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ABSTRACT
Consider a knot K in S® with charge uniformly distributed on it. From the standpoint
of both physics and knot theory, it is natural to try to understand the critical points of
the potential and their behavior.

We show the number of critical points of the potential is at least 2¢(K) + 2, where
t(K) is the tunnel number, defined as the smallest number of arcs one must add to K
such that its complement is a handlebody. The result is proven using Morse theory and
stable manifold theory.
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1. Introduction

Our novel problem of interest is to analyze the zeros of the electric field around
a charged, knotted wire fixed in place. Let K C R?® C S3 be a smooth knot
parametrized by the curve r(t), t € [0,27] with r(0) = r(27). We will take the
convention that S is the union of R? and a single compactifying point at infinity.
Suppose K is endowed with a uniform charge distribution. With a choice of units,
the electric potential between a point k € K and a point charge at = at a distance
R from k is proportional to R~'. It therefore makes sense to define the electric

potential ® : S3 — K — R, on the complement of K by the line integral

27 /
o(z) :/ _dk_ :/ Ol gy s eri ok (1.1)
kex v =kl Jo lz—r()]

We set ®(c0) = 0 to ensure smoothness. By differentiating under the integral
sign with respect to x, we can see the electric potential is smooth and harmonic.

The electric field is defined by E = —V®. We want to describe the critical points
of the potential (equivalently, the zeros of the electric field) and their behaviors.
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These represent equilibrium points where a charged particle at rest will continue
to experience no electric force from the charge distribution. Some conventions use
the negative of the potential, so that the electric field points towards the knot,
but it is more convenient for our purposes to work with a non-negative potential
function.

Define the knot invariant cp(K) to be the smallest number of critical points of
the electric potential among all parametrizations in the knot isotopy class [K]. All
parametrizations have a critical point at infinity, which we include in the count. We
will now assume r is a parametrization which yields a critical set of minimal size.
We obtain a lower bound for the number of critical points of the electric potential
based on a well known topological invariant called the tunnel number ¢(K). The
tunnel number was originally introduced by Clark [3], and remains an active topic
of knot theory research [IJ.

We now come to the main result of this paper. Proving this theorem uses Morse
theory and stable manifold theory.

Theorem 1.1. For all knots K, cp(K) > 2t(K) + 2.

2. Preliminary Definitions and Lemmas

The theorems of Morse theory require us to work on a compact manifold, so in the
sequel we will define the knot complement of K in S3 to be the complement of an
open tubular neighborhood of K of sufficiently small radius. The theorems from
Morse theory we invoke will still hold on this compact manifold with boundary
because the potential function is proper, with gradient transversely intersecting the
boundary. We will still denote our domain by S3 — K.

Many of the following definitions and results are standard and can be found in
Nicolaescu [5] and Burde [2]. A critical point of a smooth real valued function f on
a manifold M is a point p such that the differential df (p) is zero. The critical set
of f is the set of critical points, and is denoted Crit(f). We say f is Morse if its
critical points are nondegenerate, which means the Hessian matrix H(f) of second
partial derivatives is nonsingular. The indez of p € Crit(f) is the number of negative
eigenvalues of H(f), which is invariant under the choice of local coordinates. We
denote the set of critical points of index i by Crit;(f). If f is fixed, we denote the
index of p by A(p) and we denote the number of critical points of index ¢ by m;. In
the space of all smooth real valued maps, under a suitable function space topology,
the set of Morse functions is dense. Therefore, we may assume the electric potential
® is Morse by adding a perturbation if necessary.

We write W9(p) and WY (p) to denote the stable and unstable manifolds of
p € Crit(f), respectively. Recall that the stable manifold (respectively, unstable
manifold) of p is the set of all points which flow to p along the gradient vector
field V f as time tends to infinity (respectively, negative infinity). If f is Morse, the
dimension of W*(p) is A(p) and the dimension of WU (p) is dim M — A(p).
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The Morse Reconstruction Theorem states the domain of a Morse function on
a compact manifold can be expressed as a cell complex by attaching closed discs
with dimensions given by the indices of the critical points. The attaching maps
are obtained by a process known as surgery, but we will not need to discuss the
attaching maps in any further detail.

The Morse inequalities state for a fixed Morse function f on a manifold M,
m; > b;, where b; = dim H;(M) is the ith Betti number of our domain manifold.
We will need the stronger result which states

dim M ) dim M .
Yo EDimi= Y (=1)'hi = x(M), (2.1)
=0 1=0

with x(M) denoting the Euler characteristic of M. See Nicolaescu [5, Corol-
lary 2.3.3].

Before turning to the proof of Theorem 1.1, we need to prove a few preliminary
lemmas.

Lemma 2.1. For all knots K, H;(S® — K) = Z, fori = 0,1 and H;(S® — K) =0
fori>2.

Proof. See Rolfsen [6] Proposition 3.A.3]. |

From the homology of the knot complement, along with (2.1), we can deduce
the following lemma.

Lemma 2.2. For all knots K, and with ® defined above, my — msy = 1.

Proof. Equation (2.1) states the Euler characteristic equals the alternating sum
of the m;’s. In other words, (5% — K) = Zfzo(—l)imi. From Lemma 2.1, we can
see that y(S® — K) = 1 — 1 = 0. Since ® is harmonic, every critical point has
index 1 or 2, save for the point at infinity, which has index 0. We can conclude

mo —mq + mo —ma = 0, or equivalently, m; — my = 1 as desired. O

Remark 2.3. As mo > 0, m; = 1+ mo > 1. That is, there is always a critical
point of index 1.

The next set of definitions and results are standard in 3-manifold topology,
and further exposition can be found in [7, [§]. A handlebody is a topological space
homotopic to the three-dimensional ball with solid handles attached (by “attaching
handles” we mean there are copies of D? x [0, 1] where the boundary discs D? x 0
and D? x 1 are embedded on the boundary of the three-ball). Given a knot K C S3,
the tunnel number t(K) is the least number of arcs we must add to K such that
the complement in S® is a handlebody. A collection of arcs with this property is
known as a tunneling.
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In the proof of Theorem 1.1, we shall use the above definition of the tunnel
number, but there is an equivalent definition that is more visually intuitive. A
Heegaard splitting of a three-manifold M is an embedding of a closed, compact,
and orientable surface H such that the interior and exterior of H in M are both
handlebodies. We say the genus of H is the genus of the splitting.

Theorem 2.4. Let H be an unknotted embedding of a genus g surface in S>.
That is, let H be the boundary of a tubular neighborhood around a wedge sum of g
unknotted circles. Then H defines a Heegaard splitting.

Theorem 2.5. Genus g Heegaard splittings of S® are unique up to isotopy.

The previous result is known as Waldhausen’s Theorem. Clearly, a tunneling
of a knot defines a Heegaard splitting. Therefore, we can view the tunnel number
of K as the least number of arcs we must add to K such that it is isotopic to a
wedge sum of unknotted circles. We can immediately deduce that tunnelings and
the tunnel number always exist.

Lemma 2.6. FEvery smooth knot K has a tunnel number.

Proof. Take a diagram of K with finitely many crossings. Over each crossing,
introduce an arc connecting the top and bottom strands. Collapse each arc so that
the top and bottom strands intersect, and project onto the diagram’s plane so that
we are left with a wedge sum of say, g circles. By Theorem 2.4, it follows that the
complement in S? is also a handlebody with g handles. O

Remark 2.7. We just proved the tunnel number is bounded above by the crossing
number, the least number of crossings needed in a knot diagram of K.

As some elementary examples, the tunnel number of the unknot is zero, and
the tunnel number of the trefoil is one. Indeed, the tunnel number need not be
the crossing number. For example, torus knots have tunnel number 1, yet can have
arbitrarily high crossing number. See Clark [3].

3. Proof of Theorem 1.1

We now come to the proof of our main result. To prove the result, we construct
a tunneling with mo arcs. This proves ¢p(K) > mg > t(K). Then, by applying
Lemma 2.2, we get that ¢cp(K) = mo+my+ma+ms > 1+ (E(K)+1)+¢(K)+0=
2t(K) + 2 as desired.

3.1. Construction of the tunneling

We will apply the Morse Rearrangement Lemma to allow us to make some addi-
tional convenient assumptions about ® without losing generality. A proof can be
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found in Nicolaescu [B, Chap. 2.4]. The theorem states we can find a smooth
o : 53 — K — R satisfying the following properties:

e & and & share the same critical points, and each critical point has the same
index.

e Suppose p and ¢ are distinct critical points. Then ®(p) # ®(q). If ®(p) < d(g),
then A(p) < A(q).

e Inside of a neighborhood of each critical point, the gradient flows for ® and &
are identical.

e If 5 is an integral curve of V&, then ®(v(t)) is strictly increasing in ¢. A vector
field with this property is called gradient-like with respect to ®.

e For p.q € Crit(fi)), W9(p) and WY (q) intersect transversely. Morse functions
with this property are called Morse-Smale.

This theorem allows us to perturb the values of the critical points so we can
reorder them ascending by index without affecting the topological data encoded
by the original potential. At this point, we are not necessarily working with the
physical potential whose formula is given in (1.1), but for simplicity we will still
refer to the perturbation as ®.

Our rearrangement restricts the limiting behavior of trajectories. Let ~
(—00,00) — S®—K be a trajectory for ®. When t — —oo, ®(y(t)) strictly
decreases, but it is bounded below by 0, by assumption. Should lim;—, o, ®(y(¢)) =
0, then lim; . y(t) = oo, the point of infinity on S3, because it is the only point
in the knot complement with zero potential. Otherwise, lim;,_, y(t) is a critical
point. Similarly, we can deduce that for ¢ — oo, either v(¢) tends to a critical point
or K, since ®(v(t)) is strictly increasing.

Should both ends of v be critical points, then we know the index of the critical
point at ¢ = —oo is less than or equal to that of the critical point at ¢t = cc.

Consider the critical points of index 2. For pi,...,p2, € Critg(®), let I'; =
WY (p?). See Fig. [l for a schematic of the trefoil case. Notice each I'; is a union of
two trajectories leaving p?, since the unstable manifold has dimension 1. Since ®
strictly increases along trajectories, we have that the trajectories will either tend
to K or to another critical point of index 2 as ¢ — oco. However, should either end
of T'; tend to a critical point ¢ € Crite(®), then the corresponding trajectory will
be a submanifold of W9(q). However, W9(q) and T'; are 2 and 1-submanifolds,
respectively, and for them to intersect transversely as per our assumption, their
intersection cannot be more than 0 dimensions. Therefore, we conclude both ends
of T'; eventually reach the tubular neighborhood of the knot. Our tunneling is only
concerned with the arc outside of the tubular neighborhood, so we can assume T';
is defined only on a compact interval.

Now consider the critical points of index 1. For pi,...,p},, € Crity(®), let
0; = Ws(p}). Analogous to before, each O; is a union of two trajectories tending
to p;. Similar reasoning will tell us that both ends tend to the point at infinity.
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Fig. 1. The arcs we add to K are the unstable manifolds associated to critical points of index 2.
Note that this diagram does not necessarily depict the specific situation accurately for the trefoil.

Indeed, each ©; is a union of two trajectories tending towards a critical point p} of
index 1. As t — —oo, ® will strictly decrease along these trajectories, so we know
that the negative infinite limits of these trajectories must either be another critical
point of index 1, or the point at infinity. By the transversality assumption of the
stable and unstable manifolds, we cannot have that the endpoints of ©; are critical
points of index 1. Therefore, both ends are at the point at infinity. We may view
the union of all the ©; arcs as a wedge sum of circles at the point of infinity, which
we denote \/[; ©;.

Notice \/;n:l1 ©; is homotopy equivalent to a handlebody. Using a standard
maneuver from differential topology, we will flow along the (negative) gradient to
perform a deformation retraction from S% — (K UT;U---UTy,,) to ViZ, ©;. We
will opt to work with smooth tubular neighborhoods of both of these spaces, but
there is a crucial technical lemma we must prove before proceeding.

3.2. Constructing a smooth boundary around the tunneling
In this subsection, we prove the following lemma.

Lemma 3.1. There are tubular neighborhoods of both K UT';1 U --- U Ty, and
\/;.n:l1 ©; with smooth boundary such that the gradient vector field points inwards
and outwards, respectively.

Proof. It is a standard fact from electrostatics that neighborhoods of K and the
point at infinity exist such that the gradient points inwards and outwards, respec-
tively. This proof will make use of the tubular flow lemma, which states for every
regular point of S? — K, there are local coordinates such that the gradient flow takes
the constant form V(. .)® = (1,0,0) = %. Take local coordinates centered at
a regular point of I'; so that the portion of the arc inside our coordinate chart is
mapped to the path of unit speed along the z-axis, y(t) = (¢,0,0).

Around a segment of the z-axis, we can choose our tubular neighborhood of T';
to be the interior of the slanted tube defined by y? + 2% = (3 + 1)?, where we
possibly restrict our local coordinates so —1 < = < 1. See Fig.[2l Notice the gradient
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z

Fig. 2. A sketch depicting the tubular neighborhood around a regular point of I'; in specially
chosen local coordinates which makes the gradient parallel. This is a projection to the zz-plane.
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Fig. 3. A sketch depicting the tubular neighborhood around a critical point on I';, in specially

chosen local coordinates such that @ is a quadratic with signature (1,2). This is a projection to
the zz-plane.
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points inwards from the boundary. If we expand around a regular point on a ©; arc,
we can reflect the tube in the x direction so the gradient points outwards. Note that
the properties of a vector field pointing inwards and outwards from a boundary are
invariant under a change of coordinate charts in an orientation-preserving atlas.
Now suppose we want to take local coordinates around a critical point p? of
I';, which has index 2. By [4, Lemma 2.2], we can find local coordinates centered
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at the critical point such that I'; corresponds to the z-axis, and ® takes the
2

form ®(zo,y0,20) = 5(23 — y3 — 23) + ¢, for some constant c. Thus, VP takes
the form V®(zo,y0,20) = (zo,—yo, —20). Consider the tube around the ax-axis
defined by 32 + 22 = 1. See Fig. Bl Using an abuse of notation, we will refer
to this tube as OI';. We will show the gradient points inside the tube, as Fig.
shows. At a point (zo, yo, 20) € OT';, the tangent plane is spanned by (1,0,0) and
(0, —20,90). As the point varies on the tube, this oriented basis of the tangent
plane varies smoothly, thus defining an orientation of the tube. The triple of tan-
gent vectors {(1,0,0), (0, —z0,yo), V®(x0, Yo, 20)} therefore defines a smooth choice
of orientation for the three-dimensional ambient tangent spaces surrounding the
tube. Therefore, if the gradient points inside the tube at one point of the tube, it
does so throughout the whole tube. For example, at the point p = (0,1,0) € 9T,
Vo(p) = (0,—1,0) clearly points inside the tube. The existence of a surface sur-
rounding the arc with which the gradient points inwards is a significant topological
obstruction to proving our main theorem. The construction would not be possible
if the critical point had index 1, or if we were asked to place a tube around another
axis. The case for a critical point of ©; is analogous, and we get the result that the
gradient points outwards.

By compactness of the arcs I'; and ©; we only need to construct finitely many
tubes around arc segments to encapsulate the entire arc. When the tubes cover
the same part of the arc, we may have to shrink the radius of one of the tubes
so the boundaries will intersect, but the resulting tube will still have the gradient
pointing in the correct direction. By taking the final boundary to be the points of
minimal radial distance to the arc, we obtain a connected boundary to the tubular
neighborhood that is only piecewise smooth. Likewise, the tubular neighborhoods
around the I'; arcs intersect the tube around K, and the gradient points inwards
on the boundary of the union. This construction is sufficient to prove the lemma.
To get a smooth boundary out of the piecewise smooth boundary, one could either
make a density argument in a space of manifolds [5], justify why the theorems work
in the piecewise smooth case [4], or use mollifiers to smooth out the kinks [9]. For
the sake of space, we omit the technical details.

For reasons that will be clear when we perform the deformation retraction, we
will want to include a ball around the point at infinity in the tubular neighborhood.
In the standard R® coordinates, this is the complement of a large open ball. We can
assume this neighborhood around oo contains ®~1([0,¢]) for some € > 0. On the
boundary sphere, we can again use mollifiers to connect the tube smoothly whilst
preserving their orientations against the gradient flow. |

3.3. The deformation retraction to a handlebody

The final step is to use the flow of E to perform the deformation retraction. We
will use the closed tubular neighborhoods described in Lemma 3.1 as an alterna-
tive to just the knot with arcs attached and the wedge of circles. Let A be the
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aforementioned tubular neighborhood of the knot with the I'; arcs attached, and
let B denote the aforementioned tubular neighborhood of the ©; arcs connected to
a ball around the point at infinity.

Let £(x,t) be the flow of the negative gradient. The point E(x,t) refers to the
location of the path at time ¢ starting from the unique integral curve starting at x.
First, we prove every point in S® — A will eventually flow to B. Suppose = € S — A.
There are three possibilities for the limit of the negative gradient flow of x: it could
flow to K, it could flow to a critical point of index 1 or 2, or it could flow to the
point at infinity. Since the negative gradient points outwards from the boundary of
A, x cannot flow to K or a critical point of index 2. Therefore, x either flows to a
critical point of index 1, or to the point at infinity, which means that x eventually
flows to B. Furthermore, since the negative gradient points into B, once x enters
B, it will never leave. This fact still holds even in the vacuous case where mo = 0
and therefore A = K.

By smoothness of the boundary of B, the function which assigns each z € S3— A
the minimum time ¢ such that £(z,t) € B is smooth. Call this function C(x).
Notice C assigns 0 to each point already in B. By compactness of the domain, the
function reaches a maximum value Cyay. Define a homotopy H on (5% —A) x [0, 00)
by H(z,t) = E(x, min(t,C(x))), which we can see is continuous. Also notice that
for € B, H(xz,t) = z for all ¢. Running this homotopy on the time interval
[0, Cryax] completes the deformation retraction. This completes the proof of our
main theorem.
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