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Abstract—Federated learning (FL) enables many data owners
(e.g., mobile devices) to train a joint ML model (e.g., a next-word
prediction classifier) without the need of sharing their private
training data. However, FL is known to be susceptible to model
poisoning attacks by malicious participants (e.g., adversary-
owned mobile devices), who aim at hampering the accuracy
of the jointly trained model through sending malicious inputs
during the federated training process. In this paper, we present a
general framework for model poisoning attacks on FL. We show
that our framework leads to poisoning attacks that substantially
outperform the state-of-the-art model poisoning attacks by large
margins. For instance, our attacks result in 1.5x to 60X more
reductions in the accuracy of FL compared to the strongest of
existing poisoning attacks.

Our work demonstrates that existing Byzantine-robust FL
algorithms are significantly more susceptible to model poisoning
than previously thought. Motivated by this, we design a defense
against poisoning of FL, called divide-and-conquer (DnC). We
demonstrate that DnC outperforms all existing Byzantine-robust
FL algorithms in defeating model poisoning attacks, specifically,
it is 2.5 to 12x more resilient in our experiments with different
datasets and models'.

I. INTRODUCTION

Federated learning (FL) is an emerging learning paradigm
in which many data owners (called clients) collaborate in
training a common machine learning model, without sharing
their private training data. In this setting, a central server (e.g.,
a service provider) repeatedly collects some updates that the
clients compute using their local private data, aggregates the
clients’ updates using an aggregation algorithm (AGR), and
finally uses the aggregated client updates to tune the jointly
trained model (called global model), which is broadcasted to
all of the clients at the end of each FL training epoch.

While FL has emerged as a promising solution for many
in-the-wild learning settings that involve mutually untrusting
clients, FL. mechanisms are prone to poisoning attacks [31]:
malicious clients can attempt to degrade the utility (e.g.,
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model accuracy) of the resulting global model by contributing
malicious model updates during the FL training process. A
poisoning attack can be either untargeted [31], [4], [17], [37],
where the goal is to minimize the accuracy of the global
model on any test input, or targeted [6], [3], where the goal
is to minimize the accuracy on specific test inputs. To defeat
poisoning attacks, a recent line of work has investigated the
design of Byzantine-robust FL algorithms, where the central
server uses some robust aggregation algorithm (AGR) [39],
[81, [371, [311, [2], [12] to reduce the impact of malicious
model updates while preserving model utility.

Note that while centralized (non-FL) models have long
been known to be vulnerable to poisoning attacks through ma-
nipulation of training data (i.e., data poisoning attacks) [20],
[7], recent works [17], [6], [3], [4], [31] have demonstrated
advanced poisoning attacks tailored to FL, where malicious
clients directly manipulate the model updates (e.g., gradients)
that they share with the central server during FL training
process. Such attacks are known as model poisoning attacks
and are shown [4], [17] to be substantially more impactful
on FL than the traditional data poisoning attacks. This paper
studies untargeted model poisoning attacks on FL.

Our contribution: A general framework for model poison-
ing attacks on FL. In the first part of this work, we present a
general framework for model poisoning on FL. Unlike previous
works [17], [4], [31], [37], we consider a comprehensive set
of possible threat models for model poisoning attacks along
two dimensions of the adversary’s knowledge: the knowledge
of the updates shared by benign clients, and the knowledge
of the AGR algorithm that the server uses. We demonstrate
that the model poisoning attacks launched using our frame-
work outperform state-of-the-art model poisoning attacks in
defeating all Byzantine-robust FL algorithms.

The high-level approach of our attack is as follows. The
adversary computes a benign reference aggregate using some
benign updates she knows; then she computes a malicious per-
turbation (whose generation will be explained in detail), e.g.,
a unit vector in the opposite direction of the benign aggregate.
Finally, the adversary computes her malicious model update
by maximally perturbing the benign reference aggregate in the
malicious direction, while also evading detection by robust
aggregation algorithms. Based on this intuition, we provide
a general optimization framework (Section IV-A) to mount
optimal model poisoning attacks on different FL settings.



However, due to its computational intractability, we introduce a
novel modification to our general optimization problem: We fix
the type of malicious perturbation, and search for the optimal
coefficient of the perturbation vector. We give an algorithm
to find the most effective coefficient for any model poisoning
attack objective that is formulated using our general optimiza-
tion framework (Section IV-D). We also show that selecting
the appropriate malicious perturbation can significantly boost
the impact of model poisoning on FL, and propose a simple
yet effective approach to select the most effective perturbation
vector for a given FL setting (Section VI-C).

We perform various optimizations to tailor our attacks to
specific threat models. Specifically, we present attacks that
are tailored to state-of-the-art AGR algorithms [8], [31], [39],
which we call AGR-tailored attacks. Our AGR-tailored attacks
(Section I'V-B) aim to maximize the perturbation to a reference
benign update, while also evading the detection by robust
AGRs. We note that this also solves the fundamental objective
of maximizing the distance between the aggregates with and
without the attacks.

We also present AGR-agnostic attacks that work for adver-
saries with no knowledge of the underlying AGR algorithm
(Section IV-C). However, the constraints of the server’s AGR
are unknown to our AGR-agnostic adversaries. We circumvent
this challenge based on the key intuition behind robust AGRs:
a robust AGR labels an update malicious if it wonders far
away from a set of benign updates. Therefore, our AGR-
agnostic attacks constrain their search of the most malicious
updates to a ball of a small radius around the clique of the
benign updates. Based on this intuition, we propose two novel
AGR-agnostic attacks, both of which outperform state-of-the-
art AGR-agnostic attack, i.e., LIE [4].

Evaluations. We have extensively evaluated our attacks using
four benchmark classification datasets (Section VI). We show
that the impact of our poisoning attacks (measured by the
reduction in model accuracy) is significantly higher than that
of state-of-the-art model poisoning attacks, i.e., Fang [17] and
LIE [4], for all of the datasets. For instance, for CIFAR10
with Alexnet, without any knowledge of the updates of benign
clients, the accuracy reductions due to Fang and LIE attacks are
11.8% and 30.0%, respectively, while the reductions due to our
AGR-tailored and AGR-agnostic attacks are 45.6% and 44.5%,
respectively, i.e., 1.5x and 4x more accuracy reduction.
For Purchase, our AGR-tailored and AGR-agnostic attacks on
Krum AGR [8] incur 15X and 60x more accuracy reduc-
tion. For FEMNIST dataset with Trimmed-mean (Median)
AGR, the accuracy reductions due to our AGR-tailored and
AGR-agnostic attacks are 2x to 3x (4x to 18x) more than
the accuracy reductions due to Fang and LIE attacks.

Our contribution: Defending model poisoning on FL. In
the second part of this work, we propose a novel robust
aggregation algorithm (Section VII) to defend against model
poisoning attacks. Our robust AGR, called the divide-and-
conquer (DnC), is motivated from existing defenses against
data poisoning attacks in centralized learning settings; these
defenses use spectral analysis [16], [15], [28], [26], e.g.,
singular value decomposition, to detect and filter the outliers
in poisoned data. The intuition behind DnC is that, a malicious
model poisoning update is impactful if and only if it deviates

significantly from the benign updates along a certain malicious
direction in the updates’ space. Therefore, DnC first computes
the principle component, i.e., the direction of maximum vari-
ance, of the set of its input updates. Then it computes scalar
products of the updates with the principal component, called
projections. Finally, DnC removes a constant fraction of the
total updates that have the largest projections. However, it
is computationally impossible to perform spectral analysis of
extremely high dimensional model updates in FL. Therefore,
DnC performs dimensionality reduction that enables spectral
analysis of input updates and also ensures the effective detec-
tion of malicious updates.

Our DnC AGR provides strong theoretical robustness guar-
antees of the removal of malicious updates, when benign
updates are independently and identically distributed (iid) [16],
[15], [28], [26], [36]. Furthermore, in order to provide empir-
ical evidence of the robustness, we design an adaptive attack
against DnC using our general framework (Section IV-A).

Evaluations. We evaluate DnC for four benchmark classifi-
cation datasets. We show that for the three iid datasets, i.e.,
MNIST, CIFAR10, and Purchase, DnC significantly reduces
the impacts of model poisoning attacks on FL. when compared
to previous defenses (Section VII-C1). For instance, compared
to the existing robust AGRs, DnC reduces the maximum
reduction in the accuracy of the global model due to model poi-
soning attacks from 36.8% to 6.1% for CIFAR10 with Alexnet,
from 32.5% to 6.3% for CIFAR10 with VGG11, from 11.6% to
1.8% for Purchase, and from 4.4% to 1.9% for MNIST. Note
that, in all of these cases, the most impactful attack against
DnC is our adaptive attack on DnC, as expected. We also show
the superiority of DnC in defeating model poisoning on FL is
due to its effective filtering of the malicious updates with high
poisoning impacts. For the non-iid FEMNIST dataset, we show
that, compared to existing robust AGRs, DnC mitigates the
model poisoning attacks substantially more effectively when
the adversary has no knowledge of the benign update of benign
clients.

II. BACKGROUND
A. Federated Learning

We consider a standard federated learning (FL) [30], [21],
[22] setting with a server and n clients with possibly disjoint
private datasets drawn from a data distribution D; the datasets
may not be independently and identically distributed (iid). In
epoch ¢, the server selects a subset of clients and broadcasts
the current global model parameters 6¢ to the chosen clients.
All the chosep clients then compute stochastic gradients,
Vii = 8%2’,594), using a randomly sampled minibatch b of
their private data and synchronously send it to the server. Here,
L(b,0%) is the loss, e.g., cross-entropy loss, computed using
minibatch b and model parameters 6°. Then, the server ag-
gregates the collected gradients using some aggregation algo-
rithm, fagr(Vt,ie[n)})s €.g., dimension-wise Average. Finally,
the server computes a new model #**! using the aggregate
and SGD, and broadcasts it to a new subset of randomly
selected clients. This process is repeated until the global model
converges, i.e., has low loss L(D,a|, #) on validation data D,,.
The FL output is the global model with the maximum accuracy
on D, across all FL epochs.




FL can either be cross-device FL with a very large (mil-
lions) number of clients and only a subset of them is chosen in
an epoch, or cross-silo FL with a moderate number of clients
(tens to hundreds) and all of them participate in every epoch.
Unlike previous works which consider only cross-silo FL [4],
[17], [37], we consider both the FL settings.

B. Poisoning attacks on FL

Federated learning is known to be vulnerable to various
poisoning attacks [8], [4], [6], [3], [31], [17], [29], [38], [32],
[20]. We divide these attacks based on the adversary’s goal and
capabilities. Based on the goal of adversary, there can be two
types of attacks: untargeted and targeted attacks. In untargeted
poisoning attacks, the goal is to minimize the accuracy of the
global model on any test input [17], [4], [31], [29], [38]. In
targeted poisoning attacks, the goal is to minimize the accuracy
on specific test inputs, while maintaining high accuracies on
the rest of the test inputs [6], [3]. Backdoor attacks [3] are a
subset of targeted attacks, where the targeted test inputs have
a backdoor trigger. Untargeted attacks can completely cripple
the global model, and therefore we believe, pose a more severe
threat to FL.

Based on the adversary’s capabilities, there are two types
of attacks: model and data poisoning attacks. In model poi-
soning attacks [17], [4], [31], [38], [6], [3], the adversary
can directly manipulate the gradients on malicious devices
before sharing them with the server in each epoch. While
in data poisoning attacks [32], [20], the adversary can only
indirectly manipulate the gradients on malicious devices by
poisoning training datasets on the devices. Due to the direct
manipulation of gradients, model poisoning attacks can achieve
higher attack impacts on FL. Also, as data poisoning attacks
cannot compute arbitrary gradients, it is not trivial to imitate
the malicious gradients of model poisoning attacks via training
data poisoning. Therefore, in order to understand the severity
of the threat of poisoning to FL, we focus on the stronger
untargeted model poisoning attacks on FL.

C. Existing robust aggregation algorithms for FL

In non-adversarial FL settings, dimension-wise Aver-
age [14], [23], [30] is an effective aggregation algorithm
(AGR) to aggregate clients’ gradients. However, even a sin-
gle malicious client can manipulate the Average AGR based
FL [8], [3], [5]. Therefore, multiple Byzantine-robust AGRs
for FL [8], [31], [37], [39], [2], [19], [10] are proposed to
defend against poisoning attacks by malicious clients.

1) Krum: Blanchard et al. [8] propose Krum AGR based on
the intuition that the malicious gradients need to be far from the
benign gradients in order to poison the global model. Hence,
Krum selects the gradient from the set of its input gradients
that is closest to its n — m — 2 neighboring gradients in the
squared Euclidean norm space; here, m is an upper bound on
the number malicious clients in FL.

2) Multi-krum: Blanchard et al. [8] modify Krum AGR to
Multi-krum AGR in order to effectively utilize the knowledge
shared by the clients in each FL epoch [8]. Multi-Krum selects
a gradient using Krum from a remaining-set (initialized to
the set of all the received gradients), adds it to a selection-
set (initialized to an empty set), and removes it from the

remaining-set. This way, Multi-krum selects ¢ gradients such
that n — ¢ > 2m + 2. Finally, Multi-krum averages the gradi-
ents in the selection-set. Multi-krum significantly outperforms
Krum in terms of the global model accuracy.

3) Bulyan: Mhamdi et al. [31] show that a malicious
gradient can remain close to benign gradients while having
a single gradient dimension with a very large value (on order
of Q({/d)) and prevent convergence of the global model. As a
remedy, they propose Bulyan AGR, which requires n > 4m+-3
for its robustness guarantees to hold. Bulyan first selects
0(60 < n — 2m) gradients in the same fashion as Multi-krum,
and then computes Trimmed-mean of the selected gradients;
please refer to [31] for more details.

4) Trimmed-mean: Trimmed-mean [39], [37] is a
coordinate-wise AGR which aggregates each dimension of
input gradients separately. Specifically, for a given dimension
J, it sorts the values of jth-dimension of all gradients, i.e.,
sorts V?{ie[n] } Then it removes [ largest and smallest values
and computes average of the rest of the values as its aggregate
of dimension j. We use Trimmed-mean where [ equals
m, the number of malicious clients. Yin et al. [39] show
that Trimmed-mean achieves order-optimal error rates when
m < 3 < 4 for strongly convex objective function.

5) Median: Median [39], [37] is an another coordinate-
wise AGR which aggregates its input gradients by comput-
ing median of the values of each of the dimensions of the
gradients. Yin et al. [39] give theoretical guarantees on the
robustness of Median AGR, while Fang et al. [17] empirically
show that Median AGR has better robustness than the more
sophisticated Krum AGR.

6) Adaptive federated average (AFA): AFA [33] removes
malicious gradients based on their cosine-similarities with a
benign gradient. More specifically, in each FL round, AFA
computes a weighted average of collected gradients and
computes cosine similarities between the weighted average
and each of the collected gradients. Then, AFA discards the
gradients whose similarities are out of a range; this range is
a simple function of mean, median and standard deviation of
the similarities.

7) Fang defenses: Fang et al. [17] propose defenses that
are meta-AGRs and rely on existing robust AGRs to detect
malicious gradients. More specifically, consider a robust AGR
A. Given a set of gradients G, the corresponding Fang defense,
called Fang-A, computes a score for each gradient in V; € G
as follows. Fang-A computes two aggregates using A, one with
V; and one without V; in G, i.e., A(G) and A(G—V,;). Fang-
A then computes losses and/or errors of the models obtained
by updating the global model using the two aggregates. Then
Fang-A assigns a score to each V; such that the lower
the negative impact of V; on the loss and/or error of the
corresponding model, the higher the score. Finally, Fang-A
discards the gradients with the lowest scores. For any given
AGR, [17] proposes three defenses, one based on the loss of
model, one based on error of model, and one based on both
the loss and error. The combination of loss and error works
strictly better than either loss or error, hence, we consider the
defense based on the combination of loss and error.



D. Comparison with related works

Comparing our attacks. We compare our attacks with two
state-of-the-art model poisoning attacks, Fang [17] and LIE
(short for ‘A little is enough’) [4]. Fang attacks require the
knowledge of the server’s AGR, and without the knowledge,
they have no noticeable impact. Fang attack [17] formulates
a general optimization problem, but tailors it only to Krum
AGR. Furthermore, their solution of the optimization, even for
Krum AGR, is far from optimal (Figure 1-(a)). Next, unlike our
attacks on Trimmed-mean and Median AGRs, [17] proposes
only a heuristic attack to manipulate each dimension of the
collected gradients. Consequently, there are huge differences in
the impacts of ours and Fang attacks. Furthermore, our attacks
choose the most effective malicious direction tailored to the
given FL setting, which boosts their poisoning impacts. Note
that, Fang attacks are effective for the synthetic non-iid datasets
generated in [17]. But, as we will show, for iid and highly
imbalanced non-iid datasets, Fang attacks perform poorly.

LIE attacks [4] do not require the knowledge of AGR.
Hence, in order to circumvent detection by any AGR, LIE
attacks add a very small amounts of noises to a benign
aggregate. Comparatively, our novel AGR-agnostic attacks
leverage the knowledge of benign gradients in more principled
ways to boost their poisoning impacts (Figures 1-(b, c)).

Comparing our defense. Our attacks show that the con-
vergence guarantees of previous robust AGRs [8], [39] are
insufficient to make FL robust to model poisoning. Hence,
our robust AGR aims to provide guarantees of the removal of
malicious updates. On a high level, our divide-and-conquer
(DnC) AGR uses singular value decomposition, a radically
different approach from the previous AGRs (Section II-C). Due
to its effective filtering guarantees, the global model of DnC
converges to a better local optima and achieves significantly
higher accuracies even under attack (Table IV).

III. THREAT MODEL OF MODEL POISONING ATTACKS

Here, we discuss various possible threat models of model
poisoning attacks on FL.

Adversary’s Objective. The goal of the adversary is to craft
malicious gradients such that when the malicious clients share
the malicious gradients with the central server, the accuracy of
the resulting global model reduces indiscriminately, i.e., on any
test input. This is also known as untargeted model poisoning
attack.

Adversary’s Capabilities. We assume that the adversary con-
trols up to m out of n total clients, called malicious clients.
We assume that the number of malicious clients is less than
the number of benign clients, i.e., (m/n) < 0.5; otherwise,
no Byzantine-robust AGR will be able to defeat poisoning
attacks. Following the previous works [6], [4], [3], [17], [37],
[19], we assume that the adversary can access the global
model parameters broadcast in each epoch and can directly
manipulate the gradients on malicious devices.

Adversary’s Knowledge. We consider two important dimen-
sions of FL setting: knowledge of the gradient updates (simply
gradients) shared by the benign devices and knowledge of

Table I: Knowledge based classification of model poisoning adver-
saries in federated learning.

Type Gr.adients 'of Server’s AGR
benign devices algorithm
agr-updates v v
agr-only X v
updates-only v X
agnostic X X

the AGR algorithm of the server. More specifically, we con-
sider four adversaries as shown in Table I. agr—-updates
adversary is the strongest adversary who knows both the
gradients of benign devices and the server’s AGR. Although
agr—updates adversary has limited practical significance, it
has been commonly used in previous works [17], [37], [4] to
understand the severity of the model poisoning threat. Further-
more, it allows the service provider (the server in this case) to
evaluate the robustness of its AGR algorithms. agr-only
adversary knows the server’s AGR, but does not have the
gradients of benign devices. To compute malicious gradients,
agr—only adversary uses benign gradients computed using
the benign data on malicious devices. updates—only ad-
versary has the gradients of benign devices, but does not
know the server’s AGR. We consider this adversary in order
to demonstrate the empirical upper bound of the severity of
our AGR-agnostic attacks. Finally, the agnostic adversary
does not have the gradients on benign devices or the server’s
AGR, and is the weakest possible adversary in FL.

Note that, none of the state-of-the-art untargeted model
poisoning attacks thoroughly consider these two dimensions:
Fang attacks [17] assume the complete knowledge of the
server’s AGR algorithm, while LIE attacks [4] assumes the
complete knowledge of the gradients of benign devices.

IV. OUR GENERAL FRAMEWORK FOR MODEL POISONING

In this section, we describe our general framework to
mount model poisoning attacks on FL, followed by specific
optimizations for different AGRs and threat models, and finally
give an algorithm to solve the optimizations.

A. General optimization formulation

In each FL training epoch, the malicious and benign clients
share malicious and benign gradients, respectively, and then the
server updates the global model using an aggregate of all of
the gradients. To successfully mount an untargeted attack, our
general optimization problem aims to maximize the damage
to the global model in each FL epoch.

In order to maximize the damage to the global model, we
craft the malicious gradients, denoted by Vge[m]}, such that
the aggregate computed by the server is far from a reference
benign aggregate, denoted by V°. A possible V? is the average
of the benign gradients that the adversary knows. For instance,
the agr—-only adversary can compute m benign gradients
using the benign data on malicious devices. The final malicious
gradient V™ is a perturbed version of the benign aggregate V?,
ie., V" =V’ +~vVP, where VP is a perturbation vector and
v is a scaling coefficient. Therefore, the objective of the full
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Figure 1: Schematics of our attacks: (a) Our AGR-tailored attack, unlike Fang attack, fine tunes the malicious gradient (V° + V"), using
optimal v and dataset-optimized VP. (b) Our AGR-agnostic Min-Max attack finds its malicious gradient V™ (red cross) whose maximum
distance from any other gradient is less than the maximum distance between any two benign updates (black arrows). (¢) Our AGR-agnostic
Min-Sum attack finds V" (red cross) whose sum of distances from the other updates is less than the sum of distances of any benign gradient
from the other benign updates. Due to stricter constraints, V™ of Min-Sum attack is closer to the benign aggregate, V°, than V™ of Min-Max
attack. LIE attack computes very suboptimal V™ due to extremely small amounts of noise additions.

knowledge agr-updates adversary is given by (1).
argrgfx Ve — fagr (Vi) U Viiem+1,ny) ll2 (D
7,
Vi =V +7V% V0 = fag(Viem))

where Vy;c(ny are the benign gradients that the adversary
knows. Note that state-of-the-art robust AGRs [8], [39], [31]
are generally not differentiable. Hence, solving (1), i.e., finding
the optimal v and VP, using gradient descent based optimiza-
tions is not trivial. Our idea to overcome this challenge is
to fix the perturbation vector VP and find the optimal +, i.e.,
solve the modified objective in (2). Algorithm 1 (Section I'V-D)
describes our algorithm to optimize ~.

argmax Hvb - fagr(Vf{’ie[m]} UV iemr1,n})ll2 2
vy

Vit =V +1V% V' = fag(Viie)))

Introducing perturbation vectors. A perturbation vector
is any malicious direction in the space of gradients that
the adversary can use to perturb V® and find the malicious
gradients Vﬁe[m]}. In this work, we experiment with the

following three types of VP’s.

Inverse unit vector (V). The intuition here is to compute the

malicious gradient by perturbing V? by a scaled unit vector

that points in the opposite direction of V°. Hence, we compute
b

VP, as

S VA
uv vellz

Inverse standard deviation (V%,). The intuition here is that
the higher the variance of a dimension of benign gradients, the
higher the perturbation that the adversary can introduce along
the dimension. Hence, we compute VE, as —std(V;¢p,))-

Inverse  sign (V&) We  compute VE, as
—sign( favg(Vien))- The intuition here is similar to that of
(VE,), but we observe that (VE,) is more effective for some
classification tasks, e.g., MNIST.

As we will show in Section VI-C, the appropriate choice
of perturbation vector VP is the key to an effective attack. For
instance, for Krum AGR, the attack using V¥, increases the
accuracy of global model of MNIST, while the attack using
VP, reduces the accuracy to random guessing for Purchase.
Finally, we note that our experiments show that our attacks

destroy the global model accuracy and significantly outperform
the existing model poisoning attacks using one of these VP’s.
Hence, we leave investigating the optimal VP to future work.

B. AGR-tailored attacks

In this section, we consider agr-updates and
agr-only adversaries, who know the server’s AGR algo-
rithm and tailor the general attack objective in (2) to the
known AGR. We consider the seven robust AGRs described
in Section II-C. For the clarity of presentation, we provide
the AGR-tailored optimizations for agr-updates adversary
with all the benign gradients V;cp,);. The only change in
optimizations for agr-only adversary is to compute V°
using the benign gradients computed using the benign data
of the m malicious devices, i.e., V{ie[m}}.

1) Krum: Krum? selects a single gradient from its inputs
as its aggregate. Hence, a successful attack requires Krum
to select one of its malicious gradients, i.e., V;’é[m}
fkrum(V?;e[m]} U V{icim+1,n)}). Therefore, we modify (2)
to (3) for Krum. For each of the input gradients, Krum
computes a score that is the sum of distances of n — m — 2
nearest neighbors of the gradient. Therefore, to maximize the
chances of Krum selecting a malicious gradient, we keep all
the malicious gradients the same.

argmax Vigpn) = fuum (Viiepmy U Viiemtiny) - G)
Y
Vicim) = fave(Viiemyy) + VP

2) Multi-krum: Multi-krum uses Krum iteratively to con-
struct a selection set S and computes average of the gradients
in the selection set as its aggregate. Our attack on Multi-krum
ensures that all of the malicious gradients are in selected S,
while maximizing the perturbation vVP used to compute the
malicious gradients. This strategy minimizes the number of
benign gradients in S, while maximizing yvVP increases the
poisoning impact of malicious gradients on the final aggregate.
Therefore, we modify (2) to (4) for Multi-krum; here |A] is

2We omit suffix AGR, when it is clear from the context.



the cardinality of A.
argmax m = |{V € Vi3 |V € S} 4)

Y
Vigim) = fag(Viiemy) +7V°

3) Bulyan: Our attack on Bulyan is similar to that on
Multi-krum, because Bulyan also computes a selection set in
the exact same fashion as Multi-krum. Furthermore, as the
distribution of perturbation VP, and therefore, that of our
malicious gradients, is very similar to the distribution of the
benign updates. Hence, the Trimmed-mean based filtering in
the second stage of Bulyan cannot effectively remove the
contribution of our malicious gradients, which makes our
attack effective.

4) Adaptive federated averaging: Our attack on AFA is
similar to that on Multi-krum, because similar to Multi-
krum, AFA computes a selection set and then computes
their weighted average. In AFA, the weight of each gradient
increases or remains constant if the gradient is selected, and
decreases if it is discarded. Hence, our attack on AFA aims
to maximize the number of malicious gradients in the final
selection set of AFA.

The only change required to tailor our attack to AFA is
to use faira to compute the selection set, S, in the attack
formulation in (4). Note that, to use fir, to compute S, we
need the weights of clients in each epoch; in our experiments,
we simply assume that all the clients have the same weights
in each epoch, while computing malicious gradients. Even this
loose assumption leads to highly impactful attacks. But, note
that if the exact weights are available, the attack impact can
improve further.

5) Trimmed-mean: For Trimmed-mean, we directly solve
the optimization described by (2), by fixing the perturbation
VP and keeping all the malicious updates the same. Hence, our
objective is to maximize the Lo-norm of the distance between
the reference benign update V® and the aggregate computed
using Trimmed-mean on the set of benign and malicious
updates. This is formalized in (5).

g || ’ ftr ean( Ee[m]} Uy {iE[m+1,n]})H2 (5)
8l
; :ne[m] fan( y {ze[n]}) Y VP

Note that in (5), we aim to compute y that maximizes
the required Lo-norm distance. As we demonstrate in our
evaluations, this extremely simple approach of crafting ma-
licious updates outperforms the complex approaches proposed
by Fang [17] attacks by very large margins for all the datasets.

6) Median: Similar to Trimmed-mean, Median computes
the aggregate of the collected updates for each dimension.
Therefore, our attack on Median is similar to that on Trimmed-
mean. The only change we introduce in (5) is that, for Median,
our optimization aims to maximize ||V? — Jinedian (Vi m)y U
Viiem+1,m3) ll2-

7) Fang defenses: As described in Section II-C7, Fang
defenses are meta-AGRs that rely on existing defenses to detect
and remove malicious gradients. We argue that the simple
attack where the malicious gradients are computed by adding
an arbitrarily large vector to the average of benign gradients

suffices to completely cripple any of the Fang defenses. We
illustrate this below.

Consider the Fang defense based on Multi-krum, called
Fang-Mkrum, and a set of b benign and m malicious gra-
dients, which we denote by G. For any malicious gradient
V., computed using our attack, Fang-Mkrum computes two
aggregates: First, fikum(G), which is the average of b benign
gradients; this is because fykum can detect and remove all the
m malicious gradients due to their extremely large distances
from the rest of the gradients. Second, frkum(G — Vi),
which is the average of b— 1 benign gradients, because fimkrum
removes all m — 1 malicious gradients and a single benign
gradient. For any benign gradient V}, Fang-Mkrum computes
two aggregates fmkum(G) and fuokum(G — V). Similar to
malicious gradients, these aggregates are averages of b and
b — 1 benign gradients.

Hence, in theory, when adversary mounts our attack, Fang-
Mkrum assigns almost equal scores to all the benign and our
malicious gradients. This forces Fang-Mkrum to accept at least
few of the malicious gradients. As our malicious gradients are
arbitrarily large, even when Fang-Mkrum selects a few of them,
they significantly corrupt the global model. Observe that all
the Fang defenses exhibit the same behavior, and hence, are
fundamentally broken.

For brevity, in this work, we only consider the Fang defense
that uses Trimmed-mean to discard malicious gradients. We
note that, our AGR-tailored attack on Fang defenses does not
depend on the robust AGR it uses.

C. AGR-agnostic attacks

Now, we consider the AGR-agnostic adversaries,
updates-only and agnostic, who do not know
the server’s AGR algorithm. This is an important practical
consideration, because the FL platforms can conceal the
details and/or parameters of their robust AGRs to protect the
security of the proprietary global models. Below, we first
provide intuition behind our attacks and then propose two
AGR-agnostics attacks to craft malicious gradients.

Intuition. All the robust AGRs for FL tend to remove/attenuate
malicious gradients based on one or more of the follow-
ing criteria: 1) distances from the benign gradients [8], [5],
[31], [2], [39], 2) distributional differences with the benign
gradients [5], [35], 3) difference in L,-norms of the benign
and malicious gradients [35]. Figures 1-(b, c) visualize the
intuition behind our attacks based on the above criteria. The
intuition is as follows. The distance based defenses work by
removing the gradients that lie outside of the clique formed
by the benign gradients. Therefore, our attacks maximize
the distance of malicious gradient from a reference benign
gradient, while ensuring that the malicious gradients lie within
the clique of benign gradients. This also ensures that L,-norms
of the malicious and benign gradients are similar. To ensure
distributional similarity, we use perturbations vV? with the
similar distributions as the benign gradients.

Next, we present optimization for two novel AGR-agnostic
attacks based on the intuition. We present the optimizations for
updates—-only adversary, who has all the benign gradients
V {ic[n]}- The extension to agnostic adversary is similar to



that explained at the beginning of Section IV-B for agr-only
adversary.

Attack-1 (Min-Max): Minimize maximum distance attack.
Our first attack ensures that the malicious gradients lie close
to the clique of the benign gradients (Figure 1-(b)). Hence, we
compute the malicious gradient such that its maximum distance
from any other gradient is upper bounded by the maximum
distance between any two benign gradients. (6) formalizes the
corresponding optimization. Note that in order to maximize
the impact of our attack, we keep all the malicious gradients
the same. Hence, we formulate our attack objective in (6) for
a single malicious gradient.

argmax max||V™ —V;|l2s < max [|[V; = Vj|2  (6)
5 1€[n] i,j€[n]

V" = favg(v{ie[n]}) + ,YVP

Attack-2 (Min-Sum): Minimize sum of distances attack.
Our second AGR-agnostic Min-Sum attack ensures that the
sum of squared distances of the malicious gradient from all the
benign gradients is upper bounded by the sum of squared dis-
tances of any benign gradient from the other benign gradients
(Figure 1-(c)). (7) formalizes the corresponding optimization.
We keep all malicious gradients the same for maximum attack
impact. Hence, we formulate our objective in (7) for a single
malicious gradient.

argmax Z V™ — V|3 < {2% Z IVi=V;lz ™D
v i€ln] J€[n]

V™ = favg(Viiem)y) + V7

D. Solving for the most effective scaling factor ~y

In previous sections, we formulated optimizations for vari-
ous adversarial settings such that the final objective is to search
for the optimal scaling coefficient, 7. Algorithm 1 describes
our algorithm to optimize ~ for any of the optimizations.

For clarity of presentation of Algorithm 1, we assume
an oracle O that takes the set of benign gradients, V ;cu)y
and v as inputs. Then, O computes malicious gradients as
V’{ﬁe[m]} = Vb 4+ 4VP, and outputs True if they satisfy the
adversarial objective, otherwise outputs False. For instance,
for our AGR-tailored attack on Krum, O outputs True if a
malicious gradient is selected by fyum, i.€., if (3) is satisfied.
For our Min-Max attack (Section IV-C), O outputs True if
the maximum distance of malicious gradient from any benign
gradient is lower than the maximum distance between any two
benign gradients, i.e., if (6) is satisfied.

Now, we describe Algorithm 1. The core idea of our
algorithm is as follows: We start with a large -y value. We
reduce y in steps of size step until O returns True, e.g., for
Krum, we reduce v until a malicious gradient is selected by
Sfwrum, 1.€., (3) is satisfied for the first time. Our final ~ is
always greater than this minimum -y value that satisfies the
objective. We halve the step size each time we update ~ in
order to make the search finer. From the minimum -~ value,
we increase ~y using updated step sizes step, until O returns
False, i.e., for Krum, we increase v until fi,,m does not select
any malicious gradient, i.e., (3) is no more satisfied. Our final
v is always lower than this maximum ~y value that satisfies the

objective. Then we modify ~ repeatedly and oscillate between
the minimum and maximum + values until the change in ~ is
below a threshold 7.

Algorithm 1 Algorithm to optimize ~y

1. Input: Yinie, 7, O, Vicn]y

2: step < 'yinit/2, Y = Yinit

3: while |’Ysucc - 'Y| > 7 do

4: if O(V{,’E[n]}, 'y) == True then
5: Ysuce < 7Y

6: v < (v +step/2)

7 else

8: v < (v — step/2)

9: end if

10: step = step/2
11: end while
12: Output veycc

V. EXPERIMENTAL SETUP

A. Datasets and model architectures

CIFARIO [24] is a 10-class class-balanced classification task
with 60,000 RGB images, each of size 32 x 32. ‘Class-
balanced’” datasets have the same number of samples per class,
e.g., each class of CIFAR10 has 6,000 images. We use 50
clients each with 1,000 samples and use validation and test
data of sizes 5,000 each. We use Alexnet [25] and VGG11 [34]
as the global model architectures.

MNIST [27] is a 10-class class-balanced classification task
with 70,000 grayscale images, each of size 28 x 28. We use
100 clients each with 600 samples and use validation and test
data of sizes 5,000 each. For MNIST, we use a fully connected
network (FC) with layer sizes {784, 512, 10} as the global
model architecture.

Purchase [1] is a 100-class class-imbalanced classification
task with 197,324 binary feature vectors, each of length 600.
We use 80 clients each with 2,000 training samples and use
validation and test data of sizes 5,000 each. We use a fully
connected network with layer sizes {600, 1024, 100}.

FEMNIST [9], [13] 1is a character recognition classification
task with 3,400 clients, 62 classes, and a total of 671,585
grayscale images. Each of the 3,400 clients has her own data
made of her own handwritten digits or letters (62 classes: 52
for upper and lower case letters and 10 for digits). The mean
and standard deviation of the number of samples per client are
226.83 and 88.94, respectively. In each FL epoch, we randomly
select 60 out of 3400 clients for FL training. FEMNIST is
a non-iid, class-imbalanced dataset commonly encountered in
cross-device FL settings [21], while the previous datasets are
more common in cross-silo FL settings.

B. Learning and attacks settings

We train CIFAR10 with Alexnet using batch size of 250
and SGD optimizer with learning rates of 0.5 from epochs
0-1000 and 0.05 from 1000-1200. We train CIFAR10 with
VGGI11 using batch size of 200 and SGD optimizer with
learning rates of 0.1 from epochs 0-1000 and 0.01 from 1000-
1200. We train MNIST for 500 epochs using Adam optimizer



with 0.001 learning rate and batch size of 100. We train
Purchase for 1000 epochs using SGD with learning rate of 0.5
and batch size of 500. We train FEMNIST for 1500 epochs
using Adam optimizer with learning rate of 0.001 and use
client’s entire data in a each batch.

Unless specified otherwise, we assume 20% malicious
clients for all adversarial settings, e.g., 20 malicious clients for
MNIST. For most of our evaluation, we use independently and
identically distributed (iid) CIFAR10, MNIST, and Purchase
datasets, because poisoning FL with iid data is the hardest [17].

Measurement metrics. For a given FL setting, Ay denotes
the accuracy of the best globel model, over all the FL training
epochs, in the benign setting without any attack, while A
denotes the accuracy under the given attack. We define attack
impact, Iy, as the reduction in the accuracy of the global model
due to the attack, hence for a given attack, Iy = Ay — Aj.

C. Baseline model poisoning attacks

Below, we detail here two state-of-the-art model poisoning
attacks, LIE [4] and Fang [17], that we compare against.

LIE: The LIE attack [4] adds small amounts of noises to each
dimension of the average of the benign gradients. The small
noises sufficiently large to adversely impact the global model
and sufficiently small to evade detection by the Byzantine-
robust AGRs. Specifically, the adversary computes the average
w1 and standard deviation o of the benign gradients she has,
computes a coefficient z based on the total number of benign
and malicious clients, and finally computes the malicious
update as pu + zo.

Fang: The Fang attack [17] is an optimization based model
poisoning attack tailored to Krum AGR. The adversary com-
putes the average p of the benign gradients she has, computes a
perturbation VP = —sign(u), and finally computes a malicious
update as V™ = (V°++-VP) by solving for the coefficient ~.
The attack starts from a reference v and keeps halving it until
Krum select the resulting V™, therefore unlike our attacks,
Fang attack does not optimize v (Figure 1-(a)).

VI. EVALUATION OF OUR ATTACKS
A. Comparison with the state-of-the-art attacks

In this section, we compare our attacks with state-of-the-
art model poisoning attacks, Fang [17] and LIE® [4], for all
the adversaries from Table I. The results are given in Table II;
‘No attack’ column shows accuracy Ay of the global model
in the benign setting, while the rest of the columns show the
‘attack impact’ Iy, as defined in Section V-B.

For a fair comparison, we compare the attacks that use
the knowledge of AGR, i.e., our AGR-tailored and Fang
attacks under agr-updates and agr-only adversaries.
We separately compare the attacks that do not use the knowl-
edge of AGR, i.e., our AGR-agnostic and LIE attacks under
updates-only and agnostic adversaries.

3We omit the suffix “attack’ when it is clear from the context.

1) Comparing AGR-tailored attacks: Table Il shows that,
our AGR-tailored attacks outperform Fang attacks for
all the combinations of threat model, AGR, dataset, and
model architecture by large margins. For CIFAR10 with
agr-updates adversary, our attacks are 2x more impactful
than Fang. While with agr-only adversary, our attacks
are 2.5x and 4.5x more impactful than Fang for Alexnet
and VGGI11 models, respectively. For the rest of the AGRs,
our attacks are 3x to 7x (2x to 4x) more impactful than
Fang attacks on CIFAR10 with Alexnet (VGGI11) for both
agr-updates and agr-only adversaries.

Under agr-updates (agr-only) adversary, Fang and
our attacks on Krum with MNIST have impacts of 20.5%
(17.4%) and 33.9% (24.1%), respectively, i.e., our attack is
1.7x (1.5x) more effective than Fang. The impact of Fang
attack on Trimmed-mean (Median) with MNIST is just 1.2%
(1.7%), while that of our attack is 11.0% (4.4%), i.e., our
attack is 10x (2.5x) more impactful. Even for AFA, which
is the empirically most robust AGR for MNIST, our attack is
3x more impactful than Fang.

For Purchase, our attacks reduce the accuracy of Krum to
the random guessing, i.e., close to 1% for all the adversaries
and, except for AFA, our attacks are at least 10x more
impactful than Fang attacks. Similarly, with agr-updates
adversary, impacts of Fang attacks on Trimmed-mean and
Median are 1.8% and 0.2%, respectively, while impacts of
our attacks are 23.4% and 11.0%. We note similarly higher
impacts of our attacks with agr—only adversary. For Multi-
krum, Bulyan, and AFA, our attacks are 2x more impactful
than Fang attacks. For Fang-Trmean, the Fang defense that
uses Trimmed-Mean to discard malicious gradients, our attacks
reduce the global model accuracy to random guessing for
all combinations of datasets and models; this is expected as
discussed in Section II-C7.

For FEMNIST the impacts of our attacks with
agr—updates adversary on AFA, Multi-krum, Trimmed-
mean, and Median are respectively 12x, 2x, 3%, and 15X,
that of Fang attack. For Krum and Bulyan also, the impacts
of our attacks are moderately higher than that of Fang attacks.

Why our attacks are superior? For Krum AGR, although
ours and Fang attacks have similar attack objectives, they differ
in two instrumental aspects: First, instead of generalizing a
single perturbation type across all datasets, our attacks tailor
the perturbation to the given dataset (as we will explain
in Section VI-C). Next, as Figure 1-(a) demonstrates, our
Algorithm 1 carefully fine tunes ~ of our objective (3), while
Fang attack simply finds the first «y that satisfies its objective.
Our attacks on AFA, Bulyan, and Multi-krum AGRs are also
carefully tailored to the AGRs, while Fang attack uses the same
objective as Krum for these AGRs.

Fang proposes the same attack for Trimmed-mean and
Median AGRs, which crafts the values of each dimension
of malicious gradients using the available benign gradients.
But our attacks have more tailored and impactful objectives
of diverging the final aggregate as far away from a benign
aggregate as possible using the most malicious perturbation
direction.

2) Comparing AGR-agnostic attacks: Table II shows that,
both of our AGR-agnostic attacks significantly outperform



Table II: Comparing state-of-the-art model poisoning attacks and our attacks under various threat models from Table I, when cross-silo FL is
used. In all the settings, the impact of our AGR-tailored attacks is significantly higher than that of AGR-tailored Fang attacks. While both of
our AGR-agnostic attacks outperform AGR-agnostic LIE attacks in most cases. We assume 20% malicious clients and, except for ‘No attack’
column, report the attack impact Is (Section V-B). For each adversary, we bold Iy of the strongest attack.

Gradients of benign devices are known Gradients of benign devices are unknown
Dataset No AGR tailored AGR agnostic AGR tailored AGR agnostic
(Model) AGR E(lzac)k (agr—updates) (updates-only) (agr-only) (agnostic)
“ || Fang 1171 | Ours || LIE [4] Min_ﬁ:}f anﬁi-sum Fang [17] | Ours || LIE [4] Min_ﬁ;‘i amﬁ;;_Sum
Krum 53.5 21.8 43.6 9.9 17.4 30.1 19.8 43.1 18.1 13.7 30.2
MKrum 67.6 12.6 36.8 20.5 27.8 30.8 11.2 353 19.7 31.7 30.4
CIFARI10 Bulyan 66.9 12.3 45.6 33.8 35.5 44.5 11.8 34.6 30.0 40.6 41.1
(Alexnet) TrMean 67.7 15.8 45.8 22.8 41.6 335 12.9 45.0 19.4 38.7 27.9
Median 65.5 12.9 40.9 20.7 34.7 39.6 12.6 39.1 19.7 34.1 39.5
AFA 66.8 7.0 47.0 5.9 31.5 16.9 6.1 46.8 5.5 22.2 16.0
FangTrmean 66.8 8.9 56.3 6.5 42.9 21.5 8.5 56.0 6.3 42.1 19.9
Krum 59.6 21.1 49.1 24.1 9.7 28.7 7.9 322 224 10.1 25.9
MKrum 754 8.5 32.5 23.6 32.0 26.5 8.5 32.3 23.3 32.3 259
CIFARI0 Bulyan 75.0 259 53.0 36.4 342 46.7 24.5 43.8 332 42.7 46.6
(VGGI11) TrMean 75.5 25.2 37.2 28.4 34.5 23.6 22.2 36.8 24.2 339 20.4
Median 73.2 24.7 34.5 28.9 34.4 30.3 24.8 30.9 28.3 34.0 29.7
AFA 73.2 10.2 4.3 10.6 21.9 10.4 8.7 28.3 10.3 19.9 10.2
FangTrmean 75.0 14.8 64.9 6.8 35.8 26.5 11.6 64.9 49 34.1 25.5
Krum 62.1 6.0 61.3 -15.8 60.6 59.1 4.4 60.8 -17.7 61.1 61.0
MKrum 91.9 13.7 21.4 1.5 20.4 18.4 12.2 18.2 1.7 19.8 16.4
Purchase Bulyan 91.3 14.7 28.7 10.9 234 30.0 20.9 284 8.4 28.0 30.3
(FC) TrMean 92.0 1.8 234 2.3 16.9 5.4 1.6 22.2 1.9 26.8 14.6
Median 87.4 0.2 11.0 0.5 11.6 11.3 -1.0 14.1 -1.6 134 12.6
AFA 91.7 1.5 34 0.7 14 0.7 1.4 2.8 0.2 1.3 0.5
FangTrmean 91.9 1.2 89.2 0.5 18.9 8.4 0.9 89.2 0.5 8.5 7.8
Krum 88.6 20.5 339 12.4 0.1 28.5 17.4 24.1 9.4 0.7 25.3
MKrum 96.1 11.5 18.6 6.1 16.3 13.2 10.6 15.6 33 15.0 12.6
MNIST Bulyan 95.4 6.9 75 9.2 4.8 8.2 7.1 8.2 6.7 5.1 7.7
(FC) TrMean 96.2 1.8 11.0 6.4 11.6 9.3 1.7 10.6 5.1 8.9 8.5
Median 93.2 1.7 44 1.9 3.6 2.2 1.5 4.1 1.8 34 2.0
AFA 96.5 0.7 2.5 1.0 1.2 2.2 0.2 1.8 0.5 0.4 1.6
FangTrmean | 96.1 0.3 84.2 0.5 234 9.7 0.0 84.2 0.0 21.8 8.3
Krum 69.3 18.3 30.0 0.9 0.1 9.8 1.9 29 0.2 1.1 8.0
MKrum 86.6 34.5 78.8 15.7 79.5 61.7 30.8 57.1 10.2 79.5 61.4
FEMNIST Bulyan 86.1 389 41.0 32.0 20.1 40.0 35.6 40.5 20.5 18.7 30.4
(CNN) TrMean 86.7 7.2 24.3 19.1 29.7 26.8 79 20.1 14.4 247 25.2
Median 77.1 2.7 30.2 12.0 26.7 17.1 0.8 18.2 5.8 19.8 16.6
AFA 84.6 6.2 77.0 7.4 74.4 50.0 2.1 75.3 4.6 74.0 46.0
FangTrmean 86.0 7.6 83.1 1.8 81.6 62.3 2.8 83.0 1.7 78.3 60.1

LIE, the state-of-the-art AGR-agnostic attack for most of
the FL settings that we evaluate. For MNIST with Krum, the
impact of Min-Sum attack (simply Min-Sum) is 3x that of
LIE, for both updates—-only and agnostic adversaries.
Except for CIFAR10 with VGG11, we note significantly higher
impacts of Min-Sum on Krum than that of LIE. Note that LIE,
due to its small noise addition, regularizes and increases accu-
racy of the global model trained on Purchase using Krum. For
Bulyan, with agnostic and updates-only adversaries,
Min-Sum significantly outperforms LIE by amounts varying
from 1.8% (for MNIST) to 22.1% (for Purchase) depending
on the classification task.

On the other hand, Min-Max is more effective against
Multi-krum and outperforms LIE by amounts varying from
10.2% (MNIST) to 18.1% (Purchase) depending on the classi-
fication task. Min-Max is more effective against AFA, which
also computes an average of gradients in a selection set.
On AFA, Min-Max outperforms LIE for all datasets but

MNIST dataset; for MNIST the two attacks have almost the
same impacts. Min-Max is also more effective than LIE and
Min-Sum attacks against Trimmed-mean, Median, and Fang-
Trmean AGRs. For instance, depending on the classification
task, Min-Max is almost 1.2x (for CIFAR10 + VGGI11) to
8% (for Purchase) more impactful than LIE against Trimmed-
mean, while it is almost 1.2x (for CIFAR10 + VGGI11) to
20x (for Purchase) more impactful than LIE against Median.

LIE attack is ineffective, because it adds very small
amounts of noises to compute its malicious gradients, while
our AGR-agnostic attacks are much more impactful as they
find the most malicious gradient within a ball formed by
the benign gradients (Figure 1-(b,c)). For the same reason,
for all the considered scenarios, except for the combination
of Krum and FEMNIST dataset one or more of our AGR-
agnostic attacks also outperform AGR-tailored Fang attacks.
Due to the extreme non-iid nature of FEMNIST, the malicious
gradients of our AGR-agnostic attacks can be arbitrarily far



from benign gradients, which Krum can easily discard.

Reasons for the differences in the impacts of Min-Max
and Min-Sum attacks: Min-Max finds the malicious gradient
whose maximum distance from a benign gradient is less than
the maximum distance between any two benign gradient.
While, Min-Sum finds the malicious gradient such that the
sum of its distances from all the other gradients is less than
the sum of distances of any benign gradient from other benign
gradients. Therefore, as Figures 1-(b, c) demonstrate, the
radius of search of malicious gradients of Min-Max is much
larger than that of Min-Sum. Therefore, the malicious gradients
of Min-Sum more effectively circumvent the filtering of Krum
and Bulyan AGRs, and therefore, are more impactful against
these AGRs. For the same reason, Multi-krum selects a lesser
number of malicious gradients of Min-Max than that of Min-
Sum. But, as Multi-krum averages the selected gradients, Min-
Max, with significantly more malicious gradients, damages the
Multi-krum aggregate more effectively than Min-Sum.

Finally, we note that for AGR-agnostic attacks, we ob-
serve a few cases in Table II where the attacks with
agnostic adversary have slightly more impact than those
with updates—only adversary. For example, Min-Max at-
tack on (CIFAR10 + Alexnet + Multi-krum) with agnostic
adversary has 3.9% more impact than with updates-only
adversary. The reason for this are various sources of ran-
domness in our experiments. More specifically, we do not
use the exact same set of gradients to compute malicious
gradients under the two adversaries. Instead, we instantiate the
whole FL training every time we compute the attack impact.
Therefore, empirical randomness in running the two different
instantiations may cause this behavior; the randomness can
be in initial model parameters, in partitioning of dataset
among clients, etc. Our experimental results are the average
of three such instantiations for each of the presented result,
and such empirical anomalies can be mitigated in various
ways, including setting the seed for different random number
generators and averaging over multiple runs of experiments.

B. Comparing different threat models

Our work is the first to comprehensively consider knowl-
edge based threat models (or adversaries) while designing
model poisoning attacks on FL. In this section, we compare
the performances of our attacks by the adversaries given in
Table 1. For clarity of interpretation, we compare the two
extreme adversaries—agr-updates and agnostic; the
other adversaries can be compared using the bold impacts in
Table II. Note that, even the weakest adversary, agnostic,
can effectively poison FL using our AGR-agnostic attacks.

For Krum, we analyze the maximum reduction in the attack
impact, Iy, when the adversary changes from agr—updates
to agnostic. Iy reduces from 39.2% to 27.0% for MNIST,
43.6% to 30.2% for CIFAR10 with Alexnet, 49.1% to 25.9%
for CIFAR10 with VGG11, and 30.0% to 1.9% for FEMNIST.
This is expected, as Krum selects a single gradient as its
aggregate, our attacks can fine tune the malicious gradient
with the exact knowledge of all the benign gradients under
agr—updates adversary. But such fine tuning is not possible
with agnostic adversary. Nevertheless, for Purchase, Iy due
to both the adversaries are the same.
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Figure 2: Selecting an effective perturbation: As explained in
Section VI-C2, for a given FL setting, if the AGR is known, our
adversary emulates attacks on the AGR using different V?’s and
selects V¥ with the highest attack impact (light bars). For unknown
AGR, the adversary selects V¥ which has the highest impact on the
maximum number of AGRs. This selection method is reliable due to
the transferability of attack impacts of V? from the emulated settings
(light bars) to actual FL (dark bars).

For all the other AGRs, the differences in the im-
pacts of the two adversaries is significantly lesser than for
Krum. For instance, for Multi-krum, changing adversary from
agr—updates to agnostic reduces Iy of our attack from
14.9% to 14.4% for MNIST, 36.8% to 31.7% for CIFAR10
with Alexnet, 32.5% to 32.3% for CIFAR10 with VGGI11,
21.4% to 19.8% for Purchase, and 78.8% to 55.3% for FEM-
NIST. We observe similar differences in impacts for the rest of
the AGRs across all the datasets. This is because, unlike Krum
AGR, the other AGRs aggregate multiple gradients, including
many benign gradients. Hence, neither of the adversaries can
eliminate the good impact of these benign gradients on the final
aggregates, which reduces the gap between their performances.
Figure 4 depicts the differences in Iy’s of agr-only and
agnostic adversaries.

C. Effect of perturbation vectors

In this section, we show the significant effect of the choice
of perturbation vector, VP, on the impacts of our attacks, Iy.
Then, we give a procedure to select the most effective V¥ for
a given FL setting.

Section IV-A proposes to fix the perturbation while opti-
mizing the attack objectives and also introduces three types
of perturbations. We assume 20% malicious clients, each with
some data from the benign distribution, and use agr-only
and agnostic adversaries.

1) Effect of perturbations on the attack impact: For a given
dataset, model, and AGR, varying the perturbation VP sig-
nificantly changes the impact of our attacks, as the dark bars
in Figures 2 and 7 show. For instance, for MNIST with Krum,
Iy of VP, is -4.7%, i.e., the global model accuracy increases

under attack, while VL, increases Iy significantly to 24.1%.



For Krum, we note such large differences in Iy’s of VP’s for
the other datasets as well. For the other AGRs with MNIST as
well, VE, is the most effective perturbation and outperforms
the other perturbations by 3% to 15%. In case of CIFARI0
with either Alexnet or VGG11 model architectures, for all
AGRs but Krum, standard deviation based V7, perturbation
has the highest attack impact, while for Krum, V?  has the
highest impact. For instance, attacks on CIFAR10 + Alexnet +
Multi-krum using V_ftd, VP, and Vfgn have impacts of 36.8%,
14.2%, and 16.3%, respectively. Similarly for Purchase, V2,
has the highest attack impact across all the AGRs.

Even for AFA AGR, we observe the similar behavior, e.g.,
for MNIST and CIFAR10, the most effective perturbations
are VL, and VP 4 respectively. For Fang-Trmean defense, all
the perturbations can be equally effective, as far as the cor-
responding malicious gradients are sufficiently large. Hence,
for a given dataset and Fang-Trmean, we simply choose the
perturbation that works for most of the other AGRs. For
instance, we use Vg’gn and Vftd for MNIST and CIFARI10,
respectively. Due to space restrictions, we omit the figures for
AFA and Fang-Trmean defenses.

2) How to select the most effective VP?: Above, we
showed that selecting the appropriate perturbation is the
key to an effective model poisoning attack. However, as the
adversary cannot know the end result of using a particular V7,
she must decide the V? to use in each epoch of FL. Below,
we provide a simple yet effective method to select V7.

First, consider that the server’s AGR is known. We propose
that the adversary emulate AGR-tailored attacks (Section IV-B)
on the given FL settings and select as its final V? the most
effective V? in the emulated setting. An example of emulated
AGR-tailored attack on MNIST with Krum is as follows: For
MNIST we assume total of 100 clients including 20 malicious
clients. Hence, the adversary emulates an FL setting with 20
benign and 4 malicious clients and mounts the AGR-tailored
attack. In Figure 2, for each VP, the lighter bars show the
impacts of attacks on the emulated FL settings.

We compare the light and dark bars in Figure 2 and note
that, the relative effects of different perturbations are the
same across different AGRs, datasets, and models in both
emulated FL settings (light bars) and actual FL (dark
bars). In other words, the most effective perturbation in an
emulated FL setting, is also the most effective perturbation in
the corresponding actual FL. This transferability allows us to
reliably select the most effective perturbation when the AGR is
known. Finally, when the AGR is unknown, we simply pick the
perturbation with the highest impact across maximum number
of AGRs. For instance, we select VP, for Purchase due to its
highest attack impact on all AGRs. For CIFAR10, we choose
VP 4 as it has the maximum impact on all but Krum AGR. We
observe the same transferability for FEMNIST and CIFAR10
with VGG, as shown in Figure 7.

D. Effect of federated learning parameters

1) Effect of non-iid degrees of data distribution: In this sec-
tion, we synthetically generate non-iid Purchase and MNIST
datasets using the scheme proposed in [17]. We assume 20%
malicious clients and plot the impacts of all the model poison-
ing attacks under agr-only and agnostic adversaries in
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Figure 3: Effect of degree of non-iid nature of data on the impact of
model poisoning attacks on FL. We use partial gradients knowledge,
agr-only and agnostic, adversaries.

Figure 3. Note that, as the non-iid degree of data increases,
the impacts of all the model poisoning attacks increase.
This is because the higher degree of non-iid makes it difficult
for AGRs to reliably detect and remove malicious gradients.
This allows the adversaries to craft more malicious gradients
without being detected and increase their attack impacts. Our
attacks outperform previous attacks, especially at higher non-
iid degrees of data. Our experiments with FEMNIST, a real
world non-iid and imbalanced dataset, clearly show the signif-
icant superiority of our attacks over existing model poisoning
attacks (Section VI-A).

2) Effect of the percentage of malicious clients: Figure 4
shows the impacts of model poisoning attacks when the
percentage of malicious clients in FL is varied from 5% to
24% for CIFARIO with Alexnet and Purchase; Figure 6a
shows the results for MNIST and FEMNIST datasets. We
use partial gradients knowledge, agr-only and agnostic,
adversaries. We note that, all of our attacks outperform
the existing attacks for all the combinations of percentage
of malicious clients, AGR algorithms, dataset, and model
architectures. For CIFAR10 with Krum, our AGR-tailored
attack has impact of more than 43%, i.e., it reduces accuracy to
random guessing, 10%, even with just 5% clients. For Purchase
dataset, the distinction between impacts of ours and existing
attacks is substantially higher than for CIFAR10. For Purchase,
our AGR-tailored and AGR-agnostic Min-Sum attacks reduce
the accuracy of Krum AGR to random guessing, i.e., close to
1%, with as few as 5% and 10% malicious clients, respectively.
For all of the AGRs, with increasing percentage of malicious
clients, the impacts of our attacks and the differences of the
impacts of ours and existing attacks increase. Interestingly for
CIFARI10, LIE that uses V%, consistently outperforms Fang
that uses Vggn. This emphasizes our claim in Section VI-C that
the most effective perturbation for model poisoning depends
on the classification task.



E. Effect of cross-device setting

In this section, we evaluate the impact of our attacks when
cross-device FL is used to learn on CIFAR10 dataset. More
specifically, in each FL epoch, instead of processing all of the
50 clients, we process only 10 clients. As before, we evaluate
for two model architectures, Alexnet and VGG11. The attack
procedures for different AGRs do not change.

Table III shows the results. Similar to cross-silo setting,
our AGR-tailored attacks outperform the state-of-the-art Fang
attacks for both Alexnet and VGGI11 architectures. For Alexnet
with agr—-updates adversary, our attack is 2x (Trimmed-
mean) to 11x (Median) more impactful than Fang attack.
We note similar results for agr—-only adversary as well as
VGGI11 architecture in Table III.

For AGR-agnostic adversaries with Alexnet, we note that at
least one of our Min-Sum and Min-Max attacks has up to 5x
more attack impact than the state-of-the-art LIE attack, for all
but Krum AGR. For Krum AGR, LIE outperforms our attack
by 0.2% and 1.2% under updates-only and agnostic
adversaries, respectively. We note similar results for Alexnet
with agnostic adversary. In case of VGGI11 as well, at
least one of our AGR-agnostic attacks has up to 10x more
impact than LIE, for all but Multi-krum and AFA AGRs. For
Multi-krum and AFA, the LIE and Min-Max have almost equal
attack impacts.

Finally we note that, overall the attack impacts are lower
in cross-device setting than in cross-silo setting; the reduction
in impacts varies widely based on AGR and model archi-
tecture. For instance, for Alexnet with Krum, Multi-krum,
and Trimmed-mean, the impacts reduce by 9.5%, 14.6%, and
31.8%, respectively. The reason for this is that, in cross-device
FL, the adversary cannot constantly corrupt the global model.
Because, in many cross-device FL epochs, the number of
malicious clients that the server selects can be negligible.

VII. THE DIVIDE AND CONQUER DEFENSE (DNC)

Our strong attacks clearly motivate the need for more
robust AGRs to defeat untargeted model poisoning attacks on
FL. In this section, we first give the concrete lessons learned
from our attacks that can guide the designs of future robust
AGRs. Based on these lessons, we propose a novel robust AGR
algorithm called Divide-and-Conquer (DnC). Unlike state-of-
the-art robust AGRs, which use distance based [31], [8] or
simple pruning based filters [39], DnC performs dimensionality
reduction using random sampling followed by spectral methods
based outliers removal.

A. Lessons learned from our attacks

L1: The curse of dimensionality. Note that the theoretical
error bounds of all of the robust AGRs [8], [31], [39], [16],
[26], [2] depend on the dimensionality of their inputs. Hence,
theoretical as well as empirical errors of these defenses explode
for high dimensional gradients of neural networks [10] in
FL. Therefore, dimensionality reduction of input gradients
is necessary to address the curse of dimensionality.

L2: Convergence is not enough. All the robust AGRs [8],
[31], [39] give provably convergence guarantees for non-

Algorithm 2 Our Divide-and-Conquer AGR Algorithm

1: Input: Input gradients V (;c[n)}, filtering fraction ¢, number of
malicious clients m, niters, dimension of subsamples b, input
gradients dimension d

2t Tgood +— 0

3: while ¢ < niters do

4: 7 < sorted set of size b of random dimensions < d

5: V i)y < set of gradients subsampled using indices in r

6: n= % Zie[n] \2 > Compute mean of input gradients

7: Ve = 6{16[71]} — K > V©is an x b matrix of centered
input gradients

8: Compute v, the top right singular eigenvector of V°

9: Compute outlier scores defined as s; = ((V; — p,v))?

10: T + Set of (n — c¢-m) indices of the gradients with lowest
outlier scores from s

11: Append Z to Zgood

12: i=1+1

13: end while

14: Zfinat < N Zgooa > Compute intersection of sets in Zgooq as the
final set of indices

. = 1 i
15: Vo = 1Ztinall Eielﬁnal Vi
16: Output V,

convex FL. However, for non-convex optimizations, such guar-
antees are meaningless due to large number of suboptimial
local optima. This is indeed the case for all our attacks,
where the global models converge, but to a suboptimial local
optima. Therefore, robust AGRs should target the more robust
criterion of malicious gradients removal.

L3: Distance or dimension-wise pruning based filters are
insufficient. Krum, Multi-krum, and Bulyan use ¢, distance
based filtering, which, as [31], [4] point out and we show in
our work, allows the malicious gradients to be close enough
to the benign gradients to be undetected, while far enough to
effectively poison the global model. Dimension-wise pruning
in Trimmed-mean and Median allows adversary to craft gradi-
ents which significantly shift the aggregate in bad direction as
ours and Fang [17] attacks show. Therefore, more principled
approaches to filter malicious gradients are necessary for
more robust AGRs.

B. Our Defense

Intuition. Our intuition behind DnC is based on the lessons
from Section VII-A. To address L3, DnC leverages singular
value decomposition (SVD) based spectral methods for outliers
detection and removal. These methods are shown to have state-
of-the-art theoretical and empirical performance in mitigating
data poisoning threats to the centralized learning settings [36],
[15], [7]. To address L2, we provide theoretical analysis of
our defense in Section VII-B that guarantees the removal of
malicious gradients under certain conditions. Furthermore, we
also construct adaptive attacks against DnC in Section VII-B
to provide empirical evidence of the robustness of DnC.
Note that SVD based defenses require O(d®) memory and
computational cost, hence, SVD cannot be performed directly
on the high dimensional gradients in common FL settings [30]
with dimensions of order on 106. To address this issue and the
curse of dimensionality (L1), DnC performs random sampling
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Table III: Comparing the state-of-the-art model poisoning attacks and our attacks under all threat models in Table I when cross-device FL is
used. Our AGR-tailored attacks significantly outperform Fang attacks, while at least on of our AGR-agnostic attacks significantly outperforms
LIE attack in most cases. Experimental setup is exactly the same as that of Table II.

Gradients of benign devices are known Gradients of benign devices are unknown
Dataset No AGR tailored AGR agnostic AGR tailored AGR agnostic
(Model) AGR attack (agr-updates) (updates-only) (agr-only) (agnostic)
(Ag) F 17 o LIE 14 Our attacks F 7 o LIE 14 Our attacks
ang [17] urs 4] Min-Max | Min-Sum ang [17] urs 4] Min-Max | Min-Sum
Krum 53.9 11.0 34.0 19.9 8.7 19.7 4.5 15.8 14.9 8.7 13.7
MKrum 64.5 2.2 22.2 11.5 15.9 17.2 1.2 14.4 9.2 14.5 15.5
CIFARIO Bulyan 63.9 2.0 28.8 13.0 28.4 26.4 1.9 27.9 9.9 22.3 8.6
(Alexnet) TrMean 64.9 8.3 14.0 9.3 94 7.3 3.2 9.8 4.9 6.5 4.2
Median 62.4 1.8 20.3 4.1 20.3 17.8 0.2 164 -1.6 15.8 10.3
AFA 66.2 1.6 414 3.8 3.8 2.6 1.0 36.7 34 3.6 1.9
FangTrmean 64.5 7.2 54.3 3.6 9.1 6.5 4.3 54.3 2.3 5.7 5.3
Krum 59.3 3.8 26.3 15.0 6.7 20.1 1.2 12.7 11.8 1.8 10.7
MKrum 72.0 1.4 13.2 9.8 9.0 8.5 1.0 94 8.8 7.3 8.3
CIFARIO Bulyan 72.0 2.8 18.8 9.2 24.0 14.9 2.6 17.6 6.7 16.6 12.3
(VGG11) TrMean 72.1 5.9 8.7 4.1 6.0 3.6 3.6 8.1 4.0 5.2 3.0
Median 70.2 0.3 11.2 1.0 12.8 11.3 0.1 10.7 0.8 9.9 7.2
AFA 71.8 2.1 15.0 2.3 1.8 1.5 2.0 14.7 2.1 1.7 1.1
FangTrmean 71.9 1.9 60.9 3.6 8.9 4.4 0.6 58.1 2.7 7.1 4.0
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Figure 4: Effect of increasing percentage of malicious clients on the impacts of model poisoning attacks on FL. We

use adversaries who do

not know the gradients on benign devices, i.e., agr—only and agnostic adversaries.

based dimensionality reduction of its input gradients. This way,
DnC addresses the shortcomings of existing robust AGRs and
makes SVD based more robust AGRs practical for FL.

Our DnC algorithm. Algorithm 2 describes the algorithm of
our DnC AGR. First, DnC randomly picks a sorted set r of
indices less than the dimensionality d of its input gradients
(Line-4) and constructs a subsampled set V of gradients using
7 (Line-5). For instance, if d = 5 and r = [0, 3], a subsample
of gradient V; = {Vy,..V4} is V; = {Vy, V3}. Next,
DnC computes a centered subsampled set V¢ of V using
dimension-wise mean g of V (Lines 6-7). Then DnC computes
projections of centered gradients along their top right singular

eigenvector v, computes a vector of outlier scores s, and
removes ¢ - m gradients with the highest scores (Lines 8-10).
The remaining gradients are added to the set of good gradients.
Such niters number of good sets are computed by randomizing
r to reduce dependence on a single r. Finally, DnC computes
its aggregate V, as the average of the common gradients in
all of the niters good sets (Lines 14-16).

Theoretical analysis. Our theoretical analysis of DnC provides
guarantees on the removal of malicious gradients and leverages
the analysis of SVD based defenses against data poisoning
in the centralized settings [15], [36], [16], [28]. Definition |
from [36], [28] defines a condition e-spectral separability



under which two distributions can be separated using spectral
methods, e.g., SVD.

Definition 1. (e-spectral separability) Consider 0 < € < 0.5
and two finite covariance distributions, B and M. Let U =
(1 —€)B+ €M be a mixture of samples from B and M, and
denote the top right singular eigenvector of U by v. Then B
and M are e-spectrally separable if there exists t such that

Pr[|[(X —
Pr X — )| > 1] < e

PrlX )| <f] <

If we consider that B and M, the distributions of benign
and malicious gradients, respectively, are e-spectrally separa-
ble, then by removing e-fraction of gradients with maximum
projections along the top eigenvector direction, we can remove
malicious gradients from a set of benign and malicious gradi-
ents. Lemma 1 below gives the theoretical filtering guarantees
of DnC, which are inspired from the guarantees of data
poisoning defenses [36], [28].

Lemma 1. Consider 0 < € < 0.5 and two distributions B, M
with means pp, iy and covariances Xg, 3y = o021, Let
U = (1—¢€)B+ eM be a mixture of samples from B and M.
Then B and M are e-spectrally separable if | — parl|3 >

602
vt

In the FL poisoning setting of ours, Lemma I implies that
if the means of poisoned and benign gradients are sufficiently
separated, then the two types of gradients can be reliably
separated using spectral methods. Figure 5, demonstrates this
exactly: the means of malicious gradients which effectively
poison FL are sufficiently far from the means of benign
gradients, and therefore, spectral methods can filter them. On
the other hand, the malicious gradients which circumvent the
criterion given in Lemma 1 have no impact on the accuracy of
global model. We note that the result in Lemma 1 is common
to SVD based outliers detection [15], [36], [16], [28], [11]; we
provide it here for completeness and to give the intuition about
the efficiency of DnC. Appendix B gives the formal proof of
Lemma 1.

An adaptive attack against DnC. DnC provides provable
theoretical guarantees on detection of malicious gradients.
However, to provide empirical evidence on the robustness
guarantees of DnC, we propose an adaptive attack by against
the strongest agr—updates adversary who has the complete
knowledge of the gradients of benign devices and of DnC.

Our adaptive attack is based on the general optimization
framework proposed in Section IV-A. The attack is inspired
from our AGR-tailored attack on Multi-krum AGR, because
both DnC and Multi-krum compute a selection set and average
the gradients in the final selection set. The intuition of the at-
tack is to maximize the number of malicious gradients selected
by DnC to maximize the bad impact on the final aggregate.
This also ensures that the number of benign gradients selected
and their good impact on the final aggregate are minimized.
Consequently, the optimization problem for our adaptive attack

14

is as follows:

argmax 1m — |{V S Vf{;e[mmv S vj{;ezﬁn;ﬂ}}' (8)

Y
ieim) = fave(Viiemyy) + VP

where m is the number of malicious clients, Z¢,, is the final
set of candidate indices selected by DnC, V7 is perturbation,
and vy is scaling factor. Note that, it is reasonable to assume that
although the adversary knows DnC algorithm thoroughly, she
cannot know the exact random indices r used for subsampling
in Algorithm 2. Finally, we solve the optimization in (8) by
finding the most impactful v using Algorithm 1.

C. Evaluation of Our Defense

In this section, we first demonstrate the robustness of our
DnC AGR against state-of-the-art [17], [4] and our model
poisoning attacks from Sections IV and VII-B for iid datasets.
We also analyze the effectiveness of spectral separability, and
therefore of DnC, in defending against model poisoning on
FL. Finally, we discuss the effectiveness of DnC for non-iid
FEMNIST dataset.

1) Robustness of DnC for iid data: For iid datasets, i.e.,
MNIST, CIFARI10, and Purchase, we evaluate DnC against
a strong adversarial setting with 20% malicious clients and
the adversaries with complete knowledge of the gradients of
benign clients, i.e., agr—updates when AGR is known and
updates-only when AGR is unknown. We evaluate DnC
using Fang and LIE, and our stronger AGR-tailored and AGR-
agnostic attacks. For all these datasets, we set niters, ¢, and b
in Algorithm 2 to 1, 1, and 10,000, respectively.

Robustness comparison with previous AGRs. Table IV
shows, for each of the attacks, the attack impact on DnC;
in parentheses, we show the impact of the attack on the
most of existing AGRs, e.g., for Fang attack on CIFAR10 +
Alexnet, Bulyan is the most robust AGR, hence, for CIFAR10
+ Alexnet, we show the impact of Fang attack on Bulyan.

Below, we analyze the AGRs based on the increase in
accuracy of the global model under the strongest of the attacks,
i.e., based on the minimum Aj (Section V-B) for the AGR.
For an AGR, the minimum A} is obtained by subtracting the
impact of the strongest attack, Iy, from ‘No attack’ accuracy,
Ay. For instance, for CIFAR10 + Alexnet, our adaptive attack
is the strongest attack against DnC and the corresponding
minimum A} is 61.5% (as Ag is 67.6% and the maximum Iy
is 6.1%). While our AGR-tailored attack is the strongest attack
against the best of the existing AGRs, thus the minimum Aj
is 30.8% (as Ay is 67.6% and the maximum Iy is 32.5%).
Hence, for CIFARI0 + Alexnet, DnC increases Aj from
30.8% to 61.5% (~100% increase). For CIFAR10 + VGGI11,
DnC increases the minimum Aj from 43.0% to 69.2% (~150%
increase). For Purchase, DnC increase the minimum Aj from
88.6% to 90.2%.

DnC increases the minimum A} for MNIST from 90.7%
(93.2% — 2.5%) to 94.3% (96.2% — 1.9%). Although, the
absolute increase due to DnC is small for MNIST, it is
significant due to the simplicity of the tasks.

Robustness comparisons under cross-device FL setting.
Now we compare robustness of previous AGRs and our DnC
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Figure 5: DnC selects high fractions of malicious gradients (red plots) iff the distances between pp and pas, the means of benign and
malicious gradients, are low (blue plots), i.e., poisoning impact of the malicious gradients is low. Upper row is for MNIST and lower row is
for CIFAR10 + Alexnet. We use the strongest full knowledge agr—-updates adversary.

Table IV: Our robust DnC AGR defends against all the existing model poisoning attacks for independently and identically distributed datasets.
We consider the adversaries with complete knowledge of gradients of benign clients with 20% malicious clients. For each attack, we report

its attack impact on DnC and on the existing defense with the highest global model accuracy A, computed as (Ag — Ip) from Table II.

No Best of our Our AGR-agnostic attacks | Adaptive
Dataset + Model attack (Ayp) Fang LIE AGR-tailored attacks Min-Max ’ Min-Sum att§ck
CIFARI10 + Alexnet 67.6 3.2(7.0) | 3.0 (5.9 4.3 (36.8) 3.5 (27.8) 2.0 (16.9) 6.1
CIFARI10 + VGG11 75.5 3.3 (8.5) | 1.7 (6.8) 3.4 (32.5) 2.5 (21.9) 2.2 (10.4) 6.3
Purchase + FC 92.0 0.8 (0.2) | 0.5(0.5) 0.9 (3.4) 0.6 (1.4) 0.8 (0.7) 1.8
MNIST + FC 96.2 0.1 (0.3) | 0.2 (0.5) 1.8 (2.5) 0.2 (1.2) 1.2 (2.2) 1.9

Table V: Results of empirical robustness analysis of DnC for cross-device FL setting. We consider the adversaries with complete knowledge
of gradients of benign clients with 20% malicious clients, and report Aj as described in Table II.

No Best of our Our AGR-agnostic attacks | Adaptive
Datas Model F LIE
ataset + Mode attack (Ag) ang AGR-tailored attacks | Min-Max Min-Sum attack
CIFAR10 + Alexnet 64.6 0.6 (1.6) | 0.3 (3.8) 0.2 (14.0) 0.3 (3.8) 0.0 (2.6) 34
CIFARI10 + VGGl11 72.1 0.8 (1.4) | 0.3 (2.3) 2.0 8.7) 0.4 (1.8) 0.4 (1.5) 4.1

Table VI: For non-iid FEMNIST dataset, DnC cannot mitigate our attacks in the worst case settings when the adversary knows gradients of
the benign devices. But, mitigates all the attacks in the more practical settings when the gradients of benign devices are unknown. We report
Iy on DnC of all adversaries in Table I with 20% malicious clients. ‘No attack’ accuracy Ag for FEMNIST with DnC is 86.6%.

Gradients of benign devices are known Gradients of benign devices are unknown
AGR Best of AGR-tailored AGR-agnostic Adaptive Best of AGR-tailored AGR-agnostic Adaptive
(agr-updates) (updates-only) attack (agr-only) (agnostic) attack
Min-Max | Min-Sum Min-Max | Min-Sum
DnC 48.1 13.8 79.3 78.6 12.7 9.3 11.7 10.2
DnC + resampling 79.3 80.5 459 77.6 71.5 79.1 43.4 70.6

when cross-device FL is used. We use CIFAR10 dataset with
Alexnet and VGG11 architectures; Table V shows the results in
similar fashion as Table IV. As before, we analyze robustness
of an AGR based on the minimum A} for the AGR. We
note that the impact of attacks on DnC reduces in cross-
device FL, as for the other AGRs. For CIFAR10 + Alexnet,
with no attack accuracy, Ay, of 64.6%, DnC increases A;
from 50.6% to 61.2%: for best of existing AGRs, our AGR-
tailored attack is the strongest attack with Iy of 14.0%, i.e.,
A} (Ag — Ip) of 50.6%. While for DnC, our adaptive attack
is the strongest with Iy of 3.4%, i.e., A} of 61.2%. Similarly,
for CIFARI0 + VGGl11, DnC increases A} from 63.4% to
68.0%. The increase in A} due to DnC in cross-device FL
is lower, because the impact of attacks on previous AGRs is
lower, which leaves smaller room for improvements.

Why DnC is superior? The strong robustness of DnC stems
Jfrom the effective filtering guarantees of Lemma 1, which
we empirically confirm in Figure 5: Here, in each epoch of FL
+ DnC training, we compute the fraction of malicious clients
DnC selects and the norm of the difference between means of
benign and malicious gradients relative to the norm of mean of

_ 2
the benign gradients, i.e. fehie = lre=parllz e then average
these entities over a few epochs for presentation clarity.

ezl

We observe in Figure 5 that for MNIST (upper row), Fang
and Min-Sum attacks evade DnC’s detection, but have very
small peghire Which leads to high accuracy of global model Aj.
DnC mitigates LIE even when LIE evades DnC’s detection
to some extent and introduces large pshiri. We suspect that,
this is because LIE uses ineffective perturbation V%, for
MNIST (Figure 2). Our AGR-tailored and adaptive attacks
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evade DnC’s detection to some extent by maintaining low
Lshife. Hence, MNIST, due to its simplicity, withstands their
poisoning impact.

For CIFAR10 + Alexnet, we observe that DnC effectively
filters malicious gradients of all but our adaptive attack. How-
ever, the adaptive attack manages to evade DnC’s detection
only due to low psphist, Which is insufficient to poison DnC
based FL.

2) Robustness of DnC for non-iid data: Table VI shows the
evaluation of DnC for FEMNIST, an imbalanced and non-iid
datasets. We set niters, ¢, and b in Algorithm 2 to 1, (n—1)/n,
and 10,000, respectively We note that, DnC cannot defend at
least one of our attacks by the strongest adversaries with
complete knowledge of the gradients of benign clients, i.c.,
agr—updates and updates-only adversaries. Min-sum
has attack impact of 79.3%, i.e., it reduces the accuracy from
86.6% in the benign setting to 7.3%. Here, We omit evaluation
of DnC against Fang and LIE attacks, as they are strictly
weaker than all of our attacks against FEMNIST.

Furthermore, resampling [19], a mechanism proposed to
reduce non-iid nature of the input gradients, exacerbates DnC’s
robustness (also of existing AGRs as shown in Table VII).

Even the benign gradients of FEMNIST with highly non-
iid nature, do not point in a single direction, and therefore,
DnC cannot reliably detect malicious gradients. This allows
adversaries to easily circumvent DnC’s detection and mount
strong attacks. However, DnC mitigates all of the model
poisoning on FL by more practical adversaries who do not
know the gradients on benign devices, i.e., agr-only and
agnostic adversaries. The maximum attack impact is only
12.7%, i.e., the maximum accuracy of the global model due
to DnC is 73.9%. The most robust of existing AGRs is Krum
and the corresponding maximum accuracy is 66.4%.

We note that, defending the real-world non-iid FL settings
from the worst case model poisoning attacks is a well-known
challenging task [17], [19], [18] and a limitation of DnC in its
current form. We leave investigating further to improve DnC
to make it robust to the non-iid settings to future work.

VIII. CONCLUSIONS

We presented a general framework to mount systematic
model poisoning attacks on FL. We demonstrated that our
framework results in attacks that outperform state-of-the-art
poisoning attacks against all Byzantine-robust FL algorithms
and by large margins. We gave concrete reasons for the
strength of our attacks, which future Byzantine-robust FL
algorithms should address. We also presented a robust aggrega-
tion algorithm, called divide-and-conquer, that outperforms all
existing robust aggregation algorithms in defeating poisoning
attacks on FL.
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APPENDIX
A. Missing experiments

Figure 6a shows the results for the attack impacts of LIE,
Fang, and our model poisoning attacks on FEMNIST and
MNIST datasets, when the percentage of malicious clients
is varied from 5% to 24%. Detailed comparison is in Sec-
tion VI-D2.

Table VII shows the results for the empirical robustness of
three state-of-the-art robust AGRs when coupled with recently
proposed resampling mechanism [19]. We note that similar to
our DnC, resampling reduces the robustness existing AGRs.

Figure 7 shows the impact of the three perturbation vectors
introduced in Section IV-A on emulated (light bars) and actual
FL settings. Detailed discussion in Section VI-C2.

B. Proof of Lemma 1

The outliers detection guarantees of our robust AGR DnC
depend on Lemma 1, which is a standard result in spectral-
methods based outliers detection [36], [28], [15], [11]. For
completeness, we provide its proof motivated from [28], [36].

As in Lemma 1, consider two distributions B, M with
means pp, pas and covariances X, Xy = o2l Let U =
(1 —€)B + eM be a mixture of samples from B and M. The
following holds for any unit vector u due to the Chebyshev’s
inequality:

2
(o)
— < —
Pl ] > 1] < 7 ©
0.2
X — <
XlerVI[K :U‘]Vf’u>| > t] = g2 (10)

Let A = pup — pup and v be the top right singular
eigenvector of U. Ideally, the unit vector « should be a scaled
version of A, which will maximally separates the samples from
B and M. But as argued in [36], one can show any u with
sufficient correlation with A suffices, which gives us Lemma

Lemma 2. Let « > 0 such that |(u, A)| > %. Then there
exists t > 0 such that

Proll(X = pp,u)| > 1] < ¢/a’
_c
(a—1)
Proof: As U = (1 — €)B + e¢M, we have

<X*MU7U> = <X*[LB,U>+€<A,U>
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where (a) follows from the assumption and (b) from (10).
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Lemma 3. g]nder the assumptions of Lemma 1, we have
(A,0)? > 22
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Figure 6: Effect of increasing percentage

(b) MNIST with CNN architecture

of malicious clients on the impacts of model poisoning attacks on FL.

Table VII: Resampling [19] significantly reduces the robustness of existing defenses against our attacks for all the threat models from Table 1.
We use 20% malicious clients and evaluate for all adversaries in Table I. This is expected, as resampling increases the number of malicious
updates processed, and therefore, their poisoning impacts.

Attack impact

Attack impact

Updates of benign devices are known Updates of benign devices are unknown
AGR i?ack AGR-tailored AGR-agnostic AGR-tailored AGR-agnostic
(Ag) (agr-updates) (updates-only) (agr-only) (agnostic)
Min-Max | Min-Sum Min-Max | Min-Sum
Krum 693 30.0 0.1 9.8 29 1.1 8.0
Krum + resampling 47.8 64.0 43.6 45.2 63.6 58.0
Bulyan 86.1 41.0 20.1 40.0 40.5 18.7 30.4
Bulyan + resampling 76.8 81.7 53.9 49.6 10.0 8.1
Trmean 26.7 243 29.7 26.8 20.1 24.7 252
Trmean + resampling 70.3 81.2 46.0 46.4 80.6 68.5

CIFAR10 + VGG11

N
o
L

N
o
L

o
L

"SI

FEMNIST

40 A
- vggn
0 u

L___IAv/M
| Vstd

Krum Multi-krum Bulyan

Trimmed-mean Medlan

Figure 7: Selecting an effective perturbation for CIFAR with VGG11
and FEMNIST with CNN. Please check Section VI-C2 and Figure 2
for details.

Proof: We have

Ex~p [(X — pu)(X — MU)T] =Y+ EAAT

Bt [(X = p)(X = p)T| = S + (1 - 44T (1)

If ¥ is the covariance of U, we have
Y =(1-6Yp+ el +e(l—e)AAT
— Yy = e(l —e)AAT
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Next, we have
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Recall the assumption o < £[|A[|3, which gives us
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where (a) follows from the assumption that ¢ < 1/2; taking
square roots of both the sides gives the final result.
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Finally combining the results of Lemmas 2 and 3 gives us
the result of Lemma 1.
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