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MODULI OF DOUBLE COVERS AND DEGREE ONE DEL PEZZO SURFACES

KENNETH ASCHER & DORI BEJLERI

ABSTRACT. Given a degree one del Pezzo surface with canonical singularities, the linear series
generated by twice the anti-canonical divisor exhibits the surface as the double cover of the quadric
cone branched along a sextic curve. It is natural to ask if this description extends to the boundary
of a compactification of the moduli space of degree one del Pezzo surfaces. The goal of this paper is
to show that this is indeed the case. In particular, we give an explicit classification of the boundary
of the moduli space of anti-canonically polarized broken del Pezzo surfaces of degree one as double
covers of degenerations of the quadric cone.

1. INTRODUCTION

The anti-canonical linear series of del Pezzo surfaces have a rich geometric structure. For degree
one del Pezzo surfaces, the linear series | — Kx| is a pencil of elliptic curves with a unique base
point, and the blowup of this base point gives a rational elliptic surface with a section. On the
other hand, the linear system | — 2K x| exhibits the surface X as a double cover of P(1,1,2),
i.e. the quadric cone, branched along a sextic curve. At the same time, understanding modular
compactifications of the space of degree one del Pezzo surfaces is a problem with a long history (see
e.g. [Ish82, Sek94, Mir81, HL02, OSS16, AT17]). In [AB18], we construct and describe an explicit
modular compactification R of this space using the theory of stable pairs. The boundary of this
space parametrizes anti-canonically polarized broken del Pezzo surfaces of degree one — slc surfaces
X such that Ky is anti-ample and K% = 1 (see [AB18, Theorem 1.1]).

In light of this, it is natural to ask whether the description of a degree one del Pezzo surface
as a double cover of P(1,1,2) extends along the boundary of this moduli space. That is, are anti-
canonically polarized broken del Pezzo surface of degree one also double covers of some degenerations
of P(1,1,2)? The main goal of this paper is to show that this is indeed the case.

Let D* C R denote the moduli stack of degree one del Pezzo surfaces with canonical singularities.
If Q3 denotes the stack of pairs (Q, C), where Q is a quadric cone in P? and C C @ is a complete
intersection of () with a cubic, then there exists a smooth and separated substack Q3 C Q3 and
a map D' — Q3 which is an isomorphism up to taking the relative coarse moduli space (see
Corollary 2.8). In Section 3 we will define a suitable compactification Q5 C Q parametrizing pairs
on a singular quadric cone in P3 (see Definition 3.2).

Theorem 1.1 (see Theorem 5.1). There is a separated morphism R — Q which extends the
morphism DY — Q5. This morphism is induced by a double cover map from the universal family
of broken del Pezzo surfaces of degree one to a family of quadric cones branced along a family of
complete intersections with a cubic. Moreover, the induced morphism on the relative coarse moduli
space R¢ — Q is a monomorphism.

In [AB18, Section 7.1], we gave an explicit classification of the broken del Pezzo surfaces on

the boundary of R. In this paper we explicitly show that the linear series | — 2K x| on a broken
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degree one del Pezzo induces a double cover map X — @ of a quadric cone @ C P3, where now
Q = P? U; P? is the cone over two lines. We note that the proof of Theorem 4.2 is constructive, in
that we show explicitly how each surface on the boundary of R can be realized as a double cover of
@ and that the double cover is induced by | — 2K x| (see Remark 4.3 and Table 3).

We note that Deopurkar-Han [DH18] recently studied the moduli space of (3,3) curves on P! x P*
and their -Gorenstein smoothings. Their space contains a boundary divisor corresponding to pairs
of a quadric cone with a sextic curve which is birational to R by Theorem 1.1.

We work over an algebraically field of characteristic zero.

Acknowledgements. We thank Janos Kollar for asking us this question and for helpful conversa-
tions. This work was partially completed while the authors were in residence at MSRI in Spring
2019 (NSF No. DMS-1440140). Both authors supported in part by NSF Postdoctoral Fellowships.

2. MODULI OF DEGREE ONE DEL PEZZO SURFACES

We recall some background on del Pezzo surfaces of degree one with canonical singularities.

Definition 2.1. A degree n del Pezzo surface is a surface X with canonical singularities such that
—Kx is ample and Kg( =n.

For n > 2, the divisor — K x is very ample and the linear series | — K x| embeds X into P™. In the
degree n = 1 case, which is the focus of this paper, the linear series | — Kx| is a pencil of elliptic
curves with a unique base point. On the other hand, the following is well known:

Proposition 2.2. For degree n = 1 the morphism induced by the linear system | — 2Kx/|,
P|l—2Kx| X — [P)3

1s basepoint free and exhibits X as a double cover of a quadric cone branched along the complete
intersection with a cubic surface.

If we write H'(—Kx) = (z,y), then one can readily compute using Kodaira vanishing and
Riemann-Roch that h®(—2Ky) = 4 so that H*(-2Kx) = (22, vy, y?, z) for some section z. This
induces a map to P? with image given by zozy — 23 = 0.

Remark 2.3. We note that interpretations of | — Kx| and | — 2K x| as an elliptic pencil and double
cover respectively are also known to be true in the context of del Pezzo surfaces of degree one with
canonical singularities. For the proofs of these statements we refer the reader to the work of Kosta
[Kos09, Section 2.1].

We now show that the construction given in Proposition 2.2 can also be done in families. Before
doing so, we set up some notation. If 7 : X — T desnotes a flat family of anti-canonically polarized
degree one del Pezzo surfaces, we let P = P(£) denote the P? bundle given by & := m,.0x(—2Kx /7)-

Proposition 2.4. Let 7 : X — T be a flat family of anti-canonically polarized degree one del
Pezzo surfaces. Then the line bundle OX(—QKX/T) 1s globally generated over T, and the induced
morphism ¢ : X — P is a 2-to-1 map onto a family Q — T of singular quadrics embedded in P over

T, branched over a family of complete intersections with a cubic.
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Proof. By Kodaira vanishing, H!(X;, Ox,(—2Kx,)) = 0 for each t € T, and so by cohomology and
base change, the vector bundle & = 7.0 x (—2K x/7) is locally free of rank four and compatible with
base change. Consider the map 7*€ — Ox(—2Kx/7). Since —2K, is globally generated on the
fiber X}, this map is fiberwise surjective which implies global generation over T'. This induces a
T-morphism X — P = P(£) which fiberwise is a double cover of a quadric cone as above. u

As a corollary, we can identify the moduli space of degree one del Pezzo surfaces with an open
substack of the moduli space of pairs (Q,C) where @Q is a quadric cone in P2 and C C Q is a
complete intersection of ) with a cubic.

Notation 2.5. Let D' denote the moduli space of anti-canonically polarized del Pezzo surfaces of
degree one with ADE singularities, and let Q3 denote the moduli space of pairs (Q,C) of a (not
necessarily integral) quadric cone @, i.e. @ can be the cone over two lines or a double line, and
C C @ a complete intersection curve with a cubic. Finally, we let Q?DE denote the open substack
of pairs where @ is normal, C' avoids the cone point, and C has at worst ADE singularities (see
Table 1).

Thus by Proposition 2.4, there is a natural map D! — Qs.

Corollary 2.6. Let D¢ — Q3 be the relative coarse moduli space of natural map D' — Qs above.
There is an isomorphism of DY with Q?DE.

Proof. By Proposition 2.4, the set theoretic map is actually a morphism on the level of moduli
spaces. For any surface X, the double cover structure is given by the elliptic involution on the
anti-canonical curves of X. In particular, the branch locus of X — @ is given by the torsion points
of the anti-canonical curves. There is a fixed torsion point for each anti-canonical curve at the
basepoint of | — Kx|, the identity of the group structure, and the other torsion points are disjoint.
Thus C is disjoint from the cone point lying under the basepoint of | — Kx|. Moreover, X has ADE
singularities if and only if the branch curve C' does. Then to conclude, one just observes that given
a family (Q,C) — T, the double cover of Q branched along C is a family of degree one del Pezzo
surfaces so that the map above has an inverse. Thus the map D¢ — Q?DE is a representable
bijection and so it is an isomorphism by Zariski’s main theorem for stacks, see e.g. [AI19, Theorem
A5]. 0

Remark 2.7. In the corollary above, one wants to say that D! is identified with Q?D E_ The issue
is that the del Pezzo surface has an extra involution given by swapping the fibers of the double
cover map and so D¢ — Qs can be thought of as a us-gerbe over its image.

TABLE 1. ADE curve singularities

Singularity type | Local equation
A,(n>1) 2 +y"tl =0
Dy (n > 4) y(a® +y"?) =0
E¢ 23+t =0
E7 $($2 + y3) =0
Esg 23 +y5 =0




Let us explicate the correspondence between the geometry of X and the geometry of the pair
(Q,C). The anti-canonical curves of X correspond to the lines on (. The singular anti-canonical
curves, or equivalently the singular fibers of the corresponding rational elliptic surface, correspond
to lines [ that meet C' in multiplicity at least two, i.e. the tangent lines to C'. One can check that
there are 12 such lines, counted with multiplicity. The curve C is a tri-section of the corresponding
rational elliptic surface and in particular it is a trigonal curve of genus four. The Kodaira fiber type
of an anti-canonical curve in the corresponding rational elliptic surface can be read off from the the
line [ and the singularities of C' according to Table 3.

TABLE 2. Kodaira fiber types from the branch locus

Singular fiber | multiplicity of I N C' | Singularity of C
Iy transverse none (smooth)
I 2 none (smooth)
I,,n>2 2 A,
IT 3 none (smooth)
I11 3 Ay
v 3 Ay
I;; 2 Dn+4
v 2 Eg
1> 2 E7
IIr* 2 Eg

The stack D' = Q?D Eis not a separated Deligne-Mumford stack. A separated open Deligne-
Mumford substack D' C D! is cut out by GIT stability computed by Miranda [Mir81]: X is GIT
stable if and only if it has at worst A,, singularities. As a result we obtain the following.

Corollary 2.8. The open substack Q3 C Q?DE of pairs (Q,C) such that C' avoids the cone point
and has at worst A, singularities is a smooth and separated Deligne-Mumford stack.

3. STABLE PAIR COMPACTIFICATIONS

In this section we set up the compactifications of the moduli spaces of interest using the theory
of stable pairs (see e.g. [Kol]). A natural choice of divisor on a degree one del Pezzo surface is the
sum of the rational curves in the anti-canonical pencil, which as we saw above are exactly the nodal
and cuspidal genus one curves lying over lines of ). We can take these curves F; counted with
multiplicity m; to endow X with a boundary divisor

F:aZmiFi.

Here we will take a = % + e for 1 > € > 0. This is the smallest a for which the pair (X, F') is stable
as there are 12 anti-canonical curves counted with multiplicity so that F' ~g —12aKx.

In [AB18], we described the closure of the moduli space D'* inside the moduli space of stable
pairs using degenerations of rational elliptic fibrations; we denoted this space by R := R(% +e).
The choice of notation is suggestive — R was chosen since degree one del Pezzo surfaces are the
blowdown of the section of a rational elliptic surface and this compactification is furnished by
degenerating the elliptic fibration structure.



Theorem 3.1. [AB18, Theorem 1.1] There exists a proper Deligne-Mumford stack R = R (15 + €)
parametrizing anti-canonically polarized broken del Pezzo surfaces of degree one with the following
properties:

o The interior DV* C R parametrizes degree one del Pezzo surfaces with at worst rational
double point singularities.

o The complement R\D'* consists of a unique boundary divisor OR parametrizing 2-Gorenstein
semi-log canonical surfaces with ample anti-canonical divisor and exactly two irreducible
components.

e The locus R° C R parametrizing surfaces such that every irreducible component is normal
s a smooth Deligne-Mumford stack.

On the other hand, we can consider marking the quadric cone ) with lines corresponding to the
singular members F;. These are the lines that intersect C' with multiplicity m > 2. There are 12
such lines counted with multiplcity m — 1 and so we consider

L= aZ(mi —1)l;

where again a = % + €. Using a similar calculation, one can check that this is the smallest a for
which (@, L) is stable. Using this choice of boundary divisor, we can map Qf into a certain moduli
space of stable pairs M,, by taking (@, C) to the stable pair (@, L). Note here that the underlying
surfaces are all isomorphic but the curve C determines the boundary L. Let us denote this by

w95 = M,.
Definition 3.2. Let Q be the closure of the graph of ¢ : Q5 — M, inside the product Qs x M.

It is clear that Qf is a dense open substack of Q. Moreover, Q parametrizes triples (Q, C, L)
where @ is a singular quadric cone in P, the curve C is a complete intersection with a cubic, and
L = a) (m; — 1)l; where {l;} is a collection of lines on ) meeting at a fixed point p € @ and
intersecting C' at multiplicity m;. Moreover, these triples are such that (Q,C, L) is the central fiber
(Qo, Co, L) of a family (Qy, Cy, L¢) for t € T a smooth curve where (Qy, Cy) for ¢t # 0 is a family of
GIT stable pairs Q3, and (Qy, Lt) is a family of stable pairs in M,. Note that a priori, Q need not
be proper nor Deligne-Mumford.

4. BROKEN DEGREE ONE DEL PEZZO SURFACES

In this section we will analyze the double cover structure on the broken degree one del Pezzo
surfaces appearing on the boundary of R. Let us recall the description of these surfaces from [AB1S,
Section 7.1]. For more details on some of the terminology (e.g. twisted fibers) we refer the readers
to [AB17a, AB19, AB17b].

Theorem 4.1. [AB18, Section 7] The boundary OR = R\DY* parametrizes surfaces of the following
types:
(B1) the slc union X =Y, Ug Yo where Y1 and Ya are rational pseudoelliptic surfaces glued along
a twisted I pseudofiber G' such that —2Kx 1is Cartier and ample, and all pseudofibers of X
away from the double locus G are of Kodaira type 1,11, 111 or IV;
(Bi1) the slc union X =Y Ug Ya where Y1 is a rational pseudoelliptic surface with a twisted I7,
pseudofiber at G, and all other fibers as above, Y is an isotrivial j-invariant oo pseudoelliptic

surface of type 2Ny with G a twisted Ny fiber, and —2Kx Cartier and ample;
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(Brr) the slc union X =Y) Ug Y2 where Y1 and Ya are both isotrivial j-invariant co pseudoelliptic
surfaces of type 2N1 glued along twisted N1 fibers, and —2Kx s Cartier and ample.

We will call these types of surfaces broken degree one del Pezzo surfaces of type By, Brr, and Brp
respectively. We note that in [AB18], we called the surfaces in D1* C R surfaces of type A, and we
referred to the type Br surfaces as surfaces of type B. We did not give names to what appear here
as type Bry or type Brr.

The main theorem of this section is that, as in the case of degree one del Pezzo surfaces, the
linear series | — 2K x| on a broken degree one del Pezzo induces a double cover map X — @ of a
quadric cone Q C P3, except now Q = P? U; P? is the cone over two lines.

Theorem 4.2. Let Q = P? U; P? denote the quadric cone over two lines. If X is a broken degree
one del Pezzo surface, then there is a double cover ¢ : X — Q C P3 branched along the double locus
I as well as a complete intersection curve C C Q with a cubic. Moreover, if H is a hyperplane
section of Q, then ¢*H € | — 2K x| is a 2-anti-canonical curve.

Proof. We will construct the Y; appearing as components of type By, By or By surfaces explicitly
as double covers of P? branched over a line and a cubic and then glue them together to obtain a
map Y; Ug Yy — P2 U; P2,

Consider the data of (P2, C,[,p) where C' C P? is a cubic curve, [ C P? is a line, and p € [ is a
point on the line avoiding C. Let g : Y — P? be the double cover branched along C'UI. We will see
that each of the surfaces Y; as above are constructed in this way depending on how C and [ meet.

Indeed, let us first check that Y is a rational pseudoelliptic surface. Since Y is branched over a
quartic curve in P?, we can see that — Ky is ample by Riemann-Hurwitz. Therefore, Y is a rational
surface. Moreover, Y has a pencil of elliptic curves through ¢ = g~!(p) given by pulling back the
pencil of lines through p. If we blow up the ideal of p as well as its inverse image, we obtain a
double cover ¢’ : Y’ — [y where Y’ is elliptically fibered with section. Moreover, ¢’ is branched
along the fiber G’ lying over the strict transform of [ in Fy. In particular, G’ supports a twisted
fiber with non-reduced multiplicity two. If S C Y” is the section, a local computation shows that in
fact Y meets G in an A; singularity. Thus Y is a rational pseudoelliptic surface with a pseudofiber
G lying over [ that supports a twisted pseudofiber with non-reduced multiplicity.

The types of surfaces appearing in the above Theorem 4.1 depend on the singularities of C', and
the intersection C' N {. To obtain a pseudoelliptic component Y as in surfaces of Type By, we take
C to intersect [ transversely in three smooth points, with C' having at worst A,, singularities away
from [ N C. In this case we obtain a surface with at worst A, singularities away from the fiber
G which indicates that the pseudofibers are of type I,,, II, III or IV away from G. Moreover, the
pesudofiber G' comes from the fiber G’ on Y’ supporting a multiplicity two pseudofiber along which
Y’ has four A; singularities, exactly an Ij fiber (see [AB17a, Lemma 4.2 (iii)]).

In surfaces of type B, we have a normal component Y similar to the one constructed above
except the pseudofiber G has Kodaira type I';). When n = 1, there is an A3 singularity on Y along
G and this corresponds to C' being tangent along [ with multiplicity 2 so that so that C' U has
an Ag singularity. If n > 2, then Y has a D,,42 singularity along F', and this corresponds to C
degenerating to an A, _; singularity where it meets [ so that C' Ul has a D, o singularity. In each
of these cases, there is another Ay singularity on Y along G so that there must be another point at
which [ and C' meet transversely. In particular, [ meets C' at multiplicity 2 along the singular point
since it meets C' multiplicity three in total.



Finally, we have the non-normal isotrivial j-invariant co components appearing in type By and
B surfaces. To construct these surfaces, note that a double cover branched along a nonreduced
curve of multiplicity two with smooth support is an slc surface with ramification divisor being the
double locus. In this case, we take the branch curve C' degenerating to the union of a line r and a
double line s. Then on Y, the pencil of lines lifts to a pencil of nodal cubics with the node lying
over s, and the other two torsion point lying over r. At the point where s and r intersect, the line
in the pencil lifts to a Weierstrass N; cusp, and over [, we obtain a multiplicity two twisted fiber
with with an A; singularity where [ meets r and a singularity analytically isomorphic to a pinch
point over the point where s meets [. This is precisely the twisted Ny fiber.

This shows that each component of a surface from Theorem 4.1 is obtained as the double cover
of P? branched along the union /U C of a line and a cubic curve C. Moreover, the elliptic pencil Y’
is pulled back from the pencil of lines through a fixed point p € [ avoiding C, and the pseudofiber G
along which the components are glued appearing as the ramification divisor lying over . Now we
wish to obtain Y7 Ug Ys as a double cover of P? U; P2 by gluing. The collection of data (P2, C, 1, p)
that determines Y also determines four special points counted with multiplicity on the line [, namely
the points p and [ N C. As a divisor on [, the intersection [ N C' is precisely the different Diff;(C).

To glue the double covers given by two such collections of data (P2, Cy,11,p1) and (P2, Ca, la, p2),
we must pick an isomorphism 7 : I3 — [l such that 7(p;) = p2 (in order to identify the elliptic
pencils on Y7 and Y3) and such that 7(Diff;, (C;)) = Diff;,(C2). Note in particular, such a 7, if it
exists, is unique and 7 exists if and only if the j-invariant of the four special points on each of the
lines agrees. Indeed this is the j-invariant of the pseudofiber G on each of the components Y; and
must agree if the Y; glue along G to form a surface of type Br, B, or By The necessity of the
latter condition on the different comes from Kolldr’s gluing theory (see [Kol13, Chapter 5]): this is
precisely the condition so that the branch locus descends to a Q-Cartier divisor on P? U; P? glued
by this 7.

Now we have a map Y; L' Yy — P2 U; P? by composing the double cover map on each component
Y;. We wish to show this descends to map Y; Lg Ys. If G; C Y is the preimage of the double
locus G inside Y;, then it is naturally endowed with an isomorphism 7’ : G; — G5 such that
7/(Diff ¢, (F')) = Diff ¢, (F') where F is the divisor of marked fibers on Y] Lig Y2 making it a stable
pair. Now Diff, (F') consists of the point F|g,, the basespoint of the elliptic pencil on Y;, which
lies over p;, as well as a contribution from the singularities of Y; along G;. We described these
singularities above in terms of the ramification data (C,!), and from this description it is clear
that the contribution of these singularities to the different is exactly given by the preimage of
Diff;, (C;). We conclude that 7’ identifies the preimages of p; as well as of Diff;, (C;). Thus 7/ is
the lift to G; = P! of the unique isomorphism 7 used to glue the two components in P? U; P2.
Therefore two points on G; and Go map to the same point in P? U; P? if and only if they are
identified by 7/ and so ¢ : Y7 UYs — P2 U; P? factors through the broken degree one del Pezzo surface
X =Y, Ug Yz — P2U; P? as claimed (we again use Kolldr’s gluing theory; see [Kol13, Chapter 5.5]).

Finally, consider Q := P?2;P? C P? embedded as a singular quadric surface. We have a hyperplane
section H of @) consisting of two lines meeting at the cone point p (the image of the p; above). The
pullback ¢p*H to X consists of two elliptic pseudofibers, one on each component Y;, meeting at
the point on G lying above p. If we further pullback to a component Y;, we obtain the class of a
pseudofiber, i.e. an element of the elliptic pencil on Y;. On the other hand, denoting by v; : ¥; — X



the natural map, we have
viKx =Ky, +G; =Ky, +1/2f = —f+1/2f = —1/2f,
where f is a pseudofiber class on Y; (see e.g. [AB18, Lemma 7.7]). Thus
vie*H = f =v](—2Kx)
is an equality of Cartier divisor classes which implies that
v'o*H = v (—2Kx)

where v : Y1UYs — Y1 Ug Yo = X is the gluing map. Since G is an integral projective curve, then the
induced map on Picard groups is injective (see e.g. [Liull]) so we conclude that *H = —2Kx. O

TABLE 3. In the notation of the theorem, the following table describes the dictionary
between the singular fiber of a normal component Y along the double locus and the
singularities of the branch data along D (see Remark 4.3).

Singularities of Br BrnD Singular fiber Y
smooth transverse at 3 points I
smooth transverse at 1 point; tangent at 1 point I

nodal transverse at 1 point; multiplicity 2 at node I5
cuspidal transverse at 1 point; multiplicity 2 at the cusp I3
A, transverse at 1 point; multiplicity 2 at this singular point I3

Remark 4.3 (see Table 3). Note that I’ for n > 4 do not appear. If the surface component is not
normal, then it is a j-invariant infinity component. In this case, Br is the union of a non-reduced
double line and a line. The double locus D cannot be contained in a component of Br, and there has
to be a marked fiber (with some multiplicity) passing through the point where the two components of
Br intersect. This is precisely where the singular Ny fiber lies. The other marked fibers correspond
to other lines, except these cannot be contained in the double locus. Finally, we note that there is
always at least one point where D N Br is transverse — these points must match up when gluing
the two components of the singular quadric surface. If D N Br is transverse at three points, it
must be on both sides, giving two normal components of the del Pezzo surface glued along Ij fibers.
Otherwise, there is a unique point where D N Br is transverse. In this case, both sides have a unique
point that matches up, and the remainder of the intersection points of D N Br have multiplicity two
— these points are also identified.

4.1. An example. We give an example of the gluing construction for the base of the double cover
structure on a surface of type By (see Figure 1).

The two components of the base (both P?) are glued along the line D, and the branch loci are
denoted by Br. Note that the components of the branch loci must match up with the components
of the same multiplicity along D on each surface. The dotted lines correspond to marked fibers:
on the top component there is an N; cusp and on the bottom component an I;. The non-reduced
branch locus on the top surface corresponds to the double cover being isotrivial j-invariant co with
self intersection above the non-reduced component, and the fact that D goes through a node on

Br on the bottom surface means that the gluing fiber above D is a type I5 fiber. In particular,
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FIGURE 1. This figure shows the two P? components which glue together to give the
degenerate quadric cone. The divisor D denotes the double locus, and Br denotes
the (reducible) branch locus.

this depicts the branch data for a surface of type By corresponding to an isotrivial j-invariant co
component glued by twisted N;/I5 fibers to a normal I} /41; surface component.

5. PROOF OF THE MAIN THEOREM

We are now ready to prove the following.

Theorem 5.1. The isomorphism DV — Q3 extends to a separated morphism R — Q3 such that
the relative coarse map RS — Q is a monomorphism.

Proof. For any surface pair (X, F) parametrized by R, we have H!(X, Ox(—2Kx)) = 0. Indeed
for degree one del Pezzo surfaces, we saw this in Section 2, and for broken del Pezzos this follows
from [AB17b, Theorem 5.1] (a vanishing theorem) and also [Fujl4, Theorem 1.7]. Thus given any
family 7 : (X, F') — T of broken degree one del Pezzo surfaces, the vector bundle m.Ox(—2Kx/7)
is locally free and its formation is compatible with basechange. In particular, taking T to be the
spectrum of a DVR with generic fiber X, a smooth degree one del Pezzo and central fiber Xj a
broken surface of type Bi, Biy, or Bryp, we see that

dim H°(Xo, Ox,(—2Kx,)) = 4.

In Theorem 4.2, we constructed an explicit rank four sublinear series V C H%(Xo, Ox,(—2Kx,))
such that ¢y : Xo — P3 is the double cover of the singular quadric cone ) = P2 U; P2 as described
above. By a dimension count this V must be all of H°(Xy, Ox,(—2Kx,)) so we conclude that the
complete linear series | — 2K x,| induces the double cover map described in Theorem 4.2 for any

broken del Pezzo surface of type Bi, Bir, or Bry. In particular, Ox,(—2Kx,) is globally generated
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so in families 7 : (X, ') — T, the line bundle Ox(—2Kx/r) is m-generated and the surjection
W*W*OX(—QK)(/T) — OX(_2KX/T)

induces a map ¢ : X — P(m,Ox(—2Ky/r)) =: P to a P3-bundle over T" which is a double cover over
a family of quadric cones @ C P branched over the complete intersection of Q with a cubic. This
gives a morphism of algebraic stacks R — Q3 and R is constructed as a substack of M, thus we get
a map R — Q3 X M, extending the graph D 2 Q5 — Q3 x M,,. Since D' is dense and open in
R, this morphism must factor through the closure @ C Q3 x M, giving the claimed morphism
R — Q. Equivalently, O is the scheme theoretic image of the morphism R — Q3 x M,,.

Since R is separated, so is the morphism R — Q. Moreover, R is Deligne-Mumford so the
inertia stack is quasifinite. In particular, it follows that the relative inertia stack is in fact finite.
Let R¢ — Q be the relative coarse moduli space which exists for a morphism of algebraic stacks
with finite relative inertia (see [AOV11, Theorem 3.1]). Now, by the construction in Theorem 4.2,
the surface X is determined by branch locus in ) and the marked anti-canonical curves on X are
determined by the marked lines [ on (. Therefore the representable map R¢ — Q induces an
injection on points and thus is a monomorphism. ([l
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