
Articles
https://doi.org/10.1038/s41588-020-0633-2

1Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, USA. 2Stanford Cancer 
Institute, Stanford University School of Medicine, Palo Alto, CA, USA. 3Department of Biomedical Data Science, Stanford University School of Medicine, 
Palo Alto, CA, USA. 4Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. 5Department of 
Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. 6Center for Applied Mathematics, Cornell University, Ithaca, 
NY, USA. 7Department of Surgery, St Antonius Hospital, Nieuwegein, the Netherlands. 8Department of Pathology, Massachusetts General Hospital and 
Harvard Medical School, Boston, MA, USA. 9Center for Integrated Diagnostics, Massachusetts General Hospital and Harvard Medical School, Boston, 
MA, USA. 10Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA. 11Division of Cancer and Imaging, University Medical 
Center Utrecht, Utrecht, the Netherlands. 12These authors contributed equally: Johannes G. Reiter, Wei-Ting Hung. ✉e-mail: johannes.reiter@stanford.edu; 
naxerova.kamila@mgh.harvard.edu

Human cancers develop over years and decades before becom-
ing symptomatic1,2. Consequently, primary tumors often 
harbor substantial intratumor heterogeneity in the form of 

distinct subclones whose lineages might have diverged many gen-
erations ago. The reservoir of genetic diversity in the primary tumor 
has been extensively described in recent years3–5. Heterogeneity 
found within metastases (intra-metastatic) is comparatively less 
well understood, but most studies agree that individual metastases 
are typically less diverse than the primary tumors from which they 
derive6. Given that metastases arise later in tumor evolution and are 
thought to be formed by relatively small founder populations—sin-
gle tumor cells or small clusters of tumor cells7—such a heterogene-
ity reduction is to be expected.

The heterogeneity between anatomically distinct metastatic lesions 
within a patient (inter-metastatic heterogeneity) is arguably even less 
explored. Does inter-metastatic diversity mirror the diversity of the 
primary tumor, suggesting that many if not all subclones have similar 
metastatic potential8? Or are metastases a homogenous group, formed 
by a single clone that is perhaps endowed with superior metastatic 
ability9? Examples of these scenarios have been described in the litera-
ture, but quantifications of their frequency are largely lacking.

Finally, it is unknown whether different metastasis types harbor 
different heterogeneity levels. Metastases can form in locoregional 
lymph nodes or in distant organs, or they can develop by direct inva-
sion and subsequent spread within specialized anatomic structures 
such as the peritoneum. Accurate measures of metastasis diversity  
could help illuminate how many cells contribute to metastasis  

formation and to what degree selection shapes the metastatic land-
scape. Here, we investigate patterns of inter- and intra-metastatic 
heterogeneity for two distinct metastasis types: lymph node and 
distant organ metastases. Clinically, these occur at different fre-
quencies and carry different prognostic implications. We show that 
inter- and intra-metastatic heterogeneity differs between lymph 
node and distant metastases and discuss the implications of these 
findings for our understanding of metastasis evolution.

Results
Inter-lesion diversity of lymph node and distant metastases. To 
investigate inter-metastatic heterogeneity, we began by analyzing 
a published collection of colorectal cancer phylogenies, focusing 
on patients with multiple primary tumor and metastasis samples10 
(Supplementary Table 1 contains detailed patient information). In 
evaluating trees (Fig. 1a and Supplementary Figs. 1–3), we noticed 
a recurring pattern. Lymph node metastases and primary tumor 
samples typically diverged in alternating succession from the tree 
trunk, while distant lesions usually had one common ancestor and 
tended to form the terminal branch of the tree (Extended Data Fig. 
1). Given the consistency of these observations, we sought to for-
malize them. First, to avoid sampling bias, we reduced the dataset 
to one sample per lymph node and distant metastasis. That is, in 
cases where multiple biopsies were taken from the same metasta-
sis, we removed all but one by majority vote (Methods), such that 
each metastasis was represented by only one representative biopsy. 
Then, we determined in what fraction of patients anatomically  
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distinct distant metastases had one common ancestor and grouped 
together in a monophyletic clade. We found monophyletic clades in 
67% of patients. In contrast, lymph node metastases formed mono-
phyletic clades in only 10% of patients (Fig. 1b). Note that the clas-
sification into monophyletic/polyphyletic groups is unrelated to our 
previously described common and distinct origin categories, which 
reflect whether lymph node and distant metastases have a common 

subclonal origin and are directly related to each other by descent10. 
Analysis of monophyly, in contrast, describes the relative genetic 
diversity observed within a metastasis category. Figure 1c illustrates 
the two different concepts in general terms. Furthermore, the mean 
number of internal nodes separating lesions from each other was 
significantly lower for distant metastases, confirming the relative 
homogeneity of this group (Fig. 1d).
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Fig. 1 | Lymph node but not distant metastases form polyphyletic clades. a, Phylogenetic trees of patients C45, C66 and C36 (ref. 10). Liv, liver metastasis; 
SB, small bowel metastasis. b, All distant metastases formed a monophyletic clade in 67% (4/6) of patients (orange bar). All lymphatic metastases 
formed a monophyletic group in 10% (1/10) of patients (blue bar; P = 0.036, two-tailed Fisher’s exact test). The black bars denote the 90% confidence 
intervals. c, Both common evolutionary origin of lymph node and distant metastases (purple dashes) and distinct origins (pink dashes) are compatible 
with monophyly and polyphyly. d, The normalized mean number of internal nodes separating a pair of distinct distant metastases (N = 6) is lower than 
the mean of lymphatic metastases (N = 10; means of 0.24 versus 0.42, P = 0.045, two-tailed Mann–Whitney test). e, The numbers of lymphatic (N = 10) 
and distant metastases (N = 6) sampled per patient are similar (P = 0.61, two-tailed Mann–Whitney test). f, The probability of observing a monophyletic 
clade of all sampled metastases m by chance decreases with increasing m and increasing number of other samples k. g, In distant metastasis samples 
from both Naxerova et al.10 and Kim et al.11, the RDS decreases as the power to observe a low score increases with the number of sampled metastases. k 
ranges between 2 and 8 in both cohorts. h, The RDS was significantly lower for distant metastases (N = 11 patients) from both cohorts than for lymphatic 
metastases (N = 10 patients) (0.09 versus 0.65; P = 0.0026; two-tailed Mann–Whitney test). i, RDSs as in h, stratified by treatment, were significantly 
different (P = 0.0056, Kruskal–Wallis test). The RDSs of untreated distant metastases (N = 6) were lower than those of untreated lymph node metastases 
(N = 9) (mean of 0.067 versus 0.76, P = 0.0013, Conover’s test). Treated distant metastases (N = 5) also had a lower RDS than untreated lymph node 
metastases (mean of 0.12 versus 0.76, P = 0.019, Conover’s test). Box plot elements: center line, median; magenta diamond, mean; box limits, lower and 
upper quartiles; whiskers, lowest and highest value within 1.5 IQR.
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Next, we considered the possibility that differential sampling 
might have affected the results. We did not observe a significant dif-
ference between the number of sampled lymph node and distant 
metastases, but the mean and variance were slightly higher in the 
lymph node group (Fig. 1e). Additionally, the number of primary 
tumor regions sampled in each case affects the odds of finding 
monophyletic groups by chance. To account for the different num-
ber of lesions sampled in each patient, we developed a mathemati-
cal framework to quantify the likelihood that monophyletic groups 
would arise by chance for any given phylogeny. We define m as the 
number of metastasis samples under investigation (either lymph 
node or distant), and k as the number of all other tumor samples 
in the phylogeny (Supplementary Note). We calculate a root diver-
sity score (RDS) defined by the probability that at least l out of m 
metastases form a common clade in a tree with n = k + m samples 
(Supplementary Table 2). The RDS denotes the probability that 
a tree with an equally or more extreme clustering of metastases 
occurs by chance alone. For example, in patient C36 (Fig. 1a), the 
RDS for distant metastases is 0.067, as the likelihood that two dis-
tant metastases (m = 2) will cluster by chance in a phylogeny with 
n = 9 samples is 6.7%. The power to detect non-random clustering 
of metastases increases with the number of samples n in a phylogeny 
(Fig. 1f). Further instructive examples of RDSs are provided in the 
Supplementary Note.

We used the RDS to quantify the homogeneity of distant metas-
tases in our cohort. We found that after accounting for the number 
of other samples (k) in the phylogenies, indeed the RDS for dis-
tant metastases was generally low (Fig. 1g), even for phylogenies 
in which not all distant metastases fell into a monophyletic clade. 
To validate the low root diversity of distant metastases in an inde-
pendent cohort, we analyzed phylogenetic trees from a study of five 
colorectal cancers with multiple matched liver metastases (trees are 
shown in Supplementary Fig. 4)11. We found the smallest possible 
RDS in every case (Fig. 1g). In 8 out of 11 patients with multiple dis-
tant lesions in the combined 2 cohorts, the likelihood that metasta-
ses would cluster to the observed degree by chance alone was below 
10% (Supplementary Table 2).

Returning to our original question, we next applied the RDS to 
lymph node and distant metastases in a comparative analysis. The 
results showed highly significant differences in root diversity between 
the two metastasis types, confirming that lymph node metastases are 
far more likely to be polyphyletic than distant metastases (Fig. 1h), 
even after accounting for differential sampling in a mathematically 
rigorous fashion. To determine whether treatment effects might have 
influenced our results, we separated untreated cases that had received 
neither neoadjuvant nor adjuvant therapy from treated cases. RDSs 
of untreated distant metastases remained significantly lower than 
those of untreated lymph node metastases (Fig. 1i). Treated distant 
metastases had a slightly higher RDS but remained significantly dif-
ferent from lymph node metastases (Fig. 1i).

Validating inter-lesion diversity of metastases. Next, we set out to 
validate these findings in an independent cohort. We identified 20 
patients who had undergone resection of a primary gastrointestinal 
cancer and more than one lymph node or distant metastasis. We 
analyzed multiple locoregional lymph node metastases for 70% of 
patients (n = 14) and multiple distant metastases for 45% of patients 
(n = 9). Among the distant metastases, 82% were liver lesions. 
Clinical information for all patients is provided in Supplementary 
Table 3. For every patient, we exhaustively sampled all lymph node 
and distant metastases of sufficient size and purity, along with the 
largest possible number of primary tumor regions. To analyze these 
biopsies, we used polyguanine fingerprinting, a method that uses 
insertions/deletions in hypermutable polyguanine tracts for infer-
ence of robust evolutionary trees12,13 (see Supplementary Note for 
more details on the properties of polyguanine-based phylogenies). 

We acquired 22,545 polyguanine genotypes across 317 tissue samples 
(Supplementary Table 4) and reconstructed the evolutionary history 
of these tumors with a previously validated analysis pipeline10.

A selection of phylogenetic trees from the validation cohort is 
shown in Fig. 2a–f. Patient C99 underwent simultaneous resec-
tion of a right colon cancer and two liver metastases. Phylogenetic 
reconstruction showed that samples from the same liver metas-
tasis grouped tightly together (Liv1a–d and Liv2a–c; Fig. 2a). 
Furthermore, both liver metastases clustered in a monophyletic 
clade with a bootstrap confidence value of 99%. (As for our previous 
cohort, to calculate the RDS, we collapsed multiple samples from the 
same metastasis into one tree tip; see Methods and Supplementary 
Figs. 5–24 for both full and collapsed trees with bootstrap values.) 
Patient C70 (Fig. 2b) underwent resection of a cecal primary tumor, 
and after intervening treatment, excision of several liver metasta-
ses and distant metastases to the paraaortic and iliac lymph nodes. 
(Lymph node metastases that are located in distant sites, and not in 
locoregional lymph nodes draining the primary tumor, are consid-
ered distant organ metastases and define stage IV cancer.) Again, 
the distant metastases clustered tightly on the phylogenetic tree. We 
also analyzed multiple adenomas that were present in the patient’s 
colonic mucosa. As expected, these separated very clearly from the 
invasive cancer, indicating independent clonal origins. For patient 
C98 (Fig. 2c), we analyzed six primary tumor samples and two liver 
metastases that were resected less than six months after the primary 
tumor. The two distant metastases were similarly sized (2.2 and 
2.7 cm) and clustered in a monophyletic clade. In contrast, patients 
C6 and C11 (Fig. 2d,e) had only locoregional lymph node metas-
tases. The position of lymph node metastases on the tumor phy-
logeny in these cases was representative of the cohort average: they 
intermingled with primary tumor samples and either did not cluster 
together, or clustered no more than they would be expected to by 
chance (for example, in cases where a large number of lymph nodes 
was analyzed, as in patient C83 (Fig. 2f)). Consequently, lymph 
node RDSs were high in all three cases.

Calculating RDSs across the entire validation cohort (Fig. 2g and 
Supplementary Table 5), we again observed significantly higher val-
ues for lymph node than for distant sites. Combining RDSs from 
both cohorts showed this effect with high statistical confidence 
(Fig. 2h). Furthermore, across many evolutionary trees, distant 
metastases grouped together in clades that were supported by very 
high bootstrap values, indicating that the observed clustering was 
supported by particularly strong data (Fig. 2i). As in the discovery 
cohort, distant metastases were further removed from the normal 
germline sample than lymph node metastases or primary tumor 
samples (Extended Data Fig. 2).

After stratifying patients by treatment, we again found signifi-
cantly higher RDSs in untreated lymph node metastases than in 
untreated distant metastases (Fig. 2j). As in the original cohort, 
RDSs for treated distant metastases were higher. Combining both 
cohorts, we compared treated versus untreated metastases to each 
other directly and found higher RDSs in the former (Fig. 2k). To 
understand this surprising observation, we reviewed phyloge-
netic trees and saw that treated cases frequently showed dimin-
ished internal tree structure. For example, the phylogenetic tree 
of C102—a heavily treated patient who received both neoadjuvant 
and adjuvant chemotherapy—exhibited a star-like topology, with 
all samples radiating from the tree trunk with approximately equal 
branch lengths (Fig. 2l), consistent with severe homogenization 
of all lesions by treatment. We conclude that the natural diversity 
differences between lymph node and distant metastases are most 
effectively observed when subclonal structure has not been altered 
by treatment.

Finally, we wanted to exclude the possibility that bias in pri-
mary tumor sampling (for example, strong preponderance of lumi-
nal versus invasive areas among our biopsies) had affected our 
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results. Disparate tumor areas might conceivably have differential 
likelihoods of seeding lymphatic or distant metastases, affecting 
our ability to find ancestor clones. A review and classification of 
all primary tumor histological slides showed that luminal biopsies 
made up 54% and 64% of primary tumor samples in the discovery 
and validation cohorts, respectively, indicating that both mucosal 
and deep regions were well represented (Supplementary Table 6). 
Importantly, we found that lymph node and distant metastases were 
equally likely to originate in luminal and deep primary tumor areas, 
excluding biases in primary tumor sampling as potential confound-
ers (Extended Data Fig. 3).

Modeling metastasis-seeding lineages in primary tumors. 
Collectively, these results show that lymph node metastases are a 
more diverse group than distant metastases and suggest the rela-
tive absence of strong selection during the formation of lymph node 
lesions. In other words, the data suggest that many primary tumor 
clones are lymph node metastasis-competent (LN-seeding), but 
fewer clones are distant metastasis-competent (DM-seeding). We 
reasoned that a stochastic model of metastasis formation could help 
estimate the relative ratios of LN-seeding to DM-seeding clones. We 
began by simulating a number of distinct clones that are spatially 
arranged in the primary tumor (Fig. 3a). This starting configuration 
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is well aligned with data indicating that in colorectal cancer, clones 
exist as spatially discrete entities4. In each simulation, mLM clones 
are randomly selected to have LN-seeding ability and mDM clones 
are selected to have DM-seeding ability (Fig. 3b). Both mLM and mDM 
can vary between 1 and 10 (here, the maximum number of clones). 
Once the LN- and DM-seeding clones have been chosen, they begin 
seeding lymphatic metastases with a seeding rate of qLM and distant 
metastases with a seeding rate of qDM per cell per day, respectively. 
All other clones seed metastases at 50-fold lower rates. Furthermore, 
we assume that there are nLM and nDM suitable sites where dissemi-
nated cells can survive and expand to form lymphatic and distant 
metastases, respectively. After arrival at one of the sites, cells divide 
with a birth rate of b = 0.25 and die with a death rate of d = 0.24 

(ref. 1). Once all metastases reach a detection size of at least M cells, 
we evaluate the subclonal composition of all metastases and also 
sample nPT regions of the primary tumor. Primary tumor samples 
are a mixture of 2–3 adjacent clones because our experimental biop-
sies would be unlikely to coincide with exact clone boundaries (Fig. 
3c,d, each panel showing one simulation). As in our approach for 
polyguanine data, we then calculate the pairwise distances between 
the in silico tumor samples based on the observed clone fractions, 
reconstruct phylogenetic trees and calculate RDSs for lymphatic 
and distant metastases.

To determine which ratios of LN- and DM-seeding clones 
would reproduce our experimental data, we began with a ‘baseline  
scenario’ in which all ten clones can seed lymphatic and distant 
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metastases with the same seeding rate of qLM = qDM = 10−8 per cell per 
day14 (Fig. 3e). To mimic our experimental sampling, we assumed 
that nLM, nDM and nPT are uniformly distributed between 2 and 6, 
corresponding to the average sample numbers in our cohorts. As 
expected, in this baseline scenario we obtained the same RDS dis-
tribution for lymphatic and distant metastases. Furthermore, RDSs 
were high (median of 1), consistent with the fact that all clones were 
metastasis-competent, resulting in high average metastasis diver-
sity. The design of our model furthermore allowed us to evaluate 
intra-lesion heterogeneity with the Shannon diversity index (SDI, a 
common measure of species diversity)15. As expected, in the base-
line scenario in which all clones have equal metastasis-seeding 
ability, the SDI was uniformly high in both lymphatic and distant 
metastases (Fig. 3e, lower panel).

Next, we analyzed additional scenarios in which all clones can 
seed lymphatic metastases with qLM = 10−8, but distant metastases 
can be seeded only by 9, 8, 7 … 1 clones. For three DM-seeding 
clones, the RDSs and SDIs for distant metastases begin to drop 
visibly (Fig. 3f) and are further depressed if only one clone has 
DM-seeding ability (Fig. 3g). To quantify the parameter combina-
tion (ratio of LN-seeding to DM-seeding clones) that best fits our 
experimental data, we calculated a fold change measure (median 
RDSLN/median RDSDM) for our combined discovery and validation 
cohorts and for all simulations. We found that the experimentally 
measured fold change (7.8) was best explained by LN-seeding to 
DM-seeding clone ratios between 10:3 (fold change 6.8) and 10:2 
(fold change 13.1; Extended Data Fig. 4).

Lymph node metastases exhibit high intra-lesion diversity. 
Comparison of inter-metastatic heterogeneity (measured by the 
RDS) and intra-metastatic heterogeneity (measured by the SDI) 
in our stochastic model indicated that the two measures are corre-
lated (Fig. 3e–g). This is consistent with relaxed selection leading to 
more diversity within individual lymph node lesions in addition to 
polyphyly among different lymph node metastases. To examine this 
effect in our own data, we searched for evidence of subclonal mixing 
in our polyguanine genotypes. Amplification of polyguanine tracts 
leads to a characteristic ‘stutter distribution’ that is created by poly-
merase slippage during PCR12. Its mode indicates the true genotype 
of a polyguanine tract in a sample of interest13,16. Normal tissue 
samples have smooth, unimodal stutter distributions for homo-
zygous polyguanine tracts (Fig. 4a). Cancer samples often contain 
additional peaks that may indicate the presence of subclones. The 
higher the diversity of an allele population, the larger the variance of 
the stutter distribution. Therefore, for loci with normal copy num-
ber, the relative variance of the genotype is related to the number 
of subclones in a sample. Figure 4a shows genotypes of two loci for 
normal tissue, a lymph node and a liver metastasis in patient C12 
(microsatellite unstable). An increased number of peaks is clearly 
visible in the lymph node metastasis in comparison with the dis-
tant metastasis, resulting in increased variance of the distribution. 
To evaluate subclonal mixing systematically, we calculated the vari-
ance for each marker in each patient sample. Figure 4b depicts the 
results of this analysis for patient C12. The variance is significantly 
lower for distant metastasis genotypes, indicating less allelic diver-
sity compared to lymph node metastases. To summarize data from 
all patients, we determined the median of the lymph node and dis-
tant metastasis variance distributions (Fig. 4b) for each patient and 
plotted the medians in a paired manner (Fig. 4c). The variance was 
almost uniformly lower in distant metastases, indicating dimin-
ished subclonal diversity in distant versus lymph node metastases.

Next, we extended these intra-lesion heterogeneity analyses to 
data acquired with other methods. A recent TRACERx renal cell 
carcinoma study had sequenced pairs of primary tumors and locore-
gional lymph node or distant metastases17. We began by considering 
the percentage of shared mutations between primary tumors and 

metastases. If lymph node metastases develop through more poly-
clonal seeding than distant metastases, more mutational diversity 
will be transferred from the primary tumor to the lymph node (Fig. 
4d). We have recently derived an exact mathematical model of this 
transfer process18. Indeed, we found that the fraction of mutations 
shared with the primary tumor was higher for lymph node than 
for distant metastases (Fig. 4e). Note that we limited this analysis 
to synchronous metastases to avoid artifacts related to differential 
metastasis growth times. Since an alternative explanation for these 
data is that lymph node metastases arise later in tumor evolution 
than distant metastases, we searched for more direct evidence of 
polyclonal seeding in the form of mutations that were subclonal in 
both the metastasis and the primary tumor. Unless these mutations 
arise independently (which is unlikely), they can exist only if mul-
tiple tumor cells seed the metastasis19. The incidence of variants that 
were subclonal in both sites was significantly higher for lymph node 
metastases (Fig. 4f). Next, we quantified the size of the evolution-
ary bottleneck during metastasis formation. Most mutations found 
in the primary renal carcinomas were subclonal, indicating a high 
degree of genetic diversity in the ancestral cancer (Fig. 4g). Distant 
metastases, on the other hand, contained predominantly clonal 
mutations, demonstrating a heterogeneity reduction consistent with 
a strict bottleneck (as also noted by Turajlic et al.17). Lymph node 
metastases occupied an intermediate position between the primary 
tumor and distant metastases, suggesting a relaxed bottleneck. We 
also investigated another renal carcinoma cohort with lymph node/
distant metastasis-primary pairs and again found that locoregional 
lymph node metastases shared a significantly higher fraction of 
variants with the primary tumor (Fig. 4h)20. Therefore, in addition 
to being polyphyletic, lymph node metastases are polyclonal to a 
higher degree than distant metastases.

Finally, we wanted to determine whether our findings could 
be replicated at single-cell resolution. We reanalyzed sequenc-
ing data from an experiment in which 4T1 cells were transduced 
with retroviral barcodes21 and injected into murine mammary fat 
pads. Subsequently, primary tumors, locoregional lymph nodes and 
samples from the brain, liver, lungs and blood were collected and 
sequenced to recover barcodes (Fig. 5a). Again, we plotted the SDI 
for each anatomical site and found that the heterogeneity of lymph 
node-resident cells was second only to the primary tumor, with a 
highly significant difference between locoregional lymph nodes 
and distant organs (Fig. 5b). We investigated the analogous sce-
nario in humans using single-cell copy number data from a primary 
colorectal cancer, locoregional lymph node metastasis, synchro-
nous untreated liver metastasis and a post-treatment liver metasta-
sis (from Bian et al.22) (Fig. 5c). Using the frequencies of subclones 
defined by their genomic breakpoints22, we again calculated the SDI 
across different anatomic sites. We observed the same pattern as in 
the mouse experiment: the primary tumor displayed the highest 
heterogeneity, the untreated liver metastasis showed the lowest het-
erogeneity and the lymph node metastasis occupied an intermediate 
position (Fig. 5d).

Discussion
Our results show that lymph node and distant metastases display 
considerably different levels of genetic diversity. Lymph node 
metastases are polyphyletic and polyclonal and develop through 
a wider evolutionary bottleneck than distant metastases. These 
observations suggest weaker selection: many cells from the pri-
mary tumor appear capable of migrating to and thriving in lymph 
nodes. Distant metastases, in contrast, are less polyclonal than 
lymph node metastases and typically form monophyletic groups, 
indicating the presence of a stricter evolutionary bottleneck  
(Fig. 5e). Hence, our data support the notion that lymph node and 
distant metastases develop through fundamentally different evolu-
tionary mechanisms.
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The implications of polyphyly versus monophyly in lymph node 
and distant metastases reach beyond the implications of poly-
clonality versus monoclonality. Polyclonality of lymph node metas-
tases is perhaps to be expected and has been observed in colorectal 
cancer23. Owing to their physical proximity to the primary tumor, 
draining lymph nodes likely receive tumor cells at higher rates 
than similarly sized areas in distant organs. Hence, even if selec-
tive pressures determining survival and outgrowth were uniform 
across ectopic sites, more tumor cells would contribute to lymph 
node metastases due to high seeding frequency. In contrast, tumor 
cells disseminating to distant organs would be much more likely to 
arrive at a future growth site alone or in small clusters7, with a low 
probability of other tumor cells arriving at the exact same location. 
However, this does not explain monophyly of distant metastases. 
If tumor cells disseminated from primary tumors or lymph nodes 
and randomly grew out in distant sites, they would likely be mono-
clonal, but there would be no reason for them to be monophyletic 
and resemble each other.

Multiple explanations for the high phylogenetic similarity of 
distant metastases exist. First, metastases might have given rise to 
each other24–27. Most lesions in our data set were liver metastases 
and could have formed through intra-hepatic seeding. We con-
sider this explanation unlikely, as many metastases presented in 

different liver segments, which are independent functional units 
with separate vascular systems. Furthermore, distinct liver metas-
tases were often connected to their most recent common ances-
tor by similarly long branches, a pattern that is inconsistent with 
sequential seeding. Finally, several patients who had metastases in 
different organs still showed monophyletic origin of these lesions. 
However, there was one counterexample—ovarian and omental 
metastases in patient C89—and cases with metastases in different 
organs were rare in this study, limiting our ability to generalize. 
Therefore, we can say with confidence only that liver metastases 
in colorectal cancer tend to be monophyletic groups and are not 
obviously formed by intra-hepatic spread.

Another explanation for monophyly of distant metastases 
is that specific pressures select for a particular subpopulation. 
Potential examples of such selective pressures are the ability to 
enter and exit the blood stream28, travel longer distances29 or 
survive in organ-specific microenvironments30. This possibility 
is supported by a recent study that showed that distant metas-
tases in different cancer types were more often monophyletic 
than expected by chance31. The existence of an (epi-) geneti-
cally defined metastatic clone has been strongly debated over the 
years32. Our results motivate a continued search for the molecular 
traits of this clone.
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Fig. 4 | Intra-metastatic diversity is higher in lymph node than in distant metastases. a, Polyguanine genotypes for markers Nax47 and Nax38 for 
three samples from patient C12. Local peak maxima and their sizes are indicated with red arrows. Var, variance. b, Variance of genotypes in lymph node 
metastases (N = 88) and in the distant metastasis (N = 22) of C12, normalized by the average variance in the primary tumor. Every gray dot corresponds 
to a separate stutter distribution variance as shown in a. The medians of the lymph node and distant metastasis variances are indicated as dark gray dots 
and connected by a line. The P value derives from a two-sided Mann–Whitney test. c, Paired medians of lymph node and distant metastasis variances (as 
in b) for microsatellite stable cancers in the Naxerova et al. and validation cohorts. Note that microsatellite-unstable cancers are not visualized in this plot, 
as their variances are much larger (as in b), but the paired medians of these cases have nonetheless been incorporated into the P value (N = 24 overall, 
P = 0.002, two-tailed Wilcoxon matched-pairs signed-rank test). d, Polyclonal seeding is expected to lead to a greater diversity transfer from the primary 
tumor to secondary lesions, resulting in a larger fraction of variants that are shared between the primary and a metastasis than in the case of monoclonal 
seeding. e, The fraction of shared variants is higher for synchronous locoregional lymph node metastasis–primary tumor pairs than for synchronous distant 
metastasis–primary tumor pairs in the TRACERx17 renal carcinoma study (P = 6 × 10−4, two-tailed Fisher’s exact test). f, The fraction of variants that is 
subclonal in both the primary tumor and the metastasis is greater in synchronous lymph node metastases than in synchronous distant metastases in the 
TRACERx cohort (P = 0.019, two-tailed Fisher’s exact test). g, The fraction of subclonal variants is greater in synchronous lymph node metastases than 
in synchronous distant metastases in the TRACERx cohort (P = 0.029, two-tailed Fisher’s exact test). h, As in e, but for synchronous metastasis–primary 
tumor pairs from Becerra et al.20 (P = 0.013, two-tailed Fisher’s exact test). The white numbers in e–h denote the total variants in each group.
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Methods
RDS. The RDS denotes the probability that in a cancer phylogeny with n tumor 
samples, at least l out of m metastases samples form a single clade. We generalized 
Edwards and Cavalli-Sforza’s approach to calculate the number of distinct 
phylogenies with a given number of samples in which at least l of m metastases 
samples form a monophyletic group33,34 (Supplementary Note). To obtain 
the probability that such a phylogeny would evolve by chance, we divide this 
number of phylogenies by the total number of phylogenies with n tumor samples 
(see equation (2) in the Supplementary Note). All RDS values are provided in 
Supplementary Tables 2 and 5.

Tumor samples. This study was approved by the Institutional Review Board of 
Massachusetts General Hospital. We identified suitable patients by searching the 
Massachusetts General Hospital pathology database for the terms ‘carcinoma’ 
or ‘adenocarcinoma’. Primary colorectal resections were then identified by an 
automated algorithm on the basis of TNM (tumor, node, metastasis) staging in 
the final diagnosis, accompanied by any of a series of keywords identifying the 
resection as colorectal. Staging information was extracted and each patient was 
linked to all cases matching their medical record numbers. We reviewed the 
resulting lists manually to identify patients for whom a primary tumor resection 
was available and who had either multiple positive lymph node metastases or 
multiple distant metastases. We then ordered histological slides and formalin-fixed 
and paraffin-embedded tissue blocks from the archives and carefully reviewed 
them to identify cases that contained sufficient material for sampling (n = 17). 
This cohort was supplemented with two cases (C6 and C11) that we had identified 
and partially analyzed in a previous technical study on polyguanine profiling12. 
Furthermore, we obtained additional tissue materials from a case (C57) that 
was included in the discovery cohort but had to be excluded from all relevant 
analyses because no lymph node metastases and only one liver metastasis were 
available for analysis at the time. We were able to obtain tissue blocks of three 
more liver metastases and completely redid tissue sampling and genotyping for 
this case. All cases were colorectal adenocarcinomas, with the exception of C97 
(a neuroendocrine carcinoma) and C92 (an adenocarcinoma of the small bowel). 
We grouped together lymph node metastases with residual lymphoid tissue and 
‘replaced lymph nodes’ (tumor deposits) in which no such tissue could be found; 
these are considered equivalent from a staging perspective. Tumor samples were 
processed as previously described10. Briefly, tumor cores were obtained with 
either 1.5- or 2-mm biopsy punches if the tumor was sufficiently bulky and dense. 
Alternatively, if tumor areas of interest were relatively small, 5–8-μm sections were 
carefully macrodissected under the microscope. DNA from deparaffinized tissues 
was extracted with phenol–chloroform and precipitated with sodium acetate. 
For spatial classification, a board-certified gastrointestinal pathologist (J.K.L.) 
reviewed hematoxylin and eosin-stained slides of all 170 primary tumor areas 
from the discovery and validation cohorts and classified the sampled areas into 
luminal and deep tumor regions. He followed established anatomical landmarks 
and international definitions as proposed in the seventh and eighth editions of the 
American Joint Committee on Cancer staging manual. All tumors in our cohorts 
were T3 or T4 stage neoplasms. We classified samples taken from mucosal and 
submucosal regions (corresponding to Tis and T1 stage invasion) as ‘luminal’ 
and samples taken from the muscularis propria, subserosal and serosal regions 
(corresponding to T2, T3 and T4 stage invasion) as ‘deep’. The full classification is 
available in Supplementary Table 6.

Polyguanine profiling and genotype analysis. Primer sequences and a detailed 
PCR protocol for amplification of polyguanine markers can be found in Naxerova 
et al.10. We designed and validated several new markers for this study; their primer 
sequences can be found in Supplementary Table 7. Similarly, a very detailed 
description of the data analysis pipeline is provided in Naxerova et al.10. Briefly, 
all polyguanine genotypes are acquired in triplicate to ensure reproducibility 
of the stutter distribution. Genotypes are exported from GeneMapper software 
as tab-delimited text files and filtered to remove replicates whose intensity is 
below 10% of the average for that patient and marker, eliminating low-quality 
amplifications. Technical replicates are compared to each other to remove outliers 
and the most representative replicate is selected for further analysis10.

Phylogenetic reconstruction and k, l, m determination. To reconstruct a cancer’s 
evolutionary tree, a distance matrix representing the degree of genetic divergence 
between sampled tumor areas is constructed. Briefly, pairwise Jensen–Shannon 
distances are calculated between the representative replicates of all sampled 
tumor regions for any given marker and patient, summed over all markers and 
divided by the total number of sampled markers for normalization purposes10. 
The resulting distance matrix serves as input for tree reconstruction using the 
classical neighbor-joining method35, implemented in the R package ape (ref. 36). 
Branch confidence values are calculating by resampling mutation data (markers) 
with replacement 1,000 times. We furthermore exclude impure samples that have 
a relatively high level of contamination with normal cells as described previously10. 
For the present study, we use the same method and impurity cutoffs as for the 
discovery cohort (fraction of points within the narrow interval around the diagonal 
<0.45 and ratio of points below and above the diagonal <0.15, see ref. 10 for more 

details), with the only difference that we now exclude markers that are definitely 
not mutated in the sample of interest and in most other tumor samples (distance to 
normal for the sample of interest <0.06 and median distance to normal <0.06) from 
the calculation of the two purity statistics, as they contain no useful information 
about tumor cell content. Finally, as previously, we exclude samples with low-quality 
DNA that fail to produce representative replicates for a large fraction of markers 
(here: >30%). To collapse full phylogenies to the ‘one-sample-per-lesion’ trees 
required for the RDS calculation, we applied the following rules: (1) remove all 
but one normal germline sample from the tree; (2) remove all non-cancer samples 
(adenomas) from the tree, as they do not represent genetic heterogeneity within 
the cancer under investigation and do not give rise to metastases. (3) If all samples 
from the same metastasis cluster together in one monophyletic clade, remove all but 
one of these samples. If not all samples from the same metastasis cluster together 
without other samples intermingling (a rare phenomenon in our cohort), collapse 
by majority rule (that is, retain a sample from the clade that contains the largest 
number of samples from that metastasis). If the majority rule cannot be applied 
because only two samples are available and they do not cluster in the same clade, 
treat them as independent lesions. (We had only one example of this scenario in the 
cohort, C57.) In one case (C97), we analyzed three samples from liver metastasis 
Liv1 (a, b, c) and two samples from liver metastasis Liv2 (a, b). Liv1a, Liv1c (the 
majority of Liv1 samples), Liv2a and Liv2b all clustered together in a monophyletic 
clade, but with intermixing of samples from Liv1 and Liv2, suggesting very high 
levels of homogeneity between the two metastases. In this case, we reasoned that 
the fairest approach would be to count them as two lesions only (as counting all five 
samples separately would lead to a perhaps unfairly low RDS) and collapsed the tree 
to retain Liv1a and Liv2a (Supplementary Fig. 20).

Mathematical model of phylogenetic heterogeneity among metastases. 
We used a continuous-time branching process model to mimic the seeding 
of lymphatic and distant metastases37–39. We consider a primary tumor that 
reached a carrying capacity of M = 108 cells (~1 cm3)40 and consists of 10 equally 
sized clones. For simplicity, we assume that all clones contain a number of 
ubiquitous mutations that are present in all of them and a number of private, 
non-overlapping mutations that distinguish between them. All clones contain 
the same number of private mutations. Depending on the scenario considered, 
mLM clones are randomly selected to have LN-seeding ability and mDM clones are 
selected to have DM-seeding ability. Both mLM and mDM can vary between 1 and 
10 in different scenarios. We further model that there are nLM suitable sites where 
these disseminated cells can survive and expand to form lymphatic metastases 
and nDM suitable sites where disseminated cells can survive and expand to form 
distant metastases. Once the LN- and DM-seeding clones have been chosen, they 
begin seeding lymphatic metastases with a seeding rate of qLM = 10−8 and distant 
metastases with a seeding rate of qDM = 10−8 per cell per day, respectively14. All other 
(not chosen) clones seed lymphatic and distant metastases with a rate of 2 × 10−10. 
After arrival at one of the sites, cells divide with a birth rate of b = 0.25 and die with 
a death rate of d = 0.24 (ref. 1). Once all metastases reach a size of at least M = 108 
cells, we record the subclonal composition of all metastases and sample nPT regions 
of the primary tumor that are a mixture of 2–3 adjacent clones. To mimic the 
sampling in our own two cohorts, we assumed that nLM, nDM and nPT are uniformly 
distributed between 2 and 6. We calculate pairwise Euclidian distances between 
metastases and primary tumor samples based on the observed clone fraction 
vectors, reconstruct neighbor-joining phylogenetic trees and calculate RDSs and 
SDIs for lymphatic and distant metastases.

Statistics and other analyses. TRACERx data were obtained from the supplement 
of Turajlic et al.17. In that patient cohort, tumor samples were obtained across 
lesions in a uniform fashion, with the same biopsy punch size, and purity was 
high across samples. Furthermore, as also reported in the methods of the original 
paper, sequencing coverage was high and comparable between primary tumor 
regions and metastases (613× and 567×, respectively). We pooled alteration data 
from single nucleotide variants/insertions and deletions/dinucleotide variants 
and arm-level somatic copy number alterations and excluded metachronous 
lesions (all lesions from patients K326, K280, K208, K029 and K379 and the lung 
metastasis from patient K153). Samples labeled ‘LN’ corresponding to paraaortic, 
aortocaval, paracaval, retroperitoneal or hilar lymph nodes were considered 
locoregional lymph node metastases; all other non-lymphatic lesions that include 
lung, liver, bone, adrenal, peri-renal, contralateral renal metastases and tumor 
thrombi were grouped together as distant metastases for the purposes of Fig. 4. 
To analyze the abundance of barcoded tumor cells in different mouse tissues (Fig. 
5a,b), we obtained raw fastq files corresponding to different mice and tissue types 
as well as the library containing the barcodes. Each fastq file was aligned to the 
library file using the QuasR R package, allowing for one mapping position per 
read. Subsequently, the library file was read in using the Biostrings package and 
the aligned reads corresponding to the same barcode were quantified with QuasR. 
Barcodes were filtered to retain only those that were present in at least one primary 
tumor sample. The SDI for each sample was calculated using the vegan R package. 
Whole mouse organs were used for the experiments, such that the diversity of 
barcoded cells present in each organ is faithfully represented in the results.  
The abundances of individual subclones across different anatomic sites in cancer 
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patient CRC01 (Fig. 5c,d) were obtained directly from the authors. The numbers 
of cells analyzed for the different lesions were relatively comparable (primary 
tumor: 133; lymph node metastasis: 52, untreated liver metastasis: 83; treated liver 
metastasis: 114). Again, the SDI was calculated with the vegan R package. Statistical 
tests used throughout the manuscript were all two-sided. Student’s t-tests were 
used for normally distributed data, Mann–Whitney tests were used for data that 
were not necessarily normally distributed and Fisher’s exact tests were used to test 
for non-random associations between categorical variables.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Raw polyguanine profiling data and phylogenetic trees for the discovery cohort 
(Naxerova et al.10) can be downloaded from https://datadryad.org (https://doi.
org/10.5061/dryad.vv53d). Original whole-exome sequencing data of Kim et al.11 
were deposited to the Sequence Read Archive at the NCBI under the project ID of 
PRJNA271316. Raw polyguanine profiling data for the new validation cohort are 
available from https://datadryad.org (https://doi.org/10.5061/dryad.9ghx3ffdf).

Code availability
The source code to calculate the RDS as well as to produce various figure panels is 
available as jupyter notebooks at http://github.com/johannesreiter/rootdiversity. 
The notebooks are implemented in Python 3.6. All required input data are 
contained in Supplementary Tables 1–7.
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Extended Data Fig. 1 | Distances to tree root (germline). Mean distances between the root normal sample and samples of primary tumors, lymphatic 
metastases, and distant metastases, respectively. Distance was measured as the number of internal nodes separating a pair of samples and then 
normalized by the total number of internal nodes in a given phylogeny. Means are 0.51 for N=16 primary tumors, 0.55 for N=16 lymphatic metastases, and 
0.68 for N=16 distant metastases. Box plot elements: center line, median; magenta diamond, mean; box limits, lower and upper quartiles; whiskers, lowest 
and highest value within 1.5 IQR.
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Extended Data Fig. 2 | Branch lengths to tree root (germline) for the validation cohort. Comparison of normalized branch lengths from the normal 
sample to N=107 primary tumor regions, N=86 lymphatic metastases, and N=34 distant metastases in the validation cohort. Branch lengths were 
significantly different (p=4.9e-7, Kruskal-Wallis test). Branch lengths for distant metastases were significantly longer than for primary tumor samples 
(mean 0.9 vs 0.75; p=1.8e-7, Conover’s test) and longer than for lymphatic metastases (mean 0.9 vs 0.77; p=1.9e-6, Conover’s test). Box plot elements: 
center line, median; magenta diamond, mean; box limits, lower and upper quartiles; whiskers, lowest and highest value within 1.5 IQR.
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Extended Data Fig. 3 | Spatial classification of primary tumor biopsies. Spatial classification of primary tumor samples. a, Primary tumor biopsies are 
classified as luminal or deep by a board-certified pathologist based on established anatomical landmarks. b, Percentages of luminal and deep primary 
tumor samples in the Naxerova and Reiter/Hung cohorts. c, For each lymphatic and distant metastasis, the closest primary tumor sample is found in the 
polyguanine marker-based distance matrix. Luminal/deep classifications of closest primary tumor samples are plotted separately for lymphatic and distant 
metastases. d, As in (c) for the Reiter/Hung cohort. e, as in (c) and (d) for the combined two cohorts. White numbers in panels (b)-(e) denote the number 
of samples in each group. Two-tailed Fisher’s exact tests were used to calculate the p-values.
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Extended Data Fig. 4 | Numbers of LN-seeding and DM-seeding clones. Median RDSLN/RDSDM values for simulations of 10 LN-seeding clones and 
variable numbers of DM-seeding clones. 100 patients were simulated per parameter combination. The experimentally determined fold change (Naxerova 
& Reiter/Hung & Kim cohorts) is shown as vertical red line.
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