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Abstract—As an efficient data fusion method, over-the-air
computation integrates computation and communication by ex-
ploiting the superposition property of multiple access channels.
In this paper, a framework on deep learning enabled over-
the-air computation is proposed, where both the pre-processing
and post-processing functions are represented by deep neural
networks (DNNs). In this way, the over-the-air computation can
approximate any function via learning through the data. The deep
over-the-air framework is useful to a variety of machine learning
applications on the Internet-of-Things (IoT). The experiments on
distribution regression and anomaly detection have shown the
effectiveness of the proposed method.

I. INTRODUCTION

The future Internet-of-Things (IoT) network is expected to

connect an enormous number of sensors and edge devices,

generate huge amounts of data at the edge of the network,

and support a wide range of machine learning and/or artifi-

cial intelligence based applications [1]. On the other hand,

unprecedented challenges have also been brought in order to

manage and analyze the huge volumes of highly distributive

data. Due to the constraints on the latency, bandwidth, and

privacy, the conventional ‘aggregate-then-compute’ approach

becomes impractical. In order to tackle these issues, the over-

the-air computation has been developed as an efficient data

fusion method, where the superposition property of wireless

channels is leveraged to allow multiple devices to transmit

simultaneously [2]. However, the existing over-the-air compu-

tations only focus on limited predefined functions, such as the

weighted summation, min and max function, and geometric

mean, which are far from satisfactory for advanced machine

learning applications.

In the last decade, deep learning has achieved remarkable

success in a wide range of applications, including computer

vision, speech recognition, and natural language processing.

With the hierarchical structure of stacking nonlinear layers,

deep neural networks (DNNs) can efficiently represent the data

with hierarchical features and approximate complicate func-

tions. Building on the huge volumes of data in the IoT, DNNs

will be able to perform complicate sensing and recognition

tasks, providing new ways of interactions between humans

and physical environments. However, one critical challenge

to apply deep learning for data analysis in IoT is that the
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dimension of the input is extremely high and varies with the

number of edge devices. Recently, permute-invariant DNNs

have been developed to approximate functions over collections

of elements, where the order of the elements does not affect

the value of the functions. To enforce permutation invariance,

sum-decomposition operation on the latent space is designed

and the learning structure can be expressed as

y = ρ

(

∑

x∈X

φ(x)

)

, (1)

where x represents each element in the collection X and

ρ(·) and φ(·) are processing functions represented by DNNs

[3]. One of the important applications of (1) is parameter

aggregation in federated learning [4].

Besides achieving the order invariance, the sum-

decomposition operation makes the DNNs suitable for the

IoT systems via the over-the-air computation. In this article,

a deep learning based over-the-air computation framework is

developed upon the sum-decomposition operation over the

latent space. The superposition property of the multi-access

wireless channels is leveraged to compute the summation

of the latent features. φ and ρ are implemented in the edge

devices and the access point (AP) as the pre-processing and

post-processing functions, respectively. The effects of the

wireless channels on the deep learning based over-the-air

computation are investigated, including the channel noise

and fadings. In addition, the deep over-the-air computation

framework can be further extended to a decentralized setting,

where there is no central AP to collect the information and

each edge device needs to communicate with others based

on the over-the-air computation to share information. Two

types of application examples are considered, i.e., distribution

regression and anomaly detection, which show that the deep

over-the-air computation can achieve outstanding performance

and save communication resources.

The main contributions of this article are to develop a deep

learning based over-the-air computation framework for the

intelligent machine learning applications on the IoT systems

with the centralized and decentralized structures.

II. RELATED WORKS

The proposed approach is related to several topics in wire-

less communications and machine learning, including over-
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the-air computation, permutation-invariant DNN, and learning

based end-to-end communication systems.

Over-the-air Computation: The idea of over-the-air com-

putation has been first proposed in the seminal work [2], which

shows that the interference of the channel can be exploited

for functional computation via structure codes. And it has

been further demonstrated that this simple analog transmission

without coding can achieve the minimum functional distortion

in special cases [5]. In addition, practical issues in over-the-

air computation have been addressed, including power control

[7], synchronization errors [8], and beamforming in the MIMO

systems [9]. Recently, the over-the-air computation has been

utilized in the federated learning in the IoT system, with which

the gradients computed at edge devices can be aggregated

efficiently for model training at the cloud server [11], [12].

There have been several prior theoretical works showing

that the expression ability of the functions of over-the-air com-

putation, i.e., the nomographic functions, is powerful enough

to approximate any continuous function with proper pre-

processing and post-processing functions [10]. Nevertheless,

the previous work focused on limited predefined functions

while the deep over-the-air framework can approximate any

unknown functions via learning through the data.

Permutation Invariance Learning: Permutation invariance

learning aims to develop machine learning algorithms with

a set of samples as input, where the order of the samples

does not affect the output. In order to enforce the permutation

invariance, the sum decomposition over the latent space has

been proposed [3], which shares the same structure with nomo-

graphic functions. In fact, the sum-decomposition has already

been employed by many machine learning algorithms in order

to deal with permutation invariant inputs with the variable

size. The attention model performs a weighted summation of

a group of features [13]. In a graph neural network, each node

updates its hidden state by a weighted sum of the states of their

neighborhood [14]. The PointNet, a 3D point cloud classifier,

obtains the global feature by computing a weighted sum of all

point features[15]. In this paper, the sum decomposition over

the latent space is adopted so that it can be easily computed

by leveraging the superposition of the multi-access channel.

End-to-End Communications: The proposed deep over-

the-air computation can be also seen as an extension of

the learning based end-to-end communication systems since

the transmitter and the receiver are represented by DNNs

in both systems. The difference is that the previous end-

to-end communication systems focused on the point-to-point

communication while there are multiple transmitters in the

over-the-air computation framework. The end-to-end commu-

nication has been first proposed in [17]. Subsequently, it has

been extended to the orthogonal frequency-division multiplex-

ing (OFDM) system [18] and multiple-input multiple-output

(MIMO) system [6]. Recently, end-to-end communication sys-

tems without the channel model has attracted much attention.

Several model-free end-to-end learning methods have been

proposed based on approaches, such as reinforcement learning

[19] and generative adversarial net (GAN) [20], [21].

III. METHODOLOGY

With the DNNs as pre-processing and post-processing

functions, the deep over-the-air computation can learn to

approximate any target function in a data-driven manner. In

this section, the deep over-the-air computation is presented

in detail, including the concept of over-the-air computation,

the architectures of the deep learning enabled over-the-air

computation, and the training algorithms.

A. Over-the-Air Computation for Aggregation

We consider an IoT system consisting of K edge devices,

each having an l-dimensional signal sk ∈ R
l. Instead of trans-

mitting sk separately and aggregating in the central AP, over-

the-air computing allows the edge devices to send their data

simultaneously. If an ideal multi-access channel is considered,

the received signal at the AP will be

y =
K
∑

k=1

sk. (2)

Therefore, for computing the sum, the results can be obtained

with the received signal directly without knowing any local

data sk at the edge devices. In this way, the communication

resources can be saved up to a factor of O(K).
With proper pre-processing and post-processing functions,

over-the-air computation can be extended to non-linear func-

tions. In general, a certain class of functions, called nomo-

graphic functions, have the structure that can be calculated

easily via over-the-air computation.

Definition (Nomographic Functions [10]). Let Ak, k > 2,

be a metric space. Then every function f ∈ F [Ak] with a

representation

f(x1, ..., xK) = ρ(

K
∑

k=1

φ(xk)), (3)

is called nomographic function, where φ(·) and ρ(·) are the

pre-processing and post-processing function, respectively. It

has been analytically shown that the nomographic functions

can be used to approximate any continuous function [10].

When considering a real wireless channel with additive

noise and fading. The output of over-the-air computation at

the AP can be expressed as

y = ρ(

K
∑

k=1

hk · φ(sk) + n), (4)

where hk is the channel coefficient and n is the received

additive noise. It is obvious that hk = 1 and n = 0 for the

ideal multi-access channel shown in (2)

B. Architectures

The structure of the deep over-the-air framework is shown

in Fig. 1(a), where DNNs are used at each edge device and

the AP as the pre-processing and post-processing functions,

respectively. In each device, the pre-processing DNN takes the

local data sk as the input and outputs an embedding vectors
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(a) Centralized deep over-the-air computation (b) Decentralized deep over-the-air computation

Fig. 1: Structure of deep over-the-air computation.

which will be sent to the multi-access channel. The weights

of the pre-processing DNN are shared across the devices. In

addition, the over-the-air computation heavily relies on the

channel state information (CSI). We assume that each edge

device has the CSI of the link to the AP while the AP does

not have access to the CSI, which is considered as a part of the

input of the pre-processing DNN in order to be adaptive to the

fading of the wireless channel. Therefore, the deep over-the-air

computation can be expressed as

y = ρwρ
(

K
∑

k=1

hk · φwφ
(sk, hk) + n), (5)

while φwφ
(·) and ρwρ

(·) represent the pre-processing and

post-processing DNNs with weights wφ and wρ, respectively.

Besides the centralized architecture, we may also consider

a fully decentralized deep over-the-air computation framework

shown in Fig. 1(b). In this case, there is no central AP

to collect the data and each device communicates via the

multi-access channel to share the information. In each device,

both the DNNs for pre-processing and post-processing are

equipped. The cost for channel estimation is heavy in this

case because of the huge number of links.

Without the CSI, the decentralized over-the-air computation

framework works as follows. With the pre-processing DNN,

the embedding features for the local data are extracted at each

device and sent to the multi-access channel. If full-duplex

transmission scheme is assumed, each device can receive a

signal from all other devices. Otherwise, each device can only

get information from devices that do not collide with itself.

With its local embedding features and received signals from

other devices, the post-processing DNN can get the desired

output.

C. Training

With DNNs representing the pre-processing and post-

processing functions of over-the-air computation, the system

can be optimized to approximate any function f(s1, ···, sK) via

minimizing an empirical loss on samples of the target function

{s1:K , f(s1:K)}, even without knowing the expression for

f(·).
A loss function is chosen to measure the distance of the

post-processing DNN output and the desired function output.

The stochastic gradient descent (SGD) algorithm is used to

minimize the empirical loss. The gradient for the over-the-air

computation can be expressed as

∂wφ
ρwρ

(
K
∑

k=1

hk · φwφ
(sk) + n)

= ρ′
wρ

(
K
∑

k=1

hk · φwφ
(sk) + n) ·

K
∑

k′=1

hk′ · ∂wφ
φwφ

(sk′). (6)

The training set consists of a local dataset where the local

data {s1:K} at the edge devices are collected, and a channel

set, where the realization of the wireless channels {h1:K} are

collected. With the two datasets, the training can be conducted

to minimize the loss function.

IV. APPLICATIONS

The deep over-the-air computation framework can accom-

modate a variety of machine learning based applications for

the IoT system, where the data lies on the edge devices

distributively and the edge devices communicate with the AP

or other devices via the multi-access channel. Since only

aggregated information can be obtained at the receiver, the

privacy can be preserved while saving the communication

resources. In this section, two types of applications are shown

as examples, i.e., the distribution regression and the anomaly

detection.

A. Distribution Regression

Unlike the typical machine learning problems, where the

predictions are made for each instance, distribution regression

is a problem of learning regression functions from a group

of samples to a single set level label [16]. Specifically, the
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training data is in the form of {({xi,n}
Ni

n=1, yi)}
D
i=1, where

the elements in the ith sample, xi,1,xi,2, · · ·xi,Ni
, are i.i.d.

from a distribution pi, and yi is the label for pi. The objective

is to learn to predict a new label yD+1 for a new batch

of samples {xD+1,n}
ND+1

n=1 drawn from an unknown distribu-

tion. The concrete examples of distribution regression include

approximating real-valued functions of distributions such as

entropy or mutual information, where the training data can

be acquired through a reliable but computationally intensive

Monte Carlo approach. Also, we may wish to take a set of

images as input and obtain useful information, such as the

number of pedestrians crossing a street.

For the IoT system, we assume that xi,n is distributively

allocated at edge devices and the predictions are made at a

central AP without acquiring the samples from the edge de-

vices. With the deep over-the-air computation framework, each

device encodes its local sample xi,n by the pre-processing

network and sends the output feature vector to the AP simul-

taneously. The prediction can be made at the AP by the post-

processing DNN after receiving the combined features from

the multi-access channel. During the training, l1 or l2 loss

is used for optimizing the parameters of the pre-processing

and post-processing DNNs so that the empirical loss on the

training set is minimized.

B. Anomaly Detection

Besides making set-level predictions over a group of sam-

ples, the decentralized deep over-the-air computation frame-

work can be used for anomaly detection over the IoT system.

The objective is to find the rare samples or outliers from

a sample set s1:K . We assume that the the samples are

distributed across the edge devices and decisions are made for

each device without sharing the local sample si. In addition,

most of samples are assumed to belong to one distribution

while there may have several outliers belonging to a different

distribution.

With the decentralized deep over-the-air framework, each

device can communicate with other devices via the multi-

access channel. The embedding features for the local data

si on each device are first obtained via the pre-processing

DNN and shared with other devices via the over-the-air

computation. Then each device can obtain a combination of

features from other devices although the combination coeffi-

cients are unknown. With the local embedding feature and the

received combination of features, the post-processing DNN

can determine whether the local sample is consistent with

most of the samples. This problem can be cast as a binary

classification problem, where the binary cross-entropy loss is

used during the training.

V. EXPERIMENTS

In this section, we evaluate the performance of deep over-

the-air computation on distribution regression and anomaly

detection. Three experiments have been conducted to illus-

trate the effectiveness of the deep over-the-air computation

framework and the wireless channel effects are considered and

quantized.

A. Estimating the Population Statistics

Experiment Settings: In this experiment, the deep over-

the-air framework is used to estimate the entropy of Gaussian

distributions without prior information about the Gaussianity.

The Gaussian distributions are generated in the following way.

We first randomly generate a 2 × 2 Gaussian distribution

p0 with covariance matrix Σ = CCT , where each element

of C ∈ R2×2 is random drawn from N (0, 1). We then

generate 1,000 Gaussian distributions with covariance matrix

Mi defined by rotating Σ with a 2d rotation matrix R(αi) =
[

cosαi, − sinαi

sinαi, cosαi

]

, where αi = iπ
1000

, i ∈ {1, 2, · · ·, 1, 000}.

The covariance matrix Mi of the rotated distributions is

Mi = R(αi)ΣRT (αi). Our goal is to estimate the entropy

of the first marginal distribution from samples, which can

be analytically expressed as Hi = 1

2
ln(2πeMi(1, 1)). The

training and test sets are obtained via sampling 200 samples

from each generated Gaussian distribution and the samples are

assumed to be distributed across 200 edge devices in a IoT

system, each contains only one sample. The Rayleigh fading

channels are assumed between the edge devices and the AP.

The deep over-the-air computation model is trained using l1
loss and three fully connected layers with Relu activation func-

tions are utilized for both pre-processing and post-processing

DNN. The input consists of the local Gaussian samples and

the local CSI. A l2 normalization layer is added at the end

of the pre-processing DNN to control the transmission power.

The numbers of hidden neurons are 256, 128, 30 in the pre-

processing DNN while the numbers are 256, 128, 1 in the

post-processing DNN. Adam is used as the optimizer and the

batch size is 120.

Baseline: We compare the deep over-the-air computation

framework with a baseline system, where each device also

encodes local data sk with a DNN. Instead of using over-the-

air computation for transmission, the edge devices commu-

nicate with the AP system at different frequency bands and

send the embedding features without interference. With the

sequentially received embedding features, a long short-term

memory (LSTM) network is employed to predict the group

label. Therefore, the LSTM approach requires the bandwidth

K times larger than the deep over-the-air computation frame-

work. The pre-processing DNN remains the same as the deep

over-the-air computation framework and the post-processing

DNN at the AP consists of an LSTM layer with 256 neurons

followed by two fully connected layer with 128 and 1 neurons.

Results: Fig. 2 shows the mean-squared error (MSE) of both

the deep over-the-air computation and the baseline system at

different signal-to-noise ratios (SNRs). The proposed approach

achieves better performance than the LSTM approach while

saving communication bandwidth.

B. Digit Sum

Experiment Settings: We next predict the sum of digit

images distributed in edge devices. The experiment setting
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Fig. 2: Entropy estimation.

follows [3] except that the IoT scenario and the wireless fading

channels are introduced. In particular, mnist8m dataset [22]

is used for evaluation, which contains 8 million samples of

28×28 grey-scale images of digits in {0, ..., 9}. We randomly

select image sets from this dataset to build the training sets,

where each set contains maximum 10 images and the set-

label is the sum of digits in that set. Similar to the previous

experiment, images in each set are assumed to be distributed

across the edge devices and Rayleigh channels between the

edge devices and the AP are assumed.

The deep over-the-air computation model is trained using

l1 loss and fully connected layers with Relu activation for

both pre-processing and post-processing DNN. In the pre-

processing DNN, the image is processed by three fully con-

nected layers with 300, 100, 30 hidden neurons. The output

is then concatenated with the CSI and followed by 3 1D

convolutional layers with 256, 128 and 2 filters. In the post-

processing DNN, the input is connected to a fully connected

layer with one neuron. Adam is used as the optimizer and the

batch size is 120.

Baseline: Similar to the previous experiment, the deep over-

the-air computation framework is compared with a baseline

system, where the independent communications and LSTM

are adopted. The structure of pre-processing DNN used at

each device is identical to the deep over-the-air computation

approach and the structure of the DNN used at AP contains

an LSTM layer with 100 neurons, followed by one fully

connected layer with one neuron. Besides, we also compare

with the performance with ideal multi-access channel (4)

without channel fading and noise, which is consistent with

approaches in [3].

Results: The accuracy for prediction of the deep over-the-

air computation and the baseline approaches are shown in

Fig. 3, where the number of devices ranges from 10 to 30. The

deep over-the-air computation outperforms the LSTM baseline

and provides more accurate prediction especially when there

are more than 10 devices. In addition, compared with the ideal

multi-access channel, the performance degrades due to the

5 10 15 20 25 30 35 40
Number of devices

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

Ideal Channel
Deep Over-the-Air 15 dB
Deep Over-the-Air 5 dB
LSTM 15 dB
LSTM 5 dB

Fig. 3: Digit sum estimation.

channel fadings and the channel noise. The accuracy drops

about 10% when the SNR decrease from 15dB to 5dB.

C. Decentralized Anomaly Detection

Experiment Settings: In this experiment, the decentralized

over-the-air computation is used for detecting the anomalous

data. CelebA dataset [23] is used for evaluation, where there

are 202,599 face images, each annotated with 40 boolean

attributes. In particular, we choose four of the attributes, in-

cluding ‘Male’, ‘Eyeglasses’, ‘Wearing Hat’, and ‘Mustache’.

With the selected attributes, we build the training and testing

sets of face images, where there are 20 images in each set,

including 19 normal images and a single target image. For each

set, an attribute is first selected from the four attributes and

the normal images are selected from images with the particular

attribute while the single target image is selected from images

without the particular attribute. There is no individual person’s

face appears in both training and test sets. The images in each

training and test sets are assumed to be distributed at the edge

devices. With communicating via over-the-air computation, the

outliers can be found locally at the edge devices. As before,

the channels among the devices are assumed to be Rayleigh

channel but the CSI is no longer available for the devices. The

system is trained and tested with SNR equals to 20dB.

In the pre-processing DNN, there are 9 convolution layers

with 3 × 3 receptive fields. The model has three sets of

convolution layers. The first set has 32, 32, and 64 feature-

maps followed by a max-pooling layer with pool-size of 2. The

second set has with 64, 64, and 128 feature-maps followed

by a max-pooling layer with pool-size of 2. The final set

has 128, 128, and 256 feature-maps followed by a max-

pooling layer with pool-size of 5. The output of pre-processing

has 128 dimensions, which is sent to channel. In the post-

processing DNN, there are three fully connected layers with

hidden neurons 256, 128, and 1. The output of the final layer

is fed to a Softmax layer to get the classification result. We

use Adam for optimization and the batch size is 32.

Results: Fig. 4 shows detection results, where the deep

over-the-air computation can effectively find the outliers with

Authorized licensed use limited to: QSIO. Downloaded on August 11,2021 at 16:16:10 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4: Decentralized deep over-the-air computation based anomaly detection results with different attributes.

different attributions via sharing features through the wireless

multi-access channel. The anomaly detection problem is cast

as a binary classification problem at each device and the

classification accuracy is 98.5%.

VI. CONCLUSION

In this paper, a deep learning enabled over-the-air com-

putation framework has been proposed, where the DNN is

used as the pre-processing and post-processing functions. Both

the centralized and decentralized structures are developed for

different applications. In this way, the over-the-air compu-

tation functions can be trained for many machine learning

applications on the IoT. This paper provides examples that

the superposition property of multi-access channels can be

leveraged to develop efficient communication architectures for

machine learning / artificial intelligence enabled applications.

One interesting future direction is how to extend the frame-

work to general wireless channels such as MIMO channels. In

addition, how to exploit the superposition property to develop

more types of learning algorithms that are suitable for the

wireless networks also need to be further explored.
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