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Abstract—As an efficient data fusion method, over-the-air
computation integrates computation and communication by ex-
ploiting the superposition property of multiple access channels.
In this paper, a framework on deep learning enabled over-
the-air computation is proposed, where both the pre-processing
and post-processing functions are represented by deep neural
networks (DNNs). In this way, the over-the-air computation can
approximate any function via learning through the data. The deep
over-the-air framework is useful to a variety of machine learning
applications on the Internet-of-Things (IoT). The experiments on
distribution regression and anomaly detection have shown the
effectiveness of the proposed method.

I. INTRODUCTION

The future Internet-of-Things (IoT) network is expected to
connect an enormous number of sensors and edge devices,
generate huge amounts of data at the edge of the network,
and support a wide range of machine learning and/or artifi-
cial intelligence based applications [1]. On the other hand,
unprecedented challenges have also been brought in order to
manage and analyze the huge volumes of highly distributive
data. Due to the constraints on the latency, bandwidth, and
privacy, the conventional ‘aggregate-then-compute’ approach
becomes impractical. In order to tackle these issues, the over-
the-air computation has been developed as an efficient data
fusion method, where the superposition property of wireless
channels is leveraged to allow multiple devices to transmit
simultaneously [2]. However, the existing over-the-air compu-
tations only focus on limited predefined functions, such as the
weighted summation, min and max function, and geometric
mean, which are far from satisfactory for advanced machine
learning applications.

In the last decade, deep learning has achieved remarkable
success in a wide range of applications, including computer
vision, speech recognition, and natural language processing.
With the hierarchical structure of stacking nonlinear layers,
deep neural networks (DNNs) can efficiently represent the data
with hierarchical features and approximate complicate func-
tions. Building on the huge volumes of data in the IoT, DNNs
will be able to perform complicate sensing and recognition
tasks, providing new ways of interactions between humans
and physical environments. However, one critical challenge
to apply deep learning for data analysis in IoT is that the
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dimension of the input is extremely high and varies with the
number of edge devices. Recently, permute-invariant DNNs
have been developed to approximate functions over collections
of elements, where the order of the elements does not affect
the value of the functions. To enforce permutation invariance,
sum-decomposition operation on the latent space is designed
and the learning structure can be expressed as

y=p|> o], 1)

reX

where = represents each element in the collection X and
p(+) and ¢(-) are processing functions represented by DNNs
[3]. One of the important applications of (1) is parameter
aggregation in federated learning [4].

Besides achieving the order invariance, the sum-
decomposition operation makes the DNNs suitable for the
IoT systems via the over-the-air computation. In this article,
a deep learning based over-the-air computation framework is
developed upon the sum-decomposition operation over the
latent space. The superposition property of the multi-access
wireless channels is leveraged to compute the summation
of the latent features. ¢ and p are implemented in the edge
devices and the access point (AP) as the pre-processing and
post-processing functions, respectively. The effects of the
wireless channels on the deep learning based over-the-air
computation are investigated, including the channel noise
and fadings. In addition, the deep over-the-air computation
framework can be further extended to a decentralized setting,
where there is no central AP to collect the information and
each edge device needs to communicate with others based
on the over-the-air computation to share information. Two
types of application examples are considered, i.e., distribution
regression and anomaly detection, which show that the deep
over-the-air computation can achieve outstanding performance
and save communication resources.

The main contributions of this article are to develop a deep
learning based over-the-air computation framework for the
intelligent machine learning applications on the IoT systems
with the centralized and decentralized structures.

II. RELATED WORKS

The proposed approach is related to several topics in wire-
less communications and machine learning, including over-
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the-air computation, permutation-invariant DNN, and learning
based end-to-end communication systems.

Over-the-air Computation: The idea of over-the-air com-
putation has been first proposed in the seminal work [2], which
shows that the interference of the channel can be exploited
for functional computation via structure codes. And it has
been further demonstrated that this simple analog transmission
without coding can achieve the minimum functional distortion
in special cases [5]. In addition, practical issues in over-the-
air computation have been addressed, including power control
[7], synchronization errors [8], and beamforming in the MIMO
systems [9]. Recently, the over-the-air computation has been
utilized in the federated learning in the IoT system, with which
the gradients computed at edge devices can be aggregated
efficiently for model training at the cloud server [11], [12].

There have been several prior theoretical works showing
that the expression ability of the functions of over-the-air com-
putation, i.e., the nomographic functions, is powerful enough
to approximate any continuous function with proper pre-
processing and post-processing functions [10]. Nevertheless,
the previous work focused on limited predefined functions
while the deep over-the-air framework can approximate any
unknown functions via learning through the data.

Permutation Invariance Learning: Permutation invariance
learning aims to develop machine learning algorithms with
a set of samples as input, where the order of the samples
does not affect the output. In order to enforce the permutation
invariance, the sum decomposition over the latent space has
been proposed [3], which shares the same structure with nomo-
graphic functions. In fact, the sum-decomposition has already
been employed by many machine learning algorithms in order
to deal with permutation invariant inputs with the variable
size. The attention model performs a weighted summation of
a group of features [13]. In a graph neural network, each node
updates its hidden state by a weighted sum of the states of their
neighborhood [14]. The PointNet, a 3D point cloud classifier,
obtains the global feature by computing a weighted sum of all
point features[15]. In this paper, the sum decomposition over
the latent space is adopted so that it can be easily computed
by leveraging the superposition of the multi-access channel.

End-to-End Communications: The proposed deep over-
the-air computation can be also seen as an extension of
the learning based end-to-end communication systems since
the transmitter and the receiver are represented by DNNs
in both systems. The difference is that the previous end-
to-end communication systems focused on the point-to-point
communication while there are multiple transmitters in the
over-the-air computation framework. The end-to-end commu-
nication has been first proposed in [17]. Subsequently, it has
been extended to the orthogonal frequency-division multiplex-
ing (OFDM) system [18] and multiple-input multiple-output
(MIMO) system [6]. Recently, end-to-end communication sys-
tems without the channel model has attracted much attention.
Several model-free end-to-end learning methods have been
proposed based on approaches, such as reinforcement learning
[19] and generative adversarial net (GAN) [20], [21].

III. METHODOLOGY

With the DNNs as pre-processing and post-processing
functions, the deep over-the-air computation can learn to
approximate any target function in a data-driven manner. In
this section, the deep over-the-air computation is presented
in detail, including the concept of over-the-air computation,
the architectures of the deep learning enabled over-the-air
computation, and the training algorithms.

A. Over-the-Air Computation for Aggregation

We consider an IoT system consisting of K edge devices,
each having an I-dimensional signal s;, € R’. Instead of trans-
mitting s separately and aggregating in the central AP, over-
the-air computing allows the edge devices to send their data
simultaneously. If an ideal multi-access channel is considered,
the received signal at the AP will be

K
y=)_ sk )
k=1

Therefore, for computing the sum, the results can be obtained
with the received signal directly without knowing any local
data s; at the edge devices. In this way, the communication
resources can be saved up to a factor of O(K).

With proper pre-processing and post-processing functions,
over-the-air computation can be extended to non-linear func-
tions. In general, a certain class of functions, called nomo-
graphic functions, have the structure that can be calculated
easily via over-the-air computation.

Definition (Nomographic Functions [10]). Let AF k> 2,
be a metric space. Then every function f € F[A*] with a
representation

K
f@r,zr) = p(Y dlan)), 3)
k=1

is called nomographic function, where ¢(-) and p(-) are the
pre-processing and post-processing function, respectively. It
has been analytically shown that the nomographic functions
can be used to approximate any continuous function [10].

When considering a real wireless channel with additive
noise and fading. The output of over-the-air computation at
the AP can be expressed as

K
y =p(>_ i - ¢(sk) +n), )
k=1
where h; is the channel coefficient and n is the received
additive noise. It is obvious that hy = 1 and n = 0 for the
ideal multi-access channel shown in (2)

B. Architectures

The structure of the deep over-the-air framework is shown
in Fig. 1(a), where DNNs are used at each edge device and
the AP as the pre-processing and post-processing functions,
respectively. In each device, the pre-processing DNN takes the
local data sy as the input and outputs an embedding vectors

Authorized licensed use limited to: QSIO. Downloaded on August 11,2021 at 16:16:10 UTC from IEEE Xplore. Restrictions apply.



(a) Centralized deep over-the-air computation
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(b) Decentralized deep over-the-air computation

Fig. 1: Structure of deep over-the-air computation.

which will be sent to the multi-access channel. The weights
of the pre-processing DNN are shared across the devices. In
addition, the over-the-air computation heavily relies on the
channel state information (CSI). We assume that each edge
device has the CSI of the link to the AP while the AP does
not have access to the CSI, which is considered as a part of the
input of the pre-processing DNN in order to be adaptive to the
fading of the wireless channel. Therefore, the deep over-the-air
computation can be expressed as

K
y = Pw,,(z bk - Gw, (Sk, hi) + 1), (5)

k=1

while ¢y, () and pw,(-) represent the pre-processing and
post-processing DNNs with weights wg and w,, respectively.

Besides the centralized architecture, we may also consider
a fully decentralized deep over-the-air computation framework
shown in Fig. 1(b). In this case, there is no central AP
to collect the data and each device communicates via the
multi-access channel to share the information. In each device,
both the DNNs for pre-processing and post-processing are
equipped. The cost for channel estimation is heavy in this
case because of the huge number of links.

Without the CSI, the decentralized over-the-air computation
framework works as follows. With the pre-processing DNN,
the embedding features for the local data are extracted at each
device and sent to the multi-access channel. If full-duplex
transmission scheme is assumed, each device can receive a
signal from all other devices. Otherwise, each device can only
get information from devices that do not collide with itself.
With its local embedding features and received signals from
other devices, the post-processing DNN can get the desired
output.

C. Training

With DNNs representing the pre-processing and post-
processing functions of over-the-air computation, the system
can be optimized to approximate any function f(s1, -, Sk ) via

minimizing an empirical loss on samples of the target function
{s1:x, f(s1:x)}, even without knowing the expression for
1.

A loss function is chosen to measure the distance of the
post-processing DNN output and the desired function output.
The stochastic gradient descent (SGD) algorithm is used to
minimize the empirical loss. The gradient for the over-the-air
computation can be expressed as

K
aw¢pwp (Z hy - ¢w¢ (sk) +n)
. K
= Py, (O i by (s8) +1) - D hys - Dy b, (S80). (6)
k=1 k’'=1

The training set consists of a local dataset where the local
data {s;.x} at the edge devices are collected, and a channel
set, where the realization of the wireless channels {h1.x } are
collected. With the two datasets, the training can be conducted
to minimize the loss function.

IV. APPLICATIONS

The deep over-the-air computation framework can accom-
modate a variety of machine learning based applications for
the IoT system, where the data lies on the edge devices
distributively and the edge devices communicate with the AP
or other devices via the multi-access channel. Since only
aggregated information can be obtained at the receiver, the
privacy can be preserved while saving the communication
resources. In this section, two types of applications are shown
as examples, i.e., the distribution regression and the anomaly
detection.

A. Distribution Regression

Unlike the typical machine learning problems, where the
predictions are made for each instance, distribution regression
is a problem of learning regression functions from a group
of samples to a single set level label [16]. Specifically, the
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training data is in the form of {({x;,}"",,v:)}2,, where
the elements in the ith sample, x; 1,%; 2, - - X; n,, are i.i.d.
from a distribution p;, and y; is the label for p;. The objective
is to learn to predict a new label ypy; for a new batch
of samples {XD+1,n}iLV£1+ ! drawn from an unknown distribu-
tion. The concrete examples of distribution regression include
approximating real-valued functions of distributions such as
entropy or mutual information, where the training data can
be acquired through a reliable but computationally intensive
Monte Carlo approach. Also, we may wish to take a set of
images as input and obtain useful information, such as the
number of pedestrians crossing a street.

For the IoT system, we assume that x;, is distributively
allocated at edge devices and the predictions are made at a
central AP without acquiring the samples from the edge de-
vices. With the deep over-the-air computation framework, each
device encodes its local sample x;,, by the pre-processing
network and sends the output feature vector to the AP simul-
taneously. The prediction can be made at the AP by the post-
processing DNN after receiving the combined features from
the multi-access channel. During the training, /; or [y loss
is used for optimizing the parameters of the pre-processing
and post-processing DNNs so that the empirical loss on the
training set is minimized.

B. Anomaly Detection

Besides making set-level predictions over a group of sam-
ples, the decentralized deep over-the-air computation frame-
work can be used for anomaly detection over the [oT system.
The objective is to find the rare samples or outliers from
a sample set s;.x. We assume that the the samples are
distributed across the edge devices and decisions are made for
each device without sharing the local sample s;. In addition,
most of samples are assumed to belong to one distribution
while there may have several outliers belonging to a different
distribution.

With the decentralized deep over-the-air framework, each
device can communicate with other devices via the multi-
access channel. The embedding features for the local data
s; on each device are first obtained via the pre-processing
DNN and shared with other devices via the over-the-air
computation. Then each device can obtain a combination of
features from other devices although the combination coeffi-
cients are unknown. With the local embedding feature and the
received combination of features, the post-processing DNN
can determine whether the local sample is consistent with
most of the samples. This problem can be cast as a binary
classification problem, where the binary cross-entropy loss is
used during the training.

V. EXPERIMENTS

In this section, we evaluate the performance of deep over-
the-air computation on distribution regression and anomaly
detection. Three experiments have been conducted to illus-
trate the effectiveness of the deep over-the-air computation

framework and the wireless channel effects are considered and
quantized.

A. Estimating the Population Statistics

Experiment Settings: In this experiment, the deep over-
the-air framework is used to estimate the entropy of Gaussian
distributions without prior information about the Gaussianity.
The Gaussian distributions are generated in the following way.
We first randomly generate a 2 x 2 Gaussian distribution
po with covariance matrix 3 = CCT, where each element
of C € R?*? is random drawn from A(0,1). We then
generate 1,000 Gaussian distributions with covariance matrix
M, defined by rotating 3 with a 2d rotation matrix R(«;) =

z?jg; _czgna?i #7{)0’1. € {1327 T 1>000}'
The covariance matrix M; of the rotated distributions is
M; = R(a;)ZR7T(q;). Our goal is to estimate the entropy
of the first marginal distribution from samples, which can
be analytically expressed as H; = 3 In(2meM;(1,1)). The
training and test sets are obtained via sampling 200 samples
from each generated Gaussian distribution and the samples are
assumed to be distributed across 200 edge devices in a IoT
system, each contains only one sample. The Rayleigh fading
channels are assumed between the edge devices and the AP.

The deep over-the-air computation model is trained using I,
loss and three fully connected layers with Relu activation func-
tions are utilized for both pre-processing and post-processing
DNN. The input consists of the local Gaussian samples and
the local CSI. A [y normalization layer is added at the end
of the pre-processing DNN to control the transmission power.
The numbers of hidden neurons are 256, 128, 30 in the pre-
processing DNN while the numbers are 256, 128, 1 in the
post-processing DNN. Adam is used as the optimizer and the
batch size is 120.

Baseline: We compare the deep over-the-air computation
framework with a baseline system, where each device also
encodes local data s; with a DNN. Instead of using over-the-
air computation for transmission, the edge devices commu-
nicate with the AP system at different frequency bands and
send the embedding features without interference. With the
sequentially received embedding features, a long short-term
memory (LSTM) network is employed to predict the group
label. Therefore, the LSTM approach requires the bandwidth
K times larger than the deep over-the-air computation frame-
work. The pre-processing DNN remains the same as the deep
over-the-air computation framework and the post-processing
DNN at the AP consists of an LSTM layer with 256 neurons
followed by two fully connected layer with 128 and 1 neurons.

Results: Fig. 2 shows the mean-squared error (MSE) of both
the deep over-the-air computation and the baseline system at
different signal-to-noise ratios (SNRs). The proposed approach
achieves better performance than the LSTM approach while
saving communication bandwidth.

}, where «; =

B. Digit Sum

Experiment Settings: We next predict the sum of digit
images distributed in edge devices. The experiment setting
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Fig. 2: Entropy estimation.

follows [3] except that the IoT scenario and the wireless fading
channels are introduced. In particular, mnist8m dataset [22]
is used for evaluation, which contains 8 million samples of
28 x 28 grey-scale images of digits in {0, ..., 9}. We randomly
select image sets from this dataset to build the training sets,
where each set contains maximum 10 images and the set-
label is the sum of digits in that set. Similar to the previous
experiment, images in each set are assumed to be distributed
across the edge devices and Rayleigh channels between the
edge devices and the AP are assumed.

The deep over-the-air computation model is trained using
Iy loss and fully connected layers with Relu activation for
both pre-processing and post-processing DNN. In the pre-
processing DNN, the image is processed by three fully con-
nected layers with 300, 100, 30 hidden neurons. The output
is then concatenated with the CSI and followed by 3 1D
convolutional layers with 256, 128 and 2 filters. In the post-
processing DNN, the input is connected to a fully connected
layer with one neuron. Adam is used as the optimizer and the
batch size is 120.

Baseline: Similar to the previous experiment, the deep over-
the-air computation framework is compared with a baseline
system, where the independent communications and LSTM
are adopted. The structure of pre-processing DNN used at
each device is identical to the deep over-the-air computation
approach and the structure of the DNN used at AP contains
an LSTM layer with 100 neurons, followed by one fully
connected layer with one neuron. Besides, we also compare
with the performance with ideal multi-access channel (4)
without channel fading and noise, which is consistent with
approaches in [3].

Results: The accuracy for prediction of the deep over-the-
air computation and the baseline approaches are shown in
Fig. 3, where the number of devices ranges from 10 to 30. The
deep over-the-air computation outperforms the LSTM baseline
and provides more accurate prediction especially when there
are more than 10 devices. In addition, compared with the ideal
multi-access channel, the performance degrades due to the
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Fig. 3: Digit sum estimation.

channel fadings and the channel noise. The accuracy drops
about 10% when the SNR decrease from 15dB to 5dB.

C. Decentralized Anomaly Detection

Experiment Settings: In this experiment, the decentralized
over-the-air computation is used for detecting the anomalous
data. CelebA dataset [23] is used for evaluation, where there
are 202,599 face images, each annotated with 40 boolean
attributes. In particular, we choose four of the attributes, in-
cluding ‘Male’, ‘Eyeglasses’, ‘Wearing Hat’, and ‘Mustache’.
With the selected attributes, we build the training and testing
sets of face images, where there are 20 images in each set,
including 19 normal images and a single target image. For each
set, an attribute is first selected from the four attributes and
the normal images are selected from images with the particular
attribute while the single target image is selected from images
without the particular attribute. There is no individual person’s
face appears in both training and test sets. The images in each
training and test sets are assumed to be distributed at the edge
devices. With communicating via over-the-air computation, the
outliers can be found locally at the edge devices. As before,
the channels among the devices are assumed to be Rayleigh
channel but the CSI is no longer available for the devices. The
system is trained and tested with SNR equals to 20dB.

In the pre-processing DNN, there are 9 convolution layers
with 3 x 3 receptive fields. The model has three sets of
convolution layers. The first set has 32, 32, and 64 feature-
maps followed by a max-pooling layer with pool-size of 2. The
second set has with 64, 64, and 128 feature-maps followed
by a max-pooling layer with pool-size of 2. The final set
has 128, 128, and 256 feature-maps followed by a max-
pooling layer with pool-size of 5. The output of pre-processing
has 128 dimensions, which is sent to channel. In the post-
processing DNN, there are three fully connected layers with
hidden neurons 256, 128, and 1. The output of the final layer
is fed to a Softmax layer to get the classification result. We
use Adam for optimization and the batch size is 32.

Results: Fig. 4 shows detection results, where the deep
over-the-air computation can effectively find the outliers with
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Fig. 4: Decentralized deep over-the-air computation based anomaly detection results with different attributes.

different attributions via sharing features through the wireless
multi-access channel. The anomaly detection problem is cast
as a binary classification problem at each device and the
classification accuracy is 98.5%.

VI. CONCLUSION

In this paper, a deep learning enabled over-the-air com-
putation framework has been proposed, where the DNN is
used as the pre-processing and post-processing functions. Both
the centralized and decentralized structures are developed for
different applications. In this way, the over-the-air compu-
tation functions can be trained for many machine learning
applications on the IoT. This paper provides examples that
the superposition property of multi-access channels can be
leveraged to develop efficient communication architectures for
machine learning / artificial intelligence enabled applications.
One interesting future direction is how to extend the frame-
work to general wireless channels such as MIMO channels. In
addition, how to exploit the superposition property to develop
more types of learning algorithms that are suitable for the
wireless networks also need to be further explored.
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