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A GENERIC SLICE OF THE MODULI SPACE OF LINE
ARRANGEMENTS

KENNETH ASCHER AND PATRICIO GALLARDO

ABSTRACT. We study the compactification of the locus parametrizing lines having a fixed
intersection with a given line, inside the moduli space of line arrangements in the projective
plane constructed for weight one by Hacking-Keel-Tevelev and Alexeev for general weights. We
show that this space is smooth, with normal crossing boundary, and that it has a morphism to
the moduli space of marked rational curves which can be understood as a natural continuation
of the blow up construction of Kapranov. In addition, we prove that our space is isomorphic
to a closed subvariety inside a non-reductive Chow quotient.

1. INTRODUCTION

The compact moduli space of weighted hyperplane arrangements in P? is a higher dimen-
sional generalization of Mo,n, and has a main component parameterizing equivalence classes of
n weighted lines in P? and their log canonical degenerations. The moduli space Hg(ﬂ”z, n) was
constructed for lines of weight one by Hacking-Keel-Tevelev [HKTO06], and for more general
weights E as a generalization of the weighted Hassett spaces, by Alexeev [Alel13]. The space
is expected to satisfy Murphy’s law— it can be arbitrarily singular, and can contain many
irreducible components. The goal of this paper is to describe a naturally appearing locus
inside this moduli space which has perhaps unexpected properties — it is smooth with normal
crossings boundary.

Given an arrangement of (n + 1) labeled lines in P?, there is a natural restriction mor-
phism: label the line [, as l4, and obtain an arrangement of n labeled points on I, = P!,
by intersecting the other n lines with [4. The restriction morphism induces a morphism
M1 (P?,n+1) — My 5 that has rational fibers of dimension n— 3 (see Lemma 3.3). Given a
generic point ¢ € My 5, we study the closure, which we denote by Rz(q), in M(@‘J)(PZ, n+1)
of the fiber of Mz 1)(P?,n+ 1) — Mo gz over g (see Definition 3.1).

In other words, Rz(q) compactifies the locus parametrizing equivalence classes of n + 1
labeled lines having a fixed intersection with the line [4. Our first theorem characterizes
Rz(q).

Theorem 1.1 (see Theorem 5.14 and Theorem 5.16). For weights w in the set of admissible
weights DY (see Definition 4.1) and generic choice of q € My.z, the locus Rg(q) is smooth
with normal crossings boundary and there are birational morphisms
ng(q) L- Mow L ]Pm_3.
By results of Kapranov [Kap93b] the morphism Mg, — P"3 factors into the sequence of

following morphisms: The blow up of (n — 1) points ¢; € P"~3 which are in general position;
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the blow up of the strict transforms of the P!’s spanned by pairs of the points ¢;, and so forth.
For @ = (1,...,1), the morphism 5 factors in a similar fashion.

Corollary 1.2. (see Corollary 5.18) The morphism Rin(q) — My, factors into the sequence
of following morphisms: The blow up of a point q, in the interior of My, ; the blow up of the
strict transforms of the Pls spanned by pairs {q;, qn}; the blow up of the strict transforms of
the P?s spanned by triples {gi, qj, qn}, and so forth.

In contrast to Mo,m the centers used to construct Ri»(q) are not projectively equivalent to
each other. As a result, Ryn(q) depends on the choice of ¢,, and in general different g, yields
non-isomorphic spaces. Moreover we show the following.

Theorem 1.3. For a generic choice of ¢ and n > 5, there do not exist weights w such that
Rvj}'(Q) = MO,n'

The objects parametrized by ME(IPQ, n + 1) are called stable hyperplane arrangements, or
shas (see [Alel3, Def 5.3.1]), and they are stable pairs in the sense of the Minimal Model
Program (see [Alel3, Thm 5.3.2]). The shas parametrized by Rz(q) are described in Section
2. In particular, our setting restricts the possible singularities that appear in our shas (see
Remark 3.4 and Proposition 4.8) (see Figure 1).

FIGURE 1. Examples of generic and non-generic shas parametrized by Rys(q)

Our next main result is that the locus Rj=(q) is the normalization of a non-reductive Chow
quotient. In particular, our result fits into a library of examples (see [GG], [Tha99], [H05],
[Gial3] and [KSZ91]) where Chow quotients are used to study the geometry of moduli spaces.
The following outline generalizes the construction of Kapranov [Kap93a] in the setting of
Rin(q) (see Remark 6.1): Given the collection of n points p; in the dual projective space
P? such that the point p; is dual to the line [;, we consider the locus, in an appropriate
Chow variety, that parametrizes the cycles associated to the orbits G - (pi,...,p,) where
G C SL(3,C) is the group that fizes the intersection of the associated lines [; with [4. By
normalizing the closure of this locus in the Chow variety, we recover Rin(q) (see Section 6).

Theorem 1.4 (see Theorem 6.12). For a generic choice of q, the space Rin(q) is isomorphic to
the normalization of a closed subvariety of the Chow quotient (P*)" /| oy G where G C SL(3,C)
is the group fixing the line l4 pointwise.
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1.5. Method of proof of Theorem 1.1. We give an outline of our proof that Rgz(q) is
smooth with normal crossings boundary. The overall strategy is to prove that Rg(q) is
isomorphic to a wonderful compactification, which is smooth with normal crossings boundary
by definition (see Theorem 5.6).

We first construct our space with smallest admissible weights 1, show that Rg, = P"~3 (see
Lemma 4.4), and construct a family over Rz, (see Lemma 4.6). In Section 5.3 we construct
the wonderful compactification BlgRz,, and in Lemma 5.10 we construct a family of shas
over the wonderful compactification. Using this family, we obtain a finite birational (i.e.
normalization) morphism from the wonderful compactification to our space: BlgRgz, — Ra.
We prove normality of Rz in Theorem 5.14, which implies that Rz = BlgRg, by Zariski’s
main theorem. Finally, we note that the key lemma required to prove normality of Rg is
Lemma 4.9.
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2. DEFINITION AND BASIC PROPERTIES

We work only over C for convenience. We begin with the necessary background on the
moduli space M 5(P2,n + 1), see [HKT06] and [Ale13] for a full exposition.

Configurations of (n + 1) labeled lines (ly,...,l,41) in P? up to projective equivalence
are parametrized by the open moduli space M (P2, n + 1), which has a family of geometric
compactifications ME(IP’Q, n+ 1) depending on a weight vector 3= (B, .-, Bny1) (see [Alel3,
Theorem 5.4.2]).

The weight domain of possible weights 5 is

(2.0.1) DB3,n+1) = {H e Q"+

n+1
Zﬁi>3,0<@§1}

i=1

In general these compactifications are not irreducible. However, they do contain a main irre-
ducible component parameterizing stable pairs in the sense of MMP (X , ZZZ% Bklk) appearing
as degenerations of the (n + 1) lines in P2

Definition 2.1. The stable pairs (X, D) := (X, Sl Brlk) parametrized by ME(PZ,TL +1)

are called shas of weight 5 or just shas if the weight E is clear from the context.
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Notation 2.2. Let I C {1,2,...,n} be an index set. A sha (X, D) has a multiple point p(/)
if there exists a component X; of X and divisors {l; = D i € I} such that the divisors ;
are concurrent at a point p(I) € X.

X;

Remark 2.3. The admissible singularities of the divisors D in the sha (X, D) depend com-
pletely on the weights 3. Indeed, we cannot have coincident lines {l; | i € I} with weight
Y icr Bi > 1 or multiple points p(I) defined by the concurrent lines {/; | i € I} with total
weight > .., B > 2.

Definition 2.4. Let 3 and & be two weights vector in D(3,n + 1). We say that B>a if
Bi > «; for all v.

As in the Hassett spaces Mz, the shas parametrized by M (z1)(P?, n+ 1) depend solely on
the weights w, and the weight domain admits a wall and chamber decomposition.

Theorem 2.5. (see [Alel3, Thm 5.5.2]) The domain D(3,n+ 1) is divided into finitely many
walls and chambers. There are two types of walls:

(2.5.1) W(I) := (Z B —2= o) : W(I) = (Z Bi—1= o) .

iel el
forall 1 C{1,...,n+1}, 2 <|I| < (n—1). Moreover,
(1) @fg and & lie in the same chamber, then the weighted moduli spaces and their families

of shas are the same.
(2) If B is in the closure of the chamber containing &, then there exists a contraction

Mg(P*n+1) — MB’(]P)Q,TL +1)
(3) Further, z'fg 18 in the closure of the chamber containing @ and o < 5 then
MgP*n+1)= ME(IPQ, n+1).

Remark 2.6. Recall from Remark 2.3 that there are two types of singularities appearing in
shas. In this setting, the walls W (I) correspond to multiple points p(I), and the walls W ()
correspond to coincident lines.

3. DEFINITION OF Ry(q)

To construct Rg(q), we consider arrangements of n + 1 labeled lines in P?, and we label the
(n + 1)%*-line as 4 to distinguish it. We will always assume [4 has weight 1, and thus will
denote our weight set 8 € D(3,n+ 1) as (w, 1). In this section, there is no need to restrict the
set of weights w. However in the following sections, we will consider an additional restriction
on the weights (see Definition 4.1).

We have a naturally induced restriction morphism

©vA M(uj’l)(]Pz,’rL + 1) — Moﬂg,

induced by considering the intersection of 4 with the lines [; where i € {1,...,n}. Next, we
take the fiber of this restriction over a generic point ¢ € M 5, and then take closure of this
fiber in the compact moduli space of weighted hyperplane arrangements.
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Definition 3.1. Let ¢ € My s C Mo,w be a generic point. We define Rg(q) as the closure in
Mg 1(P%2,n +1) of the fiber product of the following diagram:

Ri(q) —= Mz1)(P*,n+1)

| B

q Mo,w

Remark 3.2. B. Hassett gave an example of families (X, D) — Spec (C[[t]]) where D],
has embedded points. In general for pairs, the components of the boundary with fractional
coefficients < % need not be Cohen-Macaulay. By [Alel3, Lemma 1.5.1], the mentioned
difficulty will not occur for very generic coefficients of the form @ for which one entry satisfies

w; = 1.
Lemma 3.3. The dimension dim(Rz(q)) =n — 3.
Proof. By the fiber product construction we see that
dim (Rz(q)) = dim (M (g,1)(P*,n + 1)) — dim(M,)
The result follows since dim (M, (P?,n + 1)) = 2(n — 3) (see [Alel3, pg 84]). O

Remark 3.4. We will show in Proposition 4.8 that

(1) the only singularities in the shas parametrized by Rgz(q) are multiple points (no
overlapping lines), as each line [; with 1 < ¢ < n intersects the fixed line [4 in a
distinct point.

(2) The dual graph of X is a rooted tree (see Proposition 4.8 [II]). This allows us to fully
describe the shas parametrized by Ri»(q) (see Figure 1).

(3) Each broken line I; can be seen as a chain of lines that starts in the rooted component.
The [; may have several branches, and can be contained in several components.

Definition 3.5. We say that the weight 5 destabilizes the multiple point p(K) if the sum
Z Bi > 2. We also say 5 destabilizes the sha (X, D) if the pair has a singularity destabilized
keK

by .

In what follows, we discuss the stable replacement of shas with multiple points which will
be relevant for us (see [Alel3, Chapter 5] for a complete discussion).

3.6. Stable replacement. Let I C {1,2,...,n} be an index set. We consider two chambers
in D(3,n + 1) separated by the wall W (/) as defined in Theorem 2.5. Let @/ < ¢/ be weights
in those chambers such that » .., w; <2 and ) ., v; > 2. Let @ be a weight in the wall that
separates those chambers, so in particular ), ; u; = 2.

Let (X, D) be a sha parametrized by M(wvl)(l[ﬂ, n + 1), and suppose that the sha has only
a multiple point p(I); notice that the point p(I) will never be supported on l4 (Remark 3.4
(1)). By (3) in Theorem 2.5, changing the weights from @ to @ will not modify the moduli
spaces, so

Mz (P n+1) = M(m)(ﬂﬂ, n+1).
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The singularity p(7) is still log canonical with respect to the weights (u, 1). Therefore, (X, D)
is in the universal family associated to weights .
Next, we change the weights from « to ¢. By (2) in Theorem 2.5, there is a contraction

Tga - M(@l)(ﬁﬂ, n + 1) — W(JJ) (]P)Q, n + 1)
By moduli theory, we know that the center of this morphism is the locus parametrizing shas
with singularities that are destabilized respect to the new weights (v, 1). In particular, the
sha (X, D) is no longer parametrized by M ,1)(P?, n + 1) because >, ; v; > 2.
Let 2 € M (z1)(P?,n + 1) be the point parametrizing the sha (X, D). Next, we describe the
sha (X, D) parametrized by a generic point in m}é(z) We first blow up X at p(I), and we
attach a P? along the exceptional divisor E, to obtain a new surface

X = Blp([)X UEp(I) P2

with the lines (I; , i € I) crossing into the new P? and defining a new divisor D (see Figure 2).
The multiple lines defining p(I) are separated in Bl, X, and they are generically separated
in the new component P?. They may acquire a multiple point, but they cannot overlap with
each other, because they are already separated in the double locus.

1 2 3 4 4 3 2 1

F1GURE 2. Quadruple point and its generic and non-generic stable replacement.

Example 3.7. Consider a quadruple point in an arrangement of 6 lines— then there are two
possible stable replacements. The starting configuration is stable if the total weight of the
intersection point of the four lines [y, .., 14 is < 2. Increasing the weights of all the lines to one
causes any singularity with multiplicity larger than two to become unstable. Generically, the
stable replacement has a new component where the 4 lines are separated. The four lines plus
the double locus in P? have two dimensional moduli, so that we can further degenerate the
configuration to a triple point. In this case, we must blow up the new component, obtaining
a surface with three components. Here, the additional surface is a P? with three lines. Since
a configuration of three lines and the double locus in P? has no moduli, we cannot degenerate
the configuration any further. These two cases are all of the possible stable replacements.

4. Rz, AS A GIT QUOTIENT AND SOME PROPERTIES OF R

The starting point of this section is Lemma 4.4, where we show that there are weights wy
such that Ry (q) = P"=3. Afterwards, we study some geometric properties of Ry in general,
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such as the surfaces parametrized and the singularities that appear (Proposition 4.8), as well
as the outcome of wall-crossing on our moduli spaces (Lemma 4.9).

The results of this section do not depend on the ¢ used in the definition of Rz(q), so we
simplify our notation and we just write Rg. First, we define our admissible weights.

Definition 4.1. Let Wy = (wy,,...,wo,) be a set of rational numbers such that for every
subset I C {1,...,n} the inequality ) .., wo, < 2 holds. The set of admissible weights is

DE = {(wy,...,w,) €Q" | 1 >w; >0, Zwi > 2, w; > wo, }
i=1
The chamber decomposition of D(3,n + 1) induces a chamber decomposition on DX where
the chambers are separated by the walls W (I) (see Theorem 2.5).

Definition 4.2. We say that two weights v and U are adjacent if each of them belongs to a
chamber in DE and those chambers are separated by a single wall W(I). Sometimes, we say
that the weights i and U are separated by W (I).

Moreover, by Remark 3.2, to avoid any subtle technicalities, we will assume all our weighs
are very generic.

Before showing that Rz, = P"® (Lemma 4.4), we prove a key lemma.

Lemma 4.3. The subgroup of SL(3,C) that fizes:

o three lines l,, l,_1 and l4 in general position, and
e n distinct points {ly Nla,...,l,N1a} inly.

15 equal to C*.
Proof. We can suppose without lost of generality that the lines are
lA = (ZCO = O), ln,1 = (£C1 = 0), ln = (iIZ’Q = O)

The subgroup that fixes those lines in P? is (C*)?, and it is given by matrices of the form
g = diag((g291) "', g1, g2) which acts on any point in the line [y by ¢:[0 : q1 : 2] = [0: 911 : 92qo].
By hypothesis, the points {l; Nla,...,l, Nla} on l4 are fixed, implying that g, = go. O

Lemma 4.4. Let Wy be as in Definition 4.1. Then
Rzﬁo = Pn_g C M(wml)(ﬂjﬂ, n+ 1),
and each fiber of the universal family over Ry, is a pair (P?,Y 1 wo,ly + 1a) such that

(1) the n lines l; cannot all meet at an n-tuple point,
(2) any multiple point of multiplicity strictly smaller than n is allowed,
(3) none of the lines l; can overlap with 4,

Proof. Let 4 be the line with weight w4 = 1 that induces the restriction morphism
M(u7071)<P2, n + 1) — MO@O'

To prove (1), recall that an n-tuple point is unstable if and only if the sum of the weights
> i wo, > 2, which is true by assumption.
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Following the proof of (1), we note that (2) holds because of the assumption that for every
subset I C {1,...,n} the sum of the weights is < 2.

To prove (3), we recall that a multiple line is unstable if the sum of the weights is greater
than 1. Since the weight w,4 of the line [4 is already 1, no other line can overlap with it.

Let (X, D) be any configuration parametrized by Rg,. By (1) and (3), we can suppose
that the lines [,,_1, [,, and [4 are fixed and in general position. By definition, the points
{linla,...,l,N 14} C s induce the equivalence class ¢ € My, and thus we can fix these
points.

We can now demonstrate that Rg, = P"~3. First note that the parameter space of each
line {; with 1 < ¢ < n — 2 is A!, because the intersection ; N 4 is fixed. We can choose
coordinates on each A! so that the point 0 € A! parametrizes whenever the line /; coincides
with the fixed intersection [, N{,,_;. Then the parameter space of the (n —2) lines Iy, ..., l, o
is (A)"=2\ (0,---,0), since we cannot have an n-tuple point by (1). Therefore, by Lemma
4.3, we conclude that

Rg, £ A" 2\ (0,---,0) J C* =P 3.
OJ
Next, we construct a family of shas over R;,. Before doing that, we set up some notation.
Notation 4.5. We choose a coordinate system [tq : ¢; : t5] € P? such that:
la:=(to =0), lnoNla:=1[0:0:1], ln_1:=(t = 0), = (t1 —ty =0).
and we select the point ¢ € M, 45, induced by the following configuration of points in [4
{[0:a;:1],...,[0:ap—3:1],[0:0:1],[0:1:0],[0:1:1]},

Under this choice of coordinates, [s1 : ... : s,_2] € Rg,(¢) parametrizes the following
configuration of lines with 1 <i < (n — 3)

li = (tl — aitz + Sito = 0), ln,Q = (Snfzto + tl = O), ln,1 = (tQ = 0), ln = (tl — t2 = 0)

In the following lemma, we consider Rz, = P"~3 with coordinates [si,..., s, 2] as above
and the projective space P"~! with coordinates [z1,...,z,]. We exclude the n = 4 case for
convenience of notation (see Remark 5.13).

Lemma 4.6. Forn > 5, let Ug, be the blow up of P"~1 at the line defined by
Z =z —2k2=0]1<k<n-2}
and let o; be the strict transform of the following n hyperplanes in P* 1 with 1 <i <n — 3.

H; := (agzs — a1z4) — a;(z3 — 24) + (a2 — a1)(2; — zi42) =0
H, 5 :=(as—a1)(zn—o — z,) + aszz3 —a124 =0
H, 1 =23—2:4=0

H,:=(ag—1)z3 — (a1 — 1)z4 =0
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Then there exists a flat, proper morphism ¢z, : Uz, — Ry, such that for every 5 € Ry, the
fiber gbl;;(:?) is isomorphic to P?. Moreover, if Eg, C Uz, is the exceptional divisor, then the
configuration of lines

li == ¢z ()N b la:= ¢z (5)N Eg,
define the stable sha of weight Wy parametrized by S.
Proof. Let mz : P! — Ry, be the projection defined by {s; = 2x — zp42 | 1 < k < n —2}.
Note that Z is the indeterminacy loci of 7z, and that given a point § € Ry, we have
7, (5) = P2. Therefore, the map Uy, — Ry, is a P>-fibration obtained by the composition
Z/{go - Pl Rwo.
The following functions with 2 < m < 5 if nis even, and 2 < m < (nle) if n is odd.

G = t1 — arta + sito, G2 = t1 — asty + satp,
m—2 m—1
Com—1=C —to Z S2k+1, Com = G2 — 1o Z Sok
k=0 k=1

define, for a fixed 7,'(3), a map (5 : P2 — 7,'(5) given by
Cs: [to, t1, to] = [C1, Coy - v, Gl
Indeed, we can verify the image of the map (z is 7,'(5) since
Tz (Cslto, t1, t2]) =[G — (3, G = Cay - -+, Gu2 — Gu] = [81t0, S2l0, - - -, Snto]-

We also note that the map is not defined for (to = 0) because (;'(Z) = (t, = 0). Moreover,
by the definition of the H; above, and the equations of the lines given in Notation 4.5 it holds
that

G(li) =77 (X) N H; Glla) =2
These equalities follow at once by observing that (3 = (1 — tgs1, (4 = (5 — tpss as well as
ax(z — a1y = (a2 — a1)ty G — G = (a2 —ar)tz G — Gi+2 = Sito.
Finally, we assign the weights given by g to the n hyperplanes and weight 1 to the exceptional
divisor, we get a family of shas with respect to the weights . 0

4.7. Generalities on Rjz. We start with a explicit description of the surfaces parametrized

Proposition 4.8. Let (X, D) be a sha parametrized by Rg, then the following hold:

I The only singularities in (X, D) are of the form p(J) (see Notation 2.2). In particular,
the shas never have overlapping lines.
IT The dual graph Graph(X) of X is a rooted tree where the rooted vertex is the unique
surface containing the line l 4.
111 All the components of X are a blow up of P? at k > 0 points. In particular, the stable
replacement of any sha parametrized by Rg is obtained by blowing up isolated points.
That is, we never have to blow down a (—1)-curve.
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Proof. Let @ € DX be an admissible weight and consider a sequence of weights 7, ..., %,
such that 4, := Wy, ¥,, := W, the weights 4; < ;41 are adjacent to each other (see Definition
4.2), and m is the minimal length of such sequences. We prove our proposition by induction
on m. The case m = 1 follows from Lemma 4.4. In that case, the dual graph for every pair is
a point.

We suppose the statement holds for m — 1. Let 7, := « and let ¥,,_1 := ¥ be two adjacent
weights separated by the wall W (I). We highlight that walls of type W(K) in D(3,n+ 1) do
not modify neither Ry nor the shas parametrized by it because the space Ry only parametrizes
shas with isolated multiple points by our inductive hypothesis. By case (2) in Theorem 2.5,
there is a contraction

T - M(@l)(mﬁ,n + 1) — M(@l)(PQ, n + 1).

Let (X', D) be an arbitrary sha with at least one p(I) singularity and parametrized by a point
z € Ry. We will show that any shas (X', D’) parametrized by .!(2) have only multiple point
singularities.

By Subsection 3.6, the fibers of m,, parametrize a new sha (X, D) containing a new P?
component with the lines {l;, | ix, € I}. Therefore, the fiber of 7, over the point parametrizing
(X', D') is the moduli associated to the pairs (P?,1;, + ...+ ;) that satisfy the following
conditions:

(1) The lines cannot all overlap in an |I|-tuple point, because this is precisely the singu-
larity we destabilized.

(2) The pair can have any singularity of the form p(J) := N, esl;, with J properly
contained in /, because we are only destabilizing one type of singularitiy. We must
cross more walls to destabilize p(.J).

(3) Let Hy be the hyperplane obtained by intersecting the new P? with the other compo-
nents of X. Then the lines l;, cannot overlap with Hj.

(4) The equivalence class induced by the intersection of the lines /;, with the gluing locus
is fixed because the sha (X', D’) is fixed.

These are precisely the same conditions used in the proof of Lemma 4.4 with the gluing locus
playing the role of [4. Therefore, every positive dimensional fiber of m,, is isomorphic to
PU/1=3), The new shas (X, D) have at worst mulitple point singularities, because the lines
{l;, | ix € I} cannot overlap in the new component P? C X by the fourth condition above.
The singularities of (X, D) away from this P? are also multiple points by our hypothesis on
the singularities of (X', D’).

Part (II) follows from the previous argument because the wall crossing between two adjacent
weights ¢ and @ adds a new vertex to Graph(X') corresponding to the new P2. The multiple
points never occur in 4, and so [ 4 is always contained in a single surface which will be our root.

Finally, we prove Part (IIT). In the absence of overlapping lines, as in our case, [Ale13, Thm
5.7.2 (ii)] states that a P! x P! component is only obtained from a configuration of points with
the following characteristics:
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(1) Given a P?-component with lines {/;}, there are exactly two non-log-canonical points
in the configuration of those lines.

(2) The line [}, between the two-non log canonical points have weight 1.

(3) There is not an additional line I or a component of the double locus intersecting [y
transversally.

Under the above conditions, one must blow up the two points and contract the strict transform
of the line between them (see [Alel3, Figure 5.8]).

To clarify this last condition, the reader should compare the following shas from [Alel3, Fig
5.12]. In sha #3, line I3 intersects I; and prevents a line from being contracted in the Bl,P?
component, so that we do not obtain a P! x P!. In contrast, in sha #8, there does not exist a
similar line intersecting [;, in which case the sha has a P! x P! as the corresponding component.

In particular, condition (3) will never happen in our case, as we always have either the
double locus or the line /4 intersecting the line [, transversally. O

The following result will be important for proving that Rz is smooth.

Lemma 4.9. Let ¢ > @ be adjacent weights in DE separated by the wall W (I). Let
Tga - M(ml)(ﬁﬂ, n —+ 1) — M(JJ) (]P)Q, n -+ 1)

be the associated wall crossing morphism. Then its restriction ¢zq @ Ry — Rg has (scheme-
theoretic) fibers equal to PU1=3),

The morphism ¢4 has positive dimensional fibers over the loci parametrizing shas that
become unstable with respect to the weights ¢. In our case, those are the shas with a isolated
multiple point p(/) and its fibers are described in the proof of Proposition 4.8. We now prove
this scheme-theoretically.

Proof of Lemma 4.9. Let ¢34z : Ry — Ry be the wall crossing morphism where ¢ > 1, let A be
the spectrum of an Artinian ring, and let ) : A — Rz be a deformation of Rz Furthermore,
suppose that the total space of the composition ¢z 01 : A — Ry is constant. We wish
to show, by contradiction, that this forces the total space of ¥ : A — Ry to be the trivial
deformation as well.

We may assume that the total space of ¢5z0% : A — Ry is the trivial deformation of a pair
(X, D) where (X, D) is stable with respect to the weights @ but unstable with respect to v.
Indeed, if (X, D) was stable with respect to both weights, then the morphism ¢z 7 : Ry — Rz
is an isomorphism on this locus, and there is nothing to prove.

In particular, there exists D' C D such that D' = UjerL; with Y., u; < 2and ), v; > 2.
Then the definition of ¢zz : Ry — Rz implies that the preimage of the sha (X, D) is
(Y, Dy + Z), where Y = X’ UP? with X' = Bl,)X. Recall that p(/) denotes the point
we are required to blowup, as there are too many weighted lines passing through that point
with respect to .
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If we denote the gluing locus by Z; € X’ and Z, C P?, then it suffices to show that the
deformation restricted to the three pairs, (X', Z;), (P2, Z,), and Z = Z; = Z, (the gluing locus
X’ NP?) is trivial. Indeed, we first note that (P?, Z,) is rigid. Furthermore, the deformation
restricted to (X', Z;) is trivial, as the pair (X', Z;) is uniquely determined by (X, D), which
is assumed to be fixed. In particular, (X', Z;) is obtained as the blowup of a fixed variety at
a fixed point. Therefore, it suffices to show that the deformation is trivial on the gluing locus,
7. To do so, we recall how our construction yields this line Z.

~ Recall that we are blowing up a point p(I) inside a surface X living inside a total space
X := X x A. In particular, there is an inclusion of normal bundles

Nx = Np([)/X C NA/X = Nx,

where Ny is also the restriction of Ng on X. Indeed, we obtain N, 5 as we are blowing up
a p(I) inside each fiber, and an entire family of them, thus blowing up a section A C X. The
exceptional divisor of the blowup of p(I) inside X C X, is defined by the projectivization of
these normal bundles — indeed, the P? arises from the projectivization of Ng, and the gluing
locus Z = P! arises from the projectivization of Ny.

As ¢z 01 is assumed to be the trivial deformation, the normal bundles Nx and Ny, as
well as the inclusion Ny — Ny never change. Now it suffices to note that any non-trivial
deformation of Z, when composed with the wall crossing ¢y, would change the inclusion
Nx — Ng, thus contradicting the fact that ¢z o v is a trivial deformation.

Therefore, the moduli is determined by the moduli of the lines ), , L; + Z inside P2, such
that ,., L =2+ e and L; N Z is a fixed point of My ,, which is P/I"% by Lemma 4.4. [

5. CONSTRUCTION OF Rj VIA WONDERFUL COMPACTIFICATIONS

As in the previous section, the results of this section do not depend on the ¢ used in the
definition of R(q),as long as it is a generic point of M z,. We simplify our notation and just
write Rg.

Recall in Notation 4.5 we showed that the equivalence class of the n lines parametrized by
[s1:...:8,-2] € Ry, is induced by the lines

li == (21 — a;x5 + s;z9 = 0), In—2 = (8n_2mo + 11 = 0), ln-1:= (12 =0),
la = (x0=0), ln = (x1 — 22 =0).
Therefore, the point [1 : 0 : ... : 0] € Ry, parametrizes a pair with an (n — 1)-tuple point

at [1:0: 0] € P? induced by the intersection of the lines lo, ..., [,. Similarly, the hyperplane
(s1 =0) C Ry, parametrizes a pair with a triple point at [1: 0 : 0].

We now show that this behavior holds in general.
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Lemma 5.1. For every I C {1,...,n}, there is a linear subspace P™~11=1) = H(I) C Ry, that
generically parametrizes a configuration with an |I|-tuple point p(I) given by the intersection

of the lines {l; | i € I}.

Proof. A set of lines {l; | ¢ € I} has an |/|-multiple point if and only their dual points
{y; | i € I} are collinear. Taking any subset of three of these points, the associated matrix
[V, Yk, yi] has determinant equal to zero. In particular, these equations are linear on the
variables s; and define H(I). Finally, the dimension count is (n—3)—(|I|—=2) = n—|I|-1. O

Example 5.2. We use the equation of the lines as given in Notation 4.5. For example
associated to the points y; = [s1, 1, —a1], y2 = [s1, 1, —as], and y3 = [s1, 1, —as], we have the
equation

51(a2 — a3) — 52(a1 - Clg) + 83(6L1 - CL2) =0.

The sets H(I) will generate the centers of the morphism Ry, — Rg,. These morphisms are
induced by changing the weights, and the description of these linear subspaces will be crucial
for the next subsection.

5.3. Wonderful compactifications. In what follows, we review the pertinent definitions of
wonderful compactifications following [Li09]. We note that the theory of wonderful compact-
ifications originiated in [DCP95].

Definition 5.4. An arrangement of subvarieties of a nonsingular variety Y is a finite set
S = {5} of nonsingular closed subvarieties S; C'Y closed under scheme-theoretic intersection.
Given dim(Y') = (n—3), we say that a finite collection of k nonsingular subvarieties Sy, ..., Sk

intersect transversely, if either k = 1 or for any y € Y the following conditions holds (see
[Li09, Sec 5.1.2])

(a) there exist a system of local parameters a1, ...,xm-3) on'Y aty that are reqular on an
affine neighborhood U of y such that y is defined by the maximal ideal (x4, ..., T(n—3))
as well as

(b) integers 0 = 1o <11 < ... < rp < (n —3) such that the subvariety S; is defined by the
1deal

('777‘1'71-1-1’ L1425 -+ an.)
foralll <i<k
Ifr;_1 = r; then the ideal is assumed to be the ideal containing units, which means geometrically
that the restriction of S; to U is empty.

Definition 5.5. A subset G C S is called a building set of S if for all S, € S, the minimal
elements of G containing Sy, intersect transversally and their intersection is equal to Sy (by
convention, the condition is satisfied if Sy € G). These minimal elements are called the G-
factors of Si. Let G be a building set and set Y° : =Y \ Uskeg Sk. The closure of the image
of the natural locally closed embedding ([Li09, Def 1.1])
Y°— ][] BlsY
Sr€g

is called the wonderful compactification of Y with respect to G.



14 ASCHER AND GALLARDO

Theorem 5.6. [Li09, Theorem 1.3] Let G be a building set and let BlgY be the wonderfuld
compactification of Y with respect to G. Then BlgY is smooth with normal crossing boundary,
and that for each S, € G there is a nonsingular divisor Dg, C Yg. Moreover, the union
of the divisors is Yg \ Y°, and any set of these divisors, with nonempty interesction, meet
transversally.

Example 5.7. A building set H in Ry, is given by 5 points H(J) with |J| = 4 and 10
lines H(I) with |I| = 3 parametrizing configurations with either a quadruple or a triple point
respectively. The arrangement S is the set of all possible intersections among them. The 10
lines, which are not in general position, intersect along 20 points given by:
(1) The point H(I) N H(J) with |I N J| = 2 parametrizes the quadruple point p(I U J).
(2) The point H(I)N H(J) with |I N J| = 1 parametrizes a configuration with two triple
points associated to I and J. There are 15 of these points.

The above example illustrates the general behavior.

Lemma 5.8. Let Sy be the set of all possible intersections of collections of subvarieties from

Mo ={H(J)| > w;>2, |JC{l,...,n}}.
ieJ
Then, Sz is an arrangement and Hg is a building set.
Proof. Sz is an arragement by Definition 5.4. For the last statement, let S be an arbitrary el-
ement of Si. By definition, Sy is an arbitrary nonempty intersection Sy := H(I,)N---NH(I,;,).
We need to prove two conditions: (I) that the minimal elements of Hz that contain Sy, intersect
transversally, and (II) that their intersection is equal to Sk.

For (I), we first observe that any Sy can be written uniquely as an intersection of the form
H(Jy)N---NH(Js), where |J;NJ;| < 1 and each of the J; is a union of [;. Indeed, if |[I[;N15] > 2
and [; NIy # {1,...,n}, then their intersection must parametrize an (|I;| + |2|)-tuple point.
This implies that H(I3) N H(I5) is either the empty set or H([; Uly) € Hg. In the latter case,
we can dismiss H([y) and H(Iy) while keeping H (1) N H(I3). Iterating this process, we can
find all the minimal elements J; € Hz containing Sy.

Part (I) now reduces to showing that the intersection of the linear subspaces P
1 <@ < s, along Sk is transversal. By Definition 5.4, it is enough to exhibit numbers
0=1o<1m <...<rs <(n—3) that satisfy the conditions of the aforementioned definition.
We can take

n—|Ji|—1)
Y

ro := 0, Tm 1= Z(!Jl\ —2) with 1<m<s.
i=1
Indeed, 5 < (n — 3) because
0 < dim(S;) = )= (4] -2)
1=1

since Sy, is non-empty. We can take the linear subspace H(.J,,) = P"~/=I=1 to be defined by
the ideal

(x(rm_1+1)7 s 7me) )
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because counting its number of generators, we obtain

Tm— (P +1) +1= (Z(‘Jﬂ - 2)) - (Z:_ (PARS 2)) = (|Jm| —2)

i=1 i=1

which is the codimension of H(.J,,).
Finally, as we are intersecting linear subspaces in projective space condition (II) follows by
the definition of the H(.J;). O

Definition 5.9. Let w € DE be an admissible weight and let Hg be as in Lemma 5.8. Then
the wonderful compactification of Ry, = P" 3 with respect to Hg is denoted by BlgRg, .

Lemma 5.10. Let i be an admissible weight vector in DE. There exists a smooth variety Uy,
a flat proper morphism ¢z,

i
U Uz,

o e

BlewO —_— Ru‘io

and n hypersurfaces o;(wW) C Uz such that for every § € BlgRg, the fiber ¢ (5) and the
divisors

g (5) N oi(w) la= ¢z (5)N77" (Eq)
define a stable sha of weight & (Eg, is defined in Lemma 4.6).

Proof. Let w € DE be an admissible weight and consider a sequence of weights 71, ..., Y1
such that ) := Wy, Y1 := W, the weights 7; < 4,1 are adjacent to each other (see Definition
4.2), and m + 1 is the minimal length of such sequences. We prove our Lemma by induction.
The base case is proven in Lemma 4.6.

Next, we describe the inductive step. We suppose that the statement holds for ~,,. In par-
ticular, there exists a smooth variety U,;, with a flat proper morphism ¢.;; : Uy, — Bl,;, Ry,
and n hypersurfaces o;(7,,) C Uy, such that for every s’ € Bl Ry, the fiber gb;;.i(é') and the
divisors (/b%i(§) Noi(Vm) and 14 = aﬁ% (8) N 7Y (E,) define a stable sha of weight ~,,.

Let W (I) be the wall separating ¥, and 7,11 = W, we denote the singularity destabilized
by this wall crossing by p(I).

Let H(I) be the closure of the locus in Bly, Ry, parametrizing all shas (X, D) with a
multiple point p(/), and let S(I) C U,,, be the locus supporting p(/). We will show that the
following diagram

n
Z/{uj = Bln—1(5(1)) (Blewo X (BleR%) u,7m> —— BlﬁRwo X (BlvamO) U,ym u,ym
7 Vim,
ol L
BlgRa, ? Bls,, Ry,

yields our family ¢z : Uy — BlgRg,.
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Notice that S(I) = H(I) because the projection S(I) — H(I) is finite, generically one-
to-one, and H(I) is the smooth strict transform of H(I) C Rg, in Bls, Rz,. Therefore, the
isomorphism S(I) = H(I) follows by Zariski’s main theorem.

By definition of the wonderful blow up, we have that

On another hand, by the inductive hypothesis, ¢, : Uy, — Bls,, Ry, is flat. Since blowing
up commutes with flat base change, we obtain

(5.10.1) BlgRay X (g1, g ) Uim = Blozt @@y

IYm T W

which implies

Bly-vs(n) (Blewo X (Blsy R ) Uvm) = Bl sy (qus;,; @(1))“%) :

Let F, and E, be the exceptional divisors of p and n respectively. Next, we describe the
fiber 7~1(z) for z € E,. Given y € H(I), the fiber ¢=" (y) is a surface X.

We find, by dimension counting, that p~*(y) = P!I=3) and n*1(¢§i(y)) is a P(I=3)_fibration
over X. Due to the fiber product construction, there is a morphism 77_1(¢%,11(Z)) — p(2).
So (¢3! (2)) is a fibration over P(I7% with fibers isomorphic to X.

Therefore, for all z € E, it holds that 77(z) = X, and the strict transform

{n. (:(Fm)) | i € 1}

of the sections {04(¥,) | i € I} induces a divisor in #~*(z) with an (n — 1) multiple point.
Blowing up = (S(I)) generically separates those sections in Ugz, because the intersection of the
hypersurfaces {n;'(c;(¥,.)) | i € I} is locally an intersection of || hyperplanes in affine space.
Indeed, recall our sections are the strict transforms of o; C Ry, and that Uy, = BlzP" ! with
Z=Pland ZNo; =0.

Finally, we describe the fibers of ¢5. The locus 77! (q;) = P73 intersects #(z) & X at the
point  supporting the multiple point ¢(/). The locus S(I) C U,, has dimension (n— || —1).
Therefore, dim(n~!(S(I)) = (n — 4) which implies the divisor of the blow up

Uz — Bl(p%i @) Usn)
is a P2-fibration over n~1(S(I)). So, ¢;'(2) is equal to

(5.10.2) P? | J B, (77'(2)) 2 P? | BLX.

where E C Bl X is the exceptional divisor obtained by blowing up x and L is a line in P2
The P? component is a fiber of Uz — Bl 6= (pryUsm- SO the strict transforms of the sections
Tm

{0i(¥m)| i € I} define a configuration of lines on it. Those lines do not overlap in a |I|-tuple
point, because that is the multiple point we just separated. Therefore, the resultant pair
defined by the surface in 5.10.2, and its intersection with the strict transform o;(@) of the
hypersurfaces 0;(%,,) in Uz defines a stable sha with respect to . O
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In the following Lemma, we recall that n points in P"~3 are in general position if there are
no two of them supported in a point, no three of them contained on a line, no four of them
contained in a plane, and so forth.

Lemma 5.11. Forn > 5, there are n points qi, ..., q, 1 Rg, in general position, a sequence
of weights Wy, with 1 < k < (n — 3), and morphisms of smooth varieties

Bl

3wy Rty — ... —= Bl Rg, — ... — Ry,

where

o Blg Rg, is the blow up of Rg, along qi,...,q, in any order.
o Blg, Ry, is the blow up of Blg, Ry, along the strict transform of lines spanned by all
pairs of points {qg;,q;}, in any order

® Blg, _, Ra, is the blow up of Blg,_, Ra, along the strict transforms of the (n — 4)-
planes spanned by all (n — 3)-tuples of the ¢;, i = 1,...,n in any order.

Proof. The wonderful blowup is by definition a sequence of iterative blow ups along the strict
transforms of the elements in the building set Hi». The points ¢; correspond to H(I) with
|I| = (n — 1), the lines spanned by the points ¢; correspond to H(J) with |J| = (n — 2), and
so on. The order of the blow-ups can be taken to be any order of increasing dimension by
[Li09, Thm 1.3]. O

5.12. Rz is isomorphic to a wonderful compactification. Our aim is to show that Rz
is isomorphic to the wonderful compactification BlzP" 3. First we review R for small values
of n.

Example 5.13.

(1) If @ € DL, then Ry is a point.

(2) If @ € DI, then Rz = P!, as M16(P2,5) = M.

(3) If @ € DE, then Ry = BlgP?. In particular, the morphism Rjs — Rg, = P? is the
blow up of P? at five points and the morphisms induced by wall crossings inside D
are either smooth blow ups or isomorphisms. Indeed, it is known that Ms(P?,6) has
isolated singularities (see [Lux08, Thm 4.2.4]). Therefore, by the construction of Rz
as in Definition 3.1 it follows that Ris is smooth. We note that the building set H;s is
described in Example 5.7, and that the smoothness of R; follows from the smoothness
of R;s and Theorem 5.16.

Theorem 5.14. For any choice of n and w € Df, it holds that Rz = BlzRg,, and thus Ry
15 smooth with normal crossings boundary.

Proof. Our proof is by induction on the weight vector. The base case is Rz, which is discussed
in Lemmas 4.4 and 4.6. Let ¥ > @ be two adjacent weights separated by the wall W (I) which
destabilizes the multiple point p(I). Now consider the following diagram
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BlsRg, —2 Ry

liﬁﬁ,a lﬂﬁa i

BlﬁRwo i) Rﬁ
where the morphism 3 7 is the blowup
BlﬁR@,O = Blﬁ(]) (BlﬁRujO) — BlﬁRwO

induced by the wonderful compactification, and ¢z is the wall crossing morphism induced
by changing the weights. By induction, we assume that Blz Rz, = Rz and thus Ry is smooth.
We must now show that Ry is also smooth.

By Lemma 5.10, there is a flat family Uy — BlyRz5, whose fibers are stable shas with
respect to . On the other hand, M(@l) (P2, n + 1) is a fine moduli space by [Ale08, Lemma
7.7]. Therefore, there is a map fy : BlzRg, — Ry Let Ey C Blmm0 and F; C Ry be the
exceptional divisors of ¢z s and ¢y respectively. By construction f is an isomorphism when

restricted to the open sets
(BlaRf,O) \ E; — Ry \ F;

and the restriction fz : Fz — Fjy is a finite morphism because both exceptional divisors are
PHI=3 fibrations over H([).

In particular, the above argument implies the morphism fz is the normalization. Therefore,
since BlzRz, is smooth, by Zariski’s main theorem, it suffices to show that Ry is normal. To
do so, we consider the exact sequence arising from normalization:

0— ORg — f*OBl,lego — 90— 0.

Our goal is to prove that 6 = 0. If p € R; is a point parametrizing a configuration which
is stable with respect to both weights ¢ and @, then the morphisms 5z and ¢z are both
isomorphisms, and there is nothing to prove. Therefore, we may assume that p is a point
which induces a blowup.

To look at the fiber over the point p we tensor by Og_/1,Or, to obtain:

Ory/1,0r; = (f+Opiypn-3) @ (Or,/I,0r,) — d ® (Or,/1,0r,) — 0.

The wonderful compactification is a sequence of iterative smooth blows, so by dimension
counting the fiber of 13z over p is a P13, Furthermore, by Lemma 4.9, the fiber of ¢y
over p is also a P73, As f; is the normalization, and both ¢7L(p) and 17 L(p) are scheme

theoretically PII=3, the projective spaces must be isomorphic. As the first arrow above is an
isomorphism, we see that

5 ® (O, /1,0r,) = 0.

As this is true for all p € Ry, we see that 6 = 0, and thus Ry is normal. 0
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5.15. Consequences of the blow up construction.

Theorem 5.16. There is a birational projective morphism Rg — Rg, = P"3 that can be
understood as a sequence of smooth blowups. In particular, the morphism Rin — P"=3 can be
understood as completing the steps descried in Lemma 5.11.

Proof. The theorem follows from Theorem 5.14. O
Lemma 5.17. [Has03] Let @ = (o, ..., ) be a set of weights where

(n-2) 1 1
az=...=q, =
n—1 2(n-1) ’

Oélzl, 052:1—

Then MQ& = P"3. Let §; C P"3 be the locus parametrizing configurations of n points in
P! such that {p;, = ... = pi, | i € I}. Then, for every @ > a, it follows that Mgz is the
wonderful compactification of P"=3 with respect to the building set

Sg = {Pr 225, PP | Y wi>1, I C{2,...,n}, 2< |I| < (n—2)}.

el

Proof. The existence of a set of weights @ such that Mz = P"~2 is well-known (see [Has03,
Sec 6.2]). The condition @ > @ guarantees the existence of a morphism Mgz — Moz (see
[Has03, Thm 4.1]). The set Sz is the locus in P"~3 that becomes unstable with respect to
the weights . In particular, the condition 1 & I is necessary for §; C P"~3, otherwise J; is
unstable with respect to a. O

Corollary 5.18. Given a set of weights @ = (1,wsy, ..., wy,), there is a morphism Rg — Moz
which can be interpreted as a continuation of a blow up construction Mgz — P73,

Proof. The weights of {4 and [, are one by construction, then we can define the morphism
¥ Ry — Moz by intersecting the broken lines {l4,ls,...,[,} with [;. That is

(X, lA + Zwklk> — (Zl, (ZA + Zwklk) > .
k=1 k=2 l1

The morphism is well defined by adjunction. Notice that the set {H(I) € Hgz |1 € I} is

isomorphic to Sz as in Lemma 5.17 above. Indeed, for an index set I C {1,...n} such that
1 € I, it holds that

Zwi>2<:> Zwi>1.

icl iel\1

Moreover, P(~11=1)-2 =~ g = H(I) = P(=D=1 by Lemma 5.1, and if I and K are indices
containing 1, then dpq N dg\1 # 0 if and only if H(I) N H(K) # 0. Finally, we use that
Pr—3 >~ Ry = Moﬂ to identify these sets.

By [Li09, Thm 1.3.ii], the wonderful blowup does not change if we rearrange the elements
of Hz so that the first k terms form a building set for any 1 < k£ < n. Therefore, by Theorem
5.14, we have

Rg = Bly, (P"™°) = Bly,\s,; (Bls,P"™") = Bly,\s, (M)

w
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where Bly, ,\s, denotes the blow up along the strict transform of the elements in the set Hz\ Sp.
The description in the statement of our result follows by comparing Lemma 5.11 with the
blow up construction of M, outlined in the introduction. O

We now show that there do not exist weights w so that Rz = Mo,n-
Proof of Theorem 1.3. Let @ € DE, we will show that H; cannot be equal to the locus S

required to construct Mo,n as described in [Has03, Sec 6.2]. If we suppose otherwise, then
w destabilizes (n — 1) points and all the linear subspaces spanned by them while the nth
point is stable with respect to @. In other words, let H () € Hg, where |I;| = (n — 1) for
k=1,..,n—1and H(I,) € H, where |I,,| = (n — 1). The existence of @ is equivalent to the

existence of a solution for the following system of inequalities.

(5181) Wi, + Wi, + Wiy > 2 W {il,ig,ig} C I
(5.18.2) dwi<2, 0<uw; <1
i€ly

The inequality (5.18.1) is associated to destabilizing the (n — 2)-planes generated by H(Ij)
with 1 < ¢ < n. The inequality (5.18.2) follows because H(I,) is stable with respect to .

Without loss of generality, we set I, = {2,...,n}. Since |Iz| = (n — 1), there is at least one
I}, such that I N [, has at least three distinct elements i1, 5, 73 and so the inequality (5.18.1)
for these three elements contradicts (5.18.2). O

6. Ri» AS A NON-REDUCTIVE CHOW QUOTIENT

In this section, we discuss the proof of Theorem 1.4. An important step of the proof is
based on the fact that the dual graphs of the pairs parametrized by Rz are always rooted
trees, with the root vertex corresponding to the component containing the line [4. To keep
track of the lines [;, we mark the vertices corresponding to the last component containing the
broken line ;.

1,2,3}  {1,4,5) {5} {1.2.3.4) 5 {1} {234

root root

root

FiGure 3. Left to right: Dual graphs associated to the last sha of Fig. 1
and last 2 of Fig. 2 resp.

We highlight that there is a configuration space known as 7Ty, which generalizes Mo,n
(see [CGKO09]), and is a non reductive Chow quotient under the same group [GG|. The
objects parametrized by T}, are known as stable rooted trees, and are the union of surfaces
X = Bl,,’? | as in our space, but with markings given by points rather than lines.

Remark 6.1. We recall Kapranov’s construction of My, as a Chow quotient (see [Kap93a]).
Given a collection of n generic points p; in P!, we consider the cycle associated to the closure
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of the orbit: SLz - (py,...,p,) C (P!)". Varying the points, we obtain cycles parametrized by
an open locus in the appropriate Chow variety. Taking the closure of this open set, we obtain
the Chow quotient (P')"//,SLy which is isomorphic to Mg,,.

We fix our line I, once and for all, and denote by P2 the dual projective space. The lines
{li,...1,} are parametrized by points p,...,p, € (}fﬂ)" Let G C SL(2,C) be the group
acting on P? that fixes the line [4 C P? pointwise. Then G = G, x G2, dim(G) = 3, and if
4 := (g = 0), the group consists of elements of the form:

t72 0 0
G= So t 0
S1 0 t

Given a point p; = [agp : a1 : as] € I@Q, the line associated to it by projective duality can be
written as [(Z) := (p; - * = 0). Then we have I(g - ) = (p; - g)(z) from which we obtain the
following action of G' on P2.

Definition 6.2. Let g € G be as above, then we define the action on P? as
- S0 S1
g-lag:ay:as] =1t 3a0+7a1+7a2:a2:a3]
After acting with the group, the line l(x) = (apzo + a1x1 + asxe = 0) becomes
-3 S0 S1
(t ag + 7(11 + 7(12) Ty + a1T1 + Ao
In particular, the intersection point l(x) N (xg = 0) is invariant under the action of G.
Inside (P2)", we define the loci

U(q) == {(p1,...,pn) € (P*)" | I; N4 are fixed with equivalence class ¢ € My,.}

Notice that dim(U,(¢q)) = n. We select once and for all a connected component of the closure
of U(q,) and we denote it, by abuse of notation, as U(g,). In particular, we fix an intersection
{l; N4} once and for all for the rest of this chapter, so we omit it after here and just write U.

Proposition 6.3. The Chow quotient U [, G is birational to Ryn.

Proof. By shrinking if necessary, we can find an open subet U’ C U contained in a G-invariant
open locus in (I[Aﬂ)”, so that there is a natural map ¢ : U' — Ri». Furthermore, the G-action
fixes the line [4 pointwise, and thus fixes [; N 4. As a result, all configurations in the orbit
G -1; are isomorphic as line arrangements in P2, and thus are equivalent in R;~». Therefore, v is
G-invariant and induces a morphism ¢ : U’/G — Ry». This morphism is injective on an open
set in Ryn, because if generic p, p’ € U’ satisfy ¥(p) = (p'), then there is a g € SL(3, C) such
that g - p = p/. This last equality implies ¢ fixes the line [4 as well as all of the intersections
1;Nl4, and so g € G and p and p’ are in the same G-orbit. The map 1 is dominant, because for
a generic isomorphic class of lines parametrized by Ry, we can choose a representative where

la and [; N'l4 are as in the beginning of this section, and that representative is parametrized
by U’. ([l
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Next, we show that the birational map p : Ryn -+ U /¢, G is a regular morphism. This is
done by associating a cycle to each sha X parametrized by Ri». We recall that each component
X, of X is either P2, the blow up of P? at finite number of points, or P! x P! (see Proposition
4.8), and that there is a contraction morphism ¢, : X — P? that contracts X, to P? while
also contracting all other components. For each v € I, the contraction morphism induces a
line arrangement ¢, (X) defined up to choice of coordinates. We always select a representative
which, by an abuse of notation, we denote by ¢,(X), so l4 := (xg = 0) and the points {4 N;
are the same as the ones used to define U.

Definition 6.4. Fix a closed point of Ri» parametrizing the sha X = U,c1X,. The config-
uration cycle Z(X) is:
2(X) = YT (X ¢ (B
vel

We must show that these configuration cycles all have the same dimension and homology
class. Let m := {my,...,m,} be a set of integers such that >  m; = 3 and 0 < m; < 2.
By the Kiinneth formula, a basis for the homology in (P?)" is [P™] ® --- ® [P™]. Let
Ly := Ly x --- x L, be a collection of generic linear subspaces L; C P? of codimension m;.
The homology class of the orbit G - p is

G -pl = ZCm (P™]®--- o [P™])

where (G . p) - L7 is the intersection of the orbit G - p with the generic linear subspaces L.

Proposition 6.5. Let m be as above and X = U,e1X,, then the homology class [Z(X)] of the
cycle Z(X) is

(6.5.1) Z(X)] = ) (ZG‘%(X)-H%) (P - [P"])

m=mij,....mn \VEI

In particular, if X is a generic point of Rin (i.e. X is supported on a single P?). Then
Z(X)] =3 e (P™] @ - @ [P™])

where ¢ 1s either 0 or 1.

Proof. The result follows verbatim from the analogous [Kap93a, Proposition 2.1.7]. The main
idea is as follows: let p; € P? be the points parametrizing the lines [; in ©u(X). Then, ¢z =1
if and only if there is a unique g € G C SL(3,C) such that g - p; € L; for all 1 < ¢ < n; and
¢ is zero if there is no such as g € G. For generic X those are the only cases, so we only
have those coefficients. O

It will turn out that we only need to calculate the homology of the cycles associated to the
maximal degenerations parametrized by Ryn.

Lemma 6.6. A closed point X = U, X, in Ri» is maximally degenerate, that is it lies on a
minimal (i.e., deepest) stratum of the boundary stratification, if and only if the configuration
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of lines p,(X,) has exactly three lines l; with 1 < i < n in general position for every v € I,
not including L4 or its image.

Proof. Recall that the group G is three dimensional. If ¢,(X,) has more than three lines, not
including [4 or its image, in general position, then X, has moduli larger than zero, and it can
be degenerated further. ([l

Proposition 6.7. If the sha X € Ry~ is mazximally degenerated, then the homology class of
Z(X) has all coefficients ¢z equal to 1 if and only if for all m; € m we have that m; # 2.

Proof. First we show the (=) direction by proving the contrapositive. Suppose that there is
an m; € m such that m; = 2. Then we claim that for each component X, of X, we have that
©p(X) - Lz = 0. Indeed, m; = 2 implies that there is a generic linear subspace L; € Lz such
that L; = P9 C P2 is a point. By projective duality, we obtain a line P! in P2 that has generic
intersection with /4. However, there does not exist a ¢ € G such that g-1; = P} | because this
would imply that both /; and the P} would intersect /4 at the same point. This is impossible
given our action of G, because G restricts to the identity in /4.

Next, we show the (<) direction. We divide the set of lines in ¢,(X) = P? into sets
I;(v) and I4(v), where I;(v) denotes the set of lines associated to the the multiple points
p(;(v)) € ,(X) (i.e. points of multiplicity > 3), and the set 14(v) denotes the lines overlap-
ping with l4. By construction, I;(v) N I4(v) = (). However, the sets I;(v) are not necessarily
disjoint, as lines can support more than one multiple point. Of course, if the configuration
only has double points, then [;(v) = (. We define the numbers m;(v) := 37, ., 7 and
ma(v) = 3 per, ) Mk I Li(v) = 0, then we take m;(v) := 0, and similarly for I4(v). We
make the following claim.

Claim 6.8. ¢,(X) Lz >0 < mu(v) =0, m;(v) <2, and my <1 for all i and my, € m.

Proof of Claim 6.8. We start with the (=) direction. If ma(v) > 0, then we have a generic
line L; C P? with i € I4(v), and thus a generic point P C P? in the dual space. We must find
a g € G such that PV € g(I;) for a line [; that overlaps with [4. This is impossible, because G
does not move 4, and so ¢,(X) - Lz = 0.

Next, suppose that m;(v) = 3. By the previous argument, we know that if m; = 2, then
wu(X) - Lz = 0. Then up to relabelling, we can assume that m; = my = mg = 1 and that
{1,2,3} C I;(v). The generic lines Ly, Ls, L3 in P? induce three generic points PY in P2. We
need to find a g € G such that the points P € ¢ - I, for s € 1,2,3. Again, this is impossible
by the geometry of the problem. Indeed, recall that the intersection points of the lines [, N4
are fixed. We can find two lines passing through P¢ and P), but those two lines will intersect
at p(Iy), and thus determine the position of all the other lines in I1(v). Therefore, a generic
P9 will not be contained in g - I3, and therefore ¢, (X) - Ly = 0.

We continue with the (<) direction of the claim. There are three Lg of codimension one,
and we can suppose that s € {1,2,3}. By duality, they induce three points in general position
in P2. The statement follows because we can find three lines that pass through these three
points as along as the lines are in general position. This holds, because m;(v) < 2 implies
that {1,2,3} is not a subset of [;(v) for any i. O
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By Expression 6.5.1 in Proposition 6.5, our statement follows if we prove that for a given m,
and any sha X = U, X, parametrized by Rj», there exists a unique component X, satisfying
the criteria of Claim 6.8. The following argument uses the description of the dual graph of
the X, which is a rooted tree by Lemma 4.8. We start with the root component X,. There is
no line coinciding with 14 in ¢o(X), and so m4(0) = 0. Thus there are two options:

(1) Either m;(0) < 2 for all 4, or

(2) there exists an i such that m;(0) = 3.

Case (1): If m;(0) < 2 for all 4, then ¢o(X) -L > 0. To show uniqueness, recall that
Zi:1,2,3 m; = 3, and that m;(v) < 2 for all i. Therefore, the root has at least two branches,
and each of those branches has at least one index iy such that m;, = 1. Then I4(v) contains
at least one of these indices for every other component v # 0, because at least one those
branches is contracted with its line iy that overlaps with /4. Therefore, m4(v) > 0, and thus

Case (2): If there exists an ¢ such that m;(0) = 3, then ¢o(X) - Lz = 0. Thus we may
suppose after relabeling, that m4(0) = 3, and that m; = my = mg = 1 with {1,2,3} C I,(0).
This means that there is a branch starting from the root which contains the lines {1, 2,3}. Let
X, be the component in that branch that intersects with the rooted component. We claim
that m4(v') = 0, because I4(v") denotes the set of lines in the other branches which are not
in ;. Those indices do not include {1, 2,3}, and these indices are the only ones of weight one.
Thus, we have two options:

(1) If m;(v") < 2 for every i, then we have that ¢, (X) - Lz > 0. Uniqueness follows by
same argument used above. There are at least two branches starting from v" with an
index j such that m; = 1. Any other ¢,(X) will contain that index in /4(v), and so

(2) If m;(v') = 3 for some 4, then there is a branch starting from the vertex v’ that contains
the lines {1, 2, 3}.

In the last case, we repeat the above argument with the surface X,» that intersects v' and
belongs to the branch containing the lines with indices {1,2,3}. Since for any sha the tree is
finite, one of the next two things must happen.

(1) We find a component v such that ¢s(X)-Lz > 0. It is unique by above arguments, or
(2) we arrive to the last vertex of a branch that we call vy.

In the last case, we have at most three lines in general position on X, ,, because by assupmtion
X is maximally degenerated; and there are no multiple points. Following our labeling, those
lines are precisely {1,2,3}, and so ma(vy) = m;(vy) = 0, and ¢, (X) - Lz > 0. O

Next, we extend the birational map p : Ri» --+ U//cnG to a regular morphism. Note that
there exists at most one extension, since the image is dense and the Chow variety is separated.
Furthermore, the image of an extension as above is contained in U // on G, since this Chow
quotient is closed in the Chow variety. We begin with a crucial lemma.

Definition 6.9. [GG14, Definition 7.2] Let (A, m) be a DVR with residue field k and fraction
field K, and let'Y be a proper scheme. By the valuative criterion, any map g : Spec K =Y
extends to a map g : Spec A =Y . We write lim g for the point g(m) € Y .
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Lemma 6.10. [GG14, Theorem 7.3] Suppose X, Xy are proper schemes over a noetherian
scheme S with X1 normal. Let U C X, be an open dense set and f : U — X5 an S-morphism.
Then f extends to an S-morphism f : Xy — Xs if and only if for any DVR (K, m) and any
morphism g : Spec(K) — U, the point limfg of Xy is uniquely determined by the point lim g
Of Xl.

Our argument for the following result follows the same structure as the one used for the
proof of My, (see [Gial3, Thm 1.1]), and T}, (see [GG, Sec. 4.3]).

Proposition 6.11. There is a morphism p : Ryn — (I@’Q)”//ChG that associates to each closed
point X = U,er X, of Rin a cycle with homology class

S @ElecoPt)  0<msl  Ym=3

Proof. Consider a flat proper 1-parameter family XA — A where the generic fiber X, is a sha
parametrized by the interior RS.. Then X, is supported in P? without any multiple point of
multiplicity larger than two, and the central fiber X¢ — Spec C is an arbitrary closed point
of Rin. The cycle [Z(X;)] associated to a generic fiber in X is three dimensional, and its
homology class is § (see Proposition 6.5). Therefore, we have a 1-parameter family of cycles
whose limit in the Chow variety we denote as lim;_,¢[Z(X:)]. By Proposition 6.3 and Lemma
6.10, the existence of the morphism then follows if we show that lim; ,o[Z(X})] is uniquely
determined by Xc¢. It suffices to show that:

(6.11.1) lim(Z(X,)] = [Z(Xc)

where [Z(X¢)] is equal to the cycle defined in Proposition 6.5.
First we show that Z(X¢) C lim;_,o Z(X;) as subvarieties of (P?)". Since X¢ = U, X, by
definition of Z(X¢), our claim follows if for every component X, of X¢, we have that:

0. (Xc) C lim Z(X,) C (P?)"
t—0

By construction lim;_,q Z(X;) is closed and G-invariant. Therefore, our claim follows if ¢,
maps the points (py,, ... pn,) € (P?)" associated to the lines in ¢,(X¢), into

: D2\n
lim Z(X,) € (B2)".

We recall that in general for shas, the contraction morphism ¢, : X¢ — P? is induced by
a line bundle L, that satisfies h*(X,L,) = 0 for all 1 > 4, since ¢, is degree 1 on the X,
component and degree 0 elsewhere. Then, by Grauert’s Theorem (see Corollary I11.12.9 of
[Har77]), the morphism ¢, lifts to a morphism from the central fiber to our l-parameter
family Xa. Let ¢, : Xao — (P2)" be that lift. For ¢ # 0, the map ¢, sends the points
pi, € (P2)™ associated to the lines in ¢,(X;) to Z(X;), and the morphism ¢, is continuous.
Then, ¢,(X¢) C limy;_,o Z(X}); and we have

(6.11.2) Z(Xo)] < Il Z(X).
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Next, we show the equality. By Proposition 6.5, we know that the homology class of the
generic orbit has coeficients equal to either 0 or 1. By the argument in the proof of Proposition
6.7, we conclude that the homology class of the generic orbit has coefficient ¢z = 0 if there is
an m; € m such that m; = 2. Indeed, it will induce a generic line P} C P?; and we cannot
move any lines [; to such a line because the intersections [; N {4 are fixed. On the other hand,
for ty # 0 we see that:

(6.11.3) lim(Z(X,)] = [Z(X,)]
because we are taking the limit inside a Chow variety. Consequently, the homology class of
the limit is the same as the homology class of the generic fiber

Expressions 6.11.2 and 6.11.3 imply that the coefficients ¢ " in the homology class of the
generic element Z(X,,) are necessarily larger than or equal to the coefficients ¢ associated
to the central fiber Z(X¢) . Therefore we have the following inequality

(6.11.4) 1< <o <1,

The left inequality follows by Proposition 6.7 and because the homology class only decreases
whenever degenerating, as seen in (6.11.2). The right inequality follows from Proposition 6.5.
We conclude that there is a morphism p : Rin — (P*)"// o1, G. O

Finally, we prove that Ri» is isomorphic to the normalization of our Chow quotient.

Theorem 6.12. Let Un//ChG be the normalization of the Chow quotient, and let p" be the
morphism obtained from the Stein factorization of p. Then the morphism

pn : Rln — Un//ChG
s an isomorphism.

Proof. We use the Zariski’s Main Theorem which asserts that a quasi-finite birational mor-
phism to a normal, Noetherian scheme is an open immersion. Ri» is normal, and our
morphism p factors through the normalization of the Chow quotient. Then, p™ is surjective
and birational; and the crux of the result is to prove that p is quasi-finite. By Proposition
6.3, we already know the map p is injective on the interior R7.; and we observe that no point
of the boundary divisor in R~ can be sent to the same cycle as a point of the open stratum,
since the image of the latter is an irreducible cycle whereas the image of the former is not.
Therefore, we only need to show that the restriction of p to the boundary in R~ is quasi-finite.
The boundary is the union of a finite number of divisors, and so it will be enough to show
our claim for a single component D; of the boundary. The general point of the divisor D;
parametrizes a sha X = P? U Bl,(P?), where Bl,(IP?) contains the line I4. For example, the
second sha in Figure 1 is parametrized by Dssss. The morphism p sends X to the union of
the two cycles:

G o(X) UG- 1 (X)
If another sha X parametrized by the interior of D; has the same image as X, that is
p(X) = p(X), then their cycles coincide. This means that the image of their reduction
morphisms satisfy ;(X) € G - ¢;(X). However, G C SL(3,C), which implies that X = X.
Therefore, p is injective on the interior of D;. A straightforward iteration of this argument,
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using the fact that our dual graphs are always trees, applies to the deeper strata, and shows
that p is injective on Dy itself. O
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