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Abstract—Variational quantum eigensolver (VQE) is a promis-
ing algorithm suitable for near-term quantum computers. VQE
aims to approximate solutions to exponentially-sized optimization
problems by executing a polynomial number of quantum sub-
problems. However, the number of subproblems scales as N

4 for
typical problems of interest—a daunting growth rate that poses
a serious limitation for emerging applications such as quantum
computational chemistry.

We mitigate this issue by exploiting the simultaneous mea-
surability of subproblems corresponding to commuting terms.
Our technique transpiles VQE instances into a format optimized
for simultaneous measurement, ultimately yielding 8-30x lower
cost. Our work also encompasses a synthesis tool for compil-
ing simultaneous measurement circuits with minimal overhead.
We demonstrate experimental validation of our techniques by
estimating the ground state energy of deuteron with a quan-
tum computer. We also investigate the underlying statistics of
simultaneous measurement and devise an adaptive strategy for
mitigating harmful covariance terms.

Keywords-quantum computing, Variational Quantum Eigen-
solver (VQE)

I. INTRODUCTION

The present Noisy Intermediate-Scale Quantum (NISQ) era

[44] is distinguished by the advent of quantum computers

comprising tens of qubits, with hundreds of qubits expected in

the next five years. Although millions of physical qubits are

needed to realize the originally-envisioned quantum applica-

tions such as factoring [51] and database search [15], a new

generation of variational algorithms have been recently intro-

duced to match the constraints of NISQ hardware. However,

these variational algorithms are very expensive in terms of the

number of subproblems, or measurements, needed.

Variational Quantum Eigensolver (VQE) [42] is one such

algorithm that is widely considered a top contender, if not the

top contender, for demonstrating a useful quantum speedup.

VQE is used to approximate solutions to exponentially-sized

optimization problems in polynomial time. It has a wide class

of applications such as molecular ground state estimation [42];

maximum 3-sat, market split, traveling salesperson [39]; and

This work is funded in part by EPiQC, an NSF Expedition in Computing,
under grants CCF-1730449/1730082, and in part by STAQ, under grant NSF
Phy-1818914. P. G. is supported by the Department of Defense (DoD) through
the National Defense Science & Engineering Graduate Fellowship (NDSEG)
Program. O. A. is supported by the National Science Foundation Graduate
Research Fellowship Program under Grant No. DGE 1752814. The work of
K. G. and M. S. is supported by the U.S. Department of Energy, Office of
Science, under contract number DE-AC02-06CH11357.

Fig. 1. Estimating the energy of H2 naı̈vely requires 14 separate measure-
ments (left). Our technique (right) transpiles the VQE instance to only require
2 simultaneous measurements. We can act either at the qubit representation,
or in linear time at a higher abstraction (molecular Hamiltonian) level.
Measurement circuit synthesis allows us to perform the necessary simulta-
neous measurements and classically post-process to obtain all 14 targeted
measurements. Covariance mitigation prevents harmful covariances within
measurement groups.

maximum cut [36]. In this paper, we focus on the molecular

ground state estimation problem though we underscore that

the full range of VQE applications is very broad.

VQE solves a similar problem as Quantum Phase Estimation

(QPE) [27], [8], an older algorithm that requires large gate

counts and long qubit coherence times that are untenable for

near-term quantum computers. VQE mitigates these quantum

resource requirements by shifting some computational burden

to a classical co-processor. As a result, VQE circuits have low
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Fig. 2. Z-basis (computational basis) measurement of a qubit yields |0〉 or
|1〉 with a probability corresponding to the latitude of the qubit on the Bloch
sphere.

gate counts and are error resilient, but at the cost of splitting

computation into O(N4) subproblems, each performing mea-

surement of a single term known as a Pauli string. In other

words, VQE exchanges having too many gates with having

too many measurements—this poses practical limitations.

It was observed that the N4 scaling could be partly mit-

igated by performing simultaneous measurement [34]: when

the measurement terms for two subproblems commute, they

can be measured simultaneously. Our work, depicted in the

Figure 1 overview, exploits this property in order to minimize

the number of measurements needed for VQE.

Our specific contributions include:

• Techniques for transpiling Naı̈ve VQE instances to ones

partitioned into commuting families. Section IV operates

at the qubit representation layer; Section V operates

at a higher molecular abstraction layer, ensuring that

transpilation cost is not a bottleneck.

• A circuit synthesis tool for simultaneous measurement

(Section VI).

• Validation of our techniques through benchmark simula-

tion (Section VII) and experiment (Section VIII).

• Statistical analysis of simultaneous measurement, includ-

ing a technique that resolves a previously-open question

regarding the impact of covariances (Section IX).

We begin in Section II by presenting relevant background,

followed by an analysis of commutativity in Section III.

II. BACKGROUND

A. Quantum Measurement

Quantum bits (qubits) are differentiated from classical bits

by their ability to exist in superposition. Rather than being

either |0〉 or |1〉, the internal state of a qubit can be a coherent

superposition of both. This superposition is ‘analog’ and is

represented as a point on the surface of the Bloch sphere

shown in Figure 2, with |0〉 on the north pole and |1〉 on

the south pole. Although qubits can have a superposition

internally, when they are measured in hardware, they collapse

to either |0〉 or |1〉, with a probability dependent on the state’s

latitude. This measurement/readout behavior is indicated by

the Standard Z Measurement label in Figure 2

While the Z-axis or computational basis measurement is the

only measurement that hardware performs, we can effectively

measure a qubit on any other axis, such as the X or Y

Fig. 3. Measurement of the X or Y Pauli matrices requires us to first apply
a quantum circuit that rotates the X or Y axis to align with the Z axis.
Subsequently, a standard Z-basis measurement yields the outcome of the X

or Y measurement.

axes. Mathematically, measurement of an operator means

that the qubit’s state collapses to an eigenvector of that

operator. For VQE, the relevant operators are defined by the

Pauli matrices: X = ( 0 1
1 0 ), Y = ( 0 −i

i 0 ), and Z = ( 1 0
0 −1 ).

Visually, the eigenvectors of X (Y ) are the antipodal points

along the X (Y ) -axis of the Bloch sphere. Since hardware

cannot directly measure along these axes, measurements of X
(Y ) are performed by first rotating the Bloch sphere with a

quantum gate so that the X (Y ) -axis becomes aligned with

the Z-axis, as shown in Figure 3. Subsequently, a standard Z-

basis measurement can be performed, whose outcome can then

be mapped to an effective X (Y ) measurement. The quantum

gates that implement the X-to-Z and Y -to-Z axis rotations

are called H and HS−1 respectively [35]. Written as quantum

circuits (which are ‘timeline’ views from left to right), these

rotations look like H and S−1 H .

The same general measurement principle applies towards

measuring operators across multiple qubits: measurement is

accomplished by rotating the eigenvectors of the target

operator to align with the standard Z-basis vectors. There-

after, subsequent Z-basis measurement collapses the qubit

state onto an eigenvector of the target operator, as desired. The

quantum circuit for the necessary eigenvector rotation has a

matrix representation whose columns are the eigenvectors of

the target operator. In this work, we are interested in measuring

Pauli strings, which are concatenated Pauli matrices across

multiple qubits—for example, X3I2Z1Y0, often abbreviated

without subscripts as XIZY .

B. Simultaneous Measurement and Commutativity

Per the preceding discussion, two operators can be measured

simultaneously if they share a full set of eigenvectors. In such

a case, they can be measured simultaneously by applying the

quantum circuit that rotates their shared eigenvectors onto the

Z-basis. In the case of Pauli strings, two operators share a

set of eigenvectors if and only if they commute [50, Chapter

1], i.e. the order of their product is interchangeable. Thus,

a family of operators can be measured simultaneously iff

they pairwise commute [18, Theorem 1.3.21].

This result is foundational in quantum mechanics. For

instance, the Heisenberg Uncertainty Principle states that
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position and momentum cannot be known simultaneously—

this is because the position and momentum operators do

not commute. In this paper, we will exploit commutativity

relationships to measure many Pauli strings with a single

measurement. Informally, we aim to get “many birds with

one stone.” Notice that we have not yet discussed how to

actually perform the necessary eigenvector rotations, or how

to translate one simultaneous measurement into the actual

measurement outcomes for the multiple Pauli strings. Both

of these questions are addressed in Section VI, with a specific

example in VI-B.

C. Variational Quantum Eigensolver (VQE)

VQE can be applied to a wide class of optimization

problems that are solvable as minimum-eigenvalue estimation

[39], [36]. In this paper, we focus on the application that

has received the most commercial and experimental interest:

estimating molecular ground state energy. We use VQE to

approximate the lowest eigenvalue of an exponentially-sized

matrix called the Hamiltonian that captures the molecule’s en-

ergy configuration. The lowest eigenvalue of the Hamiltonian

is the molecule’s ground state energy which has important

implications in chemistry such as determining reaction rates

[12] and molecular geometry [41].

The Hamiltonian matrix, H , can be used as an operator to

calculate the energy of any given quantum state. Specifically,

for an input state |ψ〉, the expected value 〈H〉|ψ〉 equals the

energy of that state. Thus, our goal is to find the input state

that yields the lowest possible 〈H〉|ψ〉, which is the ground

state energy. On a classical computer, measuring 〈H〉 would

require multiplication of exponentially-sized matrices. The

potential quantum speedup of VQE arises from its approach

of measuring 〈H〉|ψ〉 indirectly but efficiently by decomposing

into O(N4) subproblems. In particular, VQE employs linearity

of expectation to decompose 〈H〉|ψ〉 into a sum of O(N4)
expectations of Pauli strings, which can each be computed

efficiently. In the standard formulation of VQE, each of these

Pauli strings is measured via a separate measurement [42].

At its core, VQE can be described as a guess-check-repeat

algorithm. Initially, the algorithm guesses the ground state of

the Hamiltonian. Then, it checks the actual energy for the

guessed state by summing expected values over the O(N4)
directly measurable Pauli strings, as described above. Finally,

it repeats by trying a new guess for the ground state, with the

assistance of a classical optimizer that guides the next guess

based on past results. Repetition continues until the classical

optimizer reaches its termination condition—usually when a

good minimum has been found. Algorithm 1 presents the

pseudocode for VQE, under the standard ‘Naı̈ve’ formulation

where each Pauli string is measured separately.

Since the number of possible state vectors spans the ex-

ponentially large and continuous ‘Hilbert space’ of quantum

states, VQE operates with a restricted family of candidate

ground states. Such a restricted family is called an ansatz, and

the ansatz state |ψ(�θ)〉 is parametrized by a vector �θ. While

our work in this paper is applicable to any ansatz, we focus

Algorithm 1: Variational Quantum Eigensolver (VQE)

Result: Approximate ground state energy,

min�θ 〈H〉
ψ(�θ)

i ← 1;
�θi ← random angles;

while (not classical optimizer termination condition)

do

for j ∈ [O(N4) Pauli terms] do

Prepare ψ(�θi);

Measure 〈Hj〉 under state ψ(�θi);
end

〈H〉
ψ(�θi)

←
∑

j 〈Hj〉ψ(�θi)
;

Record (θi, 〈H〉
ψ(�θi)

);

i++;

Pick new θi via classical optimizer;

end

our attention to the Unitary Coupled Cluster Single Double

(UCCSD) ansatz, which is the leading contender for molecular

ground state estimation. In terms of the number of qubits N ,

the total gate count of the UCCSD circuit is O(N4) [17], [29].

III. ANALYSIS OF COMMUTATIVITY

We analyze the commutativity of Pauli strings (concatena-

tions of the four Pauli matrices), which are the terms present

in Hamiltonian decompositions.

A. Single Qubit Case

For a single qubit, the four Pauli strings of length N = 1
are simply the four Pauli matrices. Figure 4 depicts the

commutation graph for the four matrices, with edges between

commuting pairs. I (Identity) commutes with everything else,

and all matrices commute with themselves, as indicated by the

self-loops.

Fig. 4. Commutation graph for the four Pauli matrices.

B. Qubit-Wise Commutativity (QWC)

Now we consider the general case of N -qubit Pauli strings.

The simplest type of commutativity is Qubit-Wise Commu-

tativity (QWC). Two Pauli strings QWCommute if, at each

index, the corresponding two Pauli matrices commute. For

instance, {XX, IX,XI, II} is a QWC partition, because for

any pair of Pauli strings, both indices satisfy commutation.

QWC has been leveraged in past experimental work for

small molecules [24], [38], [17], [28] by ad hoc inspection
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of the Hamiltonian terms; however, these techniques do not

scale.

C. General Commutativity (GC)

QWC captures only a small subset of possible commuta-

tivity relationships. The most General Commutativity (GC)

rule is that two Pauli strings commute if and only if they

do not commute on an even number of indices. For example,

{XX,Y Y, ZZ} is a GC family: for any pair of strings, two

(both) indices fail to commute.

Figure 5 depicts the commutation relationships between all

16 two-qubit Pauli strings. Edges are drawn between Pauli

strings that commute—a blue edge indicates that the pair

is QWC (e.g. between XI , IX , and XX) and a red edge

indicates that the pair is GC but not QWC (e.g. between XX ,

Y Y , and ZZ).

Fig. 5. Commutation graph for all 16 2-qubit Pauli strings. Blue edges
indicate Pauli strings that commute under QWC (which is a subset of GC).
Red edges commute under GC-but-not-QWC.

IV. TRANSPILATION VIA MIN-CLIQUE-COVER

We refer to our core problem of interest as MIN-

COMMUTING-PARTITION: given a set of Pauli strings from

a Hamiltonian, we seek to partition the strings into commuting

families such that the total number of partitions is minimized.

The list of partitions amounts to a transpiled instance of VQE,

indicating that the Pauli strings in each partition should be

measured simultaneously. The ‘Transpilation’ box on the right

side of Figure 1 depicts our goal.

Instead of solving MIN-COMMUTING-PARTITION ex-

actly, we first map it to a graph problem, as suggestively

expressed by the graph representation in Figure 5, and then

use approximation methods to obtain a solution. Observe

that cliques (fully connected subgraphs where each pair of

Pauli strings commutes) are relevant because all of the strings

in a clique can be measured simultaneously. Therefore, we

seek the MIN-CLIQUE-COVER, i.e. the smallest possible set

of cliques whose union spans all vertices. As an example,

Figure 6 shows the commutation graph for H2’s 4-qubit Hamil-

tonian and its MIN-CLIQUE-COVERs using QWC edges and

using GC edges.

MIN-CLIQUE-COVER is NP-Hard [25] and approximat-

ing a guaranteed ‘good’ clique cover is also NP-Hard for

general graphs [55]. However, molecular Hamiltonian graphs

QWC All edges (GC)

Fig. 6. The top commutation graph shows both QWC (blue) and GC-
but-not-QWC Commuting (red) relationships between the Pauli string’s in
H2’s Hamiltonian. The vertex colors in the bottom two graphs indicate MIN-
CLIQUE-COVERs using only QWC edges (left) or using all edges (right).
The reduction in measurement partitions from Naı̈ve (measuring each Pauli
string separately) to QWC to GC is 14 → 5 → 2.

are highly structured owing both to features of the Pauli

commutation graph [43] and to patterns in the Pauli strings

that arise in molecular Hamiltonians (we explicitly address

and exploit the latter in Section V). This suggests that MIN-

CLIQUE-COVER approximation algorithms may still yield

reasonably good results.

A. Approximation Algorithms Tested

In our benchmarking, we performed MIN-CLIQUE-

COVERs using the Boppana-Halldórsson algorithm [6]

included in the NetworkX Python package [16], as

well as the Bron-Kerbosch algorithm [7] which we

implemented ourselves. These heuristics approximate

a MAX-CLIQUE whose vertices are marked; we then

recurse on the residual unmarked graph, repeating

until all vertices are marked. We also used the

group_into_tensor_product_basis_sets()

approximation implemented by OpenFermion [33]—this

approximation is a non-graph-based randomized algorithm

that only finds QWC partitions. Section VII presents results

across a range of molecules and Hamiltonian sizes. All of

our code and results notebooks are available online [2].

While the benchmark results indicate promising perfor-

mance in terms of finding large partitions, it is critical to

also consider the classical computation cost of performing

the MIN-CLIQUE-COVER approximation. First, the Bron-

Kerbosch algorithm lists all maximal cliques with a worst case

exponential runtime. Therefore, it should be interpreted as a

soft upper bound on how well polynomial-time approximation

algorithms can approximate a MIN-CLIQUE-COVER. The
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Boppana-Halldórsson algorithm’s runtime is polynomial but

is not well studied. Our benchmarks and theoretical analysis

indicate roughly quadratic scaling in the number of vertices.

Some polynomial benchmarks considered in other work [20],

[21], [54], [52] scale cubically in the graph size.

However, this poses a problem—the Hamiltonian graph has

N4 terms, so a quadratic or cubic runtime in the number

of vertices implies N8 or N12 scaling in classical transpi-

lation/precomputation time. Beyond simply implying imprac-

tical scaling rates, these runtimes may exceed the runtime of

Naı̈ve VQE—in which case, we’d be better off just running

VQE in the Naı̈ve fashion! The exact runtime of VQE is de-

pendent on the classical optimizer and optimization landscape,

but estimates range from O(N8) under SciPy optimization

settings [22] to O(N12) under matrix inversion techniques.

Further work is needed to understand the exact cost of VQE,

but there is a strong case that the VQE transpilation cost

from expensive MIN-CLIQUE-COVER approximations would

exceed the naı̈ve Pauli measurement cost.

In the next section, we remedy this concern by presenting a

linear-time transpilation technique that exploits our knowledge

of the structure of molecular Hamiltonians and their encodings

into qubits. The resulting transpilation procedure runs in

O(N4) time (linear in the number of Pauli strings), which

is safely below the quantum invocation cost of VQE.

V. LINEAR-TIME TRANSPILATION

As discussed in the previous section, the VQE transpilation

methods based on MIN-CLIQUE-COVER approximation may

have classical costs greatly exceeding the quantum cost of

running VQE naı̈vely. This motivates us to find faster tran-

spilation procedures by exploiting the structure of molecular

Hamiltonians, which is ignored by the MIN-CLIQUE-COVER

approximations.

Thus, we now address the simultaneous measurement goal

at a higher abstraction level. This is depicted by the arrow from

‘Molecular Model (Hamiltonian)’ to ‘Simultaneous Measure-

ment’ in Figure 1. Previously, we worked with Hamiltonians

specified as a sum over O(N4) Pauli strings. However, this

Pauli string summation is derived from the ‘true’ molecular

form of H , which is expressed in fermionic language as:

H =

N∑

p

N∑

q

hpqa
†
paq +

N∑

p

N∑

q

N∑

r

N∑

s

hpqrsa
†
pa

†
qaras (1)

a and a† are fermionic operators that are converted to Pauli

strings via a fermion-to-qubit encoding. We focus on Jordan-

Wigner [23], which is the most popular encoding [19], though

our results also apply to the Parity encoding [47]. Notice that

the N4 scaling of the number of terms in the Hamiltonian

is clear from the quadruple summation in Equations 1. These

terms are asymptotically dominant [53]. At the scale of smaller

molecules, the O(N) terms of form pp and the O(N2) terms

of form pqpq are frequent. We treat both the asymptotically-

dominant terms and the frequent-for-small-molecules terms.

A. pqrs Terms

For each of the asymptotically dominant N4 terms of form

a†pa
†
qaras, the Jordan-Wigner encoding yields a sum over the

16 Pauli strings matching the regular expression:

(Xp|Yp)Zp:q(Xq|Yq)(Xr|Yr)Zr:s(Xs|Ys)

where Zp:q denotes repeating Z’s from indices p to q, exclud-

ing endpoints.

Thus, the ∼ 1N4 fermionic terms expand into ∼ 16N4

Pauli strings. Our key observation is that within each set of

16 Pauli strings, the MIN-CLIQUE-COVER is just 2. Figure 7

illustrates this, showing the 16 Pauli strings matching the

regular expression above (it can be shown that the Z’s don’t

affect commutativity since they apply to the same indices).

Using GC partitions, we can perform all 16 measurements

using only two measurement circuits. Thus, we reduce the

measurement cost from ∼ 16N4 to ∼ 2N4. Moreover, this

transpilation is fast (linear time in number of terms), occurring

directly alongside the fermion-to-qubit encoding stage.

Fig. 7. The 16 relevant Pauli strings in the Jordan-Wigner encoding of

a
†
pa

†
qaras have a MIN-CLIQUE-COVER of size 2.

B. pp and pqpq Terms

While the 8-fold reduction via partitioning the pqrs terms is

the asymptotic bottleneck, we also note a useful reduction for

the smaller terms which are significant for smaller molecules.

For the O(N) operators of form a†pap, multiplying out the

Jordan-Wigner encoding yields the Pauli string Zp. For the

O(N2) operators of form a†pa
†
qapaq , the Jordan-Wigner en-

coding yields the Pauli string ZpZq . All of these Pauli strings

commute and therefore can be simultaneously measured. We

use this technique to yield reduced measurement costs even

for small molecules.

VI. MEASUREMENT CIRCUIT SYNTHESIS

Once a MIN-COMMUTING-PARTITION has been approx-

imated, we have effectively transpiled the VQE instance into

one in which terms within a partition should be measured

simultaneously. Naturally, the question arises of how to actu-

ally perform the necessary simultaneous measurements. In the

case of Naı̈ve partitions where each Pauli string is measured

separately, the measurement circuit is trivial. In particular,

recall from Section II that we simply perform the H and
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HS−1 operations on the indices with X or Y respectively,

and then we measure every qubit in the Z basis. Thus, we

need just O(N) fully-parallelizable single qubit gates.

Simultaneous measurement is also similarly straightforward

in the case of QWC partitions. Each index of a QWC parti-

tion is characterized by a measurement basis. For example,

consider the task of simultaneously measuring the two QWC

Pauli strings XIY IZI and IXIY IZ. We simply measure in

the X basis on the left two qubits, the Y basis on the middle

two qubits, and the Z basis on the right two qubits. In terms

of circuit cost, QWC measurement is essentially identical to

Naı̈ve measurement: O(N) single qubit gates are required, and

the gates are fully parallelizable to constant depth.

While Naı̈ve and QWC partition measurements are straight-

forward, GC partition measurements are nontrivial. As de-

picted in the ‘Measurement Circuit Synthesis’ box in Figure 1,

we provide a procedure that enables these measurements, and

we analyze its classical and quantum costs. This is the first

work explicitly demonstrating how to perform simultaneous

measurement in the general case of GC Pauli strings. We

implemented our circuit synthesis tool as a Python library and

validated it across a wide range of molecular Hamiltonians.

A. Background

As discussed in Section II, performing a simultaneous

measurement amounts to rotating the axes of the shared

eigenvectors to align with the standard Z-basis axes. One

attempt to construct such a rotation would be to explicitly

compute the shared eigenvectors and then feed them to one of

many possible gate decomposition techniques [10], [26], [45],

[30], [9], [37]. However, this approach is problematic for two

reasons. First, decomposition techniques trade off between re-

quiring intractable quantum circuit depth, requiring intractable

classical compilation time, and yielding only approximations

to the desired transformation. Second and most importantly,

these techniques require us to compute the simultaneous eigen-

vectors, which are each represented by a 2N -sized column

vector. The exponential effort of computing these eigenvectors

would erase any potential quantum advantage.

Fortunately, the stabilizer formalism—typically applied to

quantum error correction—provides us an alternative. Our

work is built upon the language of stabilizers introduced in

[14] and expanded upon in [3] as well as [49], [48]. While

these two papers were applied to error correction, quantum

simulation, and Mutually Unbiased Bases, the core techniques

also apply to our use case. Our circuit construction procedure

is inspired by these papers, but stems from a different context

and end goal.

B. An Example: {XX,Y Y, ZZ}

We begin with a well-known example. Consider the task

of trying to simultaneously measure XX,Y Y, and ZZ, a GC

(but not QWC) partition. This task is equivalent to another

task in quantum computing that has a well-known solution:

Bell basis measurement. Figure 8 presents the circuit for such

a measurement. We now explore why this circuit performs

simultaneous measurement of XX , Y Y , and ZZ.

• H
⎧
⎪⎨
⎪⎩|ψ〉

Fig. 8. Bell basis measurement circuit that simultaneously measures XX ,
Y Y , and ZZ on the |ψ〉 state. After application of these two gates, the mea-
surements of the top and bottom qubits correspond to outcomes for XX and
ZZ respectively. The Y Y outcome is obtained from Y Y = −(XX)(ZZ).

First observe that since Y Y = −(XX)(ZZ), it is sufficient

to target a measurement of [XX,ZZ]. Our goal is to transform

this target measurement into [ZI, IZ], which captures the top-

and bottom- qubit outcomes we measure directly via standard

Z-basis measurement, as discussed in Section II. An important

background fact is that after applying a quantum gate U , a

target measurement of M on the original state has become

equivalent to a measurement of UMU−1 [14], [40] on the

new state. This is known as unitary conjugation.

In the Bell basis measurement circuit, we first apply a gate

called U = CNOT . By computing UMU−1 we can see

that target measurements of [XX,ZZ] are transformed under

conjugation to measurements of

[XX,ZZ]
UMU−1

−−−−−−−→
U = CNOT

[UXXU−1, UZZU−1] = [XI, IZ].

Finally, after applying the ‘Hadamard’ gate on the top qubit

(U = H ⊗ I), the measurements are transformed to

[XI, IZ]
UMU−1

−−−−−−−→
U = H ⊗ I

[UXIU−1, UIZU−1] = [ZI, IZ].

Thus, this CNOT , H ⊗ I gate sequence performs the de-

sired transformation of rotating a measurement of [XX,ZZ]
into the Z-basis, [ZI, IZ]. The ordering of the elements is

important and indicates that measurement of the top qubit

(ZI) corresponds to the XX outcome and measurement of

the bottom qubit (IZ) corresponds to the ZZ outcome. As

mentioned previously, Y Y follows as −(XX)(ZZ). Thus,

after applying the Bell basis measurement circuit and reading

out the results, we simultaneously know the outcomes of XX ,

Y Y , and ZZ.

C. Circuit Synthesis Procedure

Algorithm 2 describes our circuit synthesis procedure for

the general case. For brevity, we omit technical details

about the construction of stabilizer matrices, Z-matrices, and

X-matrices. However, we refer readers to [14], [3], [48]

for technical background. Moreover, our software repository

[2] includes generate_measurement_circuit.py, an

implementation of Algorithm 2 with detailed comments along

the way.

D. Circuit Synthesis Complexity and Circuit Cost

The efficiency of Algorithm 2 stems from its use of linearly

sized stabilizer matrices. This averts the exponential cost
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Algorithm 2: Circuit synthesis for sim. measurement

input : {Pi}, a complete GC family of Pauli strings

output: Circuit for simultaneous measurement of {Pi}

M ∈ F 2N×N
2 ← basis of {Pi};

Full-rankify X-matrix by applying H gates;

Gaussian eliminate X-matrix using CNOT & SWAP

gates;

for each diagonal element in Z-matrix do
if element is 1 then apply S to corresponding

qubit;

end

for each element below diagonal of Z-matrix do
if element is 1 then apply CZ to the row-col

qubits;

end

Apply H to each qubit;

Measure each qubit;

that manipulating simultaneous eigenvectors would entail via

standard gate decomposition techniques. In terms of classical

complexity, the synthesis tool is fast because its slowest step

is the Gaussian elimination in Algorithm 2, which has time

complexity of O(N3) and small constant factors [13].

The actual quantum circuit produced by the synthesis pro-

cedure requires only O(N2) gates in the worst case. This

follows because the Gaussian elimination can require O(N2)
elementary row operations, which entails O(N2) CNOT gates.

In practice, the gate count scaling is only quadratic if the

partition sizes are linear. In cases such as Section V’s linear

time transpilation, which has constant sized partitions (of size

4), the gate count is still O(N).

While the O(N2) worst-case gate count for GC measure-

ment is worse than the O(N) gate count for Naı̈ve or QWC

measurement, we emphasize that the measurement circuit is

preceded by an ansatz preparation circuit that dominates gate

counts and depth. In particular, the UCCSD ansatz has O(N4)
gate count [17], [29]. We base our studies on UCCSD because

it is the gold standard for quantum computational chemistry

[31], [5]. Moreover, UCCSD has shown experimental and the-

oretical promise, unlike hardware-driven ansatz, which were

shown to suffer from “barren plateaus” in the optimization

landscape [32], [31]. Even in the case of other non-hardware-

driven ansatzes, gate counts and depths generally scale at least

as N3 in order to achieve high accuracy. Thus, the circuit cost

of GC measurement appears to be benign, even in the worst

case quadratic-cost scenario.

For demonstration, we show in Figure 9 the simultaneous

measurement circuit for the 4 GC-but-not-QWC qubits in the

Pauli partition for the Jordan-Wigner transformation discussed

in Section V. Specifically, this measurement circuit is used to

measure the green 8-clique in Figure 7.

• H

H • • • • • H

H • • • • H

H • • • • H

Fig. 9. Simultaneous measurement circuit generated by our software for the
green 8-clique in Figure 7.

VII. BENCHMARK RESULTS

We tested the performance of our simultaneous measure-

ment strategies in Section IV on multiple molecular bench-

marks, whose Hamiltonians we obtained via OpenFermion

[33]. Our benchmark results encompass both the reduction in

number of partitions relative to Naı̈ve, as well as the classical

transpilation runtime required to produce the partitioning.

Figure 10 indicates the reduction in commuting partitions

(cliques) found using both QWC and GC edges, in comparison

to the Naı̈ve VQE implementation in which each Pauli string is

in a singleton partition. The MIN-CLIQUE-COVERs were ap-

proximated by the exponential Bron-Kerbosch algorithm, and

thus should be regarded as soft upper bounds on the partition-

ing advantage that is practically achievable. The improvement

from Naı̈ve to QWC is consistently about 4-5x—a significant

reduction especially considering that QWC measurement is

cheap. The improvement from Naı̈ve to GC ranges from 7x

to 12x from H2 to CH4 (methane). This suggests that the

advantage for GC partitioning improves for larger molecules.

Fig. 10. Number of QWC and GC partitions (which we are attempting to
minimize) generated by Bron-Kerbosch for four representative molecules. AS#
indicates the number of active spaces for each molecular Hamiltonian.

Figure 11 examines partitioning performance over a range of

active spaces (the number of electron ‘addresses’ considered).

We again see evidence that the GC partitioning advantage

scales with Hamiltonian size, ranging from 3x to 12x as

the number of active spaces is increased. This is important

and encouraging, because prior work demonstrated that a
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relatively large number of active spaces are needed to attain

high accuracy [4].

Fig. 11. Number of QWC and GC partitions generated by Bron-Kerbosch
for the H2 molecule, across an increasing number of active spaces.

We also benchmarked the performance of three polyno-

mial time transpilation procedures, Boppana-Halldórsson (on

QWC- and GC- edge graphs) [6], OpenFermion’s partitioning

heuristic (on QWC-edge graphs only) [33], and our Linear-

Time Transpilation on problem sizes ranging from 4 to

5237 terms in the molecular Hamiltonian. We generated a

variety of Hamiltonians describing the H2, LiH, H2O, and

CH4 molecules, and recorded both the number of partitions

generated and the runtime for each algorithm-Hamiltonian

pair. Figures 12 and 13 show the reduction factor and wall

clock runtimes for a subset of the benchmarks up to 630 Pauli

strings. Figure 12 extends the general trend shown in Figure 10

to different partitioning algorithms: GC leads to much more

optimal partitioning than QWC, because GC captures a denser

edge set. Bron-Kerbosch GC achieves the fewest number of

partitions (however, benchmarks past 275 terms were unable to

be run due to exponential runtimes), and Boppana-Halldórsson

GC achieves comparable optimality with quadratic runtime

(see Figure 13). Our Linear-Time Transpilation consistently

has an ∼ 8x advantage. Among the QWC methods, we

consistently see 3-4x reductions in number of partitions over

Naı̈ve separate measurements. Our Linear-Time Transpilation

is by far the fastest–it is not plotted in Figure 13, since it

always took < 0.01s. OpenFermion’s function is also fast,

but is restricted to QWC-edge graphs only and has the lowest

partitioning advantage.

VIII. EXPERIMENTAL RESULTS

We validated our techniques with a proof of concept

demonstration by experimentally replicating a recent result

[11]: ground state energy estimation of deuteron, the nucleus

of an uncommon isotope of hydrogen. We performed our

experiments via the IBM Q Tokyo 20-qubit quantum computer

[1], which is cloud accessible.

Fig. 12. Factor of improvement (which we are attempting to maximize) over
Naı̈ve for each of the algorithms benchmarked for Hamiltonian sizes up to
630 terms.

Fig. 13. Wall clock runtimes of the MIN-CLIQUE-COVER algorithms up to
630 terms. The Linear-Time Transpilation is omitted, because it always took
< 0.01s.

Following [11], deuteron can be modeled with a 2-qubit

Hamiltonian spanning 4 Pauli strings: IZ, ZI , XX , and Y Y .

Under Naı̈ve measurement, each Pauli string is measured in a

separate partition. Under GC, we can partition into just two

commuting families: {ZI, IZ} and {XX,Y Y }. Recall that

the {ZI, IZ} partition is QWC and can be measured with

simple Z-basis measurements. The {XX,Y Y } partition can

be measured by the Bell basis measurement circuit in Figure 8.

To establish a fair comparison between Naı̈ve measurement

and simultaneous measurement we performed experiments in

which both settings were allocated an equal budget of 100

total shots (trials). This corresponds to 25 shots per partition

in Naı̈ve measurement and 50 shots per partition in GC

simultaneous measurement. We chose a small shot budget to

emphasize the harmful effect of statistical variance with low

shots. Figure 14 plots our results using a simplified Unitary

Coupled Cluster ansatz with a single parameter and just three

gates, as described in [11].

The results indicate reasonable agreement between Naı̈ve

measurement, GC measurement, and the true (Theory) values.

The deviation from Theory stems both from statistical variance
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Fig. 14. Deuteron energy estimation under Naı̈ve and GC partitions, as
executed on IBM Q20 with a total shot budget of 100. The energies are in
MeV. Average error is 11% lower with GC simultaneous measurement than
with Naı̈ve separate measurements.

due to the low shot budget, as well as systematic noise in the

quantum processes. On average, the GC measurements had an

error of 835 keV—11% less than the average error of 940 keV

for Naı̈ve measurement.

These results are presented as proof-of-concept that simulta-

neous measurement can achieve higher accuracy than separate

measurements. For several reasons, these experimental results

underestimate the potential of simultaneous measurement,

especially as more sophisticated quantum devices emerge. In

particular:

• the Unitary Coupled Cluster ansatz of [11] is highly

simplified and does not yet exhibit the asymptotic O(N4)
scaling. Our argument that simultaneous measurement is

cheap hinges on the comparison between O(N4) ansatz

gate count and O(N2) simultaneous measurement gate

count. For this simplified ansatz and small N , simulta-

neous measurement essentially doubled the gate count.

As lower-error devices emerge with the ability to support

the full UCCSD ansatz gate count and larger qubit count

N , simultaneous measurement circuits will become a

negligible cost.

• For a small Hamiltonian like the one considered here, the

partitioning gain from GC is only 2x. As indicated in the

benchmark results in Section VII, we expect up to 30x

gains for larger Hamiltonians and possibly a gain factor

that continues to linearly increase for larger molecules,

based on extrapolation of the benchmark results.

• The number of jobs (separate measurement circuits) is

far more costly than the number of shots for practical

purposes, since (a) it is far more expensive to switch

circuits between jobs than to repeat shots within a job

and (b) executions are scheduled at the granularity of

jobs. In our experiments, we saw this as an immediate

and practical advantage of simultaneous measurement.

Our total latency was dominated by the number of jobs

rather than the number of shots, so our simultaneous

measurement results were collected much more rapidly

than Naı̈ve measurement results.

IX. STATISTICS OF SIMULTANEOUS MEASUREMENT

We have shown both how to approximate a MIN-

COMMUTING-PARTITION and how to actually construct

the requisite simultaneous measurement circuits. Finally, we

address an important question regarding the statistics of simul-

taneous measurement. This question was first raised by [34,

Section IV B2] which proved that simultaneous measurement

can actually underperform separate measurements due to the

presence of covariance terms within partitions. In particular,

the MIN-COMMUTING-PARTITION can require more total

measurements then Naı̈ve measurements, in certain situations.

Our key result, depicted by Figure 1’s ‘Covariance Miti-

gation’ box, is to resolve this open issue in two ways: (1)

we demonstrate that such a situation is atypical and (2) we

demonstrate a strategy for detecting and course-correcting if

we are dealing with such a situation. Before expanding on

these points, we provide a pathological example for reference.

A. A Pathological Example

Consider the Hamiltonian, H = IZ+ZI−XX−Y Y +ZZ,

following the example of [34]. The commutation graph has a

bowtie shape. Figure 15 depicts two possible clique covers

with k = 2 and k = 3 commuting-family partitions respec-

tively.

Fig. 15. k = 2 and 3 partitions of {IZ, ZI,XX, Y Y, ZZ}.

For each ansatz state checked by VQE, we must perform

enough repetitions to determine the expected value of the

Hamiltonian to a target accuracy level ǫ. The expected number

of repetitions, nexpect, needed to achieve this accuracy for a k-

way partitioning is [34]:

nexpect =
k
∑k

i=1 V ar(Partition i)

ǫ2
(2)

The variance from each partition can be computed from the

formula for the variance of the sum of terms that make up the

partition:

V ar({
n∑

i=1

Mi}) =
n∑

i=1

V ar(Mi) + 2
∑

1≤i<j≤n

Cov(Mi,Mj)

(3)
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where Cov(M1,M2) = 〈M1M2〉 − 〈M1〉 〈M2〉.

In the state |ψ〉 = |01〉, all covariances evaluate to 0 except

for Cov(−XX,−Y Y ) = 1. Thus the k = 2 partitioning

picks up this additional +1 penalty from the −XX,−Y Y
covariance, whereas the k = 3 partitioning avoids this penalty

by splitting the −XX and −Y Y measurements into separate

partitions. Computing nexpect explicitly, we find 8/ǫ2 and 6/ǫ2

respectively for k = 2 and k = 3; thus, the seemingly

suboptimal k = 3 partition is actually better under the |01〉
ansatz state! This phenomenon motivates us to pay close

attention to covariances within each partitioning.

B. Typical Case

We now observe that examples such as the previous one,

in which the MIN-COMMUTING-PARTITION is suboptimal,

are atypical. Below, we show that when we have no prior

on the ansatz state |ψ〉, the expected covariance between

two commuting Pauli strings is 0. This validates the general

goal of finding the MIN-COMMUTING-PARTITION, because

under 0 covariances, the only strategy for reducing nexpect in

Equation 2 is to minimize the total number of partitions k.

Theorem 1. Given M1,M2, two commuting but non-identical

Pauli strings, E[Cov(M1,M2)] = 0 where the expectation is

taken over a uniform distribution over all possible state vectors

(the Haar distribution [56], [46]).

Proof: We consider the following two exhaustive cases:

1) Either M1 or M2 is I . WLOG, suppose M1 = I . Then,

Cov(M1,M2) = 〈I ·M2〉 − 〈I〉 〈M2〉 = 0.

2) Neither M1 nor M2 is I . Since M1 and M2 are Pauli

strings which have only +1 and −1 eigenvalues, the

eigenspace can be split into M1,M2 = (−1,−1),
(−1,+1), (+1,−1), and (+1,+1) subspaces. More-

over, these subspaces are equally sized (proof follows

from stabilizer formalism [40, Chapter 10.5.1]). Let us

write |ψ〉 as a sum over projections into these subspaces:

|ψ〉 = a |ψ−1,−1〉+b |ψ−1,+1〉+c |ψ+1,−1〉+d |ψ+1,+1〉

Under this state, the covariance is Cov(M1,M2)|ψ〉 =
〈M1M2〉 − 〈M1〉 〈M2〉 = (|a|2 − |b|2 − |c|2 + |d|2) −
(−|a|2 − |b|2 + |c|2 + |d|2)(−|a|2 + |b|2 − |c|2 + |d|2).
Now consider the matching state:

|ψ′〉 = b |ψ−1,−1〉+a |ψ−1,+1〉+d |ψ+1,−1〉+c |ψ+1,+1〉

Under |ψ′〉, the covariance is Cov(M1,M2)|ψ′〉 =
〈M1M2〉 − 〈M1〉 〈M2〉 = (|b|2 − |a|2 − |d|2 + |c|2) −
(−|b|2 − |a|2 + |d|2 + |c|2)(−|b|2 + |a|2 − |d|2 + |c|2).
Thus, Cov(M1,M2)|ψ〉 = −Cov(M1,M2)|ψ′〉. Since

each |ψ〉 is matched by this symmetric |ψ′〉 state, and our

expectation is over a uniform distribution of all possible

state vectors, we conclude that E[Cov(M1,M2)] = 0.

C. Mitigating Covariances: Partition Splitting

While we have now secured the top level goal of initially

performing measurements under the MIN-COMMUTING-

PARTITION approximation, we demonstrate an adaptive strat-

egy for detecting and correcting course in the atypical case

when a simultaneous measurement should be split into sepa-

rate measurements.

Let us consider two partitionings: a baseline partitioning

with k partitions, and a candidate clique-splitting partitioning

with k′ > k partitions. The k′-partition clique-splitting par-

tition should be favored if it has a lower nexpect. Following

from equation 2, this occurs if k′
∑k′

i=1 V ar(Partition i) ≤

k
∑k

i=1 V ar(Partition i).

Returning to the example of Section IX-A, this means that

the k′ = 3 partition should be favored over the k = 2 partition

if:

3
[
V ar({−XX}) + V ar({−Y Y, ZZ}) + V ar({IZ, ZI})

]

≤ 2 [V ar({−XX,−Y Y, ZZ}) + V ar({ZI, IZ})]
(4)

Using equation 3 to expand these variances into their

component terms, we note that the terms present on the left-

hand side but not the right-hand side of Equation 4 are those

that are “broken” by the clique-splitting k′ = 3 setting:

broken terms = {2Cov(−XX,−Y Y ), 2Cov(−XX,ZZ)}

And the terms that are found on both the left- and right-

hand sides of equation 4, which we call the “unbroken terms”

are:

unbroken terms = {V ar(−XX), V ar(−Y Y ), V ar(ZZ), V ar(ZI),

V ar(IZ), 2Cov(−Y Y, ZZ), 2Cov(ZI, IZ)}

This generalizes into the rule that fewer measurements are

needed in a clique-splitting partitioning with k′ > k partitions,

as compared with the k-partition setting if:

k ∗ (
∑

broken terms) > (k′−k)∗ (
∑

unbroken terms) (5)

D. Strategies for covariance estimation

In practice, the true theoretical values of these covariances

cannot be known beforehand, as doing so would require

computations involving the exponentially sized ansatz state

vector. However, just as we use repeated measurements from

partitions of commuting terms to approximate the expected

value of their sum, we can use these same measurements

to approximate the covariances of Pauli strings in the same

partition.

With each additional measurement, we calculate the sample

covariance Ĉov(M1,M2) = 1
n−1

∑n
i=1(m1i − m1)(m2i −

m2), where {m11, ...,m1n} and {m21, ...,m2n} are the n
observed measurements of M1 and M2 respectively, and check

whether the criterion in 5 is satisfied.
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X. CONCLUSION

Simultaneous measurement substantially reduces the cost of

Variational Quantum Eigensolver by allowing measurements

to cover several Pauli strings simultaneously. We demonstrate

transpilation procedures that achieve up to 30x reductions in

the number of requisite measurements. We also raise practical

concerns about the classical transpilation costs and identify

an alternate strategy that exploits properties of molecular

Hamiltonians to achieve an 8x reduction in quantum cost

in linear time with respect to the number of Pauli strings.

Our systems emphasis also includes explicit attention to the

overhead of simultaneous measurement circuits. Accordingly,

we develop a circuit synthesis procedure, implemented and

tested in software. We also study the statistics of simul-

taneous measurement, and ensure that the top-level goal

of finding MIN-COMMUTING-PARTITIONs is statistically

justified. Our statistical analysis also yields a strategy for

detecting and correcting course when simultaneous measure-

ments are harmed by covariance terms. Our theoretical and

benchmark/simulation results are accompanied by a proof-of-

concept experimental validation on the IBM 20Q quantum

computer, via ground state estimation of deuteron. All of our

software and results are available online [2].
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