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Abstract—Variational quantum eigensolver (VQE) is a promis-
ing algorithm suitable for near-term quantum computers. VQE
aims to approximate solutions to exponentially-sized optimization
problems by executing a polynomial number of quantum sub-
problems. However, the number of subproblems scales as N* for
typical problems of interest—a daunting growth rate that poses
a serious limitation for emerging applications such as quantum
computational chemistry.

We mitigate this issue by exploiting the simultaneous mea-
surability of subproblems corresponding to commuting terms.
Our technique transpiles VQE instances into a format optimized
for simultaneous measurement, ultimately yielding 8-30x lower
cost. Our work also encompasses a synthesis tool for compil-
ing simultaneous measurement circuits with minimal overhead.
We demonstrate experimental validation of our techniques by

estimating the ground state energy of deuteron with a quan- 21z) 2
tum computer. We also investigate the underlying statistics of oo
simultaneous measurement and devise an adaptive strategy for !
mitigating harmful covariance terms. Gah &
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The present Noisy Intermediate-Scale Quantum (NISQ) era I =

[44] is distinguished by the advent of quantum computers
comprising tens of qubits, with hundreds of qubits expected in
the next five years. Although millions of physical qubits are
needed to realize the originally-envisioned quantum applica-
tions such as factoring [51] and database search [15], a new
generation of variational algorithms have been recently intro-
duced to match the constraints of NISQ hardware. However,
these variational algorithms are very expensive in terms of the
number of subproblems, or measurements, needed.
Variational Quantum Eigensolver (VQE) [42] is one such
algorithm that is widely considered a top contender, if not the
top contender, for demonstrating a useful quantum speedup.
VQE is used to approximate solutions to exponentially-sized
optimization problems in polynomial time. It has a wide class
of applications such as molecular ground state estimation [42];
maximum 3-sat, market split, traveling salesperson [39]; and
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Fig. 1. Estimating the energy of Hj naively requires 14 separate measure-
ments (left). Our technique (right) transpiles the VQE instance to only require
2 simultaneous measurements. We can act either at the qubit representation,
or in linear time at a higher abstraction (molecular Hamiltonian) level.
Measurement circuit synthesis allows us to perform the necessary simulta-
neous measurements and classically post-process to obtain all 14 targeted
measurements. Covariance mitigation prevents harmful covariances within
measurement groups.

maximum cut [36]. In this paper, we focus on the molecular
ground state estimation problem though we underscore that
the full range of VQE applications is very broad.

VQE solves a similar problem as Quantum Phase Estimation
(QPE) [27], [8], an older algorithm that requires large gate
counts and long qubit coherence times that are untenable for
near-term quantum computers. VQE mitigates these quantum
resource requirements by shifting some computational burden
to a classical co-processor. As a result, VQE circuits have low
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Fig. 2. Z-basis (computational basis) measurement of a qubit yields |0) or
|1) with a probability corresponding to the latitude of the qubit on the Bloch
sphere.

gate counts and are error resilient, but at the cost of splitting
computation into O(N*) subproblems, each performing mea-
surement of a single term known as a Pauli string. In other
words, VQE exchanges having too many gates with having
too many measurements—this poses practical limitations.

It was observed that the N4 scaling could be partly mit-

igated by performing simultaneous measurement [34]: when
the measurement terms for two subproblems commute, they
can be measured simultaneously. Our work, depicted in the
Figure 1 overview, exploits this property in order to minimize
the number of measurements needed for VQE.

Our specific contributions include:

« Techniques for transpiling Naive VQE instances to ones
partitioned into commuting families. Section IV operates
at the qubit representation layer; Section V operates
at a higher molecular abstraction layer, ensuring that
transpilation cost is not a bottleneck.

e A circuit synthesis tool for simultaneous measurement
(Section VI).

« Validation of our techniques through benchmark simula-
tion (Section VII) and experiment (Section VIII).

« Statistical analysis of simultaneous measurement, includ-
ing a technique that resolves a previously-open question
regarding the impact of covariances (Section IX).

We begin in Section II by presenting relevant background,

followed by an analysis of commutativity in Section III.

II. BACKGROUND
A. Quantum Measurement

Quantum bits (qubits) are differentiated from classical bits
by their ability to exist in superposition. Rather than being
either |0) or |1), the internal state of a qubit can be a coherent
superposition of both. This superposition is ‘analog’ and is
represented as a point on the surface of the Bloch sphere
shown in Figure 2, with |0) on the north pole and |1) on
the south pole. Although qubits can have a superposition
internally, when they are measured in hardware, they collapse
to either |0) or |1), with a probability dependent on the state’s
latitude. This measurement/readout behavior is indicated by
the Standard Z Measurement label in Figure 2

While the Z-axis or computational basis measurement is the
only measurement that hardware performs, we can effectively
measure a qubit on any other axis, such as the X or YV
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Rotation for X Measurement Rotation for Y Measurement

Fig. 3. Measurement of the X or Y Pauli matrices requires us to first apply
a quantum circuit that rotates the X or Y axis to align with the Z axis.
Subsequently, a standard Z-basis measurement yields the outcome of the X
or Y measurement.

axes. Mathematically, measurement of an operator means
that the qubit’s state collapses to an eigenvector of that
operator. For VQE, the relevant operators are defined by the
Pauli matrices: X = (9¢), Y = (9"), and Z = (§ ).

Visually, the eigenvectors of X (Y') are the antipodal points
along the X (Y) -axis of the Bloch sphere. Since hardware
cannot directly measure along these axes, measurements of X
(Y) are performed by first rotating the Bloch sphere with a
quantum gate so that the X (YY) -axis becomes aligned with
the Z-axis, as shown in Figure 3. Subsequently, a standard Z-
basis measurement can be performed, whose outcome can then
be mapped to an effective X (Y) measurement. The quantum
gates that implement the X-to-Z and Y-to-Z axis rotations
are called H and HS~! respectively [35]. Written as quantum
circuits (which are ‘timeline’ views from left to right), these
rotations look like and .

The same general measurement principle applies towards
measuring operators across multiple qubits: measurement is
accomplished by rotating the eigenvectors of the target
operator to align with the standard Z-basis vectors. There-
after, subsequent Z-basis measurement collapses the qubit
state onto an eigenvector of the target operator, as desired. The
quantum circuit for the necessary eigenvector rotation has a
matrix representation whose columns are the eigenvectors of
the target operator. In this work, we are interested in measuring
Pauli strings, which are concatenated Pauli matrices across
multiple qubits—for example, X3I>77Y, often abbreviated
without subscripts as X1ZY.

B. Simultaneous Measurement and Commutativity

Per the preceding discussion, two operators can be measured
simultaneously if they share a full set of eigenvectors. In such
a case, they can be measured simultaneously by applying the
quantum circuit that rotates their shared eigenvectors onto the
Z-basis. In the case of Pauli strings, two operators share a
set of eigenvectors if and only if they commute [50, Chapter
1], i.e. the order of their product is interchangeable. Thus,
a family of operators can be measured simultaneously iff
they pairwise commute [18, Theorem 1.3.21].

This result is foundational in quantum mechanics. For
instance, the Heisenberg Uncertainty Principle states that
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position and momentum cannot be known simultaneously—
this is because the position and momentum operators do
not commute. In this paper, we will exploit commutativity
relationships to measure many Pauli strings with a single
measurement. Informally, we aim to get “many birds with
one stone.” Notice that we have not yet discussed how to
actually perform the necessary eigenvector rotations, or how
to translate one simultaneous measurement into the actual
measurement outcomes for the multiple Pauli strings. Both
of these questions are addressed in Section VI, with a specific
example in VI-B.

C. Variational Quantum Eigensolver (VQE)

VQE can be applied to a wide class of optimization
problems that are solvable as minimum-eigenvalue estimation
[39], [36]. In this paper, we focus on the application that
has received the most commercial and experimental interest:
estimating molecular ground state energy. We use VQE to
approximate the lowest eigenvalue of an exponentially-sized
matrix called the Hamiltonian that captures the molecule’s en-
ergy configuration. The lowest eigenvalue of the Hamiltonian
is the molecule’s ground state energy which has important
implications in chemistry such as determining reaction rates
[12] and molecular geometry [41].

The Hamiltonian matrix, H, can be used as an operator to
calculate the energy of any given quantum state. Specifically,
for an input state |¢)), the expected value (H),, equals the
energy of that state. Thus, our goal is to find the input state
that yields the lowest possible (H),,,, which is the ground
state energy. On a classical computer, measuring (H) would
require multiplication of exponentially-sized matrices. The
potential quantum speedup of VQE arises from its approach
of measuring (H) |y indirectly but efficiently by decomposing
into O(N*) subproblems. In particular, VQE employs linearity
of expectation to decompose (), into a sum of O(N*)
expectations of Pauli strings, which can each be computed
efficiently. In the standard formulation of VQE, each of these
Pauli strings is measured via a separate measurement [42].

At its core, VQE can be described as a guess-check-repeat
algorithm. Initially, the algorithm guesses the ground state of
the Hamiltonian. Then, it checks the actual energy for the
guessed state by summing expected values over the O(N?)
directly measurable Pauli strings, as described above. Finally,
it repeats by trying a new guess for the ground state, with the
assistance of a classical optimizer that guides the next guess
based on past results. Repetition continues until the classical
optimizer reaches its termination condition—usually when a
good minimum has been found. Algorithm 1 presents the
pseudocode for VQE, under the standard ‘Naive’ formulation
where each Pauli string is measured separately.

Since the number of possible state vectors spans the ex-
ponentially large and continuous ‘Hilbert space’ of quantum
states, VQE operates with a restricted family of candidate
ground states. Such a restricted family is called an ansatz, and
the ansatz state |1(6)) is parametrized by a vector §. While
our work in this paper is applicable to any ansatz, we focus
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Algorithm 1: Variational Quantum Eigensolver (VQE)
Result: Approximate ground state energy,
1+ 1;
0_; < random angles;
while (not classical optimizer termination condition)
do

for j € [O(N*) Pauli terms] do
Prepare ¢(6;);
Measure (H;) under state ¢(0;);

end

)y < 25 Hdy @y

Record (6;, (H)w@));

14+

Pick new 6; via classical optimizer;

end

our attention to the Unitary Coupled Cluster Single Double
(UCCSD) ansatz, which is the leading contender for molecular
ground state estimation. In terms of the number of qubits N,
the total gate count of the UCCSD circuit is O(N4) [17], [29].

IIT. ANALYSIS OF COMMUTATIVITY

We analyze the commutativity of Pauli strings (concatena-
tions of the four Pauli matrices), which are the terms present
in Hamiltonian decompositions.

A. Single Qubit Case

For a single qubit, the four Pauli strings of length N =1
are simply the four Pauli matrices. Figure 4 depicts the
commutation graph for the four matrices, with edges between
commuting pairs. I (Identity) commutes with everything else,
and all matrices commute with themselves, as indicated by the
self-loops.

®

®
OO,

Fig. 4. Commutation graph for the four Pauli matrices.

B. Qubit-Wise Commutativity (QWC)

Now we consider the general case of N-qubit Pauli strings.
The simplest type of commutativity is Qubit-Wise Commu-
tativity (QWC). Two Pauli strings QWCommute if, at each
index, the corresponding two Pauli matrices commute. For
instance, {XX,IX, XI,II} is a QWC partition, because for
any pair of Pauli strings, both indices satisfy commutation.

QWC has been leveraged in past experimental work for
small molecules [24], [38], [17], [28] by ad hoc inspection
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of the Hamiltonian terms; however, these techniques do not
scale.

C. General Commutativity (GC)

QWC captures only a small subset of possible commuta-
tivity relationships. The most General Commutativity (GC)
rule is that two Pauli strings commute if and only if they
do not commute on an even number of indices. For example,
{XX,YY,ZZ} is a GC family: for any pair of strings, two
(both) indices fail to commute.

Figure 5 depicts the commutation relationships between all
16 two-qubit Pauli strings. Edges are drawn between Pauli
strings that commute—a blue edge indicates that the pair
is QWC (e.g. between X/, IX, and X X) and a red edge
indicates that the pair is GC but not QWC (e.g. between X X,
YY, and Z2).

Fig. 5. Commutation graph for all 16 2-qubit Pauli strings. Blue edges
indicate Pauli strings that commute under QWC (which is a subset of GC).
Red edges commute under GC-but-not-QWC.

IV. TRANSPILATION VIA MIN-CLIQUE-COVER

We refer to our core problem of interest as MIN-
COMMUTING-PARTITION: given a set of Pauli strings from
a Hamiltonian, we seek to partition the strings into commuting
families such that the total number of partitions is minimized.
The list of partitions amounts to a transpiled instance of VQE,
indicating that the Pauli strings in each partition should be
measured simultaneously. The ‘Transpilation” box on the right
side of Figure 1 depicts our goal.

Instead of solving MIN-COMMUTING-PARTITION ex-
actly, we first map it to a graph problem, as suggestively
expressed by the graph representation in Figure 5, and then
use approximation methods to obtain a solution. Observe
that cliques (fully connected subgraphs where each pair of
Pauli strings commutes) are relevant because all of the strings
in a clique can be measured simultaneously. Therefore, we
seek the MIN-CLIQUE-COVER, i.e. the smallest possible set
of cliques whose union spans all vertices. As an example,
Figure 6 shows the commutation graph for H,’s 4-qubit Hamil-
tonian and its MIN-CLIQUE-COVERSs using QWC edges and
using GC edges.

MIN-CLIQUE-COVER is NP-Hard [25] and approximat-
ing a guaranteed ‘good’ clique cover is also NP-Hard for
general graphs [55]. However, molecular Hamiltonian graphs
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All edges (GC)
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Fig. 6. The top commutation graph shows both QWC (blue) and GC-
but-not-QWC Commuting (red) relationships between the Pauli string’s in
Hy’s Hamiltonian. The vertex colors in the bottom two graphs indicate MIN-
CLIQUE-COVERs using only QWC edges (left) or using all edges (right).
The reduction in measurement partitions from Naive (measuring each Pauli
string separately) to QWC to GC is 14 — 5 — 2.

are highly structured owing both to features of the Pauli
commutation graph [43] and to patterns in the Pauli strings
that arise in molecular Hamiltonians (we explicitly address
and exploit the latter in Section V). This suggests that MIN-
CLIQUE-COVER approximation algorithms may still yield
reasonably good results.

A. Approximation Algorithms Tested

In our benchmarking, we performed MIN-CLIQUE-
COVERs using the Boppana-Halldérsson algorithm [6]
included in the NetworkX Python package [16], as
well as the Bron-Kerbosch algorithm [7] which we
implemented ourselves. These heuristics approximate
a MAX-CLIQUE whose vertices are marked; we then
recurse on the residual unmarked graph, repeating
until all vertices are marked. We also wused the
group_into_tensor_product_basis_sets|()
approximation implemented by OpenFermion [33]—this
approximation is a non-graph-based randomized algorithm
that only finds QWC partitions. Section VII presents results
across a range of molecules and Hamiltonian sizes. All of
our code and results notebooks are available online [2].

While the benchmark results indicate promising perfor-
mance in terms of finding large partitions, it is critical to
also consider the classical computation cost of performing
the MIN-CLIQUE-COVER approximation. First, the Bron-
Kerbosch algorithm lists all maximal cliques with a worst case
exponential runtime. Therefore, it should be interpreted as a
soft upper bound on how well polynomial-time approximation
algorithms can approximate a MIN-CLIQUE-COVER. The
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Boppana-Halldérsson algorithm’s runtime is polynomial but
is not well studied. Our benchmarks and theoretical analysis
indicate roughly quadratic scaling in the number of vertices.
Some polynomial benchmarks considered in other work [20],
[21], [54], [52] scale cubically in the graph size.

However, this poses a problem—the Hamiltonian graph has
N* terms, so a quadratic or cubic runtime in the number
of vertices implies N® or N'2 scaling in classical transpi-
lation/precomputation time. Beyond simply implying imprac-
tical scaling rates, these runtimes may exceed the runtime of
Naive VQE—in which case, we’d be better off just running
VQE in the Naive fashion! The exact runtime of VQE is de-
pendent on the classical optimizer and optimization landscape,
but estimates range from O(N®) under SciPy optimization
settings [22] to O(N 12) under matrix inversion techniques.
Further work is needed to understand the exact cost of VQE,
but there is a strong case that the VQE transpilation cost
from expensive MIN-CLIQUE-COVER approximations would
exceed the naive Pauli measurement cost.

In the next section, we remedy this concern by presenting a
linear-time transpilation technique that exploits our knowledge
of the structure of molecular Hamiltonians and their encodings
into qubits. The resulting transpilation procedure runs in
O(N 4) time (linear in the number of Pauli strings), which
is safely below the quantum invocation cost of VQE.

V. LINEAR-TIME TRANSPILATION

As discussed in the previous section, the VQE transpilation
methods based on MIN-CLIQUE-COVER approximation may
have classical costs greatly exceeding the quantum cost of
running VQE naively. This motivates us to find faster tran-
spilation procedures by exploiting the structure of molecular
Hamiltonians, which is ignored by the MIN-CLIQUE-COVER
approximations.

Thus, we now address the simultaneous measurement goal
at a higher abstraction level. This is depicted by the arrow from
‘Molecular Model (Hamiltonian)’ to ‘Simultaneous Measure-
ment’ in Figure 1. Previously, we worked with Hamiltonians
specified as a sum over O(N?) Pauli strings. However, this
Pauli string summation is derived from the ‘true’ molecular
form of H, which is expressed in fermionic language as:

N N N N

N N
H = Z Z hpqa;()aq + Z Z Z Z hpqrsai;ajzaras (D
P q p q T s

a and af are fermionic operators that are converted to Pauli
strings via a fermion-to-qubit encoding. We focus on Jordan-
Wigner [23], which is the most popular encoding [19], though
our results also apply to the Parity encoding [47]. Notice that
the N* scaling of the number of terms in the Hamiltonian
is clear from the quadruple summation in Equations 1. These
terms are asymptotically dominant [53]. At the scale of smaller
molecules, the O(N) terms of form pp and the O(N?) terms
of form pgpq are frequent. We treat both the asymptotically-
dominant terms and the frequent-for-small-molecules terms.
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A. pqrs Terms

For each of the asymptotically dominant N4 terms of form
a;f,ajzaras, the Jordan-Wigner encoding yields a sum over the
16 Pauli strings matching the regular expression:

(Xp|Yp) Zpiq (X |Yy) (Xr[Yr) Zies (X[ Y5)

where Z,,., denotes repeating Z’s from indices p to g, exclud-
ing endpoints.

Thus, the ~ 1N? fermionic terms expand into ~ 16 N4
Pauli strings. Our key observation is that within each set of
16 Pauli strings, the MIN-CLIQUE-COVER is just 2. Figure 7
illustrates this, showing the 16 Pauli strings matching the
regular expression above (it can be shown that the Z’s don’t
affect commutativity since they apply to the same indices).
Using GC partitions, we can perform all 16 measurements
using only two measurement circuits. Thus, we reduce the
measurement cost from ~ 16N* to ~ 2N*. Moreover, this
transpilation is fast (linear time in number of terms), occurring
directly alongside the fermion-to-qubit encoding stage.

Fig. 7. The 16 relevant Pauli strings in the Jordan-Wigner encoding of
apalaras have a MIN-CLIQUE-COVER of size 2.

B. pp and pqpq Terms

While the 8-fold reduction via partitioning the pgrs terms is
the asymptotic bottleneck, we also note a useful reduction for
the smaller terms which are significant for smaller molecules.

For the O(NN) operators of form azap, multiplying out the
Jordan-Wigner encoding yields the Pauli string Z,. For the
O(N?) operators of form alalapaq, the Jordan-Wigner en-
coding yields the Pauli string Z,,Z,. All of these Pauli strings
commute and therefore can be simultaneously measured. We
use this technique to yield reduced measurement costs even
for small molecules.

VI. MEASUREMENT CIRCUIT SYNTHESIS

Once a MIN-COMMUTING-PARTITION has been approx-
imated, we have effectively transpiled the VQE instance into
one in which terms within a partition should be measured
simultaneously. Naturally, the question arises of how to actu-
ally perform the necessary simultaneous measurements. In the
case of Naive partitions where each Pauli string is measured
separately, the measurement circuit is trivial. In particular,
recall from Section II that we simply perform the H and
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HS~! operations on the indices with X or Y respectively,
and then we measure every qubit in the Z basis. Thus, we
need just O(NN) fully-parallelizable single qubit gates.

Simultaneous measurement is also similarly straightforward
in the case of QWC partitions. Each index of a QWC parti-
tion is characterized by a measurement basis. For example,
consider the task of simultaneously measuring the two QWC
Pauli strings XIYIZ1I and IXIY1Z. We simply measure in
the X basis on the left two qubits, the Y basis on the middle
two qubits, and the Z basis on the right two qubits. In terms
of circuit cost, QWC measurement is essentially identical to
Naive measurement: O(N) single qubit gates are required, and
the gates are fully parallelizable to constant depth.

While Naive and QWC partition measurements are straight-
forward, GC partition measurements are nontrivial. As de-
picted in the ‘Measurement Circuit Synthesis’ box in Figure 1,
we provide a procedure that enables these measurements, and
we analyze its classical and quantum costs. This is the first
work explicitly demonstrating how to perform simultaneous
measurement in the general case of GC Pauli strings. We
implemented our circuit synthesis tool as a Python library and
validated it across a wide range of molecular Hamiltonians.

A. Background

As discussed in Section II, performing a simultaneous
measurement amounts to rotating the axes of the shared
eigenvectors to align with the standard Z-basis axes. One
attempt to construct such a rotation would be to explicitly
compute the shared eigenvectors and then feed them to one of
many possible gate decomposition techniques [10], [26], [45],
[30], [9], [37]. However, this approach is problematic for two
reasons. First, decomposition techniques trade off between re-
quiring intractable quantum circuit depth, requiring intractable
classical compilation time, and yielding only approximations
to the desired transformation. Second and most importantly,
these techniques require us to compute the simultaneous eigen-
vectors, which are each represented by a 2% -sized column
vector. The exponential effort of computing these eigenvectors
would erase any potential quantum advantage.

Fortunately, the stabilizer formalism—typically applied to
quantum error correction—provides us an alternative. Our
work is built upon the language of stabilizers introduced in
[14] and expanded upon in [3] as well as [49], [48]. While
these two papers were applied to error correction, quantum
simulation, and Mutually Unbiased Bases, the core techniques
also apply to our use case. Our circuit construction procedure
is inspired by these papers, but stems from a different context
and end goal.

B. An Example: {XX,YY,ZZ}

We begin with a well-known example. Consider the task
of trying to simultaneously measure X X, Y'Y, and ZZ, a GC
(but not QWC) partition. This task is equivalent to another
task in quantum computing that has a well-known solution:
Bell basis measurement. Figure 8 presents the circuit for such
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a measurement. We now explore why this circuit performs
simultaneous measurement of XX, Y'Y, and ZZ.

—e— A

Fig. 8. Bell basis measurement circuit that simultaneously measures X X,
Y'Y, and ZZ on the |¢) state. After application of these two gates, the mea-
surements of the top and bottom qubits correspond to outcomes for X X and
Z Z respectively. The Y'Y outcome is obtained from YY = —(X X)(Z2).

[¥)

First observe that since YY = —(X X)(Z2), it is sufficient
to target a measurement of [X X, ZZ]. Our goal is to transform
this target measurement into [Z1, I Z], which captures the top-
and bottom- qubit outcomes we measure directly via standard
Z-basis measurement, as discussed in Section II. An important
background fact is that after applying a quantum gate U, a
target measurement of M on the original state has become
equivalent to a measurement of UM U~ [14], [40] on the
new state. This is known as unitary conjugation.

In the Bell basis measurement circuit, we first apply a gate
called U = CNOT. By computing UMU™! we can see
that target measurements of [X X, ZZ] are transformed under
conjugation to measurements of

UMU™?!
_—

(XX, ZZ]
U=CNOT

[UXXU Y UZzZU™Y = [XI,1Z).
Finally, after applying the ‘Hadamard’ gate on the top qubit
(U = H ® I), the measurements are transformed to

UMU™?!
_—
U=HQ®I

Thus, this CNOT, H ® I gate sequence performs the de-
sired transformation of rotating a measurement of [X X, ZZ]
into the Z-basis, [ZI,1Z]. The ordering of the elements is
important and indicates that measurement of the top qubit
(Z1I) corresponds to the XX outcome and measurement of
the bottom qubit (/Z) corresponds to the ZZ outcome. As
mentioned previously, Y'Y follows as —(XX)(ZZ). Thus,
after applying the Bell basis measurement circuit and reading
out the results, we simultaneously know the outcomes of X X,
YY,and ZZ.

[XI,1Z] UXIU Y UIZU™ Y = [Z1,1Z].

C. Circuit Synthesis Procedure

Algorithm 2 describes our circuit synthesis procedure for
the general case. For brevity, we omit technical details
about the construction of stabilizer matrices, Z-matrices, and
X -matrices. However, we refer readers to [14], [3], [48]
for technical background. Moreover, our software repository
[2] includes generate_measurement_circuit.py, an
implementation of Algorithm 2 with detailed comments along
the way.

D. Circuit Synthesis Complexity and Circuit Cost

The efficiency of Algorithm 2 stems from its use of linearly
sized stabilizer matrices. This averts the exponential cost
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Algorithm 2: Circuit synthesis for sim. measurement
input : {P;}, a complete GC family of Pauli strings
output: Circuit for simultaneous measurement of {F;}

M € FZN*N « basis of {P,};

Full-rankify X-matrix by applying H gates;

Gaussian eliminate X -matrix using CNOT & SWAP
gates;

for each diagonal element in Z-matrix do

if element is 1 then apply S to corresponding
qubit;

end

for each element below diagonal of Z-matrix do
if element is I then apply C'Z to the row-col

qubits;

end
Apply H to each qubit;
Measure each qubit;

that manipulating simultaneous eigenvectors would entail via
standard gate decomposition techniques. In terms of classical
complexity, the synthesis tool is fast because its slowest step
is the Gaussian elimination in Algorithm 2, which has time
complexity of O(N?) and small constant factors [13].

The actual quantum circuit produced by the synthesis pro-
cedure requires only O(N?) gates in the worst case. This
follows because the Gaussian elimination can require O(N?)
elementary row operations, which entails O(N?) CNOT gates.
In practice, the gate count scaling is only quadratic if the
partition sizes are linear. In cases such as Section V’s linear
time transpilation, which has constant sized partitions (of size
4), the gate count is still O(V).

While the O(N?) worst-case gate count for GC measure-
ment is worse than the O(NN) gate count for Naive or QWC
measurement, we emphasize that the measurement circuit is
preceded by an ansatz preparation circuit that dominates gate
counts and depth. In particular, the UCCSD ansatz has O(N*)
gate count [17], [29]. We base our studies on UCCSD because
it is the gold standard for quantum computational chemistry
[31], [5]. Moreover, UCCSD has shown experimental and the-
oretical promise, unlike hardware-driven ansatz, which were
shown to suffer from “barren plateaus” in the optimization
landscape [32], [31]. Even in the case of other non-hardware-
driven ansatzes, gate counts and depths generally scale at least
as N2 in order to achieve high accuracy. Thus, the circuit cost
of GC measurement appears to be benign, even in the worst
case quadratic-cost scenario.

For demonstration, we show in Figure 9 the simultaneous
measurement circuit for the 4 GC-but-not-QWC qubits in the
Pauli partition for the Jordan-Wigner transformation discussed
in Section V. Specifically, this measurement circuit is used to
measure the green 8-clique in Figure 7.
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Fig. 9. Simultaneous measurement circuit generated by our software for the
green 8-clique in Figure 7.

VII. BENCHMARK RESULTS

We tested the performance of our simultaneous measure-
ment strategies in Section IV on multiple molecular bench-
marks, whose Hamiltonians we obtained via OpenFermion
[33]. Our benchmark results encompass both the reduction in
number of partitions relative to Naive, as well as the classical
transpilation runtime required to produce the partitioning.

Figure 10 indicates the reduction in commuting partitions
(cliques) found using both QWC and GC edges, in comparison
to the Naive VQE implementation in which each Pauli string is
in a singleton partition. The MIN-CLIQUE-COVERs were ap-
proximated by the exponential Bron-Kerbosch algorithm, and
thus should be regarded as soft upper bounds on the partition-
ing advantage that is practically achievable. The improvement
from Naive to QWC is consistently about 4-5x—a significant
reduction especially considering that QWC measurement is
cheap. The improvement from Naive to GC ranges from 7x
to 12x from H, to CH4 (methane). This suggests that the
advantage for GC partitioning improves for larger molecules.

Bron-Kerbosch Simultaneous Measurement
240

250
mmm Naive

Qwc
mm GC

N
=3
o

192

-
%
o

117

Number of Partitions
S
o

62

50 42

38

LiH [3]
Molecule [AS#]

H,0 [4] CHg [4]

Fig. 10. Number of QWC and GC partitions (which we are attempting to
minimize) generated by Bron-Kerbosch for four representative molecules. AS#
indicates the number of active spaces for each molecular Hamiltonian.

Figure 11 examines partitioning performance over a range of
active spaces (the number of electron ‘addresses’ considered).
We again see evidence that the GC partitioning advantage
scales with Hamiltonian size, ranging from 3x to 12x as
the number of active spaces is increased. This is important
and encouraging, because prior work demonstrated that a
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relatively large number of active spaces are needed to attain
high accuracy [4].
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Fig. 11.  Number of QWC and GC partitions generated by Bron-Kerbosch

for the Hy molecule, across an increasing number of active spaces.

We also benchmarked the performance of three polyno-
mial time transpilation procedures, Boppana-Halld6rsson (on
QWC- and GC- edge graphs) [6], OpenFermion’s partitioning
heuristic (on QWC-edge graphs only) [33], and our Linear-
Time Transpilation on problem sizes ranging from 4 to
5237 terms in the molecular Hamiltonian. We generated a
variety of Hamiltonians describing the H,, LiH, H,O, and
CH,4 molecules, and recorded both the number of partitions
generated and the runtime for each algorithm-Hamiltonian
pair. Figures 12 and 13 show the reduction factor and wall
clock runtimes for a subset of the benchmarks up to 630 Pauli
strings. Figure 12 extends the general trend shown in Figure 10
to different partitioning algorithms: GC leads to much more
optimal partitioning than QWC, because GC captures a denser
edge set. Bron-Kerbosch GC achieves the fewest number of
partitions (however, benchmarks past 275 terms were unable to
be run due to exponential runtimes), and Boppana-Halldérsson
GC achieves comparable optimality with quadratic runtime
(see Figure 13). Our Linear-Time Transpilation consistently
has an ~ 8x advantage. Among the QWC methods, we
consistently see 3-4x reductions in number of partitions over
Naive separate measurements. Our Linear-Time Transpilation
is by far the fastest-it is not plotted in Figure 13, since it
always took < 0.01ls. OpenFermion’s function is also fast,
but is restricted to QWC-edge graphs only and has the lowest
partitioning advantage.

VIII. EXPERIMENTAL RESULTS

We validated our techniques with a proof of concept
demonstration by experimentally replicating a recent result
[11]: ground state energy estimation of deuteron, the nucleus
of an uncommon isotope of hydrogen. We performed our
experiments via the IBM Q Tokyo 20-qubit quantum computer
[1], which is cloud accessible.
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Naive for each of the algorithms benchmarked for Hamiltonian sizes up to
630 terms.

40

® BoppanaH QWC
BoppanaH GC
® BronK QWC
30 ® BronK GC
® OpenF QWC
@
Q
g2
<
S
~
10
_ —e—
0 a
0 200 400 600

Hamiltonian Size (Number of Pauli Strings)

Fig. 13.  Wall clock runtimes of the MIN-CLIQUE-COVER algorithms up to
630 terms. The Linear-Time Transpilation is omitted, because it always took
< 0.01s.

Following [11], deuteron can be modeled with a 2-qubit
Hamiltonian spanning 4 Pauli strings: /2, ZI, XX, and YY.
Under Naive measurement, each Pauli string is measured in a
separate partition. Under GC, we can partition into just two
commuting families: {ZI,1Z} and {XX,YY}. Recall that
the {Z1,1Z} partition is QWC and can be measured with
simple Z-basis measurements. The {X X, Y'Y} partition can
be measured by the Bell basis measurement circuit in Figure 8.

To establish a fair comparison between Naive measurement
and simultaneous measurement we performed experiments in
which both settings were allocated an equal budget of 100
total shots (trials). This corresponds to 25 shots per partition
in Naive measurement and 50 shots per partition in GC
simultaneous measurement. We chose a small shot budget to
emphasize the harmful effect of statistical variance with low
shots. Figure 14 plots our results using a simplified Unitary
Coupled Cluster ansatz with a single parameter and just three
gates, as described in [11].

The results indicate reasonable agreement between Naive
measurement, GC measurement, and the true (Theory) values.
The deviation from Theory stems both from statistical variance
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Deuteron <H> estimation, 100 total shots on IBM 20Q
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Fig. 14. Deuteron energy estimation under Naive and GC partitions, as

executed on IBM Q20 with a total shot budget of 100. The energies are in
MeV. Average error is 11% lower with GC simultaneous measurement than
with Naive separate measurements.

due to the low shot budget, as well as systematic noise in the
quantum processes. On average, the GC measurements had an
error of 835 keV—11% less than the average error of 940 keV
for Naive measurement.

These results are presented as proof-of-concept that simulta-
neous measurement can achieve higher accuracy than separate
measurements. For several reasons, these experimental results
underestimate the potential of simultaneous measurement,
especially as more sophisticated quantum devices emerge. In
particular:

o the Unitary Coupled Cluster ansatz of [11] is highly
simplified and does not yet exhibit the asymptotic O(N*4)
scaling. Our argument that simultaneous measurement is
cheap hinges on the comparison between O(N*) ansatz
gate count and O(N?) simultaneous measurement gate
count. For this simplified ansatz and small N, simulta-
neous measurement essentially doubled the gate count.
As lower-error devices emerge with the ability to support
the full UCCSD ansatz gate count and larger qubit count
N, simultaneous measurement circuits will become a
negligible cost.

For a small Hamiltonian like the one considered here, the
partitioning gain from GC is only 2x. As indicated in the
benchmark results in Section VII, we expect up to 30x
gains for larger Hamiltonians and possibly a gain factor
that continues to linearly increase for larger molecules,
based on extrapolation of the benchmark results.

The number of jobs (separate measurement circuits) is
far more costly than the number of shots for practical
purposes, since (a) it is far more expensive to switch
circuits between jobs than to repeat shots within a job
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and (b) executions are scheduled at the granularity of
jobs. In our experiments, we saw this as an immediate
and practical advantage of simultaneous measurement.
Our total latency was dominated by the number of jobs
rather than the number of shots, so our simultaneous
measurement results were collected much more rapidly
than Naive measurement results.

IX. STATISTICS OF SIMULTANEOUS MEASUREMENT

We have shown both how to approximate a MIN-
COMMUTING-PARTITION and how to actually construct
the requisite simultaneous measurement circuits. Finally, we
address an important question regarding the statistics of simul-
taneous measurement. This question was first raised by [34,
Section IV B2] which proved that simultaneous measurement
can actually underperform separate measurements due to the
presence of covariance terms within partitions. In particular,
the MIN-COMMUTING-PARTITION can require more total
measurements then Naive measurements, in certain situations.

Our key result, depicted by Figure 1’s ‘Covariance Miti-
gation’ box, is to resolve this open issue in two ways: (1)
we demonstrate that such a situation is atypical and (2) we
demonstrate a strategy for detecting and course-correcting if
we are dealing with such a situation. Before expanding on
these points, we provide a pathological example for reference.

A. A Pathological Example

Consider the Hamiltonian, H = I Z+Z]1-XX-YY+ZZ,
following the example of [34]. The commutation graph has a
bowtie shape. Figure 15 depicts two possible clique covers
with £ = 2 and £ = 3 commuting-family partitions respec-
tively.

k = 2 partitions

© ©
O, ®

k = 2 and 3 partitions of {IZ,Z1, XX,YY,ZZ}.

k = 3 partitions

O

Fig. 15.

For each ansatz state checked by VQE, we must perform
enough repetitions to determine the expected value of the
Hamiltonian to a target accuracy level . The expected number
of repetitions, 7expect, Needed to achieve this accuracy for a k-
way partitioning is [34]:

k¥, Var(Partition i)
2

Nexpect =

@
€

The variance from each partition can be computed from the
formula for the variance of the sum of terms that make up the
partition:

Var({ZMi}):ZVar(Mi)w > Cov(M;, M)

1<i<j<n
(3)
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where CO’U(Ml,MQ) = <M1]V[2> - <]L11> <]V[2>

In the state |¢p) = |01), all covariances evaluate to 0 except
for Cov(—XX,-YY) = 1. Thus the £k = 2 partitioning
picks up this additional +1 penalty from the — XX, -YY
covariance, whereas the k = 3 partitioning avoids this penalty
by splitting the —X X and —Y'Y measurements into separate
partitions. Computing nexpect €xplicitly, we find 8/e? and 6/¢?
respectively for £ = 2 and & = 3; thus, the seemingly
suboptimal k = 3 partition is actually better under the |01)
ansatz state! This phenomenon motivates us to pay close
attention to covariances within each partitioning.

B. Typical Case

We now observe that examples such as the previous one,
in which the MIN-COMMUTING-PARTITION is suboptimal,
are atypical. Below, we show that when we have no prior
on the ansatz state |¢)), the expected covariance between
two commuting Pauli strings is 0. This validates the general
goal of finding the MIN-COMMUTING-PARTITION, because
under 0 covariances, the only strategy for reducing 7expect in
Equation 2 is to minimize the total number of partitions k.

Theorem 1. Given M, Ms, two commuting but non-identical
Pauli strings, E[Cov(My, Ms)] = 0 where the expectation is
taken over a uniform distribution over all possible state vectors
(the Haar distribution [56], [46]).

Proof: We consider the following two exhaustive cases:

1) Either My or My is I. WLOG, suppose M; = I. Then,
CO’U(Ml,MQ) == <I . M2> - <1> <M2> =0.

Neither M, nor My is I. Since M, and M, are Pauli
strings which have only +1 and —1 eigenvalues, the
eigenspace can be split into My, Mo (-1,-1),
(—=1,41), (+1,-1), and (+1,+1) subspaces. More-
over, these subspaces are equally sized (proof follows
from stabilizer formalism [40, Chapter 10.5.1]). Let us
write |1} as a sum over projections into these subspaces:

2)

[¥) = alh_1,_1)+b|Y_1 1) +elbpr,—1) +d i1 1)

Under this state, the covariance is Cov(My, M)y =
(My M) — (My) (M3) = (Ja|* = [b]” — [c[> + |d]?) —
(—laf> = 16> + |e[* + [dI*) (~|al* + [b]* — [e]* + |d[?).
Now consider the matching state:

[y =bly_1_1)+alp_1 1) +d|Yp1, 1) +clir 1)

Under [¢"), the covariance is Cov(My, Ma)y
(MyMa) — (My) (M) = (b2 — [af? — [dI? + |cf?) -
(=1b* = lal® + 1d* + |e[) (= [b]* + |af* — [d|* + [c]).
Thus, Cov(My, My)yy = —Cov(My, Ma)yy. Since
each |1)) is matched by this symmetric [¢)) state, and our
expectation is over a uniform distribution of all possible
state vectors, we conclude that E[Cov(M;, Ms)] = 0.
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C. Mitigating Covariances: Partition Splitting

While we have now secured the top level goal of initially
performing measurements under the MIN-COMMUTING-
PARTITION approximation, we demonstrate an adaptive strat-
egy for detecting and correcting course in the atypical case
when a simultaneous measurement should be split into sepa-
rate measurements.

Let us consider two partitionings: a baseline partitioning
with k partitions, and a candidate clique-splitting partitioning
with k' > k partitions. The k’-partition clique-splitting par-
tition should be favored if it has a lower nexpect. Following
from equation 2, this occurs if &’ Zflzl Var(Partition i) <
k Zle Var(Partition 7).

Returning to the example of Section IX-A, this means that
the k' = 3 partition should be favored over the k = 2 partition
if:

3[Var({—XX}) + Var({=YY,ZZ}) + Var({1Z, ZI})]
<2[Var({-XX,-YY,ZZ})+ Var({Z1,12})]
“4)

Using equation 3 to expand these variances into their
component terms, we note that the terms present on the left-
hand side but not the right-hand side of Equation 4 are those
that are “broken” by the clique-splitting k' = 3 setting:

broken terms = {2Cov(—X X, -YY),2Cov(—X X, ZZ)}

And the terms that are found on both the left- and right-
hand sides of equation 4, which we call the “unbroken terms”
are:

unbroken terms = {Var(—XX),Var(=YY),Var(ZZ),Var(ZI),
Var(1Z2),2Cov(-YY,ZZ),2Cov(Z1,12)}

This generalizes into the rule that fewer measurements are
needed in a clique-splitting partitioning with k' > k partitions,
as compared with the k-partition setting if:

k x (Z broken terms) > (k' — k) * (Z unbroken terms) (5)

D. Strategies for covariance estimation

In practice, the true theoretical values of these covariances
cannot be known beforehand, as doing so would require
computations involving the exponentially sized ansatz state
vector. However, just as we use repeated measurements from
partitions of commuting terms to approximate the expected
value of their sum, we can use these same measurements
to approximate the covariances of Pauli strings in the same
partition.

With each ﬂditional measurement, we calculate the sample
covariance Cov(My, M>) > (myy — ™) (ma; —
m3), where {mi1,...,min} and {ma1,...,ma,} are the n
observed measurements of M, and M, respectively, and check
whether the criterion in 5 is satisfied.
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X. CONCLUSION

Simultaneous measurement substantially reduces the cost of
Variational Quantum Eigensolver by allowing measurements
to cover several Pauli strings simultaneously. We demonstrate
transpilation procedures that achieve up to 30x reductions in
the number of requisite measurements. We also raise practical
concerns about the classical transpilation costs and identify
an alternate strategy that exploits properties of molecular
Hamiltonians to achieve an 8x reduction in quantum cost
in linear time with respect to the number of Pauli strings.
Our systems emphasis also includes explicit attention to the
overhead of simultaneous measurement circuits. Accordingly,
we develop a circuit synthesis procedure, implemented and
tested in software. We also study the statistics of simul-
taneous measurement, and ensure that the top-level goal
of finding MIN-COMMUTING-PARTITIONS is statistically
justified. Our statistical analysis also yields a strategy for
detecting and correcting course when simultaneous measure-
ments are harmed by covariance terms. Our theoretical and
benchmark/simulation results are accompanied by a proof-of-
concept experimental validation on the IBM 20Q quantum
computer, via ground state estimation of deuteron. All of our
software and results are available online [2].
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