling Duplicate Packets
	Additional Definitions
	Modeling Packet Exit
	Audit Trail Definition

	Pseudocode
	Security Proofs
	Cryptographic Assumptions
	Security Definition
	Security Proof of Packet Correctness
	Security Proof of Flow Correctness
	Security of Secret Logging

	Performance Sensitivity Analysis

