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Cement is the most widely consumed material
globally, with the cement industry accounting for
8% of human-caused greenhouse gas emissions.
Aiming for cement composites with a reduced carbon
footprint, this study investigates the potential of
nanomaterials to improve mechanical characteristics.
An important question is to increase the fraction
of carbon-based nanomaterials within cement
matrices while controlling the microstructure and
enhancing the mechanical performance. Specifically,
this study investigates the fracture response of
Portland cement reinforced with one- and two-
dimensional carbon-based nanomaterials, such as
carbon nanofibres, multiwalled carbon nanotubes,
helical carbon nanotubes and graphene oxide
nanoplatelets. Novel processing routes are shown to
incorporate 0.1-0.5wt% of nanomaterials into cement
using a quadratic distribution of ultrasonic energy.
Scratch testing is used to probe the fracture response
by pushing a sphero-conical probe against the surface
of the material under a linearly increasing vertical
force. Fracture toughness is then computed using a
nonlinear fracture mechanics model. Nanomaterials
are shown to bridge nanoscale air voids, leading to
pore refinement, and a decrease in the porosity and
the water absorption. An improvement in fracture
toughness is observed in cement nanocomposites,
with a positive correlation between the fracture
toughness and the mass fraction of nanofiller for
graphene-reinforced cement. Moreover, for graphene-
reinforced cement, the fracture toughness values are
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in the range of 0.701 to 0.717 MPa./m. Thus, this study illustrates the potential of nanomaterials
to toughen cement while improving the microstructure and water resistance properties.

This article is part of a discussion meeting issue ‘A cracking approach to inventing new
tough materials: fracture stranger than friction’.

1. Introduction

Concrete is the second most-consumed resource on Earth after water, with a global production
that exceeds 16 billion metric tonnes a year [1,2]. Cement is an essential ingredient in concrete,
with an annual world production of 4.1 billion metric tonnes [3]. However, the production of
a tonne of cement releases a tonne of carbon dioxide into the atmosphere. As a result, the
cement industry accounts for 8% of global human-caused carbon dioxide emissions [4]. Thus,
the carbon footprint of the cement industry must be cut drastically to meet the Paris Agreement’s
temperature goals.

A significant way to decrease the carbon footprint of cement is to develop cements with
improved fracture resistance to reduce the volume needed to design buildings and structures.
In recent years, carbon-based nanomaterials have attracted much attention as a potential
reinforcement for cement due to their extraordinary properties. For instance, carbon nanotubes
exhibit a tensile strength of 5-100 GPa and Young’s modulus of 1 TPa [5-9]. Meanwhile, graphene
exhibits a tensile strength of 130 GPa and Young’s modulus of 1 TPa [10]. Several studies have
reported significant gains in stiffness and strength using cement nanocomposites reinforced
with carbon-based nanomaterials [11-14]. The improvement in mechanical properties is usually
followed by an enhancement in multifunctional response, such as electrical conductivity or
strain-sensing capabilities. In particular, a critical issue has been to increase the fraction of
carbon-based nanomaterials—to maximize the multifunctional behaviour—while controlling
the microstructure and improving the mechanical characteristics. However, when it comes to
mechanical performance, the primary criterion has been strength. The issue is that a strength-
focused performance criterion cannot account for defects, which are pervasive at the structural
level, nor can it account for fracture, which plays an important role in the failure. Thus, more
studies are needed to yield advanced synthesis protocols for the synthesis of Portland cement
carbon-based nanocomposites, and understand the influence of carbon-based nanomaterials on
the fracture response of Portland cement.

The objective of this research is to employ novel fracture assessment methods and novel
synthesis protocols to study the impact of carbon-based nanomaterials on the fracture of cement
reinforced with nanomaterials. The focus is on graphene nanoplatelets, carbon nanofibres,
multiwalled carbon nanotubes and helical carbon nanotubes. To this end, scratch testing is
employed, which consists of pushing a sphero-conical probe across the surface of the specimen.
This manuscript is organized as follows: First, the experimental programme is introduced.
Then, the theoretical model is presented. Finally, the results are shown, and their significance
is analysed.

2. Materials and methods

(a) Cementnanocomposite design and synthesis

Cement composites reinforced with carbon-based nanofillers were synthesized. Four types of
carbon-based nanofillers were selected: carbon nanofibres (CNF), multiwalled carbon nanotubes
(MWCNT), helical carbon nanotubes (HX) and graphene nanoplatelets (GNP). The carbon
nanofibres were sourced from Pyrograph Products, Inc. (Cedarville, OH) as highly graphitic and
tubular stacked-cup carbon nanotubes. The remaining carbon-based nanofillers were sourced
from Cheap Tubes, Inc. (Grafton, VT). Both multiwalled carbon nanotubes and helical carbon
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nanotubes were produced through catalytic chemical vapour deposition. The helical carbon
nanotubes contained 80 wt% carbon nanotubes with a helical structure and various helix angles.
Furthermore, chemically exfoliated graphene nanoplatelets were also considered, with a thickness
of 8-15nm. The specific surface area was highest for the graphene nanoplatelets (500-700 m? g~ 1)
and lowest for the carbon nanofibres (20-30 m?2 g‘l). Meanwhile, the reverse was true for the
nanofiller length: the highest value was achieved with carbon nanofibres (150-200 pm), whereas
the lowest was achieved with graphene nanoplatelets (1-2pum). Table S1 in the electronic
supplementary material section lists the specific surface area, diameter and length of each
carbon-based nanofiller considered.

Cement nanocomposites were synthesized, through a novel procedure, with 0.1-0.5wt%
carbon-based nanofillers per mass of cement. The detailed mix designs of all cement
nanocomposites are provided in table S2 of the electronic supplementary material. In the rest
of the manuscript, we will designate the specimens as X-n where X= (GNP, CNF, HX and
MWCNT) is the type of nanomaterial and n = (1, 2, 5) represents the mass fraction of nanomaterial
(0.1*n wt% per mass of cement).

The novel synthesis protocol involved four steps. First, the carbon-based nanofillers were
pre-dispersed in deionized water with ultrasonic energy. A quadratic distribution of ultrasonic
energy was adopted with respect to the nanofiller mass fraction. The amount of ultrasonic
energy provided was 1.77kJ /(g171) for 0.1 wt%, 3.54 k] /(g1~!) for 0.2 wt% and 17.72 k] /(g17}) for
0.5 wt%. Second, the suspension of carbon-based nanofillers in deionized water was mixed with
Portland cement using an overhead IKA digital stirrer equipped with a four-bladed propeller
stirrer to provide ultra-high speed and high shear. The mixing speed was set at 200 rpm for
nanofiller fractions less than 0.1 wt%, 400 rpm for 0.2 wt%, and 800 rpm for 0.5 wt%. Afterwards,
the slurry was poured into lubricated cylindrical moulds that were then sealed using polyethylene
films. The specimens were initially cured for 24 h using an orbital shaker at a rotational speed of
79 rpm. After the initial 24 h curing, the cement nanocomposite specimens were removed from
their moulds and soaked in deionized water for an additional 6 days. After a total of 7 days of
curing, the cement nanocomposites were soaked in ethanol for 24 h to stop the cement hydration
and stored under vacuum afterwards.

Two reference Portland cement materials were mixed by combining 138.8 g of Portland cement
with 61.12g of deionized water. For the first reference Portland cement specimens, R-M, the
Portland cement powder and deionized water were mixed manually for 2min and cast in
lubricated, sealed moulds to cure at room temperature for 24 h. For the second reference Portland
cement specimens, R-HS-OS, the cement powder was mixed with deionized water using an IKA
digital overhead, high-shear, high-speed mixer at 200 rpm for 2 minutes. Afterwards, the slurry
was cast in lubricated moulds and sealed using an orbital shaker with a 19 mm orbit and rotational
speed of 79 rpm for 24 h. For both reference cement materials, R-M and R-HS-OS, after 24 h of
curing, the cement specimens were removed from their moulds and cured in deionized water for
7 days.

(b) Water absorption and porosity measurements

Water absorption and porosity were measured after 7 days of curing following standard ASTM
C20-00 [15] with minor modifications. First, the specimens were dried in an oven at 50°C for 24 h,
and the dry mass Mg,y and dry specific gravity pqry were measured. Then, the specimens were
saturated by submersion in deionized water at 23°C for 24 h, and the saturated mass Mgatyrated
was measured. The water absorption W was calculated as the relative difference between the dry

and the saturated mass:
Msaturated — Mdry %

Mdry

The porosity P was computed as the product of the water absorption and the dry specific
gravity [16]:

W=

100. @.1)

P=W x pdry. (2.2)
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(c) Grinding and polishing

Before nanoscale mechanical testing, the cement nanocomposite specimens were meticulously
polished to yield a flat surface. First, each specimen was cold-mounted using a low-viscosity
epoxy resin. Afterwards, 4 mm thick slices were machined using a low-speed diamond saw with
an inert, oil-based coolant. Grinding was conducted using a semi-automated grinder and polisher
apparatus, along with silicon carbide grinding pads of grit size 240, 400 and 600, consecutively.
The specimens were rinsed using an ultrasonic bath with an inert, oil-based solvent in between
each grit size. Polishing was conducted using abrasive lapping discs with silicon carbide particles
of size 1 pm and 0.25 um, consecutively. After grinding and polishing, the specimens were stored
under a vacuum.

(d) Environmental scanning electron microscopy imaging

The microstructure of the polished cement nanocomposite specimens was observed using
environmental scanning electron microscopy (ESEM) imaging. To this end, an FEI Quanta 650
environmental scanning electron microscope equipped with a backscatter detector was used. In
the ESEM experiments, the walking distance was 10-11 mm, the accelerating voltage was 10kV,
the spot size was 3—4.5 and the magnification level was in the range of 10000 to 50 000x.

(e) Scratch tests

The fracture response of the cement nanocomposite specimens was measured using microscopic
scratch tests. As illustrated in figure 14, scratch tests consisted of pushing an axisymmetric probe
across the surface of a softer material under a linearly prescribed vertical force. All scratch tests
were conducted using an Anton Paar (Ashland, VA) microscopic scratch tester equipped with
a 200 um Rockwell C diamond probe. The vertical force was progressively increased using a
force feedback loop system, and the prescribed maximum vertical force was 2.5 N. Meanwhile,
the scratch length was 5mm, and the scratch speed was 10 mm/min. Before testing the cement
specimens, the scratch probe was calibrated using fused silica. Calibration scratch tests were
performed with a maximum vertical force of 7 N, a scratch length of 3mm and a scratch speed
of 6mm min~!. During each scratch test, the vertical and horizontal forces were measured using
load sensors with a resolution of 0.1 mN. The penetration depth was measured using a linear
variable differential transformer system with a resolution of 0.3 nm. The acquisition rate for the
forces and the vertical depth was 45.0kHz. For each cement nanocomposite material, seven
scratch tests were conducted, spaced 1.2mm apart. The microscopic scratch tester unit was
integrated with a high-resolution Nikon transmitted light microscope. At the end of each scratch
test, optical microscopy images of the residual top surface were captured using an Olympus
objective at 200 x magnification, yielding a scratch panorama. After scratch testing, fracture
micromechanisms were investigated using backscattered ESEM.

3. Theory

A nonlinear fracture mechanics model was applied to extract the fracture toughness from the
scratch test measurements. The theoretical model was previously published in [18-20]; the salient
points are summarized here. The first step is to identify the shape of the fracture surface during
scratch testing. To this end, backscattered ESEM imaging was performed to visualize the residual
groove following progressive-load scratch tests on cold-rolled steel with a sphero-conical probe
(figure 1b). Curved fracture surfaces were observed perpendicular to the direction of scratch
testing. As for the orientation, the fracture surfaces were slanted, suggesting subsurface cracking.
Based on these observations, the existence of a crack that propagates forward beneath the surface,
away from the tip of the scratch probe, was postulated (figure 1c).
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Figure 1. (a) Digital photography image of scratch test equipment set-up. Credits: Ange-Therese Akono, Northwestern
University, 2020. (b) Backscattered environmental scanning electron micrographs of the residual groove after progressive-
load scratch testing on cold-rolled steel. The arrows indicate the direction of the scratch test. (¢ d) Schematics illustrating the
Fracture Mechanics model for scratch tests using an axisymmetric probe. (c) Side view. (d) Front view. The hatched area A is
the horizontally projected load-bearing contact area. The dotted red line p is the perimeter. 7 is the horizontal force and d is
the penetration depth. Adopted from Akono et al. [17], with permission from Cambridge University Press. (Online version in
colour.)

As drawn in figure 1d), the crack initiated below the crack tips and later followed the contour
of the scratch probe. Consider a crack of length ¢ that propagates at a speed V = fe,. Given
penetration depth d, there are two geometrical parameters of interest: the perimeter p (the dotted
line in figure 2b) and the horizontally projected load-bearing contact area A (the hatched area in
figure 1c). During an incremental advance d¢ of the crack, the incremental crack surface created
is dI" = pd(. The energy release rate G is the thermodynamic driving force associated with crack
propagation. The dissipation during crack propagation is dD = GdI". The energy release G is then
related to the rate of change of the potential energy &pot via:

de . .
d—i"* = —GI'=—Gpl. (3.1)

The energy release rate G is calculated using the contour integral method or J-integral [21]. The
basic idea is to describe the change in potential energy within a material volume £ from the
perspective of an observer tied to the tip of the propagating crack. Consider a closed contour C
containing the crack tip. For a displacement-prescribed test, and given the stress-free boundary
conditions on the crack faces, the potential energy is the integral of the free energy v inside the
material volume 2, or Epot = [, ¥ds2. The total change in potential energy comprises two terms.
The first term, [, (9y/0t)d$2, is related to the change in free energy within £2. The second term,
Js0 =¥V - n, describes the free energy convectively transported as the reference system moves at
speed V (the observer is fixed and tied to the crack tip) where n is the outward unit vector normal
to the boundary 92 of 2. Thus:

d(c:pot 3@0 .
— fo V-n=—Gp¢. 2
di J ar d L yV.-n pe (3.2)
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Figure 2. Backscattered environmental scanning electron microscopy of plain cement and cement nanocomposites. Unless
otherwise noted, all specimens were imaged after 7 days of hydration. (a,b) Graphene-reinforced cement, GNP-5. (c) Carbon
nanofibre—reinforced cement, CNF-5. (d) Multiwalled carbon nanotube-reinforced cement, MWCNT-5. (-S-H = calcium
silicate hydrates. GNP = graphene nanoplatelets. (NF = carbon nanofibre. MWCNT = multiwalled carbon nanotubes. (Online
version in colour.)

For a linear elastic material, ¢ = (1/2)0 : ¢. Using the theorem of virtual work, the first term
can be transformed into [, (3 /0t) d$2 = ¢ J90 T - (05/0x)dS, where T =g - 1 is the stress vector
on the boundary 952 and £ is the displacement vector. Finally, the integr_al on the boundary of
the material volume element can be simplified into an integral on the closed contour C, since the
crack surface is stress-free (I = 0) and horizontal (e, - n = 0). Therefore, the energy release rate can
be estimated from:

9§

1 s

with ny =e, - n. In the case of the scratch test, the closed contour comprises the material probe
interface (S), the top surface that is stress-free (n, =0,T =0), and closing material surfaces far
removed (¢ =0, (3§ /0x) = 0). As a result, the only non-zero contribution to the right-hand side of
equation (3.1) comes from the material-probe interface:

c=1 J <1//nx -T- ﬁ)ds. (3.4)
p s dx

Assuming plane strain conditions, along with a uniaxial distribution of the stress field ahead
of the probe, o = —(Fr/A)e, ® e,, we can express the energy release rate G as a function of the
horizontal force Fr, the material Young’s modulus E and the Poisson’s ratio v according to:

E 2pA

(3.5)

The Griffith crack propagation criterion is employed to mark the onset of crack propagation. The
crack propagates when the energy release rate G reaches a certain threshold, that is, the fracture
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energy Gy [22]. The Griffith-Irwin relation is used to connect the fracture energy Gy to the fracture
toughness K., assuming plane strain conditions G = ((1 — v?)/E)K? [23]. The fracture toughness
K. is then a function of the horizontal force F according to:

Fr
V2pA’

Herein, 2pA is the scratch probe shape function that depends on the penetration depth d and on
the scratch probe geometry. For instance, for a conical probe, the scratch probe shape function is
a cubic function of the penetration depth, whereas for a spherical probe, the scratch probe shape
function is a quadratic function of the penetration depth. In practice, the scratch probe shape
function must be calibrated using a reference material [24]. The theoretical model then predicts
that, in the case of a purely brittle fracture process, the ratio of the horizontal force over the square
root of the scratch probe shape function is constant and equal to the fracture toughness of the
material.

K. = (3-6)

4, Results

(a) Microstructure of cement nanocomposites

Using ESEM, a granular and porous microstructure was observed, with unhydrated cement
grains in white, hydrated cement in grey and micropores in black (electronic supplementary
material, figure S2). Figure 2 displays high-resolution BESEM images of nano-reinforced
cement at a mass fraction of 0.5wt%, with magnification levels ranging between 5000 x
and 50671 x. Additional BESEM images are shown in electronic supplementary material,
figure S3. For graphene-reinforced cement (figure 24,b), flakes of graphene nanoplatelets were
observed connecting cement hydration products—here, calcium silicate hydrate (C-S-H) grains
and ettringite needles. For carbon nanofibre-reinforced cement, figure 2c shows single carbon
nanofibres, 110-240nm thick, filling nanopores. BESEM imaging suggests that the dispersion
procedure was sufficient to debulk carbon nanofibres and yield isolated carbon nanofibres within
Portland cement matrices. As for multiwalled carbon nanotube-reinforced cement, figure 24
shows carbon nanotube bundles, 145-365nm thick, filling nanopores and connecting C-S-H
grains. Thus, nanomaterials refined the pore structure at the nanoscale by filling voids and
connecting cement hydration products. These findings agree with recent studies that reported
a refinement of the pore size in cement nanocomposites [14,25-27].

Our novel procedure for synthesizing cement nanocomposites yielded an increase in water
penetration resistance, as measured via water absorption and porosity. The water absorption and
porosity values for the reference cement and cement nanocomposite specimens are reported in
electronic supplementary material, figures S4a and S4b, respectively. The nominal values of water
absorption, porosity and dry specific gravity are given in electronic supplementary material, table
S3. The water absorption of the manually mixed Portland cement reference specimen was 16.83%,
with a porosity of 29.76%. Significant decreases in both water absorption and porosity were
observed for the Portland cement reference specimen following high-speed, high-shear mixing
combined with curing on an orbital shaker: water absorption was 5.07% and porosity was 9.64%.
A greater decrease was observed for cement nanocomposites, with median water absorption and
porosity values of 3.65% and 7.17%, respectively. The lowest water absorption and porosity values
were obtained for GNP-5: 2.52% and 4.81%, respectively. These findings agree with Hu ef al.’s
study [25]. After testing cement reinforced with 0.05-0.1wt% carbon nanotubes, the volume
fraction of pores greater than 100nm was 3-5%. Therefore, 24h curing on an orbital shaker
was essential to remove macroscopic air voids, densify the microstructure, and reduce water
absorption. Carbon-based nanomaterials also promoted the densification of the microstructure
and led to an improvement in water penetration resistance, as measured by water absorption and
porosity.
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Ligament

Figure 3. Fracture mechanisms of cement nanocomposites. (a) Carbon nanofibre—reinforced cement (CNF-2). The dotted arrow
indicates the direction of the motion of the scratch probe. (b) Graphene-reinforced cement (GNP-2). (c) Multiwalled carbon
nanotube—reinforced cement (MWCNT-2). (d) Helical carbon nanotube—reinforced cement (HX-2).

(b) Fracture micromechanisms of cement nanocomposites

Figure 3a displays a BESEM image of the residual groove after scratch testing on carbon
nanofibre-reinforced cement. Microcracks were observed that were curved and perpendicular
to the direction of the motion of the scratch probe. There was also some debris present on
the sides of the grooves. The microcracks and debris provided physical evidence of fracture
processes during scratch testing and justified the use of the scratch test method to yield
fracture toughness. Figure 3b—d display fracture micromechanisms for cement nanocomposites.
In addition to microcracking and debris generation, additional fracture micromechanisms include
ligament bridging and crack deflection.

(c) Fracture toughness of cement nanocomposites

Figure 4a displays representative load-depth curves for cement nanocomposites, using graphene
cement GNP-5 as an example. Seven scratch tests were conducted, spaced 1.2 mm apart. All seven
tests look similar when superimposed on top of each other, pointing to the reproducibility of the
scratch test method. For all but one test, the maximum penetration depth was approximately
32 um, whereas the maximum value of the horizontal force was around 2.5 N. After each scratch
test, a residual groove was formed (figure 4b). The presence of the residual groove, along with
the observed crack surfaces shown in figure 5, support our approach to measuring fracture
toughness using scratch testing. Supplementary figure 4 displays the load-depth curves for all
cement nanocomposite specimens tested.

Figure 4c displays the fracture scaling of scratch tests using the nonlinear fracture mechanics
model. The quantity Fr/,/2pA is displayed as a function of the depth-to-radius ratio d/R. A
Rockwell C scratch probe was used, which consists of a cone of half-apex angle 60° with a sphere
of tip radius R =200 wm at the end. In particular, the transition from sphere to cone occurs at

i 15 04 S i oo B RapAE



Downloaded from https://royalsocietypublishing.org/ on 23 June 2021

~
)
~

IOT'

brittle

ductile

F/V2pA, MPavm
A o

[\

0

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14
IR

Figure 4. Fracture toughness of graphene—cement GNP-5. (a) Load-depth curve. (b) Residual groove after scratch testing.
(c) Fracture scaling curve. Fr is the horizontal force, d is the penetration depth, R is the scratch probe tip radius and 2pA is
the scratch probe shape function. K_ is the fracture toughness. (Online version in colour.)

a penetration depth of dyg =27 pm. Thus, given the penetration depths recorded (figure 6b), we
used the shape function for a spherical probe and considered only data points corresponding to
d <dp. According to the theoretical model (equation (3.4)), the quantity Fr/ \/2;9_A is constant in
the case of a brittle fracture process. Figure 4c shows two regions: for d/R < 0.06, the quantity
Fr/./2pA decreases sharply, pointing to a mix of ductile and brittle failure processes. However,
for d/R > 0.06, a convergence towards a constant value is observed. The convergence of Fr/ \/Zp_A
points to a fracture-driven process with dominant brittle fracture; fracture toughness is also the
asymptotic value of F/,/2pA. Before the test, the scratch probe shape function 2pA was calibrated
using fused silica [19]; the calibration curve is shown in electronic supplementary material figure
S5. Using scratch tests, the fracture toughness of the reference Portland cement specimen R-M
was found to be equal to 0.531 + 0.006MPa/m. This value agrees with reported values of the
fracture toughness for plain Portland cement (w/c=0.4, 0.4-0.5MPay/m) using conventional
macroscopic fracture testing methods, such as the three-point bending test on single-edge notched
specimens [28-30]. This agreement in fracture toughness measurement between the scratch test
fracture approach and conventional fracture testing method for plain Portland cement supports
the rigour and validity of our approach. Electronic supplementary material, figure S7 displays the
load-depth curves and fracture toughness scaling curves for all Portland cement specimens. The
high-shear, high-speed mixing and the curing with an orbital shaker were found to significantly
enhance fracture resistance, as the reference Portland cement R-HS-OS exhibited a 26% increase
in fracture toughness, with a fracture toughness value of 0.67 & 0.02MPa/m, consistent with the
reduction of porosity due to the improved mixing/casting method.

Figure 5 displays fracture toughness values measured via scratch tests for all cement
nanocomposites considered in this study. Electronic supplementary material, figure S8 displays
the fracture scaling curves, and electronic supplementary material, table S4 in the electronic
supplementary material lists the fracture toughness values for all 12 cement nanocomposites.
For graphene-reinforced cement, the fracture toughness ranged from 0.706 to 0.721 MPay/m.
Moreover, a positive correlation was observed between the mass fraction of graphene
nanoplatelets and the gain in fracture toughness. For carbon nanofibre-reinforced cement, the
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Figure 5. Influence of carbon-based nanomaterials on the fracture toughness of cement matrices. GNP = graphene
nanoplatelets. CNF = carbon nanofibres. HX = helical carbon nanotubes. MWCNT = multiwalled carbon nanotubes. The solid
blue line indicates the average fracture toughness of the reference Portland cement specimen. (Online version in colour.)
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version in colour.)
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fracture toughness ranged from 0.666 to 0.733 MPa,/m. For cement reinforced by multiwalled
carbon nanotubes and helical carbon nanotubes, the fracture toughness ranged from 0.603 to
0.719 MPay/m and 0.618 to 0.731 MPa./m, respectively. Graphene nanoplatelets exhibited the
highest specific surface area, 500-700m?g~!, which could explain the higher values of the
fracture toughness as the mass fraction of graphene nanoplatelets increased. Similarly, carbon
nanofibres exhibited the highest length, 50-200 um, which could explain the enhancement in
fracture toughness for all three reinforcement levels. Thus, our study suggests that the specific
surface area and the length of nanomaterials play a significant role in regulating the fracture
toughness of cement nanocomposites.

5. Discussion

A new method is shown to disperse high-mass fractions of carbon-based nanomaterials in
Portland cement matrices while enhancing fracture toughness. Due to strong Van der Waals
forces, nanomaterials such as carbon nanotubes, carbon nanofibres and graphene nanoplatelets
tend to agglomerate and form clusters. Nanomaterial clusters, in turn, hinder the workability
of the cement slurry, promote the formation of macropores and limit load transfer mechanisms
within the hardened cement nanocomposite. The challenge then consists of dispersing the
nanomaterials within the cement matrix while enhancing mechanical performance. The standard
is to disperse nanomaterials using ultrasonic energy combined with an air-entraining agent, such
as a carboxylate-based superplasticizer [31-33]. The ultrasonic energy provided is also typically
linearly proportional to the fraction of nanomaterials [34]. By contrast, in this study, nanomaterials
are dispersed in three steps: pre-dispersion in deionized water using ultrasonic energy, mixing
with cement using ultrahigh-speed, high-shear conditions, and continuous mechanical stirring
for the first 24 h of curing using an orbital shaker. The ultrasonic energy scales quadratically with
respect to the mass fraction of nanomaterials. In the last two steps, unhydrated cement grains
are used to further disperse nanomaterial clusters. Moreover, the role of ultrahigh-speed, high-
shear conditions is to promote nanomaterial cluster dispersion and accelerate cement hydration.
Finally, in the first 24 h of the curing process, an orbital shaker is used to remove macroscopic
air voids.

The novel synthesis route presented in this study yielded increases in the fracture toughness of
cement nanocomposites. Figure 6 compares our findings to recent studies that have measured the
fracture toughness of Portland cement paste reinforced with carbon-based nanomaterials, such as
carbon nanotubes and graphene nanoplatelets. Luo et al. [35] measured the fracture toughness of
CNT-reinforced cement using three-point bending tests on single-edge notched specimens. They
reported fracture toughness values ranging from 0.1757 to 0.3242 MPa/m for 0.1-0.2 wt% CNT-
reinforced cement after 28 days of curing. Hu et al. [25] measured the fracture toughness of CNT
with w/c=0.2 after 48h of curing. The fracture toughness was 0.542-0.608 MPa/m for 0.05—
0.1 wt% CNT-reinforced cement. Zou et al. [30] investigated the fracture resistance of CNT cement
with w/c=0.4 at mass fractions 0.038% and 0.075% for various values of ultrasonic dispersion
energy and after 28 days of curing. However, they concluded that the optimal dispersion energy
was constant, irrespective of the CNT mass fraction. The fracture toughness values for the optimal
mix design were 0.408 MPa/m for 0.038% CNT and 0.506 MPa/m for 0.075% CNT. Finally, Liu
et al. [26] studied the fracture behaviour of CNT cement and GNP cement with w/c=0.35 and
mass fractions of 0.05 wt% and 0.1 wt% after 28 days of curing. The fracture toughness was 0.180-
0.221 MPa/m for CNT cement and 0.171-0.172 MPa/m for GNP cement. The fracture toughness
decreased as the mass fraction of nanomaterials increased.

It is challenging to compare the fracture toughness of cement nanocomposites between
studies due to differences in the type, geometry and source of nanomaterials. One must also
account for differences in cement nanocomposite w/c ratios, curing age and curing regimes.
Another factor is the length-scale of testing. For instance, macroscopic specimens might involve
a higher distribution of defects that would result in lower fracture toughness. However, the
methodology presented in this study yields both higher reinforcement levels and higher fracture
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toughness values for carbon nanotube-reinforced cement, carbon nanofibre-reinforced cement
and graphene-reinforced cement. After 7 days of curing, for w/c=0.44, and for reinforcement
mass fractions of 0.1-0.5wt%, the lowest fracture toughness value was 0.599 MPa,/m and
the highest value was 0.726 MPa/m. Some areas for future investigation include the effect
of curing conditions and curing age on the fracture toughness of cement nanocomposites.
Nevertheless, a novel synthesis route has been devised to yield cement nanocomposites with
high reinforcement levels of carbon-based nanomaterials and with significantly improved values
of fracture toughness.

This study has demonstrated the potential of scratch testing to yield the fracture toughness
of cement nanocomposites. The observed fracture-enhancing mechanisms were pore refinement,
microcracking, crack deflection, ligament bridging and debris formation. Additional fracture
micromechanisms reported in the scientific literature for nano-reinforced cement involve
nanomaterials bridging microcracks [25,26,35] and nanomaterial pulling out [30,36]. The
advantage of the scratch test method is that it is semi-destructive, reproducible and requires
small specimens. The specimens tested in this study were 30 mm wide and 3mm thick. By
contrast, conventional fracture testing methods, such as the three-point bending test, require
macroscopic specimens—usually 40 x 40 x 160 mm—along with fastidious specimen preparation.
Furthermore, it is essential to generate a sharp notch to yield an accurate fracture toughness
measurement in the three-point bending method. In practice, a finite notch radius is used,
which can result in significant measurement inaccuracies [37,38]. Another issue is the presence of
significant size effects due to the interaction between the fracture process zone and the specimen
dimensions [39]. The scratch test, on the other hand, does not require an initial notch to be created.
Moreover, size-independent fracture toughness is obtained in the asymptotic regime of brittle
fracture. Thus, the scratch test provides an alternative means to probe fracture toughness at the
microscopic length-scale using depth-based sensing techniques.

6. Conclusion

We investigated the influence of carbon-based nanomaterials on the fracture response of Portland
cement nanocomposites. We devised novel synthesis routes to incorporate 0.1-0.5 wt% graphene
nanoplatelets, helical carbon nanotubes, multiwalled carbon nanotubes and carbon nanofibres
into cement matrices. Here are our major findings:

— Graphene nanoplatelets exhibited two distinct morphologies in graphene-reinforced
cement: open flakes and rolled-up tubes. Due to their large specific surface area,
there is a positive correlation between the fraction of graphene nanoplatelets and the
fracture toughness of the resulting nanocomposites. The fracture toughness of graphene-
reinforced cement ranged from 0.706 to 0.721 MPa/m.

— For helical carbon nanotubes, multiwalled carbon nanotubes and carbon nanofibre—
reinforced cement, an increase in fracture toughness was observed at 0.5wt%
reinforcement levels, with fracture toughness values ranging from 0.72 to 0.73 MPa/m.

— Incorporating nanomaterials using high speed and high shear followed by curing with
an orbital shaker results in a 78% decrease in water absorption and a 76% decrease in
porosity.

— Scratch tests offer an efficient and rigorous means to probe the size-independent fracture
toughness of cement nanocomposites.

The protocols and findings reported in this study pave the way for discovering novel
ways to increase the fraction of carbon-based nanomaterials within Portland cements to yield
improvements in fracture toughness and water penetration resistance.
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