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Abstract— The Internet of Things (IoT) promises to improve
user utility by tuning applications to a user’s current behavior,
but the user’s behavior can be matched to characteristics learned
from prior observations to compromise the user’s identity and
hence privacy. Our previous work has established the rate
at which anonymization must be performed to prevent such
matching in a Bayesian setting when faced with a powerful
adversary who has extensive knowledge of each user’s past
behavior. However, even sophisticated adversaries do not often
have such extensive knowledge; hence, in this letter, we turn our
attention to an adversary who must learn user behavior from
past data traces of limited length under the assumptions that:
(i) there exists dependency between data traces of different users;
and (ii) the data points of each user are drawn from a normal
distribution. Results on the lengths of training sequences and
rates of anonymization for the data sequences that result in a
loss of user privacy are presented.

Index Terms— Anonymization, inter-user dependency, Internet
of Things (IoT), privacy-preserving mechanisms (PPM).

I. INTRODUCTION

HE Internet of Things (IoT) allows users to share and
access information on a large scale, but the IoT also
comes with a significant threat to users’ privacy: leakage
of sensitive information [1]. There are two main approaches
to augment privacy for IoT users: identity perturbation and
data perturbation. Identity perturbation (or anonymization) is
the removal of the identifying information from a set of
data to protect privacy [2], whereas data perturbation (or
obfuscation) adds noise to the data [3]. A cost for employing
these Privacy-Protection Mechanisms (PPMs) is a blackuction
in utility; therefore, optimizing the level of PPMs is of interest.
In [4], a comprehensive analysis of the asymptotic (in the
length of the time series) optimal matching of time series to
source distributions is presented in a non-Bayesian setting,
where the number of users is a fixed, finite value. In contrast,
we have adopted a Bayesian setting in [5]-[7], where a
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powerful adversary is assumed to have accurate prior distri-
butions for user behavior through past observations or other
sources. We consider the length of observations available to the
adversary that guarantee privacy, or, conversely, the length of
observations for which privacy is compromised [5]-[8]. In [7],
our most significant results are converse results that demon-
strate that this powerful adversary can exploit correlations
between the data of different users to compromise user privacy.
Thus, a limitation of the converse results of [7] is that they
are pblackicated on a very powerful adversary, which, while
desirable for (forward) results that guarantee privacy, should
be relaxed if possible for (converse) results that demonstrate
the loss of privacy. Our main contribution in this letter is to
resolve this limitation by developing converse results assuming
that the adversary does not have perfect knowledge of the
statistics of users’ behavior but rather a set of data containing
past user behavior.

An initial investigation in [9] obtained the necessary condi-
tions for breaking privacy for a finite number of users. Here
we turn our attention to this problem in the most general
setting of our prior work with an asymptotically large number
of users [5]-[8]. In particular, the data traces of different users
will be dependent in many applications, and an adversary can
potentially exploit such, thus, contrary to [8], [9], we allow
for inter-user correlation as in [7]. Furthermore, we bring
our results closer to practice by, rather than presuming the
user’s data is discrete-valued [5]-[8], considering a Gaussian
model for users’ data, as Gaussian distributed data has been
consideblack in various domains, e.g., sensor networks [10]
and distributed consensus [11], as a promising substitute to
real data, and it can be adapted to users’ check-ins modeled
as a multi-center Gaussian model [12]. Dai et al. [13] have
also investigated the related problem of database alignment for
Gaussian features in a different framework.

II. FRAMEWORK

Define a system with n users, each of which creates a series
of m data points. Let X, (k) be the data point of user u at
time k. The vectors X, will be termed the “actual data set”:

Xy = [Xu(l)vXu(2)a T aXu(m)]v u € {17 2; T an}v

where “T” means transpose of the vector.

For every user, there is also a series of [ data points
representing the user’s past behavior; we term these vectors
W, the “Learning Data Set:

W, = [Wa(1),Wy(2), - , W, ()], we{l,2,---,n}.
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Fig. 1. The goal of the adversary: match each sequence in the learning
data set Wo,, u = 1,2,...,n, to a sequence in the observed data set Yo,
u=1,2,...,n.

For k € {1,2,--- ,m} and k' € {1,2,---,1}, X, (k) and
W, (k') are drawn from a user-specific probability distribution.
In particular, we assume that the points in the data sets
of a given user user are drawn from a normal distribution
N (ptoy, 02), where 1., is the mean of the data of user u and o
is its variance. While the p,,’s are unknown to the adversary,
each of them is drawn independently from a continuous den-
sity function f,(z). We assume the mild technical condition
that there exists ¢ > 0 such that f,(z) < ¢ for all x. Further,
the points in the two data sets X, (k) and W, (k") are drawn
independently from those in the other set, and, within each
set, independently across index (k or k), although there may
be inter-user correlation as described below.

Anonymization is employed as a PPM that conceals the
mapping between the learning data set and the actual data set
by using a random permutation function (II). The result of
permuting X,, yields the “observed data set”:

Y., = [Yu(1),Yu(2), -, Yu(m)], ve{l,2,---,n},
where each Y, (k) has a normal distribution N (fir1-1(y,), 02);
Hri-1(y) 18 the mean of the trace in the actual data set that gets
mapped to the u!* position in the observed data set by the
permutation. Thus, we have Y, = Xp-1(,) and Yry,) = Xo.
Figure 1 shows the relation of the three data sets. Note that
after anonymization, the adversary does not have access to the
actual data set.

1) Association Graph: The dependencies between users are
modeled by an association graph G(V, E), where V represents
the nodes and F represents the edges. As shown in Figure 2,
two users are connected if they are dependent:

e (u,u') € F if and only if Covy, > 0,

o (u,u’) ¢ E if and only if Covy,s =0,
where Cov,, is the covariance of the data of user u and
user v at any given time.

Discussion 1: Although, disjoint association graph is
applicable during social-distancing situations, details of a more
general setting in which the association graph is not disjoint
have been discussed in [7], [14].

Discussion 2: Note that there are two kinds of dependency,
and both of them hurt system privacy in different ways:
(1) Intra-user dependency, which shows temporal and spatial
dependency within data traces of one user, which is discussed
in [6]; (i) Inter-user dependency, which shows dependency
between the traces of different users, and is the main focus of
this work.

IEEE COMMUNICATIONS LETTERS, VOL. 25, NO. 4, APRIL 2021

G ‘741

The rest of the association graph (G')

G .

P A

The subgraph which the adversary
wants to
de-anonymized its users

Fig. 2. The structure of the association graph (G): Group g with s4 vertices
is disjoint from the remainder of the association graph (G').

2) Adversary Model: For each user, the adversary has
access to a collection of time series data corresponding
to learning data, W,, = [W,(1), W,(2),---,W,()], and
a collection of time series data corresponding to observed
data Y, = [Y,(1),Y.(2), - ,Y.(l)]. The adversary performs
statistical matching between the learning data set {Wu, u =
1,2,---,n} and the observed data set {Y,,u=1,2,--- ,n}
to match traces in the former, which contains identifying
information, with traces in the latter. We assume the adversary
knows the structure of the graph G(V, E') and has knowledge
of the anonymization mechanism (i.e. that a random permu-
tation is employed), but not the realization of the random
permutation.

We define a user having no privacy as [6]:

Definition 1: User u has no privacy at time k if there exists
an algorithm for the adversary to estimate X, (k) perfectly as
n goes to infinity. In other words, as n — oo,

VEEN, Po(u)2P ()?u(k) ” Xu(k)) 0,

where X, (k) is the adversary’s estimate of X, (k).

IIT1. IMPACT OF EMPLOYING TRAINING DATA ON
PRIVACY USING ANONYMIZATION

The proof of our key result has three main steps; (i) recon-
struction of the association graph of the anonymized version
of the data, (ii) identifying Group 1, and (iii) identifying all
of the members within Group 1 individually.

In the first step, we consider the ability of the adversary to
fully reconstruct the structure of the association graph of the
anonymized version of the data.

Lemma 1: If for any A > 0, the adversary obtains m =
Q’\ points in_the observation data set, they can reconstruct
G = GW,E), where V = {Il(u) : v € V} = V, such
that with high probability, for all u,u’ € V; (u,u') € E
iff (IT(w),I(u")) € FE. We write this statement as
P(E=F)—1.

Proof: From the observations, the adversary can calculate
the empirical covariance for each pair of user « and user u’,
v, = L X)X (k) 3000, Xu(k) Y52, X0 (k)

Covyy = — .
m m m
(1)

In [15, Lemma 1], we have proved for m = n*, and large
enough n,

iff (u,u) ¢ E,

e |Covau|
,iff (u,u’) € E,

<m~
>m-

S

o |Covyy|
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In other words, we show P(E = E) — 1 as n — oo. Thus,
according to the result of [15, Lemma 1], the adversary is able
to fully reconstruct the structure of the association graph of
the anonymized version of the data with arbitrarily small error
probability independent of the length of the learning data set.
Note that the reconstruction of the association graph does not
require the adversary’s knowledge about user statistics (i.e.,
the values of u,’s) [7, Lemma 1]. O

Without loss of generality, assume that User 1 belongs to
Group 1 of size s. In contrast to [7]: (i) the data points are
drawn from a Gaussian distribution; and, more importantly,
(ii) the adversary does not know the statistics of the users in
Group 1, but rather only has the learning data sets for those
users. In the next step, we demonstrate how the adversary can
identify Group 1 among all of the groups given sufficiently
long data traces.

Lemma 2: If for any a,a’ > 0, the adversary obtains
learning data sets containing [ = n:to data points of past
behavior for each user, and observation data sets containing
m = n:Te data points for each user, and knows the structure
of the association graph, they can identify the traces in the
observation data set that correspond to users in Group 1 with
arbitrarily small error probability.

Proof: Note that there are at most
in the system, which we label 1,2, - ~. Define the mean
vector for users in Group 1 as: P(l) = [ul,ug, e+, s, and
the vectors of empirical averages for the two sets of data which
the adversary seeks to match as:

1)

R groups of size s

W = W0 W W] Y = V1 VoV

where W, = 1520 W, (i) and Y, = L 327 V,(i). Let
115 be the set of all permutations on s users; for 75 € Ilg, 7 :
{1,2,---,s} — {1,2,---,s} is a one-to-one mapping. For
any two length-s vectors U and V, we define a difference
function that takes into account any permutation of those

vectors:

D(U,V) = milr_ll {IU =V},

mws€lls
where ||U||eoc = max;—1,2,.. 1 U; for length-k vector U. It is
straightforward to show that D (U, V) satisfies the triangle
inequality, which we will employ below.

Now, defining P, W(g), and ?(g) for groups g =

2,3,...,% in an analogous way to the definitions of PO,

—(1 —(1 . .

W( ), and Y( ), respectively, we claim for m = n%J”’,
2 ’

l=n5T%, and as n — oo:

1 IP( (W(l) (1)) < An) -1,
2) P ([) D (W“’,?‘g)) < An> =
g=2

_1_a” .
where A,, = n~ 571, and & = min{«, a’}. For each u €

{1,2,---,n},
(|Y1L_Wu‘ ZAn)
< P( IX uu\+ W = ] = An)

1081

A A
<P<|X Mu|>7>+P<|W Mu|>7>
—maA2 —1a2 U‘T”
<e 82 +es2 <2 5o 2)

The first inequality follows from the triangle inequality. The
union bound yields the second inequality, and the third
inequality is based on the error function inequality erf(x) >
1—e . By employing (2) and applying the union bound
for all of the users in a group with size s, we have for any
group g that:

P (D (W(9)7?(9)) > An)

< ZP( |Y1L_Wu‘ ZAn)

u=1
— P ([Xy— W] > A,) < 2se %7 3)
Hence, letting ¢ = 1, ]P’(D (W(l) Y(l) <A,) — 1,
as n — 0o. Next, we want to show that

P U D (W(l),?(g)) <A,| — 0, as n — oco. We do
g=2
this in three steps.
o First, recalling f,(x) < 0 and that the user means are

drawn independently, for Group g we obtain:

P(|PM-PW]l. <4A,) <(34,)°

Similarly, for all 75 € I, we have
B(IPD - PO, |l <48,) <

Employing union bounds, since |II4| = s!, we have

n

el {p (P, PM) <aa,}

g=2

=P U { U {||P(1) _p(g)mHOO < 4An}}
g=2 s €I

<3 Y B(IPY PO, <aa,)
g

=27, €ll,

_sa”
< n~ 1§ —0,

< Dogen g = (s —1)18°
s

as n — oo. Thus, with high probability, the difference
between all P(9), g > 2, and P() is bigger than 4A,,.

o Second, for all u € {2,3,---,n}, erf(x) > 1 — e’
yields

"
2 a
Ay n 2

—Mu| > Ap) <e 2f <e w7,

P([W,
Thus, by employing union bounds, we have
P (D (W(g), P<9>) > An)
<P(IW - POx = A,)

< Y (W

u€Group g

"
o
n 2

— ] > Ap) =se” 27 (4)
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Now, for g = 1, as n — oo, we have

"
o

P (D (W(”,PU)) > An) < se"5E 0.

Thirdly, since we have shown above that with high prob-
ability, D (P(®),P() > 47, and D (W', PO)) <
Ap, forall [ € {2,3,---, %}, by the triangle inequality
we have

P ( D (W“”,W“)) < 2An)
<P ( D (W(g),P@) > An)

{1/”
_n 2

< se 207

and by applying a union bound, as n — oo,

n

P U {D (W“”,W“)) < 2An}
2

<3P ( D (W("),?“)) < 2An)
g=2

= Esein'zz =ne 7;(772 — 0.
S

Finally, since we have shown that, with high probability,
D (W ¥7) < A, and D (WY W) > 24,
forall g € {2,3,---, %2}

P(D (W(1)7?(9)) < An)
<P ( D <?(9)7w(9)) > An)

o!!

< 2se” 57 = 0, )

as n — oo, where the second inequality follows from (3).
Employing (5) and a union bound, as n — oo we have

n

P U {D (Wm??(g)) gAn}

g=2
- 9) ==(9)
<Z]P’ D(Y?" W) >A,
g=2
< E256_7733072 = 2ne_né<r72 — 0.
S

Hence, we can conclude that if m = n>+®, [ = ni+® and
n — oo, the adversary can identify the data traces in the
observed data set belonging to users in Group 1 with small
error probability. O

Finally, we show that once the data traces in the observed
data set belonging to users in Group 1 are identified, the adver-
sary can identify the data trace in the observed data set for
each of the members of Group 1 with arbitrarily small error
probability.

Lemma 3: If for any a,a’ > 0, the adversary obtains
learning data sets containing [ = n:te data points of past
behavior for each user, and observation data sets containing
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m = nite data points for each user, and knows which traces
in the observation data set belong to members of Group I,
the adversary can identify the trace in the observation set
belonging to user 1 with arbitrarily small error probability.

Proof: We claim that, for m = nite | =nite’ and as
n — oo,

D P(‘Yl_W1|SAn)_)L
2) 1P’<LSJ }E—W1|<An>ﬁ0,
u=2

where A, = n~(G+%), and o = min{a, o’}
1) The first claim follows from (2) with u = 1 as n — oo.
2) Next we establish the second claim. Recall the (mild)
technical assumption that f,(z) < § for some ¢. Then,
forall w e {2,3, - ,n},P(|p, — p1| <44A,) <8A,Q.
A union bound yields

P (U { [pw — 1] §4An}>

u=2

< ST B(Jua— | <44,)

u=2

< 8sA,0 =8sn 17T 5 — 0,

as n — oo. This means that, with high probability, all of
the p,, for w > 1 fall outside of the range of p; 2i 4A,,.
Next, forall u € {2,3,--- ,n}, erf(z) > 1—e ™ yields

a2

IP( |Wu_ﬂu| ZAn) Seiﬁ-

Thus, for u = 1, as n — oo, we have

ol

P([W—m|>A,) <e 5 =0,

which means W is inside 3 £4,, with high probability.
Thus, we have now shown with high probability that
|t — p1] > 44, and W, — py| < A, for all u €
{2,3,---,n}; thus, the triangle inequality yields:

P([Wu=Wi]<280) <P([Wu—pu| = An)

ol
_a? 2
<e 22 <e 207,

Applying a union bound, as n — oo, we have

P (uQ{ W, — W] < 2An}>

<SR[V, -] <24,)

u=2

al”

n_ 2
2 — 0.

= Sé 2

q

Finally, since | X, —W,| < A, and |[W,—W;| > 2A,,
for all w € {2,3,---, s}, with high probability, we can
employ (2) to obtain:

B([Xu— | <A) =B ([Ku—T>A)

o’
n_ 2
2

< 2¢ o7 .
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TABLE I

CONDITIONS ON THE LENGTH OF OBSERVED DATASET (m) AND LENGTH
OF LEARNING DATASET () FOR “NO PRIVACY”. HERE, s IS THE SIZE
OF GROUP OF USERS WHOSE DATA TRACES ARE DEPENDENT, AND
THE RESULTS HOLD FOR ANY o, @’ > 0

Imperfect Perfect
Knowledge of the Adversary
l m m
Independent Users Q (n2+",) Q (nz”" ) Q (nz“’)
Dependent Users Q (n%“’,) Q (n%“’) Q (n%“’)
As n — 00, a union bound yields:
S
Pl U{|[Xu=W1| <AL}
u=2
S
YR ([ -T2 )
u=2
L
< 2se o2 — 0.
]

From Lemmas 1, 2, and 3, a user will have no privacy if
m and [ are both significantly larger than n? as the number of
users (n) goes to infinity. Note that m is the number of data
points per user in the observation data set, [ is the number of
data points per user in the the learning data set, and s is the
size of the group of the user of interest.

Theorem 1: For the system model with Gaussian data
points of Section II, where Y is the anonymized version of X,
and W is the behavioral history of users, user 1 has no privacy
at time k if:

o The adversary knows the structure of the association

graph;

o The adversary has access to a [—length behavioral history

for each of the users, where | = () (n%Jra/)
a > 0;
o The adversary has access to a m—length observation for

for any

each of the users, where m = Q (n%Jra) for any o > 0;

When the adversary has perfect prior knowledge about
users’ past behavior in the Gaussian case, which is not
coveblack by our prior work, the result follows from arguments
similar to those leading to Theorem 1 and [15, Theorem 1].

Theorem 2: For the system model with Gaussian data
points of Section II where Y is the anonymized version of X,
user 1 has no privacy at time k if:

o The adversary knows the structure of the association
graph;

o The adversary has access to perfect prior knowledge
about users’ behavior;

o The adversary has access to a m—length observations for

each of the users, where m = Q) (n%Jra) for any o > 0;

1083

IV. CONCLUSION

Given that anonymization is employed to ensure IoT users’
privacy, we consider a broad set of assumptions compablack to
previous work: (i) the adversary only has access to limited data
sets for users’ past behavior; (ii) data traces of different users
are dependent; (iii) users’ data sequences are governed by an
ii.d. Gaussian model. We established sufficient conditions for
an adversary to break user privacy. If the length (1) of the
learning data set and the length (m) of the observed data set
are each significantly larger than n*, users have no privacy.
The summary of the results is shown in Table I.
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