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Abstract. Given a degree one del Pezzo surface with canonical singularities, the linear series

generated by twice the anti-canonical divisor exhibits the surface as the double cover of the quadric

cone branched along a sextic curve. It is natural to ask if this description extends to the boundary

of a compactification of the moduli space of degree one del Pezzo surfaces. The goal of this paper is

to show that this is indeed the case. In particular, we give an explicit classification of the boundary

of the moduli space of anti-canonically polarized broken del Pezzo surfaces of degree one as double

covers of degenerations of the quadric cone.

1. Introduction

The anti-canonical linear series of del Pezzo surfaces have a rich geometric structure. For degree

one del Pezzo surfaces, the linear series | −KX | is a pencil of elliptic curves with a unique base

point, and the blowup of this base point gives a rational elliptic surface with a section. On the

other hand, the linear system | − 2KX | exhibits the surface X as a double cover of P(1, 1, 2),

i.e. the quadric cone, branched along a sextic curve. At the same time, understanding modular

compactifications of the space of degree one del Pezzo surfaces is a problem with a long history (see

e.g. [Ish82, Sek94, Mir81, HL02, OSS16, AT17]). In [AB18], we construct and describe an explicit

modular compactification R of this space using the theory of stable pairs. The boundary of this

space parametrizes anti-canonically polarized broken del Pezzo surfaces of degree one – slc surfaces

X such that KX is anti-ample and K2
X = 1 (see [AB18, Theorem 1.1]).

In light of this, it is natural to ask whether the description of a degree one del Pezzo surface

as a double cover of P(1, 1, 2) extends along the boundary of this moduli space. That is, are anti-

canonically polarized broken del Pezzo surface of degree one also double covers of some degenerations

of P(1, 1, 2)? The main goal of this paper is to show that this is indeed the case.

Let D1,s ⊂ R denote the moduli stack of degree one del Pezzo surfaces with canonical singularities.

If Q3 denotes the stack of pairs (Q,C), where Q is a quadric cone in P3 and C ⊂ Q is a complete

intersection of Q with a cubic, then there exists a smooth and separated substack Qs3 ⊂ Q3 and

a map D1,s → Qs3 which is an isomorphism up to taking the relative coarse moduli space (see

Corollary 2.8). In Section 3 we will define a suitable compactification Qs3 ⊂ Q parametrizing pairs

on a singular quadric cone in P3 (see Definition 3.2).

Theorem 1.1 (see Theorem 5.1). There is a separated morphism R → Q which extends the

morphism D1,s → Qs3. This morphism is induced by a double cover map from the universal family

of broken del Pezzo surfaces of degree one to a family of quadric cones branced along a family of

complete intersections with a cubic. Moreover, the induced morphism on the relative coarse moduli

space Rc → Q is a monomorphism.

In [AB18, Section 7.1], we gave an explicit classification of the broken del Pezzo surfaces on

the boundary of R. In this paper we explicitly show that the linear series | − 2KX | on a broken
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degree one del Pezzo induces a double cover map X → Q of a quadric cone Q ⊂ P3, where now

Q = P2 ∪l P2 is the cone over two lines. We note that the proof of Theorem 4.2 is constructive, in

that we show explicitly how each surface on the boundary of R can be realized as a double cover of

Q and that the double cover is induced by | − 2KX | (see Remark 4.3 and Table 3).

We note that Deopurkar-Han [DH18] recently studied the moduli space of (3, 3) curves on P1×P1

and their Q-Gorenstein smoothings. Their space contains a boundary divisor corresponding to pairs

of a quadric cone with a sextic curve which is birational to R by Theorem 1.1.

We work over an algebraically field of characteristic zero.

Acknowledgements. We thank János Kollár for asking us this question and for helpful conversa-

tions. This work was partially completed while the authors were in residence at MSRI in Spring

2019 (NSF No. DMS-1440140). Both authors supported in part by NSF Postdoctoral Fellowships.

2. Moduli of degree one del Pezzo surfaces

We recall some background on del Pezzo surfaces of degree one with canonical singularities.

Definition 2.1. A degree n del Pezzo surface is a surface X with canonical singularities such that

−KX is ample and K2
X = n.

For n ≥ 2, the divisor −KX is very ample and the linear series | −KX | embeds X into Pn. In the

degree n = 1 case, which is the focus of this paper, the linear series | −KX | is a pencil of elliptic

curves with a unique base point. On the other hand, the following is well known:

Proposition 2.2. For degree n = 1 the morphism induced by the linear system | − 2KX |,

ϕ|−2KX | : X → P3

is basepoint free and exhibits X as a double cover of a quadric cone branched along the complete

intersection with a cubic surface.

If we write H0(−KX) = 〈x, y〉, then one can readily compute using Kodaira vanishing and

Riemann-Roch that h0(−2KX) = 4 so that H0(−2KX) = 〈x2, xy, y2, z〉 for some section z. This

induces a map to P3 with image given by x0x2 − x21 = 0.

Remark 2.3. We note that interpretations of | −KX | and | − 2KX | as an elliptic pencil and double

cover respectively are also known to be true in the context of del Pezzo surfaces of degree one with

canonical singularities. For the proofs of these statements we refer the reader to the work of Kosta

[Kos09, Section 2.1].

We now show that the construction given in Proposition 2.2 can also be done in families. Before

doing so, we set up some notation. If π : X → T desnotes a flat family of anti-canonically polarized

degree one del Pezzo surfaces, we let P = P(E) denote the P3 bundle given by E := π∗OX(−2KX/T ).

Proposition 2.4. Let π : X → T be a flat family of anti-canonically polarized degree one del

Pezzo surfaces. Then the line bundle OX(−2KX/T ) is globally generated over T , and the induced

morphism ϕ : X → P is a 2-to-1 map onto a family Q→ T of singular quadrics embedded in P over

T , branched over a family of complete intersections with a cubic.
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Proof. By Kodaira vanishing, H1(Xt,OXt(−2KXt)) = 0 for each t ∈ T , and so by cohomology and

base change, the vector bundle E = π∗OX(−2KX/T ) is locally free of rank four and compatible with

base change. Consider the map π∗E → OX(−2KX/T ). Since −2KXt is globally generated on the

fiber Xt, this map is fiberwise surjective which implies global generation over T . This induces a

T -morphism X → P = P(E) which fiberwise is a double cover of a quadric cone as above. �

As a corollary, we can identify the moduli space of degree one del Pezzo surfaces with an open

substack of the moduli space of pairs (Q,C) where Q is a quadric cone in P3 and C ⊂ Q is a

complete intersection of Q with a cubic.

Notation 2.5. Let D1 denote the moduli space of anti-canonically polarized del Pezzo surfaces of

degree one with ADE singularities, and let Q3 denote the moduli space of pairs (Q,C) of a (not

necessarily integral) quadric cone Q, i.e. Q can be the cone over two lines or a double line, and

C ⊂ Q a complete intersection curve with a cubic. Finally, we let QADE3 denote the open substack

of pairs where Q is normal, C avoids the cone point, and C has at worst ADE singularities (see

Table 1).

Thus by Proposition 2.4, there is a natural map D1 → Q3.

Corollary 2.6. Let D1,c → Q3 be the relative coarse moduli space of natural map D1 → Q3 above.

There is an isomorphism of D1,c with QADE3 .

Proof. By Proposition 2.4, the set theoretic map is actually a morphism on the level of moduli

spaces. For any surface X, the double cover structure is given by the elliptic involution on the

anti-canonical curves of X. In particular, the branch locus of X → Q is given by the torsion points

of the anti-canonical curves. There is a fixed torsion point for each anti-canonical curve at the

basepoint of | −KX |, the identity of the group structure, and the other torsion points are disjoint.

Thus C is disjoint from the cone point lying under the basepoint of | −KX |. Moreover, X has ADE

singularities if and only if the branch curve C does. Then to conclude, one just observes that given

a family (Q, C)→ T , the double cover of Q branched along C is a family of degree one del Pezzo

surfaces so that the map above has an inverse. Thus the map D1,c → QADE3 is a representable

bijection and so it is an isomorphism by Zariski’s main theorem for stacks, see e.g. [AI19, Theorem

A.5]. �

Remark 2.7. In the corollary above, one wants to say that D1 is identified with QADE3 . The issue

is that the del Pezzo surface has an extra involution given by swapping the fibers of the double

cover map and so D1,c → Q3 can be thought of as a µ2-gerbe over its image.

Table 1. ADE curve singularities

Singularity type Local equation

An(n ≥ 1) x2 + yn+1 = 0

Dn(n ≥ 4) y(x2 + yn−2) = 0

E6 x3 + y4 = 0

E7 x(x2 + y3) = 0

E8 x3 + y5 = 0
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Let us explicate the correspondence between the geometry of X and the geometry of the pair

(Q,C). The anti-canonical curves of X correspond to the lines on Q. The singular anti-canonical

curves, or equivalently the singular fibers of the corresponding rational elliptic surface, correspond

to lines l that meet C in multiplicity at least two, i.e. the tangent lines to C. One can check that

there are 12 such lines, counted with multiplicity. The curve C is a tri-section of the corresponding

rational elliptic surface and in particular it is a trigonal curve of genus four. The Kodaira fiber type

of an anti-canonical curve in the corresponding rational elliptic surface can be read off from the the

line l and the singularities of C according to Table 3.

Table 2. Kodaira fiber types from the branch locus

Singular fiber multiplicity of l ∩ C Singularity of C

I0 transverse none (smooth)

I1 2 none (smooth)

In, n ≥ 2 2 An−1

II 3 none (smooth)

III 3 A1

IV 3 A2

I∗n 2 Dn+4

IV∗ 2 E6

III∗ 2 E7

II∗ 2 E8

The stack D1 ∼= QADE3 is not a separated Deligne-Mumford stack. A separated open Deligne-

Mumford substack D1,s ⊂ D1 is cut out by GIT stability computed by Miranda [Mir81]: X is GIT

stable if and only if it has at worst An singularities. As a result we obtain the following.

Corollary 2.8. The open substack Qs3 ⊂ QADE3 of pairs (Q,C) such that C avoids the cone point

and has at worst An singularities is a smooth and separated Deligne-Mumford stack.

3. Stable pair compactifications

In this section we set up the compactifications of the moduli spaces of interest using the theory

of stable pairs (see e.g. [Kol]). A natural choice of divisor on a degree one del Pezzo surface is the

sum of the rational curves in the anti-canonical pencil, which as we saw above are exactly the nodal

and cuspidal genus one curves lying over lines of Q. We can take these curves Fi counted with

multiplicity mi to endow X with a boundary divisor

F = a
∑

miFi.

Here we will take a = 1
12 + ε for 1� ε > 0. This is the smallest a for which the pair (X,F ) is stable

as there are 12 anti-canonical curves counted with multiplicity so that F ∼Q −12aKX .

In [AB18], we described the closure of the moduli space D1,s inside the moduli space of stable

pairs using degenerations of rational elliptic fibrations; we denoted this space by R := R( 1
12 + ε).

The choice of notation is suggestive – R was chosen since degree one del Pezzo surfaces are the

blowdown of the section of a rational elliptic surface and this compactification is furnished by

degenerating the elliptic fibration structure.
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Theorem 3.1. [AB18, Theorem 1.1] There exists a proper Deligne-Mumford stack R = R( 1
12 + ε)

parametrizing anti-canonically polarized broken del Pezzo surfaces of degree one with the following

properties:

• The interior D1,s ⊂ R parametrizes degree one del Pezzo surfaces with at worst rational

double point singularities.

• The complement R\D1,s consists of a unique boundary divisor ∂R parametrizing 2-Gorenstein

semi-log canonical surfaces with ample anti-canonical divisor and exactly two irreducible

components.

• The locus R◦ ⊂ R parametrizing surfaces such that every irreducible component is normal

is a smooth Deligne-Mumford stack.

On the other hand, we can consider marking the quadric cone Q with lines corresponding to the

singular members Fi. These are the lines that intersect C with multiplicity m ≥ 2. There are 12

such lines counted with multiplcity m− 1 and so we consider

L = a
∑

(mi − 1)li

where again a = 1
12 + ε. Using a similar calculation, one can check that this is the smallest a for

which (Q,L) is stable. Using this choice of boundary divisor, we can map Qs3 into a certain moduli

space of stable pairs Mv, by taking (Q,C) to the stable pair (Q,L). Note here that the underlying

surfaces are all isomorphic but the curve C determines the boundary L. Let us denote this by

ϕ : Qs3 →Mv.

Definition 3.2. Let Q be the closure of the graph of ϕ : Qs3 →Mv inside the product Q3 ×Mv.

It is clear that Qs3 is a dense open substack of Q. Moreover, Q parametrizes triples (Q,C,L)

where Q is a singular quadric cone in P3, the curve C is a complete intersection with a cubic, and

L = a
∑

(mi − 1)li where {li} is a collection of lines on Q meeting at a fixed point p ∈ Q and

intersecting C at multiplicity mi. Moreover, these triples are such that (Q,C,L) is the central fiber

(Q0, C0, L0) of a family (Qt, Ct, Lt) for t ∈ T a smooth curve where (Qt, Ct) for t 6= 0 is a family of

GIT stable pairs Qs3, and (Qt, Lt) is a family of stable pairs in Mv. Note that a priori, Q need not

be proper nor Deligne-Mumford.

4. Broken degree one del Pezzo surfaces

In this section we will analyze the double cover structure on the broken degree one del Pezzo

surfaces appearing on the boundary of R. Let us recall the description of these surfaces from [AB18,

Section 7.1]. For more details on some of the terminology (e.g. twisted fibers) we refer the readers

to [AB17a, AB19, AB17b].

Theorem 4.1. [AB18, Section 7] The boundary ∂R = R\D1,s parametrizes surfaces of the following

types:

(BI) the slc union X = Y1 ∪G Y2 where Y1 and Y2 are rational pseudoelliptic surfaces glued along

a twisted I∗0 pseudofiber G such that −2KX is Cartier and ample, and all pseudofibers of X

away from the double locus G are of Kodaira type In, II, III or IV;

(BII) the slc union X = Y1 ∪G Y2 where Y1 is a rational pseudoelliptic surface with a twisted I∗n
pseudofiber at G, and all other fibers as above, Y2 is an isotrivial j-invariant ∞ pseudoelliptic

surface of type 2N1 with G a twisted N1 fiber, and −2KX Cartier and ample;
5



(BIII) the slc union X = Y1 ∪G Y2 where Y1 and Y2 are both isotrivial j-invariant ∞ pseudoelliptic

surfaces of type 2N1 glued along twisted N1 fibers, and −2KX is Cartier and ample.

We will call these types of surfaces broken degree one del Pezzo surfaces of type BI, BII, and BIII

respectively. We note that in [AB18], we called the surfaces in D1,s ⊂ R surfaces of type A, and we

referred to the type BI surfaces as surfaces of type B. We did not give names to what appear here

as type BII or type BIII.

The main theorem of this section is that, as in the case of degree one del Pezzo surfaces, the

linear series | − 2KX | on a broken degree one del Pezzo induces a double cover map X → Q of a

quadric cone Q ⊂ P3, except now Q = P2 ∪l P2 is the cone over two lines.

Theorem 4.2. Let Q = P2 ∪l P2 denote the quadric cone over two lines. If X is a broken degree

one del Pezzo surface, then there is a double cover ϕ : X → Q ⊂ P3 branched along the double locus

l as well as a complete intersection curve C ⊂ Q with a cubic. Moreover, if H is a hyperplane

section of Q, then ϕ∗H ∈ | − 2KX | is a 2-anti-canonical curve.

Proof. We will construct the Yi appearing as components of type BI, BII or BIII surfaces explicitly

as double covers of P2 branched over a line and a cubic and then glue them together to obtain a

map Y1 ∪G Y2 → P2 ∪l P2.

Consider the data of (P2, C, l, p) where C ⊂ P2 is a cubic curve, l ⊂ P2 is a line, and p ∈ l is a

point on the line avoiding C. Let g : Y → P2 be the double cover branched along C ∪ l. We will see

that each of the surfaces Yi as above are constructed in this way depending on how C and l meet.

Indeed, let us first check that Y is a rational pseudoelliptic surface. Since Y is branched over a

quartic curve in P2, we can see that −KY is ample by Riemann-Hurwitz. Therefore, Y is a rational

surface. Moreover, Y has a pencil of elliptic curves through q = g−1(p) given by pulling back the

pencil of lines through p. If we blow up the ideal of p as well as its inverse image, we obtain a

double cover g′ : Y ′ → F1 where Y ′ is elliptically fibered with section. Moreover, g′ is branched

along the fiber G′ lying over the strict transform of l in F1. In particular, G′ supports a twisted

fiber with non-reduced multiplicity two. If S ⊂ Y ′ is the section, a local computation shows that in

fact Y ′ meets G in an A1 singularity. Thus Y is a rational pseudoelliptic surface with a pseudofiber

G lying over l that supports a twisted pseudofiber with non-reduced multiplicity.

The types of surfaces appearing in the above Theorem 4.1 depend on the singularities of C, and

the intersection C ∩ l. To obtain a pseudoelliptic component Y as in surfaces of Type BI, we take

C to intersect l transversely in three smooth points, with C having at worst An singularities away

from l ∩ C. In this case we obtain a surface with at worst An singularities away from the fiber

G which indicates that the pseudofibers are of type In, II, III or IV away from G. Moreover, the

pesudofiber G comes from the fiber G′ on Y ′ supporting a multiplicity two pseudofiber along which

Y ′ has four A1 singularities, exactly an I∗0 fiber (see [AB17a, Lemma 4.2 (iii)]).

In surfaces of type BII, we have a normal component Y similar to the one constructed above

except the pseudofiber G has Kodaira type I∗n. When n = 1, there is an A3 singularity on Y along

G and this corresponds to C being tangent along l with multiplicity 2 so that so that C ∪ l has

an A3 singularity. If n ≥ 2, then Y has a Dn+2 singularity along F , and this corresponds to C

degenerating to an An−1 singularity where it meets l so that C ∪ l has a Dn+2 singularity. In each

of these cases, there is another A1 singularity on Y along G so that there must be another point at

which l and C meet transversely. In particular, l meets C at multiplicity 2 along the singular point

since it meets C multiplicity three in total.
6



Finally, we have the non-normal isotrivial j-invariant ∞ components appearing in type BII and

BIII surfaces. To construct these surfaces, note that a double cover branched along a nonreduced

curve of multiplicity two with smooth support is an slc surface with ramification divisor being the

double locus. In this case, we take the branch curve C degenerating to the union of a line r and a

double line s. Then on Y , the pencil of lines lifts to a pencil of nodal cubics with the node lying

over s, and the other two torsion point lying over r. At the point where s and r intersect, the line

in the pencil lifts to a Weierstrass N1 cusp, and over l, we obtain a multiplicity two twisted fiber

with with an A1 singularity where l meets r and a singularity analytically isomorphic to a pinch

point over the point where s meets l. This is precisely the twisted N1 fiber.

This shows that each component of a surface from Theorem 4.1 is obtained as the double cover

of P2 branched along the union l ∪ C of a line and a cubic curve C. Moreover, the elliptic pencil Y

is pulled back from the pencil of lines through a fixed point p ∈ l avoiding C, and the pseudofiber G

along which the components are glued appearing as the ramification divisor lying over l. Now we

wish to obtain Y1 ∪G Y2 as a double cover of P2 ∪l P2 by gluing. The collection of data (P2, C, l, p)

that determines Y also determines four special points counted with multiplicity on the line l, namely

the points p and l ∩ C. As a divisor on l, the intersection l ∩ C is precisely the different Diff l(C).

To glue the double covers given by two such collections of data (P2, C1, l1, p1) and (P2, C2, l2, p2),

we must pick an isomorphism τ : l1 → l2 such that τ(p1) = p2 (in order to identify the elliptic

pencils on Y1 and Y2) and such that τ(Diff l1(C1)) = Diff l2(C2). Note in particular, such a τ , if it

exists, is unique and τ exists if and only if the j-invariant of the four special points on each of the

lines agrees. Indeed this is the j-invariant of the pseudofiber G on each of the components Yi and

must agree if the Yi glue along G to form a surface of type BI, BII, or BIII. The necessity of the

latter condition on the different comes from Kollár’s gluing theory (see [Kol13, Chapter 5]): this is

precisely the condition so that the branch locus descends to a Q-Cartier divisor on P2 ∪l P2 glued

by this τ .

Now we have a map Y1 t Y2 → P2 ∪l P2 by composing the double cover map on each component

Yi. We wish to show this descends to map Y1 tG Y2. If Gi ⊂ Yi is the preimage of the double

locus G inside Yi, then it is naturally endowed with an isomorphism τ ′ : G1 → G2 such that

τ ′(DiffG1(F )) = DiffG2(F ) where F is the divisor of marked fibers on Y1 tG Y2 making it a stable

pair. Now DiffGi(F ) consists of the point F |Gi , the basespoint of the elliptic pencil on Yi, which

lies over pi, as well as a contribution from the singularities of Yi along Gi. We described these

singularities above in terms of the ramification data (C, l), and from this description it is clear

that the contribution of these singularities to the different is exactly given by the preimage of

Diff li(Ci). We conclude that τ ′ identifies the preimages of pi as well as of Diff li(Ci). Thus τ ′ is

the lift to Gi ∼= P1 of the unique isomorphism τ used to glue the two components in P2 ∪l P2.

Therefore two points on G1 and G2 map to the same point in P2 ∪l P2 if and only if they are

identified by τ ′ and so ϕ : Y1tY2 → P2∪l P2 factors through the broken degree one del Pezzo surface

X = Y1 ∪G Y2 → P2 ∪l P2 as claimed (we again use Kollár’s gluing theory; see [Kol13, Chapter 5.5]).

Finally, consider Q := P2∪lP2 ⊂ P3 embedded as a singular quadric surface. We have a hyperplane

section H of Q consisting of two lines meeting at the cone point p (the image of the pi above). The

pullback ϕ∗H to X consists of two elliptic pseudofibers, one on each component Yi, meeting at

the point on G lying above p. If we further pullback to a component Yi, we obtain the class of a

pseudofiber, i.e. an element of the elliptic pencil on Yi. On the other hand, denoting by νi : Yi → X

7



the natural map, we have

ν∗iKX = KYi +Gi = KYi + 1/2f = −f + 1/2f = −1/2f,

where f is a pseudofiber class on Yi (see e.g. [AB18, Lemma 7.7]). Thus

ν∗i ϕ
∗H = f = ν∗i (−2KX)

is an equality of Cartier divisor classes which implies that

ν∗ϕ∗H = ν∗(−2KX)

where ν : Y1tY2 → Y1∪GY2 = X is the gluing map. Since G is an integral projective curve, then the

induced map on Picard groups is injective (see e.g. [Liu11]) so we conclude that ϕ∗H = −2KX . �

Table 3. In the notation of the theorem, the following table describes the dictionary

between the singular fiber of a normal component Y along the double locus and the

singularities of the branch data along D (see Remark 4.3).

Singularities of Br Br ∩D Singular fiber Y

smooth transverse at 3 points I∗0
smooth transverse at 1 point; tangent at 1 point I∗1
nodal transverse at 1 point; multiplicity 2 at node I∗2

cuspidal transverse at 1 point; multiplicity 2 at the cusp I∗3
A2 transverse at 1 point; multiplicity 2 at this singular point I∗4

Remark 4.3 (see Table 3). Note that I∗n for n > 4 do not appear. If the surface component is not

normal, then it is a j-invariant infinity component. In this case, Br is the union of a non-reduced

double line and a line. The double locus D cannot be contained in a component of Br, and there has

to be a marked fiber (with some multiplicity) passing through the point where the two components of

Br intersect. This is precisely where the singular N1 fiber lies. The other marked fibers correspond

to other lines, except these cannot be contained in the double locus. Finally, we note that there is

always at least one point where D ∩ Br is transverse – these points must match up when gluing

the two components of the singular quadric surface. If D ∩ Br is transverse at three points, it

must be on both sides, giving two normal components of the del Pezzo surface glued along I∗0 fibers.

Otherwise, there is a unique point where D∩Br is transverse. In this case, both sides have a unique

point that matches up, and the remainder of the intersection points of D ∩Br have multiplicity two

– these points are also identified.

4.1. An example. We give an example of the gluing construction for the base of the double cover

structure on a surface of type BII (see Figure 1).

The two components of the base (both P2) are glued along the line D, and the branch loci are

denoted by Br. Note that the components of the branch loci must match up with the components

of the same multiplicity along D on each surface. The dotted lines correspond to marked fibers:

on the top component there is an N1 cusp and on the bottom component an I1. The non-reduced

branch locus on the top surface corresponds to the double cover being isotrivial j-invariant ∞ with

self intersection above the non-reduced component, and the fact that D goes through a node on

Br on the bottom surface means that the gluing fiber above D is a type I∗2 fiber. In particular,
8



Br

Figure 1. This figure shows the two P2 components which glue together to give the

degenerate quadric cone. The divisor D denotes the double locus, and Br denotes

the (reducible) branch locus.

this depicts the branch data for a surface of type BII corresponding to an isotrivial j-invariant ∞
component glued by twisted N1/I

∗
2 fibers to a normal I∗2/4I1 surface component.

5. Proof of the main theorem

We are now ready to prove the following.

Theorem 5.1. The isomorphism D1,s → Qs3 extends to a separated morphism R → Q3 such that

the relative coarse map Rc → Q is a monomorphism.

Proof. For any surface pair (X,F ) parametrized by R, we have H1(X,OX(−2KX)) = 0. Indeed

for degree one del Pezzo surfaces, we saw this in Section 2, and for broken del Pezzos this follows

from [AB17b, Theorem 5.1] (a vanishing theorem) and also [Fuj14, Theorem 1.7]. Thus given any

family π : (X,F )→ T of broken degree one del Pezzo surfaces, the vector bundle π∗OX(−2KX/T )

is locally free and its formation is compatible with basechange. In particular, taking T to be the

spectrum of a DVR with generic fiber Xη a smooth degree one del Pezzo and central fiber X0 a

broken surface of type BI, BII, or BIII, we see that

dimH0(X0,OX0(−2KX0)) = 4.

In Theorem 4.2, we constructed an explicit rank four sublinear series V ⊂ H0(X0,OX0(−2KX0))

such that ϕV : X0 → P3 is the double cover of the singular quadric cone Q = P2 ∪l P2 as described

above. By a dimension count this V must be all of H0(X0,OX0(−2KX0)) so we conclude that the

complete linear series | − 2KX0 | induces the double cover map described in Theorem 4.2 for any

broken del Pezzo surface of type BI, BII, or BIII. In particular, OX0(−2KX0) is globally generated
9



so in families π : (X,F )→ T , the line bundle OX(−2KX/T ) is π-generated and the surjection

π∗π∗OX(−2KX/T )→ OX(−2KX/T )

induces a map ϕ : X → P(π∗OX(−2KX/T )) =: P to a P3-bundle over T which is a double cover over

a family of quadric cones Q ⊂ P branched over the complete intersection of Q with a cubic. This

gives a morphism of algebraic stacks R → Q3 and R is constructed as a substack of Mv thus we get

a map R → Q3 ×Mv extending the graph D1,s ∼= Qs3 → Q3 ×Mv. Since D1,s is dense and open in

R, this morphism must factor through the closure Q ⊂ Q3 ×Mv, giving the claimed morphism

R → Q. Equivalently, Q is the scheme theoretic image of the morphism R → Q3 ×Mv.

Since R is separated, so is the morphism R → Q. Moreover, R is Deligne-Mumford so the

inertia stack is quasifinite. In particular, it follows that the relative inertia stack is in fact finite.

Let Rc → Q be the relative coarse moduli space which exists for a morphism of algebraic stacks

with finite relative inertia (see [AOV11, Theorem 3.1]). Now, by the construction in Theorem 4.2,

the surface X is determined by branch locus in Q and the marked anti-canonical curves on X are

determined by the marked lines l on Q. Therefore the representable map Rc → Q induces an

injection on points and thus is a monomorphism. �
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