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ABSTRACT Quantum error-correcting codes are used to protect qubits involved in quantum computation.
This process requires logical operators to be translated into physical operators acting on physical quantum
states. In this article, we propose amathematical framework for synthesizing physical circuits that implement
logical Clifford operators for stabilizer codes. Circuit synthesis is enabled by representing the desired
physical Clifford operator in CN×N as a 2m× 2m binary symplectic matrix, where N = 2m. We prove two
theorems that use symplectic transvections to efficiently enumerate all binary symplectic matrices that satisfy
a system of linear equations. As a corollary, we prove that for an [[m, k]] stabilizer code every logical Clifford
operator has 2r(r+1)/2 symplectic solutions, where r = m− k, up to stabilizer degeneracy. The desired physi-
cal circuits are then obtained by decomposing each solution into a product of elementary symplectic matrices,
that correspond to elementary circuits. This enumeration of all physical realizations enables optimization
over the ensemble with respect to a suitable metric. Furthermore, we show that any circuit that normalizes
the stabilizer can be transformed into a circuit that centralizes the stabilizer, while realizing the same logical
operation. Our method of circuit synthesis can be applied to any stabilizer code, and this paper discusses a
proof of concept synthesis for the [[6, 4, 2]] CSS code. Programs implementing the algorithms in this article,
which includes routines to solve for binary symplectic solutions of general linear systems and our overall
LCS (logical circuit synthesis) algorithm, can be found at https://github.com/nrenga/symplectic-arxiv18a

INDEX TERMS Clifford group, Heisenberg-Weyl group, logical operators, stabilizer codes, binary
symplectic group, transvections.

I. INTRODUCTION
It is expected that universal fault-tolerant quantum com-
putation will be achieved by employing Quantum Error-
Correcting Codes (QECCs) to protect the information stored
in the quantum computer and to enable error-resilient com-
putation on that data. The first QECC was discovered by
Shor [2], and subsequently, a systematic framework was de-
veloped by Calderbank, Shor and Steane [3], [4] to translate
(pairs of) classical error-correcting codes into QECCs. Codes
produced using this framework are referred to as CSS codes.
The general class of stabilizer codes includes CSS codes
as a special case and was introduced by Calderbank, Rains,
Shor and Sloane [5], and by Gottesman [6]. These codes,
and their variations [7], [8], still remain the preferred class
of codes for realizing error-resilient quantum computation in
practice.

The Clifford hierarchy of unitary operators was defined
to help demonstrate that universal quantum computation can
be realized via the teleportation protocol [9]. The first level
C (1) in the hierarchy is the Pauli group of unitary operators,
and subsequent levels C (�), � ≥ 2, are defined recursively as
those unitary operators that map the Pauli group into C (�−1),
under conjugation. By this definition, the second level is
the normalizer of the Pauli group in the unitary group, and
hence C (2) is the Clifford group [5]. It is well-known that
the levels C (�) do not form a group for � ≥ 3, but that the
Clifford group along with any unitary in C (3) can be used to
approximate an arbitrary unitary operator up to any desired
precision. (Note that using a simple inductive argument it can
be proven that each level in the hierarchy is closed under
multiplication by Clifford group elements.) Therefore, the
standard strategy for realizing universal computation with
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QECCs is to first synthesize1 logical Paulis, then logical Clif-
fords, and finally some logical non-Clifford in the third level
of the Clifford hierarchy. In this article, we will be primarily
concerned with logical Cliffords because specific QECCs,
such as tri-orthogonal codes [10], can be used to distillmagic
states [11] for a non-Clifford gate in C (3), and these states
can then be “injected” into the computation via teleporta-
tion in order to realize the action of that gate at the logical
level [9]. Hence, any circuit implemented on the computer
equipped with error-correction might be expected to consist
only of Clifford gates, augmented with ancilla magic states,
and Pauli measurements.
For the task of synthesizing the logical Pauli operators for

stabilizer codes, the first algorithmwas introduced byGottes-
man [6, Sec. 4] and subsequently, another algorithm based
on a symplectic Gram-Schmidt procedure was proposed by
Wilde [12]. The latter is closely related to earlier work by
Brun et al. [13], [14]. Since the logical Paulis are inputs to
our algorithm that synthesizes logical Clifford operators for
stabilizer codes, we will consider the above two procedures
to be “preprocessors” for our algorithm.
Given the logical Pauli operators for an [[m, k]] stabilizer

QECC, that encodes k logical qubits into m physical qubits,
physical Clifford realizations of Clifford operators on the
logical qubits can be represented by 2m× 2m binary sym-
plectic matrices; thereby, reducing the complexity dramat-
ically from 22m complex variables to 4m2 binary variables
(see [15], [16] and Section II). We exploit this fact to propose
an algorithm that efficiently assembles all 2r(r+1)/2, where
r = m− k, symplectic matrices representing physical Clif-
ford operators (circuits) that realize a given logical Clifford
operator on the protected qubits. We will refer to this proce-
dure as the Logical Clifford Synthesis (LCS) algorithm. Here,
each symplectic solution represents an equivalence class of
Clifford circuits, all of which “propagate” input Pauli oper-
ators through them in an identical fashion (see Section III).
Moreover, as we will discuss later in the context of the al-
gorithm, the other degrees of freedom not captured by our
algorithm are those provided by stabilizers (see Remark 12).
However, at the cost of some increased computational com-
plexity, the algorithm can easily be modified to account for
these stabilizer degrees of freedom. Hence, this article makes
it possible to optimize the choice of circuit with respect to
a suitable metric, that might be a function of the quantum
hardware. Note that our approach here is to determine unitary
physical operations to realize a specific logical (Clifford)
operation, and this is distinct from operations, such as lattice
surgery [17] that are used to perform logical operations on
topological codes.
The primary contributions of this paper are the four theo-

rems that we state and prove in Section III-B, and the main

1By “synthesize” we mean determine the logical operator, i.e., a circuit
on the physical qubits of the QECC, that realizes the action of the given
unitary operator on the logical qubits of that QECC.

LCS algorithm (Algorithm 3), which builds on the results of
these theorems. These results form part of a larger program
for fault-tolerant quantum computation, where the goal is
to achieve reliability by using classical computers to track
and control physical quantum systems, and perform error
correction only as needed.
We note that there are several works that focus on exactly

decomposing, or approximating, an arbitrary unitary opera-
tor as a sequence of operators from a fixed instruction set,
such as Clifford + T [18]–[23]. However, these works do
not consider the problem of circuit synthesis or optimiza-
tion over different realizations of unitary operators on the
encoded space. We also note that there exists several works
in the literature that study this problem for specific codes and
operations, e.g., see [6]–[8], [24]–[27]. However, we believe
this article is the first to propose a systematic framework to
address this problem for general stabilizer codes, and hence
enable automated circuit synthesis for encoded Clifford op-
erators. This procedure is more systematic in considering
all degrees of freedom than conjugating the desired logical
operator by the encoding circuit for the QECC.
Recently, we have used the LCS algorithm to translate

the unitary 2-design we constructed from classical Kerdock
codes into a logical unitary 2-design [28], and in general,
any design consisting of only Clifford elements can be trans-
formed into a logical design using our algorithm. An imple-
mentation of the design is available on github.2 This finds
direct application in the logical randomized benchmarking
protocol proposed by Combes et al. [29]. This protocol is
a more robust procedure to estimate logical gate fidelities
than extrapolating results from randomized benchmarking
performed on physical gates [30]. Now, we discuss some
more motivations and potential applications for the LCS
algorithm.

A. NOISE VARIATION IN QUANTUM SYSTEMS
Although depth or the number of two-qubit gates might ap-
pear to be natural metrics for optimization, near-term quan-
tum computers can also benefit from more nuanced metrics
depending upon the physical system. For example, it is now
established that the noise in the IBMQExperience computers
varies widely among qubits and also with time, and that
circuit optimizations might have to be done in regular time
intervals in order to exploit the current noise characteristics
of the hardware [31]. In such a scenario, if we need to imple-
ment a specific logical operator at the current time, and if it is
the case that some specific qubits or qubit-links in the system
are particularly unreliable, then it might be better to sacrifice
depth and identify an equivalent logical operator that avoids
those qubits or qubit-links (if possible). As an example, for
the well-known [[4, 2, 2]] code [6], [27], whose stabilizer
group is generated as S = 〈X1X2X3X4,Z1Z2Z3Z4〉, two im-
plementations of the logical controlled-Z (CZ12) operation

2[Online]. Available: https://github.com/nrenga/symplectic-arxiv18a
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FIGURE 1. Two physical circuits that realize the CZ gate on the two
logical qubits of the [[4,2,2]] code.

on the two logical qubits are shown in Fig. 1. The logi-
cal Pauli operators in this case are X̄1 = X1X2, X̄2 = X1X3,
Z̄1 = Z2Z4, Z̄2 = Z3Z4.
Assuming that single-qubit gates do not contribute to com-

plexity (or difficulty of implementation), we observe that
both choices have the same number of two-qubit gates and
depth. More interestingly, we see that the second choice
completely avoids the first physical qubit while realizing the
same logical CZ operation. Therefore, if either the first qubit
itself has poor fidelity or coupling to it does, then clearly the
second choice is more appropriate. Preliminary experiments
on the IBM system confirm this advantage when qubits are
mapped appropriately. Note that even if we use a QECC that
protects a single qubit but has a transversal CZ implemen-
tation, i.e., the logical CZ is a CZ between corresponding
physical qubits in two separate code blocks, this incurs a
larger overhead than the above scheme.We identified this ex-
ample by using our open-source implementation of our LCS
algorithm, which is available on github.3 In order to identify
(or construct) more interesting codes that exhibit a “rich”
set of choices for each logical operator, one needs a better
understanding of the geometry of the space of symplectic so-
lutions. We believe this is an important open problem arising
from this article.
For near-term Noisy Intermediate-Scale Quantum (NISQ)

[32] era of quantum computers, a lot of current research
is focused on equipping compilers with routines that opti-
mize circuits for depth and two-qubit gates, and the map-
ping of qubits from the algorithm to the hardware, while all
taking into account the specific characteristics and noise in
the hardware [31], [33]–[36]. Although employing QECCs
is considered to be beyond the NISQ regime, exploiting
simple codes, such as the [[4, 2, 2]] code and using post-
selection provides increased reliability than uncoded com-
putation (as Harper and Flammia have demonstrated [37],
[38]). Therefore, our efficient LCS algorithm might find an
application in such quantum compilers, where the utility is to
determine the best physical realization of a logical operator
with respect to current system characteristics. Specifically,
this allows dynamic compilation (i.e., during program ex-
ecution) that could provide significant reliability gains in
practice.

3[Online]. Available: https://github.com/nrenga/symplectic-arxiv18a

In light of such applications, our software currently allows
one to determine only one physical realization in cases where
the number of solutions is prohibitively large, specifically for
QECCs with large-dimension stabilizers (r = m− k � 1).
However, this single solution does not comewith any explicit
guarantees regarding depth or number of two-qubit gates
or avoiding certain physical qubits. Therefore, even devel-
oping heuristics to directly optimize for a “good enough”
solution, instead of assembling all solutions and searching
over them, will have a significant impact on the efficiency of
compilers.

B. QECCS FOR UNIVERSAL QUANTUM COMPUTATION
Physical single-qubit rotation gates on trapped-ion qubits
are natural, reliable and have a long history [39]. Re-
cently, it has also been observed that small-angle Mølmer-
Sørensen gates, i.e., XXi j(θ ) = cos θ

2 · I4 − ı sin θ
2 · XiXj for

small θ , are more reliable than the maximally-entangling
XXi j(

π
2 ) gate [40]. Since these are the primitive operations

in trapped-ion systems [41], codes that support a transversal
T = diag(1, exp( ıπ4 )) gate, such as the tri-orthogonal codes
mentioned earlier, could be directly used for computation
rather than being dedicated for expensive magic state distil-
lation [10], [42]–[44]. However, it is well-known that there
exists no single QECC that supports a universal set of gates
where all of them have a transversal implementation at the
logical level [45]–[47]. Therefore, there is a natural tradeoff
between exploiting transversality for logical non-Clifford op-
erations versus Clifford operations.
Indeed, this will be a realistic alternative only if the logical

Clifford operations on these codes are “error-resilient”, by
which we mean that for at least constant-depth circuits, the
most likely errors remain correctable and do not propagate
catastrophically through the Clifford sections of these logical
circuits. For this purpose, our LCS algorithm can be a sup-
portive tool to investigate properties of stabilizer QECCs that
guarantee error-resilience of their logical Clifford operators.
Note that constant-depth circuits have been shown to provide
a quantum advantage over classical computation [48]. In fact,
it has been shown that the advantage persists even if those
circuits are noisy [49], and the proof involves a QECC which
admits constant-depth logical Cliffords.

C. ORGANIZATION
The rest of this article is organized as follows. Section II
discusses the connection between quantum computation and
the binary symplectic group, which forms the foundation for
this article. Section III begins by outlining the process of
finding logical Clifford gates through a demonstration for
the [[6, 4, 2]] CSS code [27], [50]. Then the general case of
stabilizer codes is discussed rigorously via four theorems
and our LCS algorithm. Finally, Section IV concludes this
article. Appendix B discusses the proof of Theorem 1, and
Appendix C provides the source code for Algorithm 2 with
extensive comments.
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II. PHYSICAL AND LOGICAL OPERATORS
Quantum error-correcting codes (QECCs) protect qubits in-
volved in quantum computation. In this section, we sum-
marize the mathematical framework introduced in [3], [5],
[6], and [50] and described in more detail in [16] and [51].
Mathematically, an m-qubit system is treated as a Hilbert
space with dimension N = 2m. Universal quantum compu-
tation requires the ability to implement (within a specified
tolerance) quantum operations represented by the group of
N × N unitary matrices acting on this space. In this article,
we are primarily concerned with the unitary operators in the
Clifford group.
Notation: Let R denote the field of real numbers, C de-

note the field of complex numbers, and F2 denote the binary
field. We will consider vectors over F2 to be row vectors and
vectors over R or C to be column vectors. Vectors over CN

withN = 2m will be indexed by elements of Fm2 in the natural
binary order 00 · · · 00, 00 · · · 01, . . . , 11 · · · 11 (rather than
{1, 2, . . . ,N}). Thus, for v ∈ Fm2 , let ev ∈ CN denote the
standard basis vector associated with index v, i.e., ev = |v〉
is all-zero except for a 1 in the entry indexed by v.

A. PAULI MATRICES AND THE SYMPLECTIC
INNER PRODUCT
For a single qubit, we havem = 1 and a quantum pure state is
a vector in the N = 2 dimensional Hilbert space C2. A pure
quantum state û ∈ C2 is a unit-length superposition of the
two states e0 � [1, 0]T , e1 � [0, 1]T that form the computa-
tional basis. Thus, û = αe0 + βe1, where α, β ∈ C satisfy
|α|2 + |β2| = 1. The Pauli matrices for a single qubit system
are the 2 × 2 identity matrix I2

X �
[
0 1

1 0

]
, Z �

[
1 0

0 −1

]
, Y � ıXZ =

[
0 −ı
ı 0

]
.

(1)

We note that the Pauli matrices form a basis over C for all
2 × 2 complex matrices. Thus, any single qubit unitary oper-
ator (such as an error) can be written as a linear combination
of Pauli matrices. One can also express any pure quantum
state as û = (α0I2 + α1X + ıα2Z + α3Y ) e0, where αi ∈ R.

For an m-qubit system, we work in the N = 2m dimen-
sional Hilbert space CN and a pure quantum state û is
a unit-length vector in this space. The computational ba-
sis vectors {ev ∈ CN |(v1, . . . , vm) ∈ Fm2 } are defined by the
Kronecker product ev � ev1 ⊗ ev2 ⊗ · · · ⊗ evm . Thus a pure
quantum state can be written as û = ∑

v∈Fm
2

αvev , where∑
v∈Fm

2
|αv|2 = 1.

Let N � 2m. Given row vectors a, b ∈ Fm2 , define the m-
fold Kronecker product

D(a, b) � Xa1Zb1 ⊗ · · · ⊗ XamZbm ∈ UN, (2)

where UN denotes the group of all N × N unitary opera-
tors. The Heisenberg-Weyl group HWN (also called the m-
qubit Pauli group) consists of all operators ıκD(a, b), where

κ ∈ Z4 � {0, 1, 2, 3}. The order is |HWN | = 4N2 and the
center of this group is 〈ıIN〉 = {IN, ıIN,−IN,−ıIN}, where IN
is the N × N identity matrix. Since XZ = −ZX

D(a, b)D(a′, b′) = (−1)a
′bT+b′aT D(a′, b′)D(a, b) (3)

= (−1)a
′bT D(a+ a′, b+ b′) (4)

and D(a, b)T = (−1)ab
T
D(a, b). The symplectic inner prod-

uct in F2m
2 is defined as

〈[a, b], [a′, b′]〉s � a′bT + b′aT = [a, b] � [a′, b′]T (mod 2),

where � �
[
0 Im
Im 0

]
. (5)

Two operators D(a, b) and D(a′, b′) commute if and only if
〈[a, b], [a′, b′]〉s = 0. The homomorphism γ : HWN → F2m

2
defined by γ (ıκD(a, b)) � [a, b] for all κ ∈ Z4 has kernel
〈ıIN〉, which allows us to represent elements of HWN (up to
multiplication by scalars) as binary vectors. Since Y = ıXZ
is Hermitian butXZ is not, an additional factor of ı is required
to make D(a, b) Hermitian for each i ∈ {1, . . . ,m} where
aibi = 1. Hence, the matrix

E(a, b) � ıab
T mod 4D(a, b) (6)

is Hermitian and E(a, b)2= IN , because X2 = Z2 = Y 2 = I2.
Given [a, b], [a′, b′] ∈ F2m

2 , it can be shown that

E(a, b)E(a′, b′) = (−1)a
′bT+b′aT E(a′, b′)E(a, b) (7)

= ıa
′bT−b′aT E(a+ a′, b+ b′) (8)

where the exponent and the sums a+ a′, b+ b′ are computed
modulo 4 (see [52] for the extended definition of E(a, b)).

B. STABILIZER CODES
We use commutative subgroups ofHWN to define resolutions
of the identity. A stabilizer group is a commutative sub-
group S of HWN generated by commuting Hermitian matri-
ces ±E(a, b), with the additional property that if E(a, b) ∈ S
then −E(a, b) /∈ S. Recall that an operator is an orthogo-
nal projection onto its range iff it is idempotent and Her-
mitian. Since E(a, b)2 = IN for all a, b ∈ Fm2 , the operator
IN±E(a,b)

2 is an orthogonal projection onto the ±1 eigenspace
ofE(a, b), respectively. Also, the eigenvalues of each E(a, b)
are ±1 with algebraic multiplicity N/2.
Since all elements of S are commuting Hermitian uni-

tary matrices, they can be simultaneously diagonalized with
respect to a common orthonormal basis. We refer to such
a basis as the common eigenbasis or simply the eigen-
basis of the subgroup S. In addition, if the subgroup S
is generated by E(ai, bi), i = 1, . . . , r, then the operator
1
2r

∏r
i=1(IN + E(ai, bi)) is an orthogonal projection onto

the 2k-dimensional subspace V (S) fixed pointwise by S,
i.e., the +1 eigenspace of S, where k � m− r. Mathemat-
ically, V (S) � {|ψ〉 ∈ CN | g|ψ〉 = |ψ〉 for all g ∈ S}. The

2501217 VOLUME 1, 2020
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subspaceV (S) is called the [[m, k]] stabilizer code determined
by S, where the notation [[m, k]] indicates thatV (S) encodes k
logical qubits into m physical qubits. The extended notation
[[m, k, d]] is used to denote that any undetectable error on the
code must act on at least d qubits, i.e., d is the (minimum)
distance of the stabilizer code.
Let γ (S) denote the subspace of F2m

2 formed by the binary
representations of the elements of S under the homomor-
phism γ . A generator matrix for γ (S) is GS � [ai, bi]i=1,...,r
and we have GS �GTS = 0r, where 0r is the r × r all-
zero matrix (the subscript is often neglected). The condi-
tion GS �GTS = 0 encodes the fact that elements of S must
pairwise commute.
Given a stabilizer Swith generatorsE(ai, bi), i = 1, . . . , r,

we can define 2r subgroups Sε1···εr where the index (ε1 · · · εr )
represents that Sε1···εr is generated by εiE(ai, bi), εi ∈ {±1}.
Note that

�ε1···εr �
1

2r

r∏
i=1

(IN + εiE(ai, bi)) (9)

is the orthogonal projector onto V (Sε1···εr ) and the sum∑
(ε1,...,εr )∈{±1}r �ε1···εr = IN defines a resolution of the iden-

tity. In quantum error correction, it is sufficient to correct
Pauli errors (i.e., elements in HWN) because general errors
can be approximated by linear combinations of them [53].
Also, the elements of HWN , acting via conjugation, permute
the subgroups Sε1···εr . Given an [[m, k]] stabilizer code, it is
possible to perform encoded quantum computation in any of
the subspaces V (Sε1···εr ) by synthesizing appropriate logical
operators. If we think of these subspaces as threads, then a
computation starts in one thread and jumps to another when
an error (from HWN) occurs. QECCs enable error control by
identifying the jump that the computation has made. Identi-
fication makes it possible to adjust future operations in the
computation instead of returning to the initial subspace and
restarting the computation. The idea of tracing these threads
is called Pauli frame tracking [54].

C. THE CLIFFORD GROUP AND SYMPLECTIC MATRICES
The Clifford group CliffN consists of all unitary matrices g ∈
CN×N for which gD(a, b)g† ∈ HWN for all D(a, b) ∈ HWN ,
where g† is the conjugate transpose of g [16]. CliffN is the
normalizer of HWN in the unitary group UN , so it con-
tains HWN . Note that by definition CliffN has an infinite
center consisting of U (1) � {eıθ IN; θ ∈ R}, but it can be
made finite by first taking the quotient group CliffN/U (1)
and then including multiples of just the phase eıπ/4, which
contributes a factor 8 in its size [5], i.e., |CliffN | = 8 ·
2m

2+2m ∏m
j=1(4

j − 1).We regard operators in CliffN as phys-

ical operators acting on quantum states in CN , to be im-
plemented by quantum circuits. Every operator g ∈ CliffN
induces an automorphism of HWN by conjugation. Note
that the inner automorphisms induced by matrices in HWN

preserve every conjugacy class {±D(a, b)} and {±ıD(a, b)},

because (3) implies that elements in HWN either commute
or anti-commute. The automorphism induced by an element
g ∈ CliffN satisfies (see [51] for a proof)

gE(a, b)g† = ±E (
[a, b]Fg

)
, where Fg =

[
Ag Bg
Cg Dg

]
.

(10)

Since conjugation by g respects commutativity in HWN ,
the matrix Fg preserves symplectic inner products:
〈[a, b]Fg, [a′, b′]Fg〉s = 〈[a, b], [a′, b′]〉s. This implies that Fg
satisfies Fg�FTg = �. We say that Fg is a binary symplectic
matrix, and express the symplectic property Fg�FTg = �

as AgBTg = BgATg , CgDTg = DgCTg , AgDTg + BgCTg = Im. Let
Sp(2m,F2) denote the group of symplectic 2m× 2m matri-
ces over F2. The homomorphism φ : CliffN → Sp(2m,F2)
defined by φ(g) � Fg is surjective with kernel 〈HWN,U (1)〉,
and every Clifford operator maps down to a symplectic
matrix Fg. Thus, HWN is a normal subgroup of CliffN and
CliffN/〈HWN,U (1)〉 ∼= Sp(2m,F2). This implies that the
size is |Sp(2m,F2)| = 2m

2 ∏m
j=1(4

j − 1) (also see [5]).
Table I lists elementary symplectic transformations Fg, that
generate the binary symplectic group Sp(2m,F2), and the
corresponding unitary automorphisms g ∈ CliffN , which
together with HWN generate CliffN (see [51, Appendix I]).
Some important circuit identities involving these operators
are listed in [51].
In [55], Can has developed an algorithm that factors a

2m× 2m binary symplectic matrix into a product of at most
6 elementary symplectic matrices of the type shown in
Table I. The target symplectic matrix maps the dual basis
XN � {E(a, 0) : a ∈ Fm2 },ZN � {E(0, b) : b ∈ Fm2 } to a dual
basis X ′

N,Z′
N . Row and column operations by the elementary

matrices return X ′
N,Z′

N to the original pair XN,ZN . This de-
composition simplifies the translation of symplectic matrices
into circuits (see [51, Appendix I]), and so we use it in our
LCS algorithm. For completeness, we include the theorem
here.
Theorem 1 ([55, Theorem 3.2.1]): Any binary symplectic

transformation F can be expressed as

F = AQ1�TR1GkTR2AQ2

as per the notation used in Table I, where invertible matrices
Q1,Q2 and symmetric matrices R1,R2 are chosen appropri-
ately.
Proof: The idea is to perform row and column operations

on the matrix F via left and right multiplication by ele-
mentary symplectic transformations from Table I, and bring
the matrix F to the standard form �TR1� (for details see
Appendix B). �
A closely related algorithm was given earlier by Dehaene

and De Moor [56]. The elementary symplectic matrices ap-
pearing in the product can be related to the Bruhat decompo-
sition of the symplectic group (see [20]). When the algorithm
is run in reverse it produces a random Clifford matrix, which
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TABLE I. A universal set of logical operators for Sp(2m,F2) and their corresponding physical operators in CliffN (see Appendix A for a detailed
discussion and circuits). The number of 1s in Q and R directly relates to the number of gates. Here H2t denotes the Walsh-Hadamard matrix of size 2t ,
Ut = diag(It ,0m−t ), and Lm−t = diag(0t , Im−t )

serves as a “third-order” approximation to a random unitary
matrix since the Clifford group forms a unitary 3-design [57].
This is an instance of the subgroup algorithm [58] for gen-
erating uniform random variables. The algorithm has com-
plexity O(m3) and uses O(m2) random bits, which is order
optimal given the order of the symplectic group Sp(2m,F2)
(cf. [59]). Our algorithm is similar to that developed by Jones
et al. [60] in that it alternates (partial) Hadamard matrices
and diagonal matrices; the difference is that the unitary three-
design property of the Clifford group provides randomness
guarantees. This also finds application in machine learning
(see [61] and references therein).

III. SYNTHESIS OF LOGICAL CLIFFORD OPERATORS FOR
STABILIZER CODES
Quantum computation in the protected space of an [[m, k]]
quantum error-correcting code (QECC) requires the transla-
tion of logical operators on the k encoded qubits into phys-
ical operators on the m code qubits. In this section, for an
[[m, k]] stabilizer code, we develop an algorithm that syn-
thesizes all physical Clifford realizations of a logical Clif-
ford operator, up to equivalence classes defined by their
action on input Pauli operators [which is encoded in their
symplectic matrix representation, by (10)]. This algorithm
makes it possible to optimize the choice of circuit with re-
spect to a metric that is a function of the quantum hard-
ware. We now outline the algorithm and illustrate the steps
using an example where we synthesize a logical controlled-
Z gate on the first two logical qubits of the [[6, 4, 2]]
code [6], [27]. See [1] for discussions on other operators for
this code.
Input: Target Clifford circuit g on the k logical qubits,

stabilizers, and logical Paulis.
Output: All Clifford circuits ḡ on the m physical qubits

that preserve the code space and implement g on the k logical
qubits. Step 1: Translate the input into linear constraints on
the symplectic matrix Fḡ representing ḡ.

The stabilizer group of the [[6, 4, 2]] CSS code is S =
〈X⊗6,Z⊗6〉 = 〈E(1, 0),E(0, 1)〉, where 1 = 111111, 0 =
000000. The logical Pauli operators can be calculated
directly [51, Section V], or using algorithms developed
by Gottesman [6] or Wilde [12]. These operators are
given by X̄ j = X1Xj+1 = E(e1 + e j+1, 0), Z̄ j = Zj+1Z6 =
E(0, e j+1 + e6), j = 1, 2, 3, 4, where e j is the jth standard

basis vector in F6
2 . We now find a six-qubit circuit CZ12

on the physical (code) qubits that (i) realizes the CZ12 gate
on the logical qubits, i.e., CZ12 acts on X̄ j, Z̄ j analogous to
how CZ12 acts on Xj,Zj as stated explicitly in (11), and (ii)
preserves the code space. Note that satisfying the mathemat-
ical condition in (i) does not already guarantee (ii). The first
condition is written as the constraints

CZ12X̄ jCZ
†
12 =

⎧⎪⎪⎨
⎪⎪⎩
X̄1Z̄2 if j = 1,

Z̄1X̄2 if j = 2,

X̄ j if j �= 1, 2,

CZ12Z̄ jCZ
†
12 = Z̄ j for all j = 1, 2, 3, 4. (11)

The symplectic representation of Clifford elements in (10)
transforms these conditions into the following linear con-
straints on the desired symplectic matrix FCZ12 :

[e1 + e2, 0]FCZ12 = [e1 + e2, e3 + e6],

[e1 + e3, 0]FCZ12 = [e1 + e3, e2 + e6],

[e1 + e j+1, 0]FCZ12 = [e1 + e j+1, 0], j = 3, 4,

[0, e2 + e6]FCZ12 = [0, e2 + e6],

[0, e3 + e6]FCZ12 = [0, e3 + e6],

[0, e j+1 + e6]FCZ12 = [0, e j+1 + e6], j = 3, 4. (12)
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Constraint (ii) requires that the physical circuit must normal-
ize the stabilizer. We prove later that any such circuit can
be transformed into one that commutes with each stabilizer
element, while realizing the same logical operation (see The-
orem 11). Note that the requirement is only to preserve the
code space, i.e., CZ12 must commute with the code projector,
but this is equivalent to normalizing the stabilizer since we
restrict CZ12 to be a physical Clifford operator. For non-
Clifford physical operators, the general approach would be
similar to that considered for Z-rotations in [62]. Requiring
that the circuit centralize the stabilizer yields the constraints

[111111, 000000]FCZ12 = [111111, 000000],

[000000, 111111]FCZ12 = [000000, 111111]. (13)

Step 2: Find all symplectic solutions.
The symplectic constraint FCZ12�F

T
CZ12

= � is non-

linear, and in the description of the generic LCS algorithm
that follows this example, we show how to use transvections
to find all 2r(r+1)/2 symplectic solutions. We then translate
each solution into a physical Clifford circuit using the de-
composition of symplectic matrices as a product of the ele-
mentary matrices listed in Table I (see Appendix B or [51]
for details). For the [[6, 4, 2]] code there are 8 symplectic
solutions. The solution with smallest depth is the elementary
symplectic matrix FCZ12 = TB, where B23 = B32 = B26 =
B62 = B36 = B63 = 1 and Bi j = 0 elsewhere. The corre-

sponding physical operator CZ12 = diag(ıvBv
T
) can be de-

composed into CZ23CZ26CZ36. Step 3: Identify any sign vi-
olations and find a Pauli matrix to fix the signs while leaving
the logical operation undisturbed.
The operator CZ23CZ26CZ36 commutes with the stabilizer

E(0, 1) but not with the stabilizer E(1, 0). Adding the Pauli
operator Z6 fixes the sign and leaves the logical operation
undisturbed. So the final circuit is CZ23CZ26CZ36Z6.

A. SYMPLECTIC TRANSVECTIONS
Definition 2: Given row vector h ∈ F2m

2 , a symplectic
transvection is a map Zh : F2m

2 → F2m
2 defined by

Zh(x) � x+ 〈x, h〉sh = xFh, where Fh � I2m + �hT h
(14)

where Fh is its associated symplectic matrix [59]. A transvec-
tion does not correspond to a single elementary Clifford op-
erator.
Fact 3 ([63, Theorem 2.10]): The symplectic group

Sp(2m,F2) is generated by the family of symplectic
transvections.
An important result that is involved in the proof of this

fact is the following theorem from [59] and [63], which we
restate here for F2m

2 since we will build on this result to state
and prove Theorem 5.
Theorem 4: Let x, y ∈ F2m

2 be two nonzero vectors. Then
x can be mapped to y by a product of at most two symplectic
transvections.

Proof: There are two cases: 〈x, y〉s = 1 or 0. First assume
〈x, y〉s = 1. Define h � x+ y, so

xFh = Zh(x) = x+ 〈x, x+ y〉s(x+ y)

= x+ (〈x, x〉s + 〈x, y〉s) (x+ y)

= x+ (0 + 1)(x+ y) = y.

Next assume 〈x, y〉s = 0. Define h1 � w + y, h2 � x+ w,
where w ∈ F2m

2 is chosen such that 〈x,w〉s = 〈y,w〉s = 1.
Then

rCl + x∗xFh1Fh2 = Zh2 (x+ 〈x,w + y〉s(w + y))

= (x+ w + y) + 〈(x+ w) + y, x+ w〉s
× (x+ w)

= y.
�

We will use the above result to propose an algorithm
(Algorithm 1) which determines a symplectic matrix F that
satisfies xiF = yi, i = 1, 2, . . . , t ≤ 2m, where xi are lin-
early independent and satisfy 〈xi, x j〉s = 〈yi, y j〉s for all i,
j ∈ {1, . . . , t}.

B. DESCRIPTION OF THE GENERIC LOGICAL CLIFFORD
SYNTHESIS (LCS) ALGORITHM
The synthesis of logical Paulis by Gottesman [6] and by
Wilde [12] exploits symplectic groups over the binary field.
Building on their work we have demonstrated, using the
[[6, 4, 2]] code as an example, that the binary symplectic
group provides a systematic framework for synthesizing
physical implementations of any logical operator in the logi-
cal Clifford group Cliff2k for stabilizer codes. In other words,
the symplectic group provides a control plane where ef-
fects of Clifford operators can be analyzed efficiently. For
each logical Clifford operator, one can obtain all symplectic
solutions using the algorithm below.

1) Collect all the linear constraints on F , obtained from
the conjugation relations of the desired Clifford opera-
tor with the stabilizer generators and logical Paulis, to
obtain a system of equationsUF = V .

2) Then vectorize both sides to get (I2m ⊗U )vec(F ) =
vec(V ).

3) Perform Gaussian elimination on the augmented ma-
trix [(I2m ⊗U ), vec(V )]. If � is the number of non-
pivot variables in the row-reduced echelon form, then
there are 2� solutions to the linear system.

4) For each such solution, check if it satisfiesF�FT = �.
If it does, then it is a feasible symplectic solution for ḡ.

Clearly, this algorithm is not very efficient since � could be
very large. Specifically, for codes that do not encode many
logical qubits this number will be very large as the system
UF = V will be very under-constrained. We now state and
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prove two theorems that enable us to determine all symplec-
tic solutions for each logical Clifford operator much more
efficiently.
Theorem 5: Let xi, yi ∈ F2m

2 , i = 1, 2, . . . , t ≤ 2m be a
collection of (row) vectors such that 〈xi, x j〉s = 〈yi, y j〉s. As-
sume that the xi are linearly independent. Then a solution
F ∈ Sp(2m,F2) to the system of equations xiF = yi can be
obtained as the product of a sequence of at most 2t symplec-
tic transvections Fh � I2m + �hT h, where h ∈ F2m

2 is a row
vector.
Proof: We will prove this result by induction. For i = 1

we can simply use Theorem 4 to find F1 ∈ Sp(2m,F2) as
follows. If 〈x1, y1〉s = 1 then F1 � Fh1 with h1 � x1 + y1,
or if 〈x1, y1〉s = 0 then F1 � Fh11Fh12 with h11 � w1 + y1,
h12 � x1 + w1, where w1 is chosen such that 〈x1,w1〉s =
〈y1,w1〉s = 1. In any case F1 satisfies x1F1 = y1. Next con-
sider i = 2. Let x̃2 � x2F1 so that 〈x1, x2〉s = 〈y1, y2〉s =
〈y1, x̃2〉s, since F1 is symplectic and hence preserves sym-
plectic inner products.
Similar to Theorem 4 we have two cases: 〈x̃2, y2〉s = 1 or

0. For the former, we set h2 � x̃2 + y2 so that we clearly have
x̃2Fh2 = Zh2 (x̃2) = y2 (see Section III-A for the definition of
Zh(·)). We also observe that

y1Fh2 = Zh2 (y1) = y1 + 〈y1, x̃2 + y2〉s(x̃2 + y2)

= y1 + (〈y1, y2〉s + 〈y1, y2〉s)(x̃2 + y2)

= y1.

Hence, in this case, F2 � F1Fh2 satisfies x1F2 = y1, x2F2 =
y2. For the case 〈x̃2, y2〉s = 0 we again find a w2
that satisfies 〈x̃2,w2〉s = 〈y2,w2〉s = 1 and set h21 � w2 +
y2, h22 � x̃2 + w2. Then by Theorem 4 we clearly have
x̃2Fh21Fh22 = y2. For y1 we observe that

y1Fh21Fh22

= Zh22
(
Zh21 (y1)

)
= Zh22 (y1 + 〈y1,w2 + y2〉s(w2 + y2))

= y1 + 〈y1,w2 + y2〉s(w2 + y2) + (〈y1, x̃2 + w2〉s
+〈y1,w2 + y2〉s〈w2 + y2, x̃2 + w2〉s) (x̃2 + w2)

(a)= y1 + 〈y1,w2 + y2〉s(x̃2 + y2)

= y1 if and only if 〈y1,w2〉s = 〈y1, y2〉s
where (a) follows from 〈y1, x̃2〉s = 〈y1, y2〉s, 〈w2 + y2, x̃2 +
w2〉s = 1 + 0 + 0 + 1 = 0. Hence, we pick a w2 such
that 〈x̃2,w2〉s = 〈y2,w2〉s = 1 and 〈y1,w2〉s = 〈y1, y2〉s, and
then set F2 � F1Fh21Fh22 . Again, for this case F2 satisfies
x1F2 = y1, x2F2 = y2 as well.
By induction, assume Fi−1 satisfies x jFi−1 = y j for all

j = 1, . . . , i− 1, where i ≥ 3. Using the same idea as for
i = 2 above, let xiFi−1 = x̃i. If 〈x̃i, yi〉s = 1, we simply set
Fi � Fi−1Fhi , where hi � x̃i + yi. If 〈x̃i, yi〉s = 0, we find
a wi that satisfies 〈x̃i,wi〉s = 〈yi,wi〉s = 1 and 〈y j,wi〉s =

Algorithm 1: Algorithm to Find F ∈ Sp(2m,F2) Satis-
fying a Linear System of Equations, Using Theorem 5.

Input: xi, yi ∈ F2m
2 s.t.

〈xi, x j〉s = 〈yi, y j〉s ∀ i, j ∈ {1, . . . , t}.
Output: F ∈ Sp(2m,F2) satisfying
xiF = yi ∀ i ∈ {1, . . . , t}
1: if 〈x1, y1〉s = 1 then
2: set h1 � x1 + y1 and F1 � Fh1 .
3: else
4: h11 � w1 + y1, h12 � x1 + w1 and

F1 � Fh11Fh12 .
5: end if
6: for i = 2, . . . , t do
7: Calculate x̃i � xiFi−1 and 〈x̃i, yi〉s.
8: if x̃i = yi then
9: Set Fi � Fi−1. Continue.
10: end if
11: if 〈x̃i, yi〉s = 1 then
12: Set hi � x̃i + yi,Fi � Fi−1Fhi .
13: else
14: Find a wi s.t. 〈x̃i,wi〉s = 〈yi,wi〉s = 1 and

〈y j,wi〉s = 〈y j, yi〉s ∀ j < i.
15: Set hi1 � wi + yi, hi2 � x̃i + wi,Fi �

Fi−1Fhi1Fhi2 .
16: end if
17: end for
18: return F � Ft .

〈y j, yi〉s ∀ j < i. Then we define hi1 � wi + yi, hi2 � x̃i + wi

and observe

y jFhi1Fhi2 = Zhi2
(
Zhi1 (y j )

)
= y j + 〈y j,wi + yi〉s(x̃i + yi)

= y j, for j < i.

Again, by Theorem 4, we clearly have x̃iFhi1Fhi2 = yi. Hence
we set Fi � Fi−1Fhi1Fhi2 in this case. In both cases Fi satis-
fies x jFi = y j ∀ j = 1, . . . , i. Setting F � Ft completes the
inductive proof and it is clear that F is the product of at most
2t symplectic transvections. �
The algorithm defined implicitly by the above proof is

stated explicitly in Algorithm 1.
Definition 6: A symplectic basis for F2m

2 is a set of pairs
{(v1,w1), (v2,w2), . . . , (vm,wm)} such that 〈vi,w j〉s = δi j
and 〈vi, v j〉s = 〈wi,w j〉s = 0, where δi j = 1 if i = j and 0 if
i �= j.
Note that the rows of any matrix in Sp(2m,F2) form a

symplectic basis for F2m
2 . There exists a symplectic Gram-

Schmidt orthogonalization procedure that can produce a
symplectic basis starting from the standard basis for F2m

2 and
an additional vector v ∈ F2m

2 (see [59]).
Now, we state our main theorem, which enables one to

determine all symplectic solutions for a system of linear
equations.
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Theorem 7: Let {(ua, va), a ∈ {1, . . . ,m}} be a col-
lection of pairs of (row) vectors that form a symplec-
tic basis for F2m

2 , where ua, va ∈ F2m
2 . Consider the sys-

tem of linear equations uiF = u′
i, v jF = v′

j, where i ∈ I ⊆
{1, . . . ,m}, j ∈ J ⊆ {1, . . . ,m} and F ∈ Sp(2m,F2). As-
sume that the given vectors satisfy 〈ui1 , ui2〉s〈u′

i1
, u′

i2
〉s = 0,

〈v j1, v j2〉s = 〈v′
j1
, v′

j2
〉s = 0, 〈ui, v j〉s=〈u′

i, v
′
j〉s=δi j where

i1, i2 ∈ I, j1, j2 ∈ J (since symplectic transformations F
must preserve symplectic inner products). Let α � |Ī| +
|J̄ |, where Ī, J̄ denote the set complements of I,J in
{1, . . . ,m}, respectively. Then there are 2α(α+1)/2 solutions
F to the given linear system, and they can be enumerated
systematically.
Proof: By the definition of a symplectic basis (Defini-

tion 6), we have 〈ua, vb〉s = δab and 〈ua, ub〉s = 〈va, vb〉s =
0, where a, b ∈ {1, . . . ,m}. The same definition extends to
any (symplectic) subspace of F2m

2 . The linear system un-
der consideration imposes constraints only on ui, i ∈ I and
v j, j ∈ J . Let W be the subspace of F2m

2 spanned by the
symplectic pairs (uc, vc) where c ∈ I ∩ J and W⊥ be its
orthogonal complement under the symplectic inner product,
i.e.,W � 〈{(uc, vc), c ∈ I ∩ J }〉 andW⊥ � 〈{(ud, vd ), d ∈
Ī ∪ J̄ }〉, where Ī, J̄ denote the set complements of I,J in
{1, . . . ,m}, respectively.

Using the result of Theorem 5, we first compute one solu-
tion F0 for the given system of equations. In the subspaceW ,
F0 maps (uc, vc) �→ (u′

c, v
′
c) for all c ∈ I ∩ J and hence we

now have W = 〈{(u′
c, v

′
c), c ∈ I ∩ J }〉 spanned by its new

basis pairs (u′
c, v

′
c). However in W

⊥, F0 maps (ud, vd ) �→
(u′
d, ṽ

′
d ) or (ud, vd ) �→ (ũ′

d, v
′
d ) or (ud, vd ) �→ (ũ′

d, ṽ
′
d ) de-

pending on whether d ∈ I ∩ J̄ or d ∈ Ī ∩ J or d ∈ Ī ∩ J̄ ,
respectively (d /∈ I ∩ J by definition ofW⊥). Note however
that the subspaceW⊥ itself is fixed. We observe that such ũ′

d
and ṽ′

d are not specified by the given linear system and hence
form only a particular choice for the new symplectic basis
ofW⊥. These can be mapped to arbitrary choices ũd and ṽd ,
while fixing other u′

d and v
′
d , as long as the new choices still

complete a symplectic basis forW⊥. Hence, these form the
degrees of freedom for the solution set of the given system
of linear equations. The number of such “free” vectors is
exactly |Ī| + |J̄ | = α. This can be verified by observing that
the number of basis vectors forW⊥ is 2|Ī ∪ J̄ | and making
the following calculation.

Number of constrained vectors in the new basis forW⊥

= |I \ J | + |J \ I|
= |I| − |I ∩ J | + |J| − |I ∩ J |
= (m− |Ī|) + (m− |J̄ |) − 2(m− |Ī ∪ J̄ |)
= 2|Ī ∪ J̄ | − (|Ī| + |J̄ |)
= 2|Ī ∪ J̄ | − α.

Let d, d1, d2 ∈ Ī ∪ J̄ be indices of some symplectic ba-
sis vectors for W⊥. Then, the constraints on free vectors

ũd and ṽd are that 〈ũd1 , v′
d2

〉s = 〈u′
d1

, ṽd2〉s = 〈ũd1 , ṽd2〉s =
δd1d2 and all other pairs of vectors in the new basis set for
W⊥ be orthogonal to each other. In the dth symplectic pair
— (ũd, v′

d ) or (u
′
d, ṽd ) or (ũd, ṽd ) — of its new symplectic

basis there is at least one free vector — ũd or ṽd or both,
respectively. For the first of the α free vectors, there are
2|Ī ∪ J̄ | − α symplectic inner product constraints (which
are linear constraints) imposed by the 2|Ī ∪ J̄ | − α con-
strained vectors u′

d, v
′
d . SinceW

⊥ has (binary) vector space
dimension 2|Ī ∪ J̄ | and each linearly independent constraint
decreases the dimension by 1, this leads to 2α possible
choices for the first free vector. For the second free vector,
there are α − 1-degrees of freedom as it has an additional
inner product constraint from the first free vector. This leads
to 2α−1 possible choices for the second free vector, and so
on. Therefore, the given linear system has at least

∏α
�=1 2

� =
2α(α+1)/2 symplectic solutions.
We will now argue that there cannot be more solutions.

The given system of equations can be represented compactly
asUF = V , whereU,V ∈ F (2m−α)×2m

2 and F is symplectic.
Observe that for each valid choice of V the set of symplectic
solutions is disjoint, and hence they form a partition of the
binary symplectic group Sp(2m,F2). Therefore, it is enough
to show that the product of the number of such valid matrices
V and 2α(α+1)/2 is equal to the size of Sp(2m,F2). By defin-
ing k = m− α, the number of such valid matricesV is given
by[

(22m − 1) · (22m−1 − 21) · (22m−2 − 22) · · ·

(22m−(m−1) − 2m−1)

]

×
[
22m−m · 22m−(m+1) · · · 22m−(m+k−1)

]

=
(
20(22m − 1) · 21(22m−2 − 1) · 22(22m−4 − 1) · · ·

2m−1(2(m+1)−(m−1) − 1) · 2m
)

· 2m−1 · · · 2m−(k−1)

= 2
m(m+1)

2 +(k−1)m− k(k−1)
2

m∏
j=1

(4 j − 1).

The counting in the first line is as follows. First, we as-
sume without loss of generality that the pairs of rows i and
(m+ i) ofV form a symplectic pair, for i = 1, . . . , k, and the
rows k + 1, . . . ,m are orthogonal to all rows of V under the
symplectic inner product. More precisely, the inner products
between pairs of rows ofV must be the same as those between
corresponding pairs of rows of U . But, we assume that we
can perform a symplectic Gram-Schmidt process on U so
that the above assumption is valid. For the first row of V ,
we can choose any nonzero vector and there are (22m − 1) of
them. For the second row, we need to restrict to vectors that
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are orthogonal to the first row, and we need to eliminate the
subspace generated by the first row. Similarly, for the third
row until the mth row, we keep restricting to the subspace of
vectors orthogonal to all previous rows and eliminate the sub-
space generated by all previous rows. For the (m+ 1)th row,
it needs to be orthogonal to all rows starting from the second
to the mth, but it needs to have symplectic inner product 1
with the first row. Hence the dimension decreases by m from
2m, but notice that the subspace generated by the firstm rows
cannot have any vector that has symplectic inner product
1 with the first row. Therefore, we need not subtract this
subspace and this gives the count 22m−m for the (m+ 1)th
row. A similar argument can be made for all remaining rows
and this completes the argument for counting. (It is easy to
verify that by substituting k = m above we obtain the size
of Sp(2m,F2) exactly.) Now we expand the exponent of 2
above to obtain 1

2 (m
2 + 2mk − k2 − m+ k).

Recollect that the size of the symplectic group is
2m

2 ∏m
j=1(4

j − 1), and we need to check that the number

obtained by dividing this by 2α(α+1)/2 is equal to the above
number, for α = m− k. Since the product

∏m
j=1(4

j − 1)
matches with the expression in the count above, we only have
to check that the exponents of 2 match. Here, the exponent
of 2 is given by

m2 − (m− k)(m− k + 1)

2

= 1

2

(
2m2 − (m2 − 2mk + k2 + m− k)

)

= 1

2

(
m2 + 2mk − k2 − m+ k

)
,

which equals the exponent calculated above. This com-
pletes the proof that the given system has exactly 2α(α+1)/2

solutions.
Finally, we show how to get each symplectic solutionF for

the given linear system. First form the matrix A whose rows
are the new symplectic basis vectors for F2m

2 obtained under
the action ofF0, i.e., the firstm rows are u′

c, u
′
d, ũ

′
d and the last

m rows are v′
c, v

′
d, ṽ

′
d . Observe that this matrix is symplectic

and invertible. Then form a matrix B = A and replace the
rows corresponding to free vectors with a particular choice
of free vectors, chosen to satisfy the conditions mentioned
above. Note that B and A differ in exactly α rows, and that B
is also symplectic and invertible. Determine the symplectic
matrix F ′ = A−1Bwhich fixes all new basis vectors obtained
forW andW⊥ underF0 except the free vectors in the basis for
W⊥. Then this yields a new solution F = F0F ′ for the given
system of linear equations. Note that if ũd = ũ′

d and ṽd =
ṽ′
d for all free vectors, where ũ

′
d, ṽ

′
d were obtained under the

action of F0 on W⊥, then F ′ = I2m. Repeating this process
for all 2α(α+1)/2 choices of free vectors enumerates all the
solutions for the linear system under consideration. �
Remark 8: For any system of symplectic linear equa-

tions xiF = yi, i = 1, . . . , t where the xi do not form a
symplectic basis for F2m

2 , we first calculate a symplectic

Algorithm 2: Algorithm to Determine All
F ∈ Sp(2m,F2) Satisfying a Linear System of
Equations, Using Theorem 7.

Input: ua, vb ∈ F2m
2 s.t. 〈ua, vb〉s = δab and

〈ua, ub〉s = 〈va, vb〉s = 0, where a, b ∈ {1, . . . ,m}.
u′
i, v

′
j ∈ F2m

2 s.t.
〈u′
i1
, u′

i2
〉s = 0, 〈v′

j1
, v′

j2
〉s = 0, 〈u′

i, v
′
j〉s = δi j, where

i, i1, i2 ∈ I, j, j1, j2 ∈ J , I,J ⊆ {1, . . . ,m}.
Output: F ⊂ Sp(2m,F2) such that each F ∈ F
satisfies uiF = u′

i ∀ i ∈ I, and v jF = v′
j ∀ j ∈ J .

1: Determine a particular symplectic solution F0 for
the linear system using Algorithm 1.

2: Form the matrix A whose ath row is uaF0 and
(m+ b)th row is vbF0, where a, b ∈ {1, . . . ,m}.

3: Compute the inverse of this matrix, A−1, in F2.
4: Set F = φ and α � |Ī| + |J̄ |, where Ī, J̄ denote

the set complements of I,J in {1, . . . ,m},
respectively.

5: for � = 1, . . . , 2α(α+1)/2 do
6: Form a matrix B� = A.
7: For i /∈ I and j /∈ J replace the ith and

(m+ j)th rows of B� with arbitrary vectors such
that B��BT� = � and B� �= B�′ for 1 ≤ �′ < �.
/∗ See proof of Theorem 7 for details or
Appendix C for example MATLAB code ∗/

8: Compute F ′ = A−1B.
9: Add F� � F0F ′ to F .
10: end for
11: return F

basis (u j, v j ), j = 1, . . . ,m using the symplectic Gram-
Schmidt orthogonalization procedure discussed in [59]. Then
we transform the given system into an equivalent system of
constraints on these basis vectors u j, v j and apply Theorem 7
to obtain all symplectic solutions.
The algorithm defined implicitly by the above proof is

stated explicitly in Algorithm 2. For a given system of linear
(independent) equations, if α = 0 then the symplectic matrix
F is fully constrained and there is a unique solution. Other-
wise, the system is partially constrained and we refer to a
solution F as a partial symplectic matrix.
Example: As an application of this theorem, we discuss

the procedure to determine all symplectic solutions for the
logical controlled-Z gate CZ12 discussed at the beginning of
this section. First we define a symplectic basis for F12

2 using
the binary vector representation of the logical Pauli operators
and stabilizer generators of the [[6, 4, 2]] code.

u1 � [110000, 000000], v1 � [000000, 010001],

u2 � [101000, 000000], v2 � [000000, 001001],

u3 � [100100, 000000], v3 � [000000, 000101],

u4 � [100010, 000000], v4 � [000000, 000011],

2501217 VOLUME 1, 2020



Rengaswamy et al.: LOGICAL CLIFFORD SYNTHESIS FOR STABILIZER CODES Engineeringuantum
Transactions onIEEE

u5 � [111111, 000000], v5 � [000000, 000001],

u6 � [100000, 000000], v6 � [000000, 111111].
(15)

Note that v5 and u6 do not correspond to either a logi-
cal Pauli operator or a stabilizer element but were added
to complete a symplectic basis. Hence we have I =
{1, 2, 3, 4, 5},J = {1, 2, 3, 4, 6} and α = 1 + 1 = 2. As
discussed earlier, we impose constraints on all ui, v j ex-
cept for i = 6 and j = 5. Therefore, as per the notation in
the above proof, we haveW � 〈{(u1, v1), . . . , (u4, v4)}〉 and
W⊥ � 〈{(u5, v5), (u6, v6)}〉. Using Algorithm 1 we obtain a
particular solution F0 = TB where B is given in the beginning
of Section III. Then we compute the action of F0 on the bases
forW andW⊥ to get

uiF0 � u′
i, v jF0 � v′

j, i ∈ I, j ∈ J , and

u6F0 = [100000, 000000] � ũ′
6,

v5F0 = [000000, 000001] � ṽ′
5, (16)

where u′
i, v

′
j are the vectors obtained in (12), (13). Then we

identify ṽ5 and ũ6 to be the free vectors and one particular
solution is ṽ5 = ṽ′

5, ũ6 = ũ′
6. In this case we have 2

α = 22 =
4 choices to pick ṽ5, since we need 〈u′

5, ṽ5〉s = 1, 〈u′
i, ṽ5〉s =

0 for i = 1, 2, 3, 4, and 〈v j, ṽ5〉s = 0 for j = 1, 2, 3, 4, 6. For
each such choice of ṽ5, we have 2α−1 = 2 choices for ũ6.
Next we form the matrix A whose ith row is u′

i and (6 + j)th
row is v′

j, where i ∈ I, j ∈ J . We set the 6th row to be ũ′
6

and the 11th row to be ṽ′
5. Then we form a matrix B = A

and replace rows 6 and 11 by one of the eight possible pair
of choices for ũ6 and ṽ5, respectively. This yields the matrix
F ′ = A−1B and the symplectic solution F = F0F ′. Looping
through all the eight choices we obtain the solutions listed in
the appendices of [51].
Theorem 9: For an [[m, k]] stabilizer code, the number

of solutions for each logical Clifford operator is 2r(r+1)/2,
ignoring stabilizer degrees of freedom (Remark 12), where
r = m− k.
Proof: Let ui, vi ∈ F2m

2 represent the logical Pauli op-
erators X̄i, Z̄i, for i = 1, . . . , k, respectively, i.e., γ (X̄i) =
ui, γ (Z̄i) = vi, where γ is the map defined in Section II-
A. Since X̄iZ̄i = −Z̄iX̄i and X̄iZ̄ j = Z̄ jX̄i for all j �= i, it is
clear that 〈ui, v j〉s = δi j for i, j ∈ {1, . . . , k} and hence they
form a partial symplectic basis for F2m

2 . Let uk+1, . . . , um
represent the stabilizer generators, i.e., γ (S j ) = uk+ j where
the stabilizer group is S = 〈S1, . . . , Sr〉. Since by defi-
nition X̄i, Z̄i commute with all stabilizer elements, it is
clear that 〈ui, u j〉s = 〈vi, u j〉s = 0 for i ∈ {1, . . . , k}, j ∈
{k + 1, . . . ,m}. To complete the symplectic basis we find
vectors vk+1, . . . , vm s.t. 〈ui, v j〉s = δi j ∀ i, j ∈ {1, . . . ,m}.
Now we note that for any logical Clifford operator, the
conjugation relations with logical Paulis yield 2k con-
straints, on ui, vi for i ∈ {1, . . . , k}, and the normaliza-
tion condition on the stabilizer yields r constraints, on

uk+1, . . . , um. Hence we have Ī = φ, J̄ = {k + 1, . . . ,m},
as per the notation in Theorem 7, and thus, α = |Ī| + |J̄ |
= m− k = r. �
Corollary 10: For any logical k-qubit Clifford operation

on an [[m, k]] stabilizer code, there always exists a phys-
ical m-qubit Clifford circuit that normalizes the stabilizer
and realizes the given operation. Effectively, this identifies
the surjection CliffN ∩ NUN

(S) → Cliff2k whose kernel is
all the physical Cliffords that normalize the stabilizer but
realize only the logical identity (see the proof of Theorem 11
for a method to identify them). Here, NUN

(S) denotes the
normalizer of S in the group UN of all m-qubit unitary
operations.
Note that, for each symplectic solution, there are multiple

decompositions into elementary forms (from Table I) pos-
sible; one possibility is given in Theorem 1. Although each
decomposition yields a different circuit, all of them will act
identically on XN and ZN under conjugation (see Section II-C
for notation). Once a logical Clifford operator is defined by
its conjugation with the logical Pauli operators, a physical
realization of the operator could either normalize the stabi-
lizer or centralize it, i.e., fix each element of the stabilizer
group under conjugation. We note here that any obtained
normalizing solution can be converted into a centralizing
solution. While we do not have a well-motivated application
for this result yet, we believe this might be useful in Pauli
frame tracking [54] and adapting future logical operations to
the current signs.
Theorem 11: For an [[m, k]] stabilizer code with stabilizer

S, each physical realization of a given logical Clifford op-
erator that normalizes S can be converted into a circuit that
centralizes S while realizing the same logical operation.
Proof: Let the symplectic solution for a specific logi-

cal Clifford operator ḡ ∈ CliffN that normalizes the stabi-
lizer S be denoted by Fn. Define the logical Pauli groups
X̄ � 〈X̄1, . . . , X̄k〉 and Z̄ � 〈Z̄1, . . . , Z̄k〉. Let γ (X̄ ) and γ (Z̄)
denote the matrices whose rows are γ (X̄i) and γ (Z̄i), re-
spectively, for i = 1, . . . , k, where γ is the map defined in
Section II-A. Similarly, let γ (S) denote the matrix whose
rows are the images of the stabilizer generators under the
map γ . Then, by stacking these matrices as in the proof of
Theorem 9, we observe that Fn is a solution of the linear
system ⎡

⎢⎣γ (X̄ )

γ (S)

γ (Z̄)

⎤
⎥⎦Fn =

⎡
⎢⎣γ (X̄ ′)

γ (S′)
γ (Z̄′)

⎤
⎥⎦ ,

where X̄ ′, Z̄′ are defined by the conjugation relations of ḡ
with the logical Paulis, i.e., ḡX̄iḡ† = X̄ ′

i , ḡZ̄iḡ
† = Z̄′

i , and S
′

denotes the stabilizer group of the code generated by a dif-
ferent set of generators than that of S. Note, however, that
as a group S′ = S. The goal is to find a different solution Fc
that centralizes the stabilizer, i.e. we replace γ (S′) with γ (S)
above.
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We first find a matrix K ∈ GL(m− k,F2) such that
Kγ (S′) = γ (S), which always exists since generators of S′
span S as well. Then we determine a symplectic solution H
for the linear system⎡

⎢⎣γ (X̄ )

γ (S)

γ (Z̄)

⎤
⎥⎦H =

⎡
⎢⎣ γ (X̄ )

Kγ (S)

γ (Z̄)

⎤
⎥⎦ ,

so that H satisfies Kγ (S) = γ (S)H while fixing γ (X̄ ) and
γ (Z̄). Then since K is invertible we can write⎡

⎢⎣Ik K

Ik

⎤
⎥⎦

⎡
⎢⎣γ (X̄ )

γ (S)

γ (Z̄)

⎤
⎥⎦Fn =

⎡
⎢⎣Ik K

Ik

⎤
⎥⎦

⎡
⎢⎣γ (X̄ ′)

γ (S′)
γ (Z̄′)

⎤
⎥⎦

⇒

⎡
⎢⎣γ (X̄ )

γ (S)

γ (Z̄)

⎤
⎥⎦HFn =

⎡
⎢⎣γ (X̄ ′)

γ (S)

γ (Z̄′)

⎤
⎥⎦ .

Hence, Fc � HFn is a centralizing solution for ḡ. Note that
there are 2r(r+1)/2 solutions for H, as per the result of The-
orem 9 with the operator being the identity operator on the
logical qubits, and these produce all centralizing solutions
for ḡ. �
Although any normalizing solution can be converted into

a centralizing solution, the optimal solution with respect to
a suitable metric need not always centralize the stabilizer.
However, we can always setup the problem of identifying a
symplectic matrix, representing the physical circuit, by con-
straining it to centralize the stabilizer. The general procedure
to determine all symplectic solutions, and their circuits, for a
logical Clifford operator for a stabilizer code is summarized
in Algorithm 3. For the [[6, 4, 2]] CSS code, we employed Al-
gorithm 3 to determine the solutions listed in the appendices
of [51] for each of the standard generating operators for the
Clifford group (see Table I).
The MATLAB programs for all algorithms in this paper are

available at.4 We executed our programs on a laptop running
the Windows 10 operating system (64-bit) with an Intel Core
i7-5500U @ 2.40GHz processor and 8GB RAM. For the
[[6, 4, 2]] CSS code, it takes about 0.5 seconds to generate all
8 symplectic solutions and their circuits for one logical Clif-
ford operator. For the [[5, 1, 3]] perfect code, it takes about 20
seconds to generate all 1024 solutions and their circuits. Note
that for step 5 in Algorithm 3, we use 1-qubit and 2-qubit
unitary matrices (from Cliff22 ) to calculate conjugations for
the Pauli operator on each qubit, at each circuit element at
each depth, and then combine the results to compute the
conjugation of ḡ with a stabilizer generator or logical Pauli
operator. Owing to our naive implementation, we observe
that most of the time is consumed in computing Kronecker
products and not in calculating the symplectic solutions.

4[Online]. Available: https://github.com/nrenga/symplectic-arxiv18a

Algorithm 3: LCS Algorithm to Determine All
Logical Clifford Operators (See Section II for the
Homomorphisms γ , φ).
1: Determine the target logical operator ḡ by

specifying its action on logical Paulis X̄i, Z̄i [16]:
ḡX̄iḡ† = X̄ ′

i , ḡZ̄iḡ
† = Z̄′

i .
2: Transform the above relations into linear equations

on F ∈ Sp(2m,F2) using the map γ and the result
of (10), i.e., γ (X̄i)F = γ (X̄ ′

i ), γ (Z̄i)F = γ (Z̄′
i ).

Add the conditions for normalizing the stabilizer S,
i.e., γ (S)F = γ (S′).

3: Calculate the feasible symplectic solution set F
using Algorithm 2 by mapping X̄i, S, Z̄i to ui, vi as
in Theorem 9.

4: Factor each F ∈ F into a product of elementary
symplectic transformations listed in Table I,
possibly using the algorithm given in [64] (which
is restated in Theorem 1 here), and compute the
physical Clifford operator ḡ.

5: Check for conjugation of ḡwith the stabilizer
generators and for the conditions derived in step 1.
If some signs are incorrect, post-multiply by an
element from HWN as necessary to satisfy all these
conditions (apply [65, Prop. 10.4] for
S⊥ = 〈S, X̄i, Z̄i〉, using γ ). Since HWN is the kernel
of the map φ, post-multiplication does not change
F .

6: Express ḡ as a sequence of physical Clifford gates
corresponding to the elementary symplectic
matrices obtained from the factorization in step 4
(see Appendix A for the circuits for these
matrices).

Remark 12: Observe that, in our LCS algorithm, we are
not taking into account the degrees of freedom provided by
stabilizers. That is, if the logical operator ḡ is required to map
X̄i �→ X̄ ′

i , then an equivalent condition is to map X̄i �→ X̄ ′
i · s,

where s ∈ S is any stabilizer element for the given code. A
similar statement is true for Z̄i �→ Z̄′

i . An explicit example
for this scenario is the CNOT1→2 for the [[4, 2, 2]] code
with the logical Paulis defined instead as X̄1 = X1X2,
X̄2 = X2X4, Z̄1 = Z1Z3, Z̄2 = Z3Z4. The operation
CNOT1→2 can simply be defined as swapping qubits
2 and 4, but this maps Z̄2 �→ Z2Z3 = Z̄1Z̄2 · gZ , where
gZ = Z1Z2Z3Z4, instead of just Z̄2 �→ Z̄1Z̄2 as the above
algorithm would typically require.
In principle, the LCS algorithm can be easily modified to

consider these possibilities, but this significantly increases
the computational complexity of the algorithm. A better un-
derstanding of the structure of logical Clifford operators for a
given general stabilizer code, or even heuristics developed to
identify which degrees of freedom are worth considering for
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a given code, would greatly improve the quality of solutions
produced by the overall algorithm.

IV. CONCLUSION
In this article, we have used the binary symplectic group
to propose a systematic algorithm for synthesizing physi-
cal (Clifford) implementations of logical Clifford operators
for any stabilizer code. This algorithm provides as solutions
all symplectic matrices corresponding to the desired logical
operator, each of which is subsequently transformed into a
circuit by decomposing it into elementary forms. This de-
composition is not unique, and in future work we will ad-
dress optimization of the synthesis algorithm with respect to
circuit complexity, error-resilience, and also other nuanced
metrics discussed in the introduction. For such optimization
to be feasible, one might have to explore opportunities for
identifying and exploring the algebraic structure hidden in
the algorithm, since combinatorially the matrix inversion in-
volved in Algorithm 2 could itself form a bottleneck.

APPENDIX A: ELEMENTARY SYMPLECTIC
TRANSFORMATIONS AND THEIR CIRCUITS
In this section, we verify that the physical operators listed
in Table I are associated with the corresponding symplectic
transformation [64]. Furthermore, we also provide circuits
that realize these physical operators (also see [56]).
Since each physical operator in Table I is a unitary Clif-

ford operator, it is enough to consider their actions on ele-
ments of the Heisenberg-Weyl group HWN , where N = 2m.
Let ev be a standard basis (column) vector in CN indexed
by the vector v ∈ Fm2 such that it has entry 1 in position
v and 0 elsewhere. More precisely, if v = [v1, v2, . . . , vm]

then ev = ev1 ⊗ ev2 ⊗ · · · evm , where e0 �
[
1

0

]
= |0〉, e1 �[

0

1

]
= |1〉. Hence, we can simply write ev = |v〉 = |v1〉 ⊗

· · · ⊗ |vm〉.

1) HN = H⊗m : The single-qubit Hadamard operator

H � 1√
2

[
1 1

1 −1

]
satisfies HXH† = Z,HZH† = X .

Hence, the action of HN on a HWN element D(a, b) is
given by

HND(a, b)H
†
N = HND(a, 0)D(0, b)H

†
N (17)

= (HND(a, 0)H
†
N )

(HND(0, b)H
†
N ) (18)

= D(0, a)D(b, 0) (19)

= (−1)ab
T
D(b, a) (20)

⇒ HND(a, b)H
†
N = (−1)ab

T
D ([a, b]�) . (21)

The circuit for HN is just H applied to each of the m
qubits.

2) GL(m,F2) : Each nonsingular m× m binary matrix
Q is associated with a symplectic transformation AQ
given by

AQ =
[
Q 0

0 Q−T

]
, (22)

whereQ−T = (QT )−1 = (Q−1)T . The matrixQ is also
associated with the unitary operator aQ which realizes
the mapping ev �→ evQ. We verify this as follows. Note

thatD(c, 0)ev = ev+c andD(0, d)ev = (−1)vd
T
ev .We

calculate (aQD(c, d)a
†
Q)ev

= aQD(c, 0)D(0, d)evQ−1 (23)

= aQ(−1)cd
T
D(0, d)D(c, 0)evQ−1 (24)

= (−1)cd
T
aQ(−1)(vQ

−1+c)dT evQ−1+c (25)

= (−1)cd
T
(−1)(v+cQ)Q

−1dT ev+cQ (26)

= (−1)cd
T
D(0, d(Q−1)T )D(cQ, 0)ev (27)

= D(cQ, dQ−T )ev (28)

= D
(
[c, d]AQ

)
ev. (29)

Since the operator aQ realizes the map ev = |v〉 �→
|vQ〉, the circuit for the operator is equivalent to the
binary circuit that realizes v �→ vQ. Evidently, this el-
ementary transformation encompasses CNOT opera-
tions and qubit permutations. For the latter, Q will be a
permutation matrix. Note that if aQ preserves the code
space of a CSS code then the respective permutation
must be in the automorphism group of the constituent
classical code. This is the special case that is discussed
in detail by Grassl and Roetteler in [25].
For a general Q, one can use the LU decomposition
over F2 to obtain PπQ = LU , where Pπ is a permu-
tation matrix, L is lower triangular and U is upper
triangular. Note that Lii = Uii = 1 ∀ i ∈ {1, . . . ,m}.
Then the circuit for Q first involves the permutation
PTπ (or π−1), then CNOTs for L with control qubits
in the order 1, 2, . . . ,m and then CNOTs for U with
control qubits in reverse order m,m− 1, . . . , 1. The
order is important because an entry Lji = 1 implies a
CNOT gate with qubit j controlling qubit i (with j >

i), i.e, CNOT j→i, and similarly Lk j = 1 implies the
gate CNOTk→ j (with k > j). Since the gate CNOT j→i

requires the value of qubit j before it is altered by
CNOTk→ j, it needs to be implemented first. A similar
reasoning applies to the reverse order of control qubits
forU .

3) tR = diag(ıvRv
T
) : Each symmetric matrix R ∈ Fm×m

2
is associated with a symplectic transformation TR given
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by

TR =
[
Im R

0 Im

]
, (30)

and with a unitary operator tR that realizes the map
ev �→ ıvRv

T
ev . We now verify that conjugation by tR

induces TR. We calculate (tRD(a, b)t
†
R)ev

= ı−vRvT tR(−1)ab
T
D(0, b)D(a, 0)ev (31)

= ı−vRvT (−1)ab
T
tR(−1)(v+a)b

T
ev+a (32)

= (−1)ab
T
ı−vRvT (−1)(v+a)b

T
ı(v+a)R(v+a)

T
ev+a (33)

= (−1)ab
T
ıaRa

T
(−1)vRa

T+(v+a)bT ev+a (34)

= (−1)ab
T
ı−aRa

T
(−1)(v+a)(b+aR)

T
ev+a (35)

= (−1)ab
T
ı−aRa

T
D(0, b+ aR)D(a, 0)ev (36)

= (−1)ab
T
ı−aRa

T
(−1)a(b+aR)

T
D(a, b+ aR)ev (37)

= ıaRa
T
D ([a, b]TR) ev. (38)

Hence, for E(a, b) � ıab
T
D(a, b), we have

tRE(a, b)t
†
R = ıab

T
ıaRa

T
D(a, b+ aR) = E([a, b]TR)

as required. We derive the circuit for this unitary
operator by observing the action of TR on the standard
basis vectors [e1, 0], . . . , [em, 0], [0, e1], . . . , [0, em]
of F2m

2 , where i ∈ {1, . . . ,m}, which captures the
effect of tR on the (basis) elements X1, . . . ,Xm,
Z1, . . . ,Zm of HWN , respectively, under conjugation.
Assume as the first special case that R has nonzero
entries only in its (main) diagonal. If Rii = 1 then we
have [ei, 0]TR = [ei, ei]. This indicates that tR maps
Xi �→ XiZi ≈ Yi. Since we know that the phase gate
Pi on the ith qubit performs exactly this map under
conjugation, we conclude that the circuit for tR involves
Pi. We proceed similarly for every i ∈ {1, . . . ,m} such
that Rii = 1.
Now consider the case where Ri j = Rji = 1 (since R is
symmetric). Then, we have

[ei, 0]TR = [ei, e j], [e j, 0]TR = [e j, ei]. (39)

This indicates that tR maps Xi �→ XiZ j and Xj �→ ZiXj.
Since we know that the controlled-Z gate CZi j on
qubits (i, j) performs exactly this map under conjuga-
tion, we conclude that the circuit for tR involves CZi j.
We proceed similarly for every pair (i, j) such that
Ri j = Rji = 1.
Finally, we note that the symplectic transformation
associated with the operator HNtRHN is �TR � =[
Im 0
R Im

]
.

4) gt = H2t ⊗ I2m−t : Since H2t is the t-fold Kronecker
product of H and since D(a, b) = Xa1Zb1 ⊗ · · · ⊗

XamZbm , we have gtD(a, b)g
†
t

= (
Za1Xb1 ⊗ · · · ⊗ Zat Xbt

)
⊗ (

Xat+1Zbt+1 ⊗ · · · ⊗ XamZbm
)

(40)

= (
(−1)a1b1Xb1Za1 ⊗ · · · ⊗ (−1)atbt Xbt Zat

)
⊗ (

Xat+1Zbt+1 ⊗ · · · ⊗ XamZbm
)
. (41)

We write (a, b) = (âā, b̂b̄), where â � a1 · · · at , ā �
at+1 · · · am, b̂ � b1 · · · bt , b̄ � bt+1 · · · bm. Then

gtD(âā, b̂b̄)g
†
t = (−1)âb̂

T
D(b̂ā, âb̄) (42)

= (−1)âb̂
T
D

(
[âā, b̂b̄]Gt

)
, (43)

where Gt =

⎡
⎢⎢⎢⎣
0 0 It 0

0 Im−t 0 0

It 0 0 0

0 0 0 Im−t

⎤
⎥⎥⎥⎦ . (44)

Defining Ut �
[
It 0
0 0

]
,Lm−t �

[
0 0
0 Im−t

]
, we then write

Gt =
[
Lm−t Ut
Ut Lm−t

]
. Similar to part 1 above, the circuit

for gt is simply H applied to each of the first t qubits.
Although this is a special case where the Hadamard op-
erator was applied to consecutive qubits, we note that
the symplectic transformation for Hadamards applied
to arbitrary nonconsecutive qubits can be derived in a
similar fashion.

Hence, we have demonstrated the elementary symplectic
transformations in Sp(2m,F2) that are associated with arbi-
trary Hadamard, Phase, Controlled-Z and Controlled-NOT
gates. Since we know that these gates, along with HWN ,
generate the full Clifford group [16], these elementary sym-
plectic transformations form a universal set corresponding to
physical operators in the Clifford group.

APPENDIX B: PROOF OF THEOREM 1

Let F = [ A B
C D

] so that [ A B ]� [ A B ]T = 0 and

[C D ]�
[
C D

]T = 0 since F�FT = �. We will perform a
sequence of row and column operations to transform F into
the form �TR1� for some symmetric R1. If rank(A) = k
then there exists a row transformation Q−1

11 and a column

transformation Q−1
2 such that Q−1

11 AQ
−1
2 =

[
Ik 0
0 0

]
. Using

the notation for elementary symplectic transformations
discussed above, we applyQ−1

11 and AQ−1
2

to [ A B ] and obtain

[
Q−1
11 A Q−1

11 B
] [

Q−1
2 0

0 QT2

]
=

[
Ik 0 Rk E ′
0 0 E Bm−k

]

� [A′ B′],

where Bm−k is an (m− k) × (m− k) matrix. Since the above
result is again the top half of a symplectic matrix, we have
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[ A′ B′ ]� [ A′ B′ ]T = 0 which implies Rk is symmetric, E = 0
and hence rank(Bm−k ) = m− k. Therefore we determine an
invertible matrixQm−k which transforms Bm−k to Im−k under
row operations. Then, we apply Q−1

12 �
[
Ik 0
0 Qm−k

]
[
Q−1
12 Q

−1
11 A Q−1

12 Q
−1
11 B

] [
Q−1
2 0

0 QT2

]

=
[
Ik 0 Rk E ′
0 0 0 Im−k

]
.

Now, we observe that we can apply row operations to this
matrix and transform E ′ to 0. We left multiply by Q−1

13 �[
Ik E ′

0 Im−k

]
:

[
Q−1
13 Q

−1
12 Q

−1
11 A Q−1

13 Q
−1
12 Q

−1
11 B

] [
Q−1
2 0

0 QT2

]

=
[
Ik 0 Rk 0
0 0 0 Im−k

]
.

Since the matrix R2 �
[
Rk 0

0 0

]
is symmetric, we apply the

elementary transformation TR2 from the right to obtain

[
Ik 0 Rk 0
0 0 0 Im−k

] ⎡
⎢⎢⎣
Ik 0 Rk 0
0 Im−k 0 0
0 0 Ik 0
0 0 0 Im−k

⎤
⎥⎥⎦ =

[
Ik 0 0 0
0 0 0 Im−k

]
.

Finally, we apply the elementary transformation Gk� =[
Uk Lm−k
Lm−k Uk

]
to obtain

[
Ik 0 0 0
0 0 0 Im−k

] ⎡
⎢⎢⎣
Ik 0 0 0
0 0 0 Im−k
0 0 Ik 0
0 Im−k 0 0

⎤
⎥⎥⎦ =

[
Ik 0 0 0
0 Im−k 0 0

]

=
[
Im 0

]
.

Hence we have transformed F to the form �TR1� =[
Im 0

R1 Im

]
, i.e., if we define Q−1

1 � Q−1
13 Q

−1
12 Q

−1
11 then we

have

AQ−1
1
FAQ−1

2
TR2Gk� = �TR1�.

Rearranging terms and noting that A−1
Q = AQ−1 ,

�−1 = �,G−1
k = Gk,T

−1
R2

= TR2 we obtain F = AQ1�TR1
GkTR2AQ2 . �

APPENDIX C: MATLAB CODE FOR ALGORITHM 2
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