1908.10349v3 [cs.RO] 13 Feb 2021

arxiv

LiDARTag: A Real-Time Fiducial Tag System
for Point Clouds

Jiunn-Kai Huang, Shoutian Wang, Maani Ghaffari, and Jessy W. Grizzle

Abstract—Image-based fiducial markers are useful in problems
such as object tracking in cluttered or textureless environments,
camera (and multi-sensor) calibration tasks, and vision-based
simultaneous localization and mapping (SLAM). The state-of-the-
art fiducial marker detection algorithms rely on the consistency
of the ambient lighting. This paper introduces LiDARTag, a novel
fiducial tag design and detection algorithm suitable for light de-
tection and ranging (LiDAR) point clouds. The proposed method
runs in real-time and can process data at 100 Hz, which is faster
than the currently available LiDAR sensor frequencies. Because
of the LiDAR sensors’ nature, rapidly changing ambient lighting
will not affect the detection of a LiDARTag; hence, the proposed
fiducial marker can operate in a completely dark environment.
In addition, the LiDARTag nicely complements and is compatible
with existing visual fiducial markers, such as AprilTags, allowing
for efficient multi-sensor fusion and calibration tasks. We further
propose a concept of minimizing a fitting error between a point
cloud and the marker’s template to estimate the marker’s pose.
The proposed method achieves millimeter error in translation and
a few degrees in rotation. Due to LiDAR returns’ sparsity, the
point cloud is lifted to a continuous function in a reproducing
kernel Hilbert space where the inner product can be used to
determine a marker’s ID. The experimental results, verified by
a motion capture system, confirm that the proposed method can
reliably provide a tag’s pose and unique ID code. The rejection
of false positives is validated on the Google Cartographer indoor
dataset and the Honda H3D outdoor dataset. All implementations
are coded in C++ and are available at: https://github.com/UMich-
BipedLab/LiDARTag.

I. INTRODUCTION

Artificial landmark systems, referred to as fiducial markers,
have been designed for automatic detection via specific type of
sensors such as cameras [1]-[6]. The marker usually consists
of a payload, that is, a pattern that makes individual markers
uniquely distinguishable, and a boundary surrounding the
payload that is designed to assist with isolating the payload
from its background. Their supporting algorithms typically
consist of modules to detect the marker, decode its payload,
and estimate the pose. Such artificial landmarks have been
successfully used in computer vision, augmented reality [1]
and simultaneous localization and mapping (SLAM) [7].

Images are sensitive to lighting variations, and therefore,
visual fiducial markers rely heavily on the assumption of illu-
mination consistency. As such, when lighting changes rapidly
throughout a scene, the detection of visual markers can fail.
Alternatively, light detection and ranging devices (LiDARs)
are robust to illumination changes due to the active nature of

J. Huang, S. Wang M. Ghaffari, and J. Grizzle, are with the Robotics
Institute, University of Michigan, Ann Arbor, MI 48109, USA. {bjhuang,
shoutian, maanigij, grizzle}@umich.edu.

//////

i
i
i
.

)
0
/5//

i
0
ik

l

i

\
i

* //// /

I
1l
l
1

Fig. 1: LiDAR-based markers can be used in tandem with camera-based
markers to address the issue of images being sensitive to ambient lighting.
This figure shows a visualization of LiDARTags of two different sizes in a
full point cloud scan.
the sensor. In particular, rapid changes in the ambient lighting
do not affect the detection of features in point clouds returned
by a LiDAR. Unfortunately, however LiDARs cannot detect
the fiducial markers designed for cameras. Hence, to utilize the
advantages of both sensor modalities, a new type of fiducial
marker that can be perceived by both LiDARs and cameras
is required. Such a new marker can enable applications such
as multi-sensor fusion and calibration tasks involving visual
and LiDAR data [8]. Designing such fiducial markers is
challenging due to inherent LiDAR properties such as sparsity,
lack of structure and the varying number of points in a scan.
In particular, the fact that an individual LiDAR return has no
fixed spatial relation to neighboring returns makes it difficult
to isolate a fiducial marker within a point cloud.

In this paper, we propose a novel and flexible design of a
fiducial tag system, called LiDARTag, as shown in Figure 1.

https://github.com/UMich-BipedLab/LiDARTag
https://github.com/UMich-BipedLab/LiDARTag

A system is further developed to detect LiDARTags with
various sizes and to estimate their poses. Point clouds are
represented as functions in a Reproducing Kernel Hilbert
Space (RKHS) [9] to decode their IDs. The whole system
can run in real-time (over 100 Hz), which is even faster
than currently available data rates of LiDAR sensors. The
proposed LiDARTag can be perceived by both RGB-cameras
and point clouds. In [8], [10], the authors used LiDARTags in
a LiDAR-camera calibration pipeline as a means to extract the
LiDAR returns on the tag. The LiDARTag system was not used
to decode a payload nor to estimate pose. LiDARTags have
been successfully used for LIDAR-camera calibration [8], [10].
It can be further applied to SLAM systems for robot state
estimation and loop closures. Additionally, it can help improve
human-robot interaction, allowing humans to give commands
to a robot by showing an appropriate LiDARTag. However,
the proposed system utilizes the intensity measurement of a
LiDARTag to decode its ID. Therefore, LiDARs with stable
(good) intensity readings are required. In particular, the present
work has the following contributions:

1) We propose a novel and flexible fiducial marker for
point clouds, LiDARTag, that is compatible with existing
image-based fiducial marker systems, such as AprilTag.

2) We develop a robust real-time method to estimate the
pose of a LiDARTag. The optimal pose estimate mini-
mizes an L;-inspired fitting error between the point cloud
and the marker’s template of known geometry.

3) To address the sparsity of LiDAR returns, we lift a point
cloud to a continuous function in an RKHS and use the
inner product structure to determine a marker’s ID among
a pre-computed function dictionary.

4) We present performance evaluations of the
LiDARTag where ground truth data are provided
by a motion capture system. We also extensively analyze
each step in the system with spacious outdoor and
cluttered indoor environments. Additionally, we report
the rate of false positives validated on the indoor Google
Cartographer [11] dataset and the outdoor Honda H3D
dataset [12].

5) We provide open-source implementations for the physical
design of the proposed LiDARTag and all of the associ-
ated software for using them, in C++ and Robot Oper-
ating System (ROS) [13]; see https://github.com/UMich-
BipedLab/LiDARTag [14].

The remainder of this paper is organized as follows. Sec-
tion II presents a summary of the related work. Section III
explains the tag design. Tag detection and pose estimation
are discussed in Section IV and Section V. The construction
of continuous functions and ID decoding are introduced in
Section VI. Experimental evaluations of the proposed Li-
DARTags are presented in Section VII. Finally, Section VIII
concludes the paper and provides suggestions for future work.

II. RELATED WORK

Fiducial marker systems were originally developed and
used for augmented reality applications [1], [2] and have

been widely used for object detection and tracking and pose
estimation [15]. Due to their uniqueness and fast detection rate,
they are also often used to improve Simultaneous Localization
And Mapping (SLAM) systems [7]. Because of automatic
detection, the camera-based markers are often used to extract
features for cameras in target-based LiDAR-camera calibra-
tion [8], [16], [17], and the proposed algorithm can provide
a means to extract features for LiDARs. To the best of
our knowledge, there are no existing fiducial markers for
point clouds. Among the many popular camera-based fiducial
markers are ARToolKit [1], ARTag [2], AprilTag 1-3 [3]-[5],
and CALTag [18].

In the following, we review some recent and well-known
fiducial markers for cameras. ARTag [2] [19] uses a 2D bar-
code to make decoding easier. AprilTag 1-3 [3]-[5] introduced
a lexicode-based [20] tag generation method in order to reduce
false positive detection. ChromaTag [6] proposes color gradi-
ents to speed up the detection process. RuneTag [21] uses rings
of dots to improve occlusion robustness and more accurate
camera pose estimation. CCTag [22] adopts a set of rings
to enhance blur robustness. More recently, LFTag [23] has
taken advantage of topological markers, a kind of uncommon
topological pattern, to improve longer detection range. This
also enables the decoding of markers with high distortion, and
these markers can be flexibly laid down. While there are some
fiducial markers using deep learning technique [24], [25], to
date, all of those detectors, still only work on cameras.

There are several deep-learning-based object detection ar-
chitectures for LiDAR point cloud. Most of the methods
for 3D object detection deploy a voxel grid representation
[26]-[28]. Recently, [27], [29], [30] have sought to improve
feature representation with 3D convolution networks, which
require expensive computation. Similar to proposed methods
for 2D objects [31]-[35], the proposed methods for 3D objects
generate a set of 3D boxes in order to cover most of the objects
in 3D space. However, most detectors are limited to specific
categories and none of these detectors or proposed methods
has adequately addressed rotation, perspective transformations,
or domain adoption.

Remark 1. As mentioned above, there exist several deep-
learning-based object detectors trained on large-scale Li-
DAR datasets [36]-[38]. These detectors are trained on
limited categories in a specific dataset, and if the training
and testing data are not consistent, the inference process
could fail. They would have to be retrained on new data
in order to be viable for our LiDARTag. Another option
could be to design our own detector and train on our own
datasets rather than using existing detectors. However, there
is no guarantee that the resulting detector would work for
varied scenes spanning from a cluttered laboratory to spacious
outdoor environments. Additionally, the existing detectors rely
on powerful graphics processing units (GPUs) and they are
thus not suitable for lightweight mobile robots. On the other
hand, the detector proposed in this paper is robust to general
scenarios and achieves satisfactory results in practice. Deep-

https://github.com/UMich-BipedLab/LiDARTag
https://github.com/UMich-BipedLab/LiDARTag

learning-based methods, however, are interesting future work
and are discussed in Sec. VIIL

III. TAG DESIGN AND LIDAR CHARACTERISTICS

This section describes some essential points to consider
when designing and using a LiDAR-based tag system. In
particular, this section addresses how the unstructured point
cloud from a LiDAR results in different considerations in the
selection of a marker versus those used with a camera.

A. LiDAR Point Clouds vs Camera Images

Pixel arrays (i.e., an image) from standard RGB-cameras
of different resolutions are very structured, with the pixels
arranged in a uniform (planar) grid, and each image having
a fixed number of data points. A LiDAR returns (z,y,z)
coordinates of 3D points lying on the surface of objects as well
as the intensity, which relies on the reflectivity/material of the
object. The reflectivity is measured at the wavelength used
by the LiDAR. Some LiDARs also provide beam numbers.
The resulting 3D point clouds are typically referred to as
“unstructured” because:

o The number of returned points varies for each scan and
for each beam. In particular, LiDAR returns are not
uniformly distributed in angle or distance'.

e As shown in Fig. 2, high contrast between adjacent
regions of a target’s surface can result in missing returns
and in varying spaces between returns.

e When used outdoors, the number of returned points is
also influenced by environmental factors such as weather,
especially temperature.

Consequently, as opposed to an image, there is no fixed
geometric relationship between the index numbers of returns
from two different beams in a multi-beam LiDAR. A further
difference is the density of the collected data; currently,
basic cameras provide many more data points for a given
surface size at a given distance than even high-end LiDARs.
These summarized differences have an impact on how one
approaches the design of a LiDAR-based tag system vs. a
camera-based tag system.

B. Tag Placement and Design

As mentioned in Sec. III-A, a return from a typical LiDAR
consists of an (z,y, z) measurement, an intensity value 4, and
a beam number (often called ring number, r). In this paper, we
propose exploiting the relative accuracy of a LIDAR’s distance
measurement to determine “features” when seeking to isolate
a LiDARTag in a 3D point cloud (see Sec. IV) and associating
the isolated LiDARTag points with a continuous function to
decode the marker’s payload (see Sec. VI).

'Some LiDARs have different ring density at different elevation angles.
For example, 32-Beam Velodyne ULTRA Puck LiDAR has dense ring density
between —5° and 3°, and has sparse ring density from —25° to —5° and
from 3° to 15° [39]. Therefore, in a sparse region, a target may be only
partially illuminated/observed.

Fig. 2: This figure illustrates the unstructured nature of a LiDAR-point-cloud
return (left) for a planar surface with black and white squares (right). On the
left, the black and white dots are lower reflectivity and higher reflectivity,
respectively. The sparse region of the LiDAR is indicated in light yellow and
the dense region is marked in light blue. The returns are more irregular at the
black-white transitions. Red circles indicate missing returns and green bars
highlight larger gaps between returned points.

1) Tag design: A LiDARTag is assumed to consist of a
planar fiducial marker rigidly attached to a 3D object, as
shown in Fig. 3a. In particular, the marker shows different
intensity values when illuminated by a LiDAR. As indicated
in Sec. III-A, intensity relies on how a LiDAR measures the
reflectivity of an object. Most types of fiducial markers for
camera-based systems could be adapted for use in LiDAR-
based systems as long as the payload is composed of differing
reflectivities and is placed inside the region highlighted in
yellow in Fig. 3b. Figure 3c shows an example of an April-
Tag used as a LiDARTag. In our experiments, we print the tags
from a regular printer and a poster machine. Because fiducial
markers are usually printed from a printer, however, markers
with two colors such as AprilTag 1-3 [3]-[5], ARTag [2], [19],
InterSense [40], CyberCode [41], or CALTag [18] can be most
easily adapted for use in our LiDARTag system, while Cho
et.al [42] with multi-color cannot.

For this initial study, we employ AprilTag3 as our fiducial
markers. Furthermore, within the AprilTag3 family of markers,
we select tagl6h6c5, that is, a tag encoding 16 bits (i.e., 16
black or white squares), with a minimum Hamming distance
of 6, and a complexity of 5. The Hamming distance measures
the minimum number of bit changes (e.g., bit errors) required
to transform one string of bits into the other. For example, the
length-7 strings “1011111” and “1001011” have a Hamming
distance of 2, whereas “1011111” and “1001010” have a
Hamming distance of 3. The significance is that a lexicode
with a minimum Hamming distance h can detect h/2 bit errors
and correct up to | (h — 1)/2] bit errors [20]. The complexity
of an AprilTag is defined as the number of rectangles required
to generate the tag’s 2D pattern. For example, a solid pattern
requires just one rectangle, whereas, a white-black-white stripe
would need two rectangles (first draw a large white rectangle;
then draw a smaller black rectangle). For further details, we
refer the reader to the coding discussion in Olson [3].

Remark 2. One may argue that other members of the AprilT-
ags3 family, such as tag49h15cl5, tag36hlicl0, tag36hi10ci0,

Region for fiducial marker
Black boundary
‘White boundary

Region for fiducial marker

Black boundary
White boundary

3D object
X_ Planar fiducial marker

(@ (b)

© (d)
Fig. 3: (a) illustrates a LiDARTag consisting of two parts: a 3D object with
a rigidly attached, planar fiducial marker where ¢ and h are the marker size
and height of the object respectively. (b) shows the marker should be placed
inside the yellow region and (c) illustrates an example of AprilTag being used
as a LiDARTag. (d) is the sensor setup consisting of a LiDAR, a camera and
several motion capture markers.

and tag25h10c8, would be more appropriate. For example,
including more bits tends to increase the number of distinct
tags in a family, while a larger Hamming distance reduces
false positives. However, for tags of the same physical size
and the same distance from the sensor, more bits means fewer
returns per square and a higher error rate for individual
squares.

2) Tag placement: In Fig. 3a, let ¢t be the tag size and h
be the thickness of the 3D object. The 3D object is assumed
to have /2 /4 clearance around it, and the first LiDAR ring
hitting at a LiDARTag is above 3/4 of the LiDARTag, see
Sec. IV-B. In particular, the fiducial marker can be attached
to a wall as long as the condition, i > t\@/ll, in Fig. 3a is
met. Finally, it is not recommended to orient the marker like a
square due to the quantization error inherited in LiDAR sen-
sors, see [8, Sec. II].

IV. TAG DETECTION

This section provides the individual steps for detecting
potential markers and examining their validity. The over-
all pipeline is shown in Fig. 4. To localize potential Li-
DARTags within the point cloud, the first step is to find
features. The features are then grouped into distinct clusters?.
Most of these clusters will not contain tags. Therefore, it is

2Clustering features instead of clustering directly on a LiDAR scan is
critical to achieve real-time applications.

essential to validate whether a cluster contains a LiDARTag or
not.

A. Feature Detection

As mentioned in Sec. III-A, images are very structured in
that the vertical and horizontal pixel-pixel correspondences are
known. Consequently, various kinds of 2D kernels [45] can
be applied for edge detection. However, unlike images, raw
LiDAR point clouds are unstructured in that even if we have
the indices of all points in each beam, we do not know the
vertical point-point correspondences.

Therefore, to find a feature in a point cloud, an edge point
is defined as discontinuities in distance. Inspired by the point
selection method in LeGO-LOAM [46], a point is defined as
a feature if it is an edge point, and its consecutive n points are
not edge points (similar to plane features in LeGO-LOAM).
Given consecutive n+ 1 points, we choose to use a 1D kernel
to compute spatial gradients at each point to find edge points.
Let p; ,,, be the i point in the m™ beam so that the gradient
of distance VD(p;) can be defined as

VD(pim) = |Piti,m — Pimll2 = |Pici,m — Pim|l2, (D)

where £ is a design choice (here, ¢ = 1). If VD(p; ,,,) at
a point exceeds a threshold {, we then consider p;,, as
a possible edge point. Using distance gradients requires a
LiDARTag being ¢ away from the background. For speed in
real time application, we do not apply further noise smoothing,
edge enhancement, nor edge localization. Finally, if there is
only one edge point in the consecutive n + 1 points (n = 2 in
this paper), then the edge point is considered as a feature.

B. Feature Clustering

After determining the features in the current point cloud, we
group them into clusters using the single-linkage agglomera-
tive hierarchical clustering algorithm3 [47], [48]. As indicated
in Sec. III-A, LiDAR returns are not uniformly distributed in
angles or distance. The linkage criteria, therefore, considers
the z-y axes and the z-axis differently: signed Manhattan
distance is chosen for the z-y axes, and ring numbers are
selected for the z-axis. Similarly, boundaries of a cluster are
defined by the four center points of a cuboid’s faces and
maximum/minimum ring numbers, as shown in Fig. 6. The
algorithm loops over each feature, either linking it to an
existing cluster and updating its boundaries, or creating a new
cluster.

Remark 3. LiDAR rings are determined by the elevation angle
of an emitter. Most existing LIDARs provide not only (x,y, z,1)
values, but also a ring number of a data point. If ring numbers
are not available and there exists only one rotation axis in
the LiDAR, a ring number can be simply regressed against
elevation angle by taking the LiDAR’s ring numbers as a
discrete set of corresponding elevation angles, in which the
number of elevation angles is the same as the number of beams

3We chose this clustering algorithm because the number of LiDARTags is
unknown. Therefore, algorithms like K-Means Clustering cannot be used.

raw Point of Interest

Clustering

: Point of Interest
point cloud : | Determination

Tag Decoding

Tag ID Decoding <4—————

Tag Detection

Point Cloud Function
Construction and Inner Product

- Cluster Validation —-> Pose Esimation

3D-Shape Point
Cloud Transformation

Fig. 4: The system contains three parts: tag detection, pose estimation, and tag decoding. The detection step takes an entire LIDAR scan (up to 120,000 points
from a 32-Beam Velodyne ULTRA Puck LiDAR) and outputs collections of likely payload points of the LiDARTags. Next, a tag’s optimal pose minimizes the
L -inspired cost in (8), though the rotation of the tag about a normal vector to the tag may be off by +90° or 180° and will be resolved in the decoding
process. The tag’s ID is decoded with a function library inspired by [43], [44]. The decoded tag removes the rotation ambiguity about the normal.

(a) (b)

(d

Fig. 5: Intermediate steps of the LIDARTag system. The system takes a full
scan point cloud and applies feature detection as defined in (1) and associates
the features into clusters (magenta spheres), as shown in (a). Using the
features, the clusters are filled from the original scan (different color dots
stand for different intensity values) as shown in (b). Later, boundary points
(indicated by boxes) are detected. After validating all the clusters, (d) shows
the result of the point cloud of a LIDARTag pulled back to the LiDAR origin
by H%, which is a rigid-body transformation from the tag to the LiDAR that
minimizes an L1-inspired fitting error (8). The green box is the template of
the fiducial marker.

of the LiDAR. The elevation angle of a data point can be
computed as
z

Va2 +y?
We use this method to regress ring numbers for the Google

Cartographer dataset. For more detail, see our implementation
on GitHub [14].

arctan

The boundaries (b1, -+ , b4, Tmaz, "min) Of a cluster are
the maximum/minimum 2z, maximum/minimum y and max-

Vnaxt Maximuntring number

by(x +

| J
px,y,z2
bi(x —F, ¥,2)
/

me: Mihimum ring number

7,Y,2)

z

ol

Fig. 6: This figure shows the initial state of a cluster, in which has only single
one feature. A cluster is defined as a cuboid in R3. When a feature fails at
linkage, a cluster will be created and centered at itself (z,y,z) with four
boundaries (x + 7,y % 7, 2) for the a-y axes, where 7 is t+/2/4, as well as
the maximum ring number and the minimum ring number for the z-axis.

imum/minimum ring numbers among all features in the clus-
ter. When a new cluster is created from a feature p* =
(x,y,z2,4,r), the four center points of the faces are defined
as (z + 7,y + 7), with 7 = t/2/4 for the (by,--- ,bs). The
Tmaz and 7Ty, are defined in terms of the ring numbers 7,
as shown in Fig. 6. The linkage criteria L(p*,c;) between a
feature p* and a cluster ¢; is

min(b¥ — 7) < p* < max(bf + 1), Vi
rmin_]-grgrmaz"'L

1,---,4

2

where the first line is the signed Manhattan distance for the
z-y axes and the second is the ring number for the z-axis. If
both conditions are met, the feature is linked to the cluster.
The corresponding boundaries are updated, if necessary. Due
to this linkage criteria, a LiDARTag requires 7 = t\/§/4
clearance around it to avoid false linkage, and based on
preliminary testing, we also impose that the topmost beam on
the LiDARTag should be above 3/4 of the target, as indicated
by the red region in Fig. 7b.

Remark 4. We chose not to use a k-d tree structure [49]
because the number of features and the resulting clusters
are not large enough to benefit from the data structure. The
construction time of the tree could overtake the querying time.

t/‘tkﬂl

X3 Xy
(@) (b)

Fig. 7: (a) describes the coordinate system of the fiducial marker. (b) indicates
that the first beam hitting the LIDARTag should be at least 3/4 above target,
outlined as the red region.

C. Cluster Validation

At this point, we have grouped the features into clusters
as shown in Fig 5a. In practice, few (possibly none) of the
clusters will contain a valid tag and thus it is important to be
able to eliminate clusters that are clearly invalid. To do so, we
first used the point cloud data to fill in LIDAR returns between
the features of a cluster, as shown in Fig. 5b.

Inspired by AprilTag [3], [4], tag-family-based heuristics are
used to validate a cluster: number of points 7 and number of
features 1 in the cluster. Another geometry-based heuristic is
also deployed: the outlier percentage (k) of a plane fitting
process. To save computation time, if any of the above
processes fails, the cluster is marked as invalid and does not
proceed to the next stage of validation. The first two values
are determined by what type of tag family is chosen. Shown
in Fig. 3c is a tag family which contains 16 bits.

A lower bound on the number of points in a cluster is
determined by how many bits are contained in the fiducial
marker. If the payload is d x d, the LiDARTag including
boundaries is (d 4+ 4) x (d +4). If we assume a minimum of
five returns for each bit in the tag, then the minimum number
points in a valid cluster is

n > 5(d + 4)°. 3)

On the other hand, an upper bound is determined by the
distance from the LiDAR to the marker and its size t. Given
a tag at distance D, the maximum number of returns on the
marker happens when it directly faces to the LIDAR and can
be computed as:

tv2

Dsinf’ @
where 6 is the horizontal resolution of the LiDAR, M is the
number of rings hitting on the tag, and tv/2 is the diagonal
length of the tag, as shown in Fig. 7b.

The boundaries of the payload can be detected by an
intensity gradient,

VI(pim) = P om = Piml = it — Pl (5

where £ is also a design choice (here, taken as one), and pf_’m

Fig. 8: This conceptual figure illustrates the proposed method to estimate
a LiDARTag’s pose. The target’s coordinate frame is defined as the mean
of the four vertices (X1,---,X4) and the template of known geometry
is defined by (X1,---,X4) with depth € at the LiDAR origin. The rigid-
body transformation H% (black arrow) projects the target’s point cloud to
the template. The actual pose of the LiDARTag is estimated by (9) using the
inverse transformation H% (green arrow).

is the intensity value of the i point on the m" ring. An
example of detected boundary points is shown in Fig. 5c. If
VI(pim) exceeds a threshold, then p;,, is a payload edge
point. To successfully decode a tag, we will need at least one
ring on each row of the payload. Hence, the minimum number
of payload edge points is

Y > 2(d+2). (6)

Finally, we apply a plane fitting process to the remaining
clusters. If the percentage of outliers of the plane fitting is
more than x (chosen as 0.05), the cluster is considered invalid.

The above heuristics allow us to extract a potential fiducial
marker from the LiDARTag through features in both cluttered
indoor and spacious outdoor environments. The next step is to
estimate the pose of the marker.

V. POSE ESTIMATION AND INITIALIZATION

The pose of a LiDARTag is defined as H}, a rigid-body
transformation from the LiDAR frame to the LiDARTag frame,
as shown in Fig. 8. To estimate the pose, we employ the
L+-inspired method proposed in [8]. The pose estimation is
formulated into an optimization problem (9) in Sec. V-A.
Due to SE(3) being non-convex and the requirement for
a fast estimate, initial guesses to initialize the optimization
problem and the gradient of the cost function are necessary,
see Sec. V-B.

A. LiDARTag Pose Estimation

Define the target point cloud 7P := {X;}}, as the
collection of LiDAR returns from a LiDARTag, where M is
the number of points. Given the target geometry, we define
a template with vertices {X;}%_, located at the origin of the
LiDAR and aligned with the y-z plane as defined in Fig. 8.
We therefore seek a rigid-body transformation from LiDAR to
the tag, Hf € SE(3), that “best fits” the template onto the
LiDAR returns of the target. In practice, it is actually easier
to project the target point cloud 7P back to the origin of

the LiDAR through the inverse of the current estimate of
transformation H% := (H})~! and measure the error there.
The action of H € SE(3) on R? is H - X; = RX; + p, where
R €8S0(3) and p € R3. For a > 0 and A\ € R, an L;-inspired
cost is defined as

cOha) = min{|\ —al, |\ +a|} if |A] >.a. ™
0 otherwise
Let {X;}YN, = HE(TP) = {HL - X}, denote the

projected point cloud by H%, and denote a point’s (z,y, 2)-
entries by (Z;, ¥;, Z;). The total fitting error of the point cloud
is defined as

M
C(HE(TP)) Zc Zi,€) + (i, d/2) + ¢(Z;,d/2), (8)
=1

where € > 0 is a parameter to account for uncertainty in
the depth measurement of the planar target and the principal
axis with the smallest variance is used, see Sec. V-B. The
optimization problem becomes

:= argmin C(HEX(TP)).

RE.pk

Finally, the pose of a LiDARTag is Hf = H%*; see [8] for
more details. To solve this optimization problem, we leverage a
gradient-based solver in the NLopt library [50] and the closed
form of the gradient, which is provided on our GitHub [14].

Figure 5d shows the projected returns of a LiDARTag being
inside the green box (aligned with the y-z plane) at the
LiDAR origin. In addition, we further compute the 2D convex
hull within the y-z plane of the pullback of point cloud and
utilize the surveyor’s formula [51] to calculate the area of the
convex hull. Our assumption on where first ring hits the marker
results in at least 75% of the marker’s area being illuminated.
Therefore, if the estimated area is less than 75% of the marker
size, the cluster is considered invalid.

L ©)

Remark 5. Equation (9) provides an estimated rigid-body
transformation from the LiDAR to the tag, and importantly,
due to the symmetric of the target, the rotation of the tag
about a normal vector to the tag may be off by £90° or 180°.
In particular, the four rotations in Fig. 9 are not determined.
This ambiguity will be removed after decoding the tag, see
Sec. VI

B. Optimization Initialization

The corners of the LiDARTags, (Xi,---,X4), are esti-
mated from 7P. The initial guess of a rigid-body transfor-
mation is chosen to minimize the distance from the points
(X1,-++,X4) and (X1, -+, Xy). This will be reduced to a
(constrained orthogonal) procrustes problem [52], namely a
problem of the form:

© = argmin ||QA — B||p,
Q: QTo=1

(10)

where for us, € will be a to-be-determined rotation matrix and
Il 7 is the Frobenius norm.

12|13 [7]4]1 9/8|7| [3/6|9
4/5/6|] |8/5|2| |6/5/4] |2|5/|8
71819 [916/3] [3]2]1 1147

(a) (b) (©))

Fig. 9: Before decoding, the estimated rotation about the normal axis is only
known modulo 90°, which means (a) to (d) yield the same normal vector.
Accounting for the three possible rotations of (+90°,180°), results in 4
possible continuous functions in the function dictionary. When computing the
inner product to the correct id of a LIDARTag, only one of the four functions
is correct. From the correct function, the modulo 90° ambiguity is removed.

Without loss of generality, X, is assumed to be the origin,
(0,0,0) and X is the mean of 7P*. The translation p is thus
given by

Xo—RXO+p, Xo [0 0 0]
p = —RXjy. (11)
The rest of the problem can be formulated as:
=12
i nii=[[E AR oo

= |[RX: +p = X, = [|RX = X

4
> |k - Xl =

4
= 2
Z ”RXZ'/ - Xin
i=1

i=1
2
(RX) — X1): -+ (RX4 — Xy)
F
S 112
= X - X|I2. 13
where X = X X(), X = [Xll X2/ X3/ X4/] and

X = [Xl X, X5 X4] The problem is then

R* = argmin HRX XHF (14)

R: RTR=1

By the procrustes optimization problem [52], we have a closed
form solution:

M=XX"=UxvV"

R =UVT.

5)
(16)

Remark 6. 7o estimate X, we project the target point cloud
TP along a principal axis of a Principal Components Analysis
(PCA) [53]. Using the 2D projected point cloud, we use
RANSAC to regress lines to determine target edges and solve
for the intersections of the lines, to obtain an initialization of
the vertices. The smallest variance of the principal axis is then
used for the € in (8). If the number of edge points is less than
three, or any of edges fails when regressing a line, the cluster
is marked as invalid.

“In practice, this produces an good initial guess of translation for (9)

VI. FUNCTION CONSTRUCTION AND TAG DECODING

In Sec. V-A, we defined a template at the LiDAR origin,
estimated H%, and we thus have the projected point cloud.
Specifically, the projected point cloud is located at the Li-
DAR origin inside the template on the y-z plane with the
thickness being the sensor noise on the z-axis. Due to the
sparsity of the point cloud, we construct a continuous function
in an inner product space (RKHS) for the projected point
cloud [9]. For each LiDARTag in the tag family, we pre-
compute four continuous functions to account for four possible
rotations, as shown in Fig. 9, consequently, resulting in a
function dictionary. Each function is constructed by converting
each pixel of the tag image to a point in R>, see [14] for
implementation detail. Finally, we compute the inner product
of the estimated function and each function in the dictionary.
The largest inner product is the ID of the LIDARTag, and the
ambiguity of rotation in Sec. V-A is removed.

Let X := {(p;,4(p;))|p: € R® and £(p;) € Z}M, be a
collection of projected points, where M is the number of
points. In this work, we use the intensity as our information
inner product space as Z = R and the inner product, (-,)z, is
just the scalar product of intensity values. Therefore, the labels
are simply the intensity values. The continuous function of X’
is defined as

M

FC) = U@k, B, (17)
i=1

where k : R® x R? — R is the kernel of an RKHS [9].

Given another continuous function g of point cloud Z =
{(p;,£(p;))lp; € R® and £(p;) € T}}L,, where N is the
number of points. The inner product of f and g is

M N
(fr9) =D > (B0, o3) k(i 5)-

i=1j=1

(18)

The kernel k is modeled as the squared exponential kernel
[54, Chapter 4]:

KF7) = oexp (=57 - 5)AG - 7)) . (9)
where o2 is the signal variance (set to 1e5) and A is an
isotropic diagonal length-scale matrix with its diagonal entry
set to the inverse of squared half of the bit size of a LIDARTag:
1/(t/(2(d+4)))%. Let t be the LIDARTag size, and the d-bit
tag family is used (d + 4 bits, including its boundaries). Then
the bit size is t/(d + 4).
After applying the kernel trick to (18), we get [43]

M N
(Fo9) = 323 ke (UB0). €57)) - k(. 7).

i=1 j=1

(20)

where

Up7) — €(57))>?
((p)%%(p))) 21

and the length-scale [7 is set to 10 (0 < £(p;) < 255).

kz(pi, pj) = exp (—

Remark 7. To fully utilize the projected point cloud of
LiDARTag returns, we extend the planar LiDARTag to a 3D
LiDARTag based on the intensity value of each point in the
point cloud. The linear transformation is defined as:

00] |
pi= |yl =10 1 0 z‘L ’ 2
z 001 0 i

where I,q. is the maximum intensity of the point cloud and
t/(d +4) is the bit size.

Remark 8. If the fitting error (8) in Sec. V-A is greater than
10% of the number of points in the cluster or it is not able to
decode the potential cluster in Sec. VI, this cluster is marked
as invalid.

Remark 9. Reproducing Kernel Hilbert Spaces have been
widely used in the Representer Theorem [55]-[57] for various
regularization problems, such as function estimation, clas-
sification and Support Vector Machines (SVM). These are
typically high- or infinite-dimensional problems that while
mathematically feasible, often appear to be not practically
computable. With the help of RKHS and the Representer
Theorem, the solutions to these problems can be formulated in
lower-dimensional subspaces spanned by the “representers”
of the data.

VII. EXPERIMENTAL RESULTS

We now present experimental evaluations of the proposed
LiDARTag. In this work, we choose an easel as our 3D object
to support the tag. Additionally, fiducial markers from the
tagl6h6 family of AprilTag3 are used, with sizes of 1.2, 0.8,
0.61 meters, as shown in Fig. 3. We do not compare the
proposed LiDARTag system with camera-based tag systems
because it is unfair to compare depth estimation from a
LiDAR with depth estimation from a monocular camera. All
experiments are conducted with a 32-Beam Velodyne ULTRA
Puck LiDAR and an Intel RealSense camera rigidly attached to
the torso of a Cassie-series bipedal robot as shown in Fig. 3d.
We use the Robot Operating System (ROS) [13] to communi-
cate and synchronize between sensors. The LiDARTag system
runs faster than 100 Hz on a laptop equipped with Intel®
Core™ i7-9750H CPU @ 2.60 GHz, which is similar to the
processor on a robot coming to the market.

Datasets are collected in a cluttered laboratory to evaluate
detection performance and a spacious outdoor facility, M-
Air [58], equipped with a motion capture system to validate
pose estimation and ID decoding. Additionally, false positives
are evaluated on the Google Cartographer indoor dataset [11]
and the outdoor Honda H3D datasets [12].

A. Pose Evaluation and Decoding Accuracy

A motion capture system developed by Qualisys is used as a
proxy for ground truth poses. The setup consists of 30 motion
capture cameras with markers attached to tags, a LIDAR and a
camera, as shown in Fig. 3d. Datasets are collected at various
distances and angles. Each of the datasets contains images (20

(@ (b)

()

Fig. 10: (a) and (c) are images of the tag placed at 2 and 14 meters away from a Cassie-series robot. (b) and (d) describe the results of projecting the
template (green box) from the LiDAR origin to the tag’s returns by the poses of LiDARTag at 2 and 16 meters, respectively. While (d) shows much sparser
LiDAR returns than (b) due to the farther distance, we are still able to accurately estimate the pose and its ID. Compared to ground truth provided by 30
motion capture cameras, the resulting poses are a few millimeters off in translation and a few degrees off in rotation.

Hz) and scans of point clouds (10 Hz). The 1.2-meter target is
placed at distances from 2 to 14 meters in 2 meter increments.
At each distance, data is collected with a target face-on to
the LiDAR and another dataset with the target rotated by 45
degrees. More results and videos are on GitHub, see [14].

The optimization problem in (9) is solved with the method
of moving asymptotes (MMA) algorithm [59], [60] provided
in NLopt library [50]. We use the optimized LiDARTag pose to
project the template at the LiDAR origin onto the LiDARTag’s
returns to show the qualitative results of pose estimation.
Figure 10b and Figure 10d show the pose of a tag at 2 meter
and 16 meter, respectively. Even though the farther marker
has much sparser LiDAR returns, by lifting the returns to
an RKHS space, we are capable of correctly identifying its
ID. In particular, a 1.2-meter target placed at 16 meters and
rotated by 45 degrees is the detection limit of our 32-Beam
Velodyne ULTRA Puck LiDAR. However, for a LiDAR with
a different number of beams or points, the detection limit
is subject to change. The more beams or points, the greater
is the detection range. Using our LiDAR, the detectable
angle is a little smaller than camera-based marker due to the
sparse point clouds. Table I compares quantitatively the pose
estimation between the proposed LiDARTag and ground truth.
The translation error is reported in millimeters, and rotation

error £ is represented as geodesic distance ° in degrees [61]:
¢ = ||Log(RRT)||, (23)

where ||| is the Euclidean norm, R and R are the ground
truth and estimated rotation matrices, respectively, and Log(-)
is the logarithm map in the Lie group SO(3).

B. LiDARTag System and Speed Analysis

The computation time and cluster analysis of each step of
the pipeline is shown in Table II. Indoors, we have fewer
clusters because detected features are closer to each other
resulting in many of them being clustered together. The
computation time in an outdoor environment is faster than
indoors because more clusters are rejected in the early stage
due to the sparsity of the clusters, see Table III. In both
environments, the system achieves real-time performance (at
least 100 Hz).

The original double sum in (18) takes over 140 milliseconds
for each decoding process. To speed up the process, the inner
sum of the double sum is transformed to a matrix and then to
a vector form. For more details, see our implementation [14].
These two modifications boost the speed to 8.5 ms. However,
this is still not fast enough because for each remaining cluster,
(18) needs to be computed with all the tags in the function
dictionary. Threading Building Blocks library (TBB) [62] is

3The shortest path between two points on the SO(3) group.

TABLE I: Decoding accuracy of the RKHS method and pose accuracy of the fitting method. The ground truth is provided by a motion capture system with
30 motion capture cameras. The distance is in meters. The translation error is in millimeters and rotation error is the misalignment angle, (23), in degrees.

Face-on to LiDAR Rotated at 45 degrees

Distance | No. Scans | No. Wrong ID | Translation Error | Rotation Error | Distance | No. Scans | No. Wrong ID | Translation Error | Rotation Error
2.15 73 0 14.03 0.44 2.13 74 0 0.27 0.05
4.29 72 0 10.13 0.67 3.95 134 0 0.52 0.34
5.90 81 0 16.23 0.44 5.93 137 0 0.36 0.05
797 78 0 1.32 0.21 7.92 126 0 0.26 0.32
10.12 87 0 1.64 0.40 10.38 130 0 491 1.03
12.14 69 0 2.07 0.36 12.12 71 0 5.78 0.39
13.87 35 1 2.81 10.48 14.08 49 2 1.98 15.92

Summary | No. Scans | Wrong ID Ratio | Translation Error | Rotation Error | Summary | No. Scans | Wrong ID Ratio | Translation Error | Rotation Error
mean 70 0.202 % 6.891 2.149 mean 103 0.276 % 1.744 2.586
std 16.88 - 6.418 4.577 std 37.25 - 2.076 5.888
median 73 - 2.81 0.44 median 126 - 0.52 0.34

(@

Fig. 11: (a) and (c) image a 0.8 and a 0.6 meter tag placed in a cluttered indoor laboratory and a spacious outdoor environment. (b) and (d) show the algorithm
successfully detects the two markers of different sizes indicated by cyan boxes.

TABLE II: This table averages all the datasets we collected and describes
computation time of each step for indoors and outdoors.

TABLE IV: The original double sum in (18) is too slow to achieve a real-
time application. This table compares different methods to compute the double
sum, in which the TBB stands for Threading Building Blocks library from

Outdoor Intel. Additionally, we also apply a k-d tree data structure to speed up the
No. Points No. Features No. Clusters Total Computation querying process; the k-d tree, however, does not produce fast enough results.
51717 2179 271 114.86 Hz The unit in the table is milliseconds.
Pol Clustering | Fill In Clusters Point Check Plane Fitting Original Double Sum Matrix Form Vector From
2.63 ms 0.3 ms 0.00 ms 0.27 ms 144.18 67.11 8.51
Line Fitting PCA Pose Optimization Tag Decoding TBB Original Form TBB Vector Form | TBB k-d tree
0.01 ms 0.03 ms 0.48 ms 3.34 ms 35.68 240 573
Indoor
No. Point Cloud | No. Features No. Clusters Total Computation
54277 1820 225 102.41 Hz TABLE V: This table shows the numbers of false positive rejection of the
Pol Clustering | Fill In Clusters Point Check Plane Fitting proposed algorithm. We validated the rejection rate on the indoor Google
3.28 ms 0.22 ms 0.00 ms 0.15 ms Cartographer dataset and the outdoor Honda H3D datasets. The former has two
Line Fitting PCA Pose Optimization Tag Decoding VLP-16 Velodyne LiDAR and the latter has one 64-beam Velodyne LiDAR.
0.01 ms 0.01 ms 0.42 ms 2.47 ms Google Cartographer Honda H3D
Scene Indoor Museum Crowed Driving Scenes
Duration 150 minutes 48 minutes
No. Scans 350 thousand 29 thousand
TABLE III: This table takes into account all the data we collected and shows No. False Positives 0 0

numbers of rejected clusters in each step in different scenes. Additionally, we
also report false positive rejection for Cartographer and H3D dataset.

Outdoor
No. Min. Return No. Max. Return No. Plane Fitting
247.72 3.41 14.71
No. Boundary Points | No. Pose Estimation | No. Decoding Failure
4.10 0.48 0.00
Indoor
No. Min. Return No. Max. Return No. Plane Fitting
76.44 1.12 0.00
No. Boundary Points | No. Pose Estimation | No. Decoding Failure
8.14 1.80 1.16

Indoor Cartographer Dataset
No. Max. Return No. Plane Fitting

No. Min. Return

65.76 0 1.90
No. Boundary Points | No. Pose Estimation | No. Decoding Failure
0.35 0 0

Outdoor H3D Dataset
No. Max. Return

No. Min. Return No. Plane Fitting

713.35 8.72 44.41
No. Boundary Points | No. Pose Estimation | No. Decoding Failure
2.74 0.38 0

therefore used to further speed up this process to 2.4 ms. All
together, the whole process was sped up by a factor of 60,
from 144 ms to 2.4 ms. Furthermore, we also investigated the
speed performance of employing a k-d tree data structure [63].
A summary Table IV is presented, showing that use of a k-d
tree did not improve performance.

10

C. False Positive Analysis

We have chosen some public datasets containing no ARTag
features (i.e., no LiDARTags) so that there cannot be any false
negatives and any detection of a LiDARTagin the datasets is
consequently a false positive. To better verify the proposed
LiDARTag algorithm, cluttered indoor scenes and crowded
outdoor scenes are both necessary. The Google Cartographer
indoor dataset [11] and Honda H3D outdoor dataset [12] were
therefore used to validate the false positive rate of the proposed
system. The Cartographer was collected with two Velodyne
VLP-16 LiDARs in the Deutsches Museum. We took the
longest three sequences consisting of more than 350 thousand
LiDAR scans. Each scan contains about 30,000 points. We
used the same algorithm with the same parameters and the
full function dictionary that was used to detect the two tags in
Fig. 11 (true positives were detected), and no false positives
(i.e., no LiDARTags) were detected in the three sequences.

The Honda H3D dataset was collected by a 64-beam
Velodyne LiDAR and consists of 160 crowded and highly
interactive traffic scenes in the San Francisco Bay Area.
We evaluated on all sequences, resulting in 29 thousand
LiDAR scans. Each scan consists of more than 130 thousand
points. Zero targets were extracted by the detector. The results
are shown in Table V. Additionally, false positives removed
by each step are provided in Table III. Last but not the least,

Fig. 11 shows that the detector is able to detect markers of
different sizes both in a cluttered indoor scene and a spacious
outdoor scene.

VIII. CONCLUSION AND FUTURE WORK

We presented a novel and flexible fiducial marker system
specifically for point clouds. The developed fiducial tag system
runs in real-time (faster than 100 Hz) while it can handle a full
scan of raw point cloud from the employed 32-Beam Velodyne
ULTRA Puck LiDAR (up to 120,000 points per scan). Each
step of the proposed system was extensively analyzed and
evaluated in both cluttered indoor as well as spacious outdoor
environments. Furthermore, the system can be operated in a
completely dark environment.

The LiDARTag pose estimation block deploys an Lj-
inspired cost function. It achieved millimeter accuracy in
translation and a few degrees of error in rotation compared
to ground truth data collected by a motion capture system
with 30 motion capture cameras. The sparse LiDAR returns
on a LiDARTag are lifted to a continuous function in a
reproducing kernel Hilbert space where the inner product is
used to determine the marker’s ID, and this method achieved
99.7% accuracy. The rejection of false positives was evaluated
on the Google Cartographer indoor dataset and the Honda H3D
outdoor dataset. No false positives were detected in over 379
thousand LiDAR scans.

The presented fiducial marker system can also be used
with cameras and has been successfully used for LiDAR-
camera calibration in [8] and [10]. Additionally, the system
is able to detect various marker sizes, whereas camera-based
fiducial markers support one marker size at a time. In the
future, we shall use the developed LiDARTag within SLAM
systems to provide robot state estimation and loop closures.
Because of different inherent properties of LiDARs and cam-
eras, it would also be interesting to fuse a camera-based tag
system and the proposed LiDARTag system. Currently, the
proposed algorithm assumes the point cloud has been motion
compensated; how to adopt motion distortion into the algo-
rithm is an interesting direction for future work. Furthermore,
if a dataset has been collected and labeled, a deep-learning
architecture can replace the process of LiDARTag detection,
thus offering another interesting area for future research.

ACKNOWLEDGMENT

Toyota Research Institute provided funds to support this
work. Funding for J. Grizzle was in part provided by NSF
Award No. 1808051. The first author thanks Wonhui Kim for
useful conversations.

REFERENCES

[1] D. Wagner and D. Schmalstieg, “Artoolkit on the pocketpc platform,” in
IEEE International Augmented Reality Toolkit Workshop. 1EEE, 2003,
pp. 14-15.

M. Fiala, “Artag, a fiducial marker system using digital techniques,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recog., vol. 2. 1EEE, 2005, pp.
590-596.

E. Olson, “AprilTag: A robust and flexible visual fiducial system,” in
Proc. IEEE Int. Conf. Robot. and Automation. 1EEE, 2011, pp. 3400—
3407.

[2]

11

[4]

[5]

[6]

[7]
[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

(28]

J. Wang and E. Olson, “Apriltag 2: Efficient and robust fiducial detec-
tion,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots and Syst. 1EEE, 2016,
pp. 4193-4198.

M. Krogius, A. Haggenmiller, and E. Olson, “Flexible layouts for
fiducial tags,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots and Syst.
IEEE, 2019, pp. 1898-1903.

J. DeGol, T. Bretl, and D. Hoiem, “Chromatag: a colored marker and fast
detection algorithm,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog.,
2017, pp. 1472-1481.

——, “Improved structure from motion using fiducial marker matching,”
in Proc. European Conf. Comput. Vis., 2018, pp. 273-288.

J. Huang and J. W. Grizzle, “Improvements to target-based 3D LiDAR
to camera calibration,” IEEE Access, vol. 8, pp. 134 101-134 110, 2020.
M. Ghaffari, W. Clark, A. Bloch, R. M. Eustice, and J. W. Grizzle,
“Continuous direct sparse visual odometry from RGB-D images,” in
Proc. Robot.: Sci. Syst. Conf., Freiburg, Germany, June 2019.

JK. Huang and Jessy W. Grizzle, “Extrinsic LiDAR
Camera Calibration,” 2019. [Online]. Available: https://github.com/
UMich-BipedLab/extrinsic_lidar_camera_calibration

W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in
2D LIDAR SLAM,” in Proc. IEEE Int. Conf. Robot. and Automation.
IEEE, 2016, pp. 1271-1278.

A. Patil, S. Malla, H. Gang, and Y.-T. Chen, “The H3D dataset for
full-surround 3D multi-object detection and tracking in crowded urban
scenes,” in Proc. IEEE Int. Conf. Robot. and Automation, 2019.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA workshop on open source software, 2009.

J.K. Huang and Jessy W. Grizzle, “LiDARTag: A Real-Time and
Flexible Fiducial Tag for Point Clouds,” 2020. [Online]. Available:
https://github.com/UMich-BipedLab/LiDARTag

M. Klopschitz and D. Schmalstieg, “Automatic reconstruction of wide-
area fiducial marker models,” in Proc. Int. Symposium on Mixed and
Augmented Reality. 1EEE, 2007, pp. 71-74.

M. Velas, M. Spanel, Z. Materna, and A. Herout, “Calibration of RGB
camera with velodyne LiDAR.” Viclav Skala-UNION Agency, 2014.
Y. Park, S. Yun, C. S. Won, K. Cho, K. Um, and S. Sim, “Calibration
between color camera and 3D LIDAR instruments with a polygonal
planar board,” Sensors, vol. 14, no. 3, pp. 5333-5353, 2014.

B. Atcheson, F. Heide, and W. Heidrich, “Caltag: High precision fiducial
markers for camera calibration.” in Vision, Modeling, and Visualization,
vol. 10. Citeseer, 2010, pp. 41-48.

M. Fiala, “Comparing artag and artoolkit plus fiducial marker systems,”
in Int. Workshop on Haptic Audio Visual Environments and their
Applications. 1EEE, 2005, pp. 6—pp.

A. Trachtenbert, “Computational methods in coding theory,” Master’s
thesis, University of Illinois at Urbana-Champaign, 1996.

F. Bergamasco, A. Albarelli, E. Rodola, and A. Torsello, “Rune-tag: A
high accuracy fiducial marker with strong occlusion resilience,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recog. 1EEE, 2011, pp. 113-120.
L. Calvet, P. Gurdjos, C. Griwodz, and S. Gasparini, “Detection and
accurate localization of circular fiducials under highly challenging
conditions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2016,
pp- 562-570.

B. Wang, “LFTag: A scalable visual fiducial system with low spatial
frequency,” arXiv preprint arXiv:2006.00842, 2020.

O. Grinchuk, V. Lebedev, and V. Lempitsky, “Learnable visual markers,”
in Proc. Advances Neural Inform. Process. Syst. Conf., 2016, pp. 4143—
4151.

D. Hu, D. DeTone, and T. Malisiewicz, “Deep charuco: Dark charuco
marker pose estimation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recog., 2019, pp. 8436-8444.

S. Song and J. Xiao, “Sliding shapes for 3d object detection in depth
images,” in Proc. European Conf. Comput. Vis. ~ Springer, 2014, pp.
634-651.

M. Engelcke, D. Rao, D. Z. Wang, C. H. Tong, and I. Posner,
“Vote3deep: Fast object detection in 3D point clouds using efficient
convolutional neural networks,” in Proc. IEEE Int. Conf. Robot. and
Automation. 1EEE, 2017, pp. 1355-1361.

S. Song and J. Xiao, “Voxelnet: End-to-end learning for point cloud
based 3D object detection,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recog., 2018, pp. 4490-4499.

https://github.com/UMich-BipedLab/extrinsic_lidar_camera_calibration
https://github.com/UMich-BipedLab/extrinsic_lidar_camera_calibration
https://github.com/UMich-BipedLab/LiDARTag

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]
[48]

[49]

[50]
[51]
[52]

[53]

——, “Deep sliding shapes for amodal 3D object detection in RGB-D
images,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2016, pp.
808-816.

B. Li, “3D fully convolutional network for vehicle detection in point
cloud,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots and Syst. 1EEE,
2017, pp. 1513-1518.

C. L. Zitnick and P. Dolldr, “Edge boxes: Locating object proposals
from edges,” in Proc. European Conf. Comput. Vis. Springer, 2014,
pp. 391-405.

K. E. Van de Sande, J. R. Uijlings, T. Gevers, A. W. Smeulders, et al.,
“Segmentation as selective search for object recognition.” in Proc. IEEE
Int. Conf. Comput. Vis., vol. 1, no. 2, 2011, p. 7.

J. Carreira and C. Sminchisescu, “Cpmc: Automatic object segmentation
using constrained parametric min-cuts,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 34, no. 7, pp. 1312-1328, 2011.

J. Li, S. Luo, Z. Zhu, H. Dai, A. S. Krylov, Y. Ding, and L. Shao,
“3D IoU-Net: IoU guided 3D object detector for point clouds,” arXiv
preprint arXiv:2004.04962, 2020.

S. Shi, X. Wang, and H. Li, “Pointrcnn: 3D object proposal generation
and detection from point cloud,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recog., 2019, pp. 770-779.

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The KITTI dataset,” Int. J. Robot. Res., 2013.

T. Hackel, N. Savinov, L. Ladicky, J. D. Wegner, K. Schindler, and
M. Pollefeys, “SEMANTIC3D NET: A new large scale point cloud
classification benchmark,” in ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, 2017, pp. 91-98.
W. Kim, M. S. Ramanagopal, C. Barto, M.-Y. Yu, K. Rosaen,
N. Goumas, R. Vasudevan, and M. Johnson-Roberson, “Pedx: Bench-
mark dataset for metric 3-D pose estimation of pedestrians in complex
urban intersections,” IEEE Robotics and Automation Letters, vol. 4,
no. 2, pp. 1940-1947, 2019.

Velodyne Lidar, “Velodyne Ultra Puck: VLP-32C User Manual,”
2019. [Online]. Available: https://icave2.cse.buffalo.edu/resources/
sensor-modeling/VLP32CManual.pdf

L. Naimark and E. Foxlin, “Circular data matrix fiducial system and
robust image processing for a wearable vision-inertial self-tracker,”
in Proc. Int. Symposium on Mixed and Augmented Reality. 1EEE
Computer Society, 2002, p. 27.

J. Rekimoto and Y. Ayatsuka, “Cybercode: designing augmented reality
environments with visual tags,” in Proc. Designing augmented reality
environments. ACM, 2000, pp. 1-10.

Y. Cho, J. Lee, and U. Neumann, “A multi-ring color fiducial system
and an intensity-invariant detection method for scalable fiducial-tracking
augmented reality,” in Proc. Int. Workshop on Augmented Reality.
Citeseer, 1998.

W. Clark, M. Ghaffari, and A. Bloch, “Nonparametric continuous sensor
registration,” arXiv preprint arXiv:2001.04286, 2020.

M. Ghaffari, W. Clark, A. Bloch, R. M. Eustice, and J. W. Grizzle,
“Continuous direct sparse visual odometry from rgb-d images,” arXiv
preprint arXiv:1904.02266, 2019.

J. Canny, “A computational approach to edge detection,” in Readings in
computer vision. Elsevier, 1987, pp. 184-203.

T. Shan and B. Englot, “LeGO-LOAM: Lightweight and ground-
optimized lidar odometry and mapping on variable terrain,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots and Syst. 1EEE, 2018, pp. 4758—
4765.

S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika,
vol. 32, no. 3, pp. 241-254, 1967.

S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf. Theory,
vol. 28, no. 2, pp. 129-137, 1982.

J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol. 18, no. 9, pp. 509-517,
1975.

S. G. Johnson, “The nlopt nonlinear-optimization package,” 2014.
[Online]. Available: https://github.com/stevengj/nlopt

B. Braden, “The surveyor’s area formula,” The College Mathematics
Journal, vol. 17, no. 4, pp. 326-337, 1986.

J. C. Gower, “Generalized procrustes analysis,” Psychometrika, vol. 40,
no. 1, pp. 33-51, 1975.

A. L. Price, N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. A.
Shadick, and D. Reich, “Principal components analysis corrects for strat-
ification in genome-wide association studies,” Nature genetics, vol. 38,
no. 8, p. 904, 2006.

12

[54]
[55]
[56]
(571
(58]

[59]

[60]

[61]

[62]

[63]

C. Rasmussen and C. Williams, Gaussian processes for machine learn-
ing. MIT press, 2006, vol. 1.

B. Schoélkopf, R. Herbrich, and A. J. Smola, “A generalized representer
theorem,” in Int. Conf. Computational Learning Theory. Springer, 2001,
pp- 416-426.

G. Wahba, Spline models for observational data. SIAM, 1990.

G. Kimeldorf and G. Wahba, “Some results on Tchebycheffian spline
functions,” vol. 33, no. 1, pp. 82-95, 1971.

“M-Air at the University of Michigan, Ann Arbor,” 2018. [Online].
Available: https://robotics.umich.edu/about/mair/

K. Svanberg, “A class of globally convergent optimization methods
based on conservative convex separable approximations,” SIAM J. on
optimization, vol. 12, no. 2, pp. 555-573, 2002.

——, “The method of moving asymptotes: a new method for structural
optimization,” Int. J. for numerical methods in engineering, vol. 24,
no. 2, pp. 359-373, 1987.

D. Q. Huynh, “Metrics for 3D rotations: Comparison and analysis,” J.
Math. Imaging and Vis., vol. 35, no. 2, pp. 155-164, 2009.

D. Padua, Ed., TBB (Intel Threading Building Blocks).
MA: Springer US, 2011, pp. 2029-2029. [Online].

https://doi.org/10.1007/978-0-387-09766-4_2080

J. L. Blanco and P. K. Rai, “nanoflann: a C++ header-only fork of
FLANN, a library for nearest neighbor (NN) with kd-trees,” https://
github.com/jlblancoc/nanoflann, 2014.

Boston,
Available:

https://icave2.cse.buffalo.edu/resources/sensor-modeling/VLP32CManual.pdf
https://icave2.cse.buffalo.edu/resources/sensor-modeling/VLP32CManual.pdf
https://github.com/stevengj/nlopt
https://robotics.umich.edu/about/mair/
https://doi.org/10.1007/978-0-387-09766-4_2080
https://github.com/jlblancoc/nanoflann
https://github.com/jlblancoc/nanoflann

	I Introduction
	II Related Work
	III Tag Design and LiDAR Characteristics
	III-A LiDAR Point Clouds vs Camera Images
	III-B Tag Placement and Design
	III-B1 Tag design
	III-B2 Tag placement

	IV Tag Detection
	IV-A Feature Detection
	IV-B Feature Clustering
	IV-C Cluster Validation

	V Pose Estimation and Initialization
	V-A LiDARTag Pose Estimation
	V-B Optimization Initialization

	VI Function Construction and Tag Decoding
	VII Experimental Results
	VII-A Pose Evaluation and Decoding Accuracy
	VII-B LiDARTag System and Speed Analysis
	VII-C False Positive Analysis

	VIII Conclusion and Future Work
	References

