VEGEN: A Vectorizer Generator for SIMD and Beyond

Yishen Chen Charith Mendis
MIT CSAIL UIuC
USA USA
ychen306@mit.edu charithm@illinois.edu
ABSTRACT

Vector instructions are ubiquitous in modern processors. Traditional
compiler auto-vectorization techniques have focused on targeting
single instruction multiple data (SIMD) instructions. However, these
auto-vectorization techniques are not sufficiently powerful to model
non-SIMD vector instructions, which can accelerate applications
in domains such as image processing, digital signal processing, and
machine learning. To target non-SIMD instruction, compiler devel-
opers have resorted to complicated, ad hoc peephole optimizations,
expending significant development time while still coming up short.
As vector instruction sets continue to rapidly evolve, compilers can-
not keep up with these new hardware capabilities.

In this paper, we introduce Lane Level Parallelism (LLP), which
captures the model of parallelism implemented by both SIMD and
non-SIMD vector instructions. We present VEGEN, a vectorizer gen-
erator that automatically generates a vectorization pass to uncover
target-architecture-specific LLP in programs while using only in-
struction semantics as input. VEGEN decouples, yet coordinates
automatically generated target-specific vectorization utilities with
its target-independent vectorization algorithm. This design enables
us to systematically target non-SIMD vector instructions that un-
til now require ad hoc coordination between different compiler
stages. We show that VEGEN can use non-SIMD vector instructions
effectively, for example, getting speedup 3x (compared to LLVM’s
vectorizer) on x265’s idct4 kernel.

CCS CONCEPTS

« Software and its engineering — Translator writing systems
and compiler generators; Retargetable compilers; Specifica-
tion languages; Automatic programming; « Computer systems
organization — Single instruction, multiple data.

KEYWORDS

optimization, auto-vectorization, non-SIMD

ACM Reference Format:

Yishen Chen, Charith Mendis, Michael Carbin, and Saman Amarasinghe.
2021. VEGEN: A Vectorizer Generator for SIMD and Beyond. In Proceedings
of the 26th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS °21), April 19-23, 2021,
Virtual, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3445814.3446692

This work is licensed under a Creative Commons Attribution International 4.0 License

ASPLOS 21, April 19-23, 2021, Virtual, USA

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8317-2/21/04.
https://doi.org/10.1145/3445814.3446692

902

Michael Carbin Saman Amarasinghe
MIT CSAIL MIT CSAIL
USA USA

mcarbin@csail.mit.edu saman(@csail.mit.edu

m_| I
=] I

A2|A3I A1|A2|A3IA4|

T o] I B A

I Al+Bl1 I A2+B2 I A3+B3 I A4+B4 | I Al+Bl1 I A2-B2 I A3+B3 I A4-B4 |
(a) vaddpd (b) vaddsubpd
T =1 =] =] | ||
|B1|B2|B3|B4|B5|BE|B7|BB|
= [= e
Al*Bl+ A3*B3+ AS5*B5+ A7*B8+
| Al+A2 | B1+B2 | A3+A4 | B3+B4 | | e P G PR
(c) vhaddpd (d) vpmaddwd

Figure 1: Examples of SIMD and non-SIMD instruction in
the AVX2 instruction set. We use different colors to indicate
how the input values flow to different output lanes.

1 INTRODUCTION

Vector instructions are ubiquitous in modern processors. Previ-
ous work on auto-vectorization has focused on single instruction
multiple data (SIMD) instructions, but there is little research on
systematically targeting non-SIMD vector instructions, which has
applications in domains such as digital signal processing, image
processing, and machine learning (e.g., Intel’s VNNI extension and
the dot-product instructions in ARMv8 [14]). In contrast with the
SIMD instruction shown in Figure 1(a), Figures 1(b)-1(d) show three
examples of the non-SIMD instructions from the AVX2 instruction
set. Figure 1(b) shows a single instruction, multiple operations, mul-
tiple data (SIMOMD) instruction [2] that performs additions and
subtractions on alternating lanes (vaddsubpd); Figure 1(c) shows
a horizontal addition with lane interleaving (vhaddpd); and Fig-
ure 1(d) shows an instruction computing dot-products (vpmaddwd).
To date, there is no unified model of parallelism that captures the
capabilities of these instructions.

Automatic Vectorization. There are two mainstream techniques
for extracting SIMD parallelism: loop vectorization [1, 20, 21] and
superword level parallelism (SLP) based vectorization [15, 17, 24].
Both techniques make two fundamental assumptions about vector
instructions: a SIMD instruction performs isomorphic operations
across all lanes, and the instruction applies the operations element-
wise (i.e., there is no cross-lane operation). Relying on these two as-
sumptions, these algorithms enable compiler developers to support
SIMD instructions across a variety of architectures with relatively
little incremental effort.

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3445814.3446692
https://doi.org/10.1145/3445814.3446692
https://doi.org/10.1145/3445814.3446692
https://creativecommons.org/licenses/by/4.0/

ASPLOS 21, April 19-23, 2021, Virtual, USA

Yishen Chen, Charith Mendis, Michael Carbin, and Saman Amarasinghe

(a) Reference Implementation (b) ICC (c) GCC (d) LLVM (e) VEGEN

void movzx ri1ld, [rdi] vmovdqa xmm@, [rip] vmovdqu xmm6, [rsi + 32] vmovdqué64 zmm@, [rdx]
dot_16x1x16_uint8_int8_int32(movsx eax, [rsi] vmovdqu xmm1, [rsi] vmovdqu xmm7, [rsi + 48] vpbroadcastd zmml, [rdi]

uint8_t datalrestrict 4], imul r11d, eax vpdpbusd zmm@, zmm@, [rsi]

int8_t kernel[restrict 161[4], .. vpmovsxbw xmm7 , xmmé vpmulld zmm1, zmm11, zmml vmovdqué64 [rdx], zmmo

int32_t outputl[restrict 16]) { add r11d, ried vpbroadcastw xmm5, xmm5 vpaddd zmm1, zmml, [rdx]

for (int i = 0; i < 16; i++) add ri1d, ecx vpmullw xmm7 , xmm7, xmm9 vpmovsxbd zmm3, xmm3
for (int k = 0; k < 4; k++) mov [rdx], r11d vpsrldq xmm2, xmm6, 8 vpmulld zmm3, zmm1@, zmm3
output[i] +=
datalk] * kernel[il[k];

3
Number of Instructions 273 106 61 4
Speedup Relative to ICC 1.0x 1.5% 2.2x 11.0x
Vector Extensions Used Not Vectorized SSE4 SSE4 & AVX-512 AVX512-VNNI

Figure 2: One of the dot-product kernels used by TVM’s 2D convolution layer (Figure 2(a)). Compiler generated assembly and
statistics for Intel’s compiler ICC (Figure 2(b)), GCC (Figure 2(c)), LLVM (Figure 2(d)), and VEGEN (Figure 2(e))

Existing Support for Non-SIMD Instructions. Because non-
SIMD instructions violate the two fundamental assumptions of
existing vectorization algorithms, compiler developers support non-
SIMD instructions using ad hoc approaches that are cumbersome
and often ineffective. For most non-SIMD instructions, compiler
developers support them with backend peephole rewrites. However,
because these peephole rewrites do not generate vector instructions
by themselves—they fuse sequences of SIMD instructions and vec-
tor shuffles into more non-SIMD instructions—relying on peephole
rewrites alone is ineffective. A relatively more effective but more
labor-intensive strategy involves coordinating with the compiler’s
vectorizers to generate SIMD vector patterns that are tailored for
those rewrite rules. For instance, the initial support in LLVM [16]
for the addsub instruction family (Figure 1(b)) required three co-
ordinated changes to LLVM: refactoring LLVM’s SLP vectorizer
to support alternating opcodes, changing LLVM’s cost model to
recognize a special case of vector shuffle (blending odd and even
lanes), and modifying LLVM’s backend lowering logic to detect
the special patterns generated by the SLP vectorizer. As processor
vendors continue to add more complex non-SIMD instructions, this
methodology is not sustainable. Compilers are falling behind in
identifying the complex code sequences that can be mapped to
these instructions, and these multibillion-dollar investments by the
processor vendors in enhancing the vector instruction sets go un-
derutilized without expert developers manually writing assembly
or compiler intrinsics.

Our Approach: VEGEN. In this paper, we describe an extensible
framework for systematically targeting non-SIMD vector instruc-
tions. We define a new model of vector parallelism more general
than SIMD parallelism, and we present a vectorizer generator that
can effectively extract this new model of parallelism using non-
SIMD instructions.

To broaden the parallelism modeled by existing vectorizers, we
introduce Lane Level Parallelism (LLP), which generalizes super-
word level parallelism (SLP) [15] beyond SIMD in two ways: (1) An
instruction can execute multiple non-isomorphic operations, and
(2) the operation on each output lane can use values from arbitrary
input lanes. These two properties of LLP depend on the semantics
of a given target vector instruction. Consequently, our framework
encapsulates the two LLP properties (i.e., which operation exe-
cutes on a given lane and which values the operation uses) in a

903

couple of target-dependent vectorization utility functions. By inter-
facing with these utilities, the core vectorization algorithm in our
framework remains target-independent, as traditional vectorization
algorithms do.

We realize this framework with VEGEN, a system that automat-
ically generates target-architecture-aware vectorizers to uncover
LLP in straight-line code sequences while using only instruction
semantics as input. From these instruction semantics, VEGEN au-
tomatically generates the implementation of the aforementioned
vectorization utilities as a compiler library to describe the specific
kind of LLP supported by the target architecture. With this auto-
matically generated target-description library, VEGEN’s vectorizer
can automatically use non-SIMD vector instructions. We added
support for newer classes of non-SIMD vector instructions (e.g.,
those found in AVX512-VNNI, which are not fully supported by
LLVM) by providing only their semantics.

We make the following contributions in this paper:

We introduce Lane Level Parallelism, which captures the
type of parallelism implemented by both SIMD and non-
SIMD vector instructions.

We describe a code-generation framework that jointly per-
forms vectorization and vector instruction selection while
maintaining the modularity of traditional target-independent
vectorizers designed for SIMD instructions.

We present VEGEN, a vectorizer generator that automati-
cally uses complex non-SIMD instructions using only their
documented semantics as input.

We integrated VEGEN into LLVM. VEGEN can use non-SIMD
vector instructions effectively, e.g., getting speedup 3X (com-
pared to Clang’s vectorizer) on x265’s idct4 kernel.

2 MOTIVATIONAL EXAMPLE

In Figure 2, we compare VEGEN with three production compilers
on a kernel used by TVM’s [8] 2D convolutional layers. Figure 2(a)
shows the naive scalar implementation of this kernel. Figures 2(b)-
2(e) show the assembly output of ICC 19.0.1, GCC 10.2, LLVM
10.0, and the VEGEN-generated vectorizer, respectively. All code
generators were configured to target AVX512-VNNL

VEGEN: A Vectorizer Generator for SIMD and Beyond

VEGEN’s vectorizer generates by far the shortest assembly code
sequence, 15.25% shorter than the next shortest code generator,
LLVM, and the generated code runs 5X faster than LLVM’s. VE-
GEN'’s vectorizer uses a new AVX512-VNNI instruction (vpdpbusd);
GCC uses some of the integer vector instructions introduced in
SSE4 (vpaddd and vpmullw); LLVM uses a mix of SSE and AVX512
instructions (vpaddd and vpmulld operating on the 512-bit zmm
registers); and ICC, Intel’s own compiler, does not vectorize the
code. This is in spite of many man-hours spent on these compilers
to support Intel’s multibillion-dollar investment in these vector ex-
tensions. In contrast to these manual engineering efforts to target
new vector extensions, the target-specific components of VEGEN
are automatically generated from semantics.

In this example, VEGEN’s vectorizer uses a new dot-product
instruction (vpdpbusd) introduced in the AVX512-VNNI instruction
set. No other evaluated compilers were able to use this instruction.
It is important to note that VEGEN’s output (Figure 2(e)) cannot be
generated simply by pattern matching because of the extra data
movement using the instruction vbroadcastw, which reorders the
inputs of vpdpbusd.

VEGEN allows compilers to target new vector instructions with
less development effort. Thus, we believe this new capability will en-
able the creation of more robust vectorizers in production compilers.

3 LANE LEVEL PARALLELISM

Lane Level Parallelism (LLP) is our relaxation of superword level
parallelism (SLP) [15], which models short-vector parallelism (in
which an instruction executes multiple scalar operations in parallel)
with the following restrictions:

o The operations execute in lock-step.

e The inputs and outputs of the operations reside in packed
storage (usually implemented as vector registers). We refer
to an element of such packed storage as a lane.

e The operations are isomorphic.

e The operations are applied elementwise (i.e., there is no
cross-lane communication).

LLP relaxes SLP by removing the last two restrictions: (1) The
operations can be non-isomorphic, and (2) an operation executing
on one lane can use values from another input lane.

Non-isomorphism. LLP allows different operations to execute
in parallel, whereas SLP applies only one operation across all vector
lanes. An example of an instruction that uses such a parallel pattern
is the x86 instruction vaddsubpd (Figure 1(b)), which does addition
on the odd lanes and subtraction on the even lanes.

Cross-lane communication. LLP allows an operation executing
on one lane to access values from another input lane (as long as the
lane is selected statically). In contrast, SLP restricts an operation to
use values from its own input lane. This flexibility is useful for com-
putations that require communication between lanes (e.g., parallel
reduction). For example, vhaddpd horizontally combines pairs of
lanes using addition and then interleaves the results (Figure 1(c)).
These properties of LLP depend on the semantics of individual
instructions. Different instructions can use different combinations
of operations or apply different cross-lane communication patterns.

904

ASPLOS 21, April 19-23, 2021, Virtual, USA

Architecture Manual

—{ Instruction Descriptions (Section 4.1) ‘

’ Pattern Generator (Section 4.2) ‘

~~~~~~~~~~~ |

’ Pattern Matcher (Section 4.3) ‘(—

J

Vector Pack Selection (Section 4.4 & 5)

J

’ Code Generation (Section 4.5) ‘

"~ Compile
Time

Scalar Program

L > !

Vector Program

Figure 3: VEGEN’s workflow. Bolded boxes represent arti-
facts such as manuals and programs.

4 VEGEN’S WORKFLOW

The key idea of VEGEN is to encapsulate the details of the two
LLP properties (non-isomorphism and cross-lane communication)
behind two interfaces. VEGEN views a given vector instruction
as a list of operations, each of which associated with a pattern
matcher (interface 1). Each vector instruction has a lane-binding
function that tells VEGEN how the input lanes bind to the operations
(interface 2). VEGEN generates the implementations of these two
interfaces offline. At compile time, VEGEN’s target-independent
vectorization algorithm works by first using the pattern matcher to
find independent IR fragments that can be packed into the available
vector instructions, then using the lane binding rule to identify
the vector operands used by the packed vector instructions, and
then recursively finding other IR fragments that can be packed to
produce those vector operands.

Figure 3 shows the workflow of VEGEN. VEGEN targets non-
SIMD (and SIMD) vector instructions in two phases. In the offline
phase, VEGEN takes instruction semantics (encoded in its vector
instruction description language) as input and generates the target-
dependent utility functions, such as the pattern matchers. At com-
pile time, VEGEN’s target-independent heuristic uses the generated
utility functions to combine independent streams of scalar instruc-
tions into vector instructions.

To target a new vector instruction set, VEGEN only requires the
compiler writers to describe the semantics of each instruction in
VEGEN’s vector instruction description language. If the vendor has
provided instruction semantics in a machine-readable format such
as Intel’s Intrinsics Guide [9], this process can be automated. In Sec-
tion 6, we describe how VEGEN automatically translates semantics
from the Intrinsics Guide.



ASPLOS 21, April 19-23, 2021, Virtual, USA

FOR j
io:=

:= 0 to 3
%32
dst[i+31:i] :=
SignExtend32(ali+31:1i+16]1*xb[i+31:i+16]1) +
SignExtend32(ali+15:iJxb[i+15:1])
ENDFOR

(a) Intel’s pseudocode documentation of pmaddwd

OPmadd = (X1 :16,x2 : 16,x3 : 16,x4 : 16) >
add(mul(sext32(xy), sext32(x2)), mul(sext32(x3), sext32(x4)))
pmaddwd = (a:4X16,b:4X 16) —
[0pmadd(al0]. b[0], a[1], b[1]), 0pimada(al2]. b[2]. a[3]. b[3])]

(b) Semantics of pmaddwd formalized in VEGEN’s vector instruction
description language

bool match_MADD_Op(llvm::Value *V,
1lvm::Value xt@, xt1, *xt2, *t3;
if (m_c_Add(m_c_Mul (m_SExt(t@), m_SExt(t1)),

m_c_Mul (m_SExt(t2), m_SExt(t3))).match(V)) {
M.LiveIns = { t@, t1, t2, t3 };
return true;
}

return false;

Match &M) {

3}
std::vector<llvm::Value
operand_1_pmaddwd (const
return { Matches[0].
Matches[1].

*>

std::vector<Match> &Matches) {
LiveIns[0], Matches[@].LiveIns[2],
LiveIns[@], Matches[1].LiveIns[2] };
3

(c) Two examples of the vectorization utilities automatically generated

from semantics: a pattern matcher and a function that describes how
the input lanes of the first operand bind to the matched operations.

Yishen Chen, Charith Mendis, Michael Carbin, and Saman Amarasinghe

int16_t A[4],
int32_t c[2];
void dot_prod() {
C[o]l = A[0] % B[o]l + A[1] = B[1];
CL11 = A[2]1 » B[2]1 + A[3]1 = B[3];

B[4];

}

(d) An example scalar program to vectorize.

(e) The instruction DAG corresponding to the example scalar
program. The regions enclosed by the dotted curves represent
matched integer multiply-add operations. The rectangles repre-
sent vector packs.

‘Illi;smmm

vmovd xmm@, [A]
vmovd xmm1, [B]
pmaddwd xmm@, xmml,
vmovd [C], xmm@

Xmme

(f) Generated vector code

Figure 4: How VEGEN uses the instruction pmaddwd. First, VEGEN translates the pseudocode semantics of pmaddwd (Figure 4(a))
into its vector instruction description language (Figure 4(b)). Next, VEGEN generates the vectorization utility functions (Fig-
ure 4(c)) used by its vectorizer at compile time. Figure 4(d) shows an example scalar program before vectorization. At compile
time, VEGEN’s vectorizer combines the matched operations into vector packs (Figure 4(e)), which are later lowered into vector

assembly code (Figure 4(f)).

Figure 4 shows an end-to-end example of VEGEN optimizing an
integer dot-product kernel. In the rest of this section, we will use it
as a running example.

Terminology & Notation. We use two related but distinct terms:
instructions and operations. Instructions can refer to either IR instruc-
tions such as LLVM IR or target instructions such as x86 instructions.
Operations refer to (side-effect free) bit-vector functions that can
be implemented both by IR and target instructions.

For brevity, we overload common set operations for vectors.
While doing so, we implicitly convert a vector to a set before apply-
ing the set operator. For example, let x be a vector and i a scalar;
when we say i € x we mean that x contains i.

4.1 Vector Instruction Description Language

VEGEN uses its vector instruction description language (VIDL) to
model the semantics of each target vector instruction as a list of
scalar operations, with lane-binding rules indicating how the input
lanes bind to the operations. Figure 5 shows the syntax of VIDL.
VIDL assumes that target instructions read and write to registers but
have no other side-effects. VEGEN models memory instructions such

905

as vector load separately. VIDL only allows selecting the input lanes
using constant indices: This restriction allows VEGEN to statically
determine the vector operands used by each vector instruction.
Figure 4(b) shows the semantics of the SSE instruction pmaddwd
specified in VIDL. The instruction pmaddwd takes two vector reg-
isters as input, sign-extends the values from 16-bit to 32-bit tempo-
raries, multiplies the sign-extended values element-wise, and finally
adds together every adjacent pair of the multiplication results.

4.2 Generating Pattern Matchers

In the offline phase, VEGEN collects the set of operations used by the
target vector instructions, and for each operation, VEGEN generates
pattern matching rules to recognize IR sequences that implement
the operation. Figure 4(c) shows an example of the pattern matching
code generated by VEGEN.

We designed VIDL to mirror the scalar IR that its vectorizer takes
as input. Thus, generating pattern matching code from VIDL is
generally straightforward. In Section 6 we discuss how to generate
pattern matchers that are more robust.



VEGEN: A Vectorizer Generator for SIMD and Beyond

x € variables i € integers

sz € bit-widths vl € vector-lengths

lane == x[i]
expr :=x | lane | binop(expr,, expr,) |
unop(expr) | select(expry, expr,, exprs)
opn == (X1 : $21,...,Xp : SZp) > expr
res ::= opn(lane, . . ., laney)
inst == (x1 : Vl1 X $21,...,Xn : VI X sz,) > [resy, ..., resm|

Figure 5: Syntax of the Vector Instruction Description Lan-
guage (VIDL). — denotes function abstraction.

4.3 Pattern Matching

At compile time, VEGEN applies the generated pattern matchers on
the input scalar program. We call the result of pattern matching
a match, an IR instruction DAG with (possibly) multiple live-ins
and a single live-out. VEGEN represents each match as a tuple
consisting of its live-ins, live-out, and operation. In the running
example (Figure 4(e)), the integer multiply-add operation has two
matches (the sub-graphs enclosed in dotted curves): one rooted at
the instruction t1, and another rooted at t;.

Unlike other common applications of pattern matching such
as term rewriting, VEGEN does not directly use the result of pat-
tern matching to rewrite the program. Instead, VEGEN records the
matched patterns in a match table, which records the mapping
(live-out(m), operation(m)) + m, for each match m. The match
table allows VEGEN’s target-independent vectorization algorithm
(Section 4.4) to efficiently enumerate the set of candidate vector
instructions that can produce a given vector (Algorithm 1).

4.4 Vectorization

After running the generated pattern matchers (at compile time),
VEGEN (1) uses a target-independent heuristic to find profitable
groups of matched IR instructions that can be packed into (possibly
non-SIMD) vector instructions—we call such a group of instruc-
tions a vector pack—and then (2) lowers the vector packs into target
vector instructions.

Vector Pack. A pack is a tuple (v, [my,...,mg]), where v is a
vector instruction with k output lanes, and my, ..., my are a list of
matches whose live-outs are independent. For example, let m; and
mgy be the two matched integer multiply-add operations rooted at
the instructions #; and tz in Figure 4(e), we can use the instruction
pmaddwd to combine them into a single vector pack:
Pex = (pmaddwd, [m1, mz])

VEGEN models vector loads and stores as two special kinds of packs,
whose memory addresses must be contiguous.

We define two notations for vector packs. Let p = (v, [my, ..
be a vector pack, then then values(p) is the list of IR values pro-
duced by pack p (i.e., values(p); = live-out(m;)) and opcode(p) = v.

In the running example,

values(pex) = (11, t2]
opcode(pex) = pmaddwd

)

906

ASPLOS 21, April 19-23, 2021, Virtual, USA

| Al*Bl | A3*B3 | AS5*B5 | AT*B7 |

Figure 6: Semantics of vpmuldq (sign-extended integer multi-
plication). White cells represent lanes unused by the instruc-
tion.

Vector Operand. Vector packs have vector operands, represented
as lists of IR values. In the running example, pex has two vector
operands (We overload the [.] operator here; e.g., A[0] denotes a
load of the first element of A):

operand; (pex) = [A[0], A[1], A[2], A[3]]
operand, (pex) = [B[0], B[1], B[2], B[3]]

More specifically, let p = (v, [m1,...,mi]) be a vector pack,
then operand;(p) = [x1,...,xn]; where x; € Uy live-ins(my) is
one of the live-ins of the matches that should bind to the j’th lane
of the i’th operand of the vector instruction v. VEGEN generates
the implementation of operand;(.) automatically from instruction
semantics; operand; (.) is known statically because the VIDL only
allows selecting input vector lanes using constant indices.

Don’t-Care Lanes. Some instructions don’t use all of their input
lanes. For example, the SSE4 instruction vpmuldq (Figure 6) sign-
extends and multiplies only the odd input lanes. To handle a case,
we introduce a special don’t-care value. Each element of a vector
operand (i.e., operand; (.)) therefore takes the value of either a scalar
IR value (from the input program) or don’t-care.

Producing a Vector Operand. A pack p produces a vector operand
x if they have the same size (i.e., |values(p)| = |x|) and, for every
lane i, x; is either values(p); or don’t-care. Algorithm 1 shows the
algorithm for finding the set of feasible producer packs for a given
vector operand x. VEGEN uses a separate routine to enumerate
producer packs that are vector loads, which can be done efficiently
because only contiguous loads can be packed together.

Dependence and Legality. A pack p; depends on another pack
po if there exists an instruction i € values(p;) that depends on
another instruction j € values(pz). We define the dependencies
among scalar IR instructions and vector packs similarly. A set of
packs are legal when there are no cycles in the dependence graph.

Vector Pack Selection. Because lowering a given set of vector
packs to target vector instructions is relatively straightforward, vec-
torization reduces to finding a subset of the matches and combining
them into legal vector packs. The choice of packs determines the
performance of the generated code by affecting the level of paral-
lelism and the level of data-movement overhead (e.g., if a vector
operand is not produced directly, VEGEN needs to use vector shuf-
fles to gather the elements of the operand). Given a scalar program,
VEGEN selects a set of profitable vector packs using two alternative
heuristics that we will discuss in Section 5.



ASPLOS 21, April 19-23, 2021, Virtual, USA

Algorithm 1: Find the set of (non-load) packs that produce
a given vector operand x. Load packs are found separately
by enumeration.

Input
x: The vector operand that we need to produce
M: The match table, which contains
the mapping (live-out(m), operation(m)) — m
for each match m.
I: A list of instruction descriptions.
Output: A (potentially empty) set of producer packs of x.
1 if there are dependent values in x then
2 ‘ return {}
3 end
4 producers «— {}
5 for vinst € I do

6 matches « [ ]

7 for i < 1 to number of lanes of vinst do
8 f « the i’th operation of vinst

) m— M[(xi, )]

if x; is don’t-care or m is not null then
‘ append m to matches

10
1
12 end

end

if |matches| = number of lanes of vinst then

‘ producers < producers U pack(vinst, matches)

13
14
15

16 end

17 end
18 return producers

4.5 Code Generation

Given a set of vector packs (and the input program), VEGEN’s code
generator emits a vector program as a combination of (1) the scalar
instructions not covered by the packs, (2) the compute vector in-
structions corresponding to the packs, and (3) the data-movement
vector instructions that follow from the dependence among the
packs and scalars.

Given a pack set P, we generate vector code as follows. The code
generation algorithm uses the target-specific functions operand,(.)
generated from instruction semantics.

Scheduling. The code generator first schedules the scalar instruc-
tions (regardless of whether an instruction is replaced by vector
instructions) according to their dependencies and the following
constraint: For any pack p € P, all instructions in values(p) are
grouped together in the final schedule. Such a schedule exists when
the set of packs are legal.

Lowering. After scheduling, the code generator lowers the packs
in P in topological order. The previous scheduling step ensures that
all of the values in operand;(p) are ready by the time we lower any
p € P. The code generator also emits any required swizzle instruc-
tions to gather a vector operand if the operand is not produced
directly by another pack and to extract an element of a vector pack
if the pack has a scalar user.

907

Yishen Chen, Charith Mendis, Michael Carbin, and Saman Amarasinghe

min
peproducers(v)

+ 2.; costsyp(operand;(p))

Cinsert + |0] + costscqiqr (0)

costop(opcode(p))

costspp(v) = min

Figure 7: The SLP heuristic uses this recurrence to decide
whether to produce a vector operand v directly via a vec-
tor pack or by vector insertions. cost.,j,-(v) is the total cost
of producing values in v and their dependencies using only
scalar instructions.

5 VECTOR PACK SELECTION

VEGEN uses a target-independent heuristic to select a set of prof-
itable vector packs. The goal of the heuristic is to select a set of packs
to maximize the total saving from vectorization while minimizing
the overhead of explicit data-movement that is necessary when
an instruction (whether vector or scalar) operand is not produced
exactly by any other instruction—such as when a scalar instruction
uses a vector element and therefore requires a vector extraction.

Optimization Objective and Cost Model. Let P be the set of
selected vector packs, and let us focus on one of the packs p € P.
If the results of p are used by some scalar instructions, we need to
extract those values and pay the following cost:

Cextract - |values(p) N scalarUses|

Let v be a vector operand of p. When a subset of v is produced by
some other pack p’ # p, we need to use vector shuffles to move
those values into v and pay the following cost:

Cshupte - [{p" € P\ {p} | v N values(p’) # 0}

When some elements of v are produced by scalar instructions, we
need to use vector insertions to insert those values into v and pay
the following cost:

Cinsert 10\ [|_] values(p)]|
p'eP
Cextracts C, and Cipsert are cost-model parameters.

Recall that VIDL doesn’t model vector shuffles (Section 4.1).
VEGEN’s code generator therefore emits a mix of target vector
instructions and virtual (target-independent) vector shuffles and
relies on LLVM’s backend to lower the shuffles.

Pack Selection Heuristics. Pack selection is NP-hard because
the more restricted version of pack selection for SIMD instructions
is NP-hard [19]. In the rest of this section, we discuss two heuristics
for pack selection. We first present a heuristic based on the bottom-
up SLP algorithm [15, 29] (we will refer to this heuristic as the SLP
heuristic). While the SLP heuristic is compile-time efficient, it has
various drawbacks that we will discuss and address with a tractable
search algorithm based on the SLP heuristic.

5.1 Pack Selection Using the SLP heuristic

The SLP heuristic builds a set of vector packs by traversing the
instruction DAG bottom-up (uses before definitions). Initially, the
set of packs are seeded with seed packs such as chains of contiguous
stores. The heuristic then recursively introduces vector packs to



VEGEN: A Vectorizer Generator for SIMD and Beyond

produce the vector operands—VEGEN uses Algorithm 1 to find such
producers—in the current set of packs.

There are often multiple vector packs that can produce a given
operand. For a given operand, VEGEN uses the dynamic program-
ming algorithm shown in Figure 7 to choose a producer. This is
the main modification we added to the original SLP algorithm—in
SLP-based vectorization, there is at most one pack that can produce
any given operand.

Enumerating Seed Packs. In addition to store packs, VEGEN
enumerates a limited set of non-store seed packs, in two steps. First,
it computes a pairwise affinity score for each pair of IR instructions
according to the equation in Figure 8. Second, if a non-memory IR
instruction i is used by some store instruction, then for all target
vector length VL (ie., 2, 4, 8, etc.), VEGEN enumerates the top k
packs—according to the affinity score—that is VL-wide and whose
first lane is i. VEGEN only enumerates instructions that feed into
stores to limit the total number of seeds.

Limitations. The SLP heuristic assumes that each vector pack is
the sole user of its operands. Consequently, it is optimistic when
there are external scalar users of a vector pack and fails to account
for the vector extraction cost. On the other hand, the SLP heuristic
is also pessimistic when there are multiple uses of non-vectorizable
vector operands and fails to recognize that the multiple uses lower
the cost of vector shuffle/insertion (by amortization).

Consider the following code snippet, where there are two seed
packs: the two pairs of stores to the arrays a and b.

afo] =
b[0] =

x[0] + t1;
y[0]l + t1;

al1] =
b[1] =

x[1] + t2;
y[0]l + t2;

Suppose the temporaries t1 and t2 are not vectorizable. To vector-
ize the rest of the code snippet, the vectorizer would need to emit
extra vector insertion instructions to create the vector [t1,#2]. On a
machine where vector insertions are expensive, it is plausible that
this code is profitable to vectorize only when the instruction (sub-
)DAG rooted at both seed packs are vectorized to amortize the cost
of creating [#4, t2]. Unfortunately, because the SLP heuristic pro-
cesses each seed pack separately, it would (correctly) conclude that
none of the seed packs are individually profitable and (incorrectly)
decide that the whole basic block is not worth vectorizing.

5.2 Improving the SLP Heuristic with Search

To address the SLP heuristic’s limitations in handling shared values
in the instruction DAG, we apply a limited form of lookahead search
on top of the SLP heuristic. We first introduce a recurrence (Figure 9)
for optimally solving the pack selection problem. We don’t intend
to optimally solve the recurrence, which contains exponentially
many subproblems. VEGEN instead uses beam search to navigate a
limited subset of the search space, using costsyp(.) (Figure 7) as a
state evaluation function.

Optimal Pack Selection. Figure 9 shows the recurrence for
computing the optimal cost of vectorizing a given basic block,
cost(V, S, F), in which we solve for the optimal set of packs on
the instruction DAG bottom-up (uses before definitions), tracking
the set of vectors (V) and scalar (S) operands we need to produce
and the set of free instructions (F) we have yet to decide whether

908

ASPLOS 21, April 19-23, 2021, Virtual, USA

to vectorize. We decide how to produce the set of unresolved vector
(and scalar) operands jointly in order to correctly determine the
amortized cost of producing vector values—whether with packs or
using swizzle instructions—with multiple uses.

The full cost of a basic block B is cost({}, live-outs(B), I), where
I is the set of instructions in B. In other words, we need to produce
the live outputs of the original basic blocks as scalars (VEGEN does
not vectorize across basic blocks). VEGEN treats stores as special
cases. Stores are live at the end of a basic block, but, unlike other
live outputs, vectorized stores do not incur extraction costs.

There are two ways to produce a value: as part of some vector
pack or with a scalar instruction. Using a vector pack p recursively
adds its operands to V and removes its results from V and S. To
avoid circular dependencies in the final pack set, we only consider a
pack (or a scalar instruction) once all of its users have been decided
(i.e., not in F).

Finally, the packing problem is solved once the sets of vector
and scalar operands become empty. Note that F need not be empty
for a subproblem to be solved because some machine operations
(e.g., multiply-accumulate and dot-product) replace multiple IR
instructions and turn the intermediate instructions into dead code.

Beam Search. VEGEN selects vector packs using beam search and
guided by the SLP heuristic. Beam search is a form of greedy tree
search, where the search algorithm considers a limited number of
promising search candidates (instead of only the most promising
one). In the case of pack selection, keeping track of this set of
candidates allows the vectorizer to consider some vector packs that
are costly according to the SLP heuristic but actually profitable.

When using beam search, VEGEN’s pack selection heuristic (im-
plicitly) builds a search tree whose nodes correspond to the sub-
problems in Figure 9 (where each sub-problem is represented by
the tuple (V, S, F)), and whose edges correspond to either adding
a vector pack or fixing an instruction as a scalar. Each tree edge
additionally has a transition cost taken to be the non-recursive
terms in Figure 9. For instance, if an edge corresponds to adding a
pack p, then the cost is

costop(opcode(p)) + costextract (P, S) + COStshuﬂ’le(p’ V)

To cut down the branching factor, VEGEN only considers two types
of packs: (1) the producer packs of V and (2) the set of seed packs
it enumerates before the main search loop.

At each iteration of the search, VEGEN tracks a set of k candidate
tree nodes, expands the candidate nodes and aggregates their chil-
dren, sorts the children in increasing order of the estimated cost,
and takes the top k nodes to be candidates of the next iteration.
The special case of the beam search with k = 1 is equivalent to the
SLP heuristic.

Ideally, we would like to order (and prune) the set of candidate
tree nodes based on the true optimal cost of following a tree node:
g + cost(V, S, F), where g is the aggregate cost leading to a given
tree node and cost(V, S, F) is the cost of optimally solving the tree
node’s sub-problem. However, computing the optimal cost is in-
tractable, and we instead order the candidate tree nodes using the
following formula:

g+ cost(V,S,F) ~ g+ Z costsrp(v) + Z costsealar(s)

veV seS



ASPLOS 21, April 19-23, 2021, Virtual, USA

~Qbroadcast
—Qconstant
~®mismatch
affinity(v, w) = —®Xmismatch

~Qjumbled * offset(v, w)
Xmatch

Amatch + 2 affinity(operand; (v), operand; (w))

Yishen Chen, Charith Mendis, Michael Carbin, and Saman Amarasinghe

ifo=w

if v and w are both constants

if v and w not packable

if v and w are loads separated by an unknown offset
if v and w are loads separated by a constant offset
if v and w are contiguous loads

otherwise

Figure 8: Recurrence for estimating the affinity score between two IR values v and w. o, are positive parameters. Before pack

selection, VEGEN uses this function to enumerate a limited
of adjacent lanes are maximized.

cost(Vp, Sp, Fp) + costop(opcode(p)) + costextract (P, S) + costshuﬁle(p, V) if|Fn

cost(V, S, F) = min
0

cost(V, Si, Fi) + costop(opcode(i)) + costinsert (i, V)

set of (non-store) seed vector packs so that the sums of affinities

U

ievalues(p)
if i a scalar A |F N users(i)| =0
if[V|=0A|S|=0

(users(i))| =0

where

Fp = F \ values(p)
Vp={oeV|oNnF, #0}U U operand; (p)
i

Fy=F\{i}
Vi={veV]|onF; #0}
Si=S\F;U U operandj(i)
Jj
costextract (P> S) = Cextract - |values(p) N S|

costshugle(Ps V) = Chugie - {o € V | 0 # p A o N values(p)| > 0}

costinsert (i, V) = Cinsert * Z (# of times i occur in v)
veV

- Free instructions left if use pack p

- Vectors to produce if use pack p

- Scalars to produce if use pack p
- Free instructions left if fix i as scalar

- Vectors to produce if fix i as scalar

- Scalars to produce if fix i as scalar

- Cost of extracting elements of p (if p is not a store pack)

- Cost of shuffling elements out of p

- Cost of inserting i into vectors in V

Figure 9: Optimal vector pack selection within a basic block. V and S are the sets of vector and scalar values we need to produce.
F is the set of (free) IR instructions we have yet to decide whether (or how) to vectorize. C, are the cost model parameters.

6 IMPLEMENTATION

We implemented the offline part of VEGEN (the part involved with
semantics and pattern generation) in Python. We implemented the
rest of VEGEN, the part that performs compile time vectorization,
as an LLVM pass in C++. The LLVM pass takes scalar LLVM IR as
input and emits a mix of scalar IR and target-specific intrinsics'
that in most cases, gets lowered to their corresponding instructions
(e.g., the LLVM intrinsic @11vm. x86. sse2.pmadd.wd maps to the
instruction pmaddwd).

I There is a straightforward mapping from Intel intrinsics to small sequences of LLVM
intrinsics. We find out the mapping from Intel intrinsics to the equivalent LLVM
intrinsics by wrapping an intel intrinsic in a standalone function whose signature
matches that of the intrinsic. We run Clang on this function, and record the instructions
produced by Clang

6.1 Target Instruction Specification

VEGEN generates SMT formulas from the XML file that Intel uses
to render the Intrinsics Guide [9], which contains pseudocode doc-
umentations of the intrinsics. VEGEN then lifts the SMT formulas
to VIDL (vector instruction description language). Lifting the SMT
formulas to VIDL is straightforward because we designed VIDL to
closely match the semantics of SMT bit-vector operations (which
are also closely related to LLVM’s integer instructions).

Translating Semantics from the Intrinsic Guide. To docu-
ment instruction semantics, Intel uses an imperative language that
operates on fixed-length bit-vectors. All values in the language are
bit-vectors and have one of four types: signed integer, unsigned
integer, float, and double. There are no implicit integer overflows
in this language; instead, if an operation can overflow its result

(such addition and multiplication), the operation first converts its

909



VEGEN: A Vectorizer Generator for SIMD and Beyond

input bit-vectors to a wider width—using zero- or sign-extensions,
depending on the signedness—before execution.

We implemented a symbolic evaluator for the language using
z3 [10] and translated Intel’s pseudocode documentation into for-
mal SMT formulas. We chose z3 mostly for its expression simplifier.
The evaluator maps expression-level constructs such as ALU oper-
ators and bit-vector slicing to their SMT equivalents; for instance,
additions become SMT bit-vector additions. We treat the following
high-level program constructs specially:

o Assignment. We model each assignment to (sub-)bit-vector as
a pure expression that takes the original bit-vector value and
outputs the post-update value. The output of the expression
is a concatenation of the unaffected sub-vector(s) and the
updated sub-vector.

Consider, for example, the statement x[7:0] = 0, which
zeros the lower eight bits of a 32-bit variable x, we emit the
following formula:

Concat (Extract(31,8,x), 0b00000000)

o Function calls. We inline all function calls.

e Loops. We unroll all for-loop (All for-loops have constant
trip-counts in the documentation language).

o If-statements. We apply if-conversion to the sub-vector be-
ing mutated—bit-vector assignment is the only construct
with side-effects. In the if-converted expression, we set the
predicate to the condition of the original if-statement, the
true-branch to the right-hand side of the assignment, and
the false-branch to the original value of the sub-vector.

For example, for the following statement, which condition-
ally zeros the lower eight bits of a 32-bit variable x,

IF ctrl[1:0]
x[7:0] = 0
FI

we emit the following formula:

Concat (Extract(31,8,x),
If(Extract(0,0,ctrl)
Extract(7,0,x),
0b00000000))

1,

Our symbolic evaluator returns SMT formulas that are unnec-
essarily complicated in some cases because of the naive imple-
mentation of partial bit-vector updates and predicated updates.
We use z3’s simplifier to reduce the formula complexity. For most
instructions, z3’s simplifier simplifies their symbolic results into
representations that reflect the high-level intent of the original
documentation.

We validated the SMT formulas by random testing. Testing re-
vealed incorrect semantics resulting from ambiguous or simply
incorrect documentation. For instance, the signedness of saturation
arithmetic is particularly ambiguously documented for instructions
from the psubus family (subtract packed unsigned integers with
saturation). It turns out the result of an unsigned subtraction should
be saturated as a signed integer.

910

ASPLOS 21, April 19-23, 2021, Virtual, USA

Pattern Generation. We use LLVM’s pattern-matching library to
implement VEGEN’s pattern matching logic. VEGEN canonicalizes
the patterns before emitting the pattern matchers. The canonical-
izer takes a pattern and generates an LLVM function that has the
same signature as the operation. We then run LLVM’s instcombine
pass on this function and generate pattern matching code accord-
ing to the final canonicalized IR sequences. This canonicalization
biases the patterns toward patterns that LLVM prefers. The most
notable rewrite is canonicalizing all comparisons to strict inequali-
ties (such as rewriting x < 1 to x < 2) and is crucial for recognizing
integer saturations. Additionally, for (sub-)patterns of the form
select(cmp(a, b), x, y), we generate additional code to also match
the inverted case of the comparison.

6.2 Cost Model

For Cinsert and Cextract, we use LLVM’s cost model. We set Cshuffle =
2. VEGEN additionally detects several special-case vector shuffle
and insertion patterns, such as vector broadcast and permutation,
and overrides the default cost model.

To estimate the cost of vector instructions, we use the instruction
throughput statistics from Intrinsics Guide.? To remain compatible
with the rest of LLVM’s cost model, we set the cost of each intrinsic
to be its inverse throughput scaled by a factor of two.

7 EXPERIMENTAL RESULTS

We evaluated VEGEN on a subset of LLVM’s vector instruction
selection tests, some reference DSP kernels chosen from FFmpeg
and x265, and fixed-size dot-product kernels from OpenCV. We
evaluated the two pack selection heuristics discussed in Section 5—
the SLP heuristic and beam search—separately. We show that in
most cases, VEGEN outperforms LLVM’s vectorizer, and we explain
how VEGEN fails to vectorize in the other cases. Additionally, we
present a case-study of VEGEN vectorizing the scalar complex-
multiplication kernel.

Experimental Platforms. For experiments requiring only AVX2,
we run the benchmarks on a server with the Intel®Xeon® CPU
E5-2680 v3 CPU and 128 GB of memory. For experiments requiring
AVX512-VNNI, we use a server with the Intel®Xeon®Platinum
8275CL CPU and 4 GB of memory. We use LLVM 10.0.0. In all cases,
we invoke clang with -03 -ffast-math -march=native.

7.1 Synthetic Benchmarks

For our first set of experiments, we ported some of LLVM’s backend
instruction selection tests for non-SIMD instructions and SIMD in-
structions with complex semantics (e.g., min). These tests were orig-
inally written to exercise the pass that lowers LLVM vector IR into
target vector instructions. Because LLVM’s vector IR only models
isomorphic vector instructions, the tests for non-SIMD instructions
(e.g., haddpd) are written as combinations of LLVM vector instruc-
tions and vector shuffles. We translated the test cases (written in
LLVM IR) to their equivalent scalar version by expanding IR vector
instructions into multiple scalar instructions and by converting
vector function arguments to non-aliased pointer arguments.

Zhttps://software.intel.com/sites/landingpage/IntrinsicsGuide/files/perf2.js


https://software.intel.com/sites/landingpage/IntrinsicsGuide/files/perf2.js

ASPLOS 21, April 19-23, 2021, Virtual, USA

(a) Tests LLVM able to vectorize (b) Tests LLVM unable to vectorize

Test Speedup Test Speedup
max_pd 1.0 hadd_pd 1.4
min_pd 1.0 hadd_ps 1.2
max_ps 1.0 hsub_pd 1.4
min_ps 1.0 hsub_ps 1.2
mul_addsub_pd 1.0 hadd_i16 2.9
mul_addsub_ps 1.0 hsub_i16 4.9
abs_pd 0.8 hadd i32 1.3
abs_ps 0.4 hsub_i32 1.3
abs_i8 1.0 pmaddubs 16.8
abs_il6 1.0 pmaddwd 4.2
abs_i32 1.0

Figure 10: Speedup (over LLVM, higher is better) on instruc-
tion selection tests ported from LLVM’s x86 backend. These
tests were originally written to exercise the pass that lowers
LLVM'’s vector IR into their desired target instructions. We
ported the tests by manually transforming them into their
scalar equivalents.

Figure 10 shows the test results. Both the SLP heuristic and beam
search generate the same code, so we report one set of numbers.
VEGEN vectorizes 19 out of 21 of the tests. LLVM fails to vectorize
10 out of 21 of the tests, all of which are non-SIMD instructions and
are vectorized by VEGEN. Interestingly, the only non-SIMD tests
that LLVM can vectorize are mul_addsub_pd and mul_addsub_ps,
for which LLVM does have special-case support.

Both of the two tests that VEGEN failed to vectorize compute
floating-point absolute values, and for which LLVM uses the fact
that the absolute value of a floating-point can be computed by
masking-off the sign-bit (i.e., the most significant bit) to vectorize;
VEGEN does not have this knowledge and does not vectorize in
these two cases.

7.2 Optimizing Image and Signal Processing
Kernels

To demonstrate that VEGEN can effectively use non-SIMD instruc-
tions on real-world kernels, we evaluated VEGEN’s pack selection
heuristic on six kernels from x265We chose these kernels because
DSP and image processing are the motivating domains for non-
SIMD instructions such as pmaddwd. These benchmarks are chal-
lenging to vectorize because they require intermediate shuffles and
partial reductions. We additionally evaluated the effect of pattern
canonicalization (Section 6). We ported the idct4 and idct8 kernels
from x265’s reference implementation. The rest are from FFmpeg.

We evaluated beam search (Section 5.1) with three beam-widths:
1, 64, and 128. Recall that a beam-width of one is effectively the SLP
heuristic. To evaluate the effect of canonicalizing our generated
patterns, we additionally evaluated a version of VEGEN with pattern
canonicalization disabled (and with a beam-width of 128).

Figure 11 shows the benchmarking results. Both the SLP heuristic
and beam search outperform LLVM in all cases—except for the SLP
heuristic (k = 1) on the idct4 benchmark; in the best case, beam

911

Yishen Chen, Charith Mendis, Michael Carbin, and Saman Amarasinghe

search with k = 128 gets a speedup of 3X on idct4. Beam search
improves on the SLP heuristic on fft4, idct4, sbc, and chroma.

Using a larger beam-width does not always lead to better re-
sults, as shown by the performance degradation of idct8 on AVX512
with a beam-width of 64. We traced the search process and discov-
ered that the larger beam-width caused the search to include some
costly search states that are ignored when k = 1. Their successor
states—the number of which is larger than the beam-width—are
misestimated by costsy p (recall our discussion in Section 5.1 regard-
ing costgrp’s limitations) to be more profitable than other candidate
states and ultimately misdirected the overall search effort.

Canonicalizing the generated patterns using LLVM’s own canon-
icalizer pays off on idct4, idct8, and chroma, all of which use satu-
ration arithmetic. Running LLVM’s canonicalizer on the generated
patterns effectively synchronizes VEGEN’s pattern matchers with
the canonicalization pipeline that LLVM runs before invoking VE-
GEN’s vectorizer.

Vectorizing idct4. We highlight some instructions that VEGEN
generated for the idct4 kernel (targeting AVX512-VNNI). Figure 12
shows the generated code, which is 3x faster than LLVM’s code.
VEGEN uses the instructions vphadd (integer horizontal reduction),
vpmaddwd (the motivating dot-product instruction), and vpackssdw
(saturate 32-bit to 16-bit integers). Of note are the vpunpackhdq
and vpunpackldq instructions preceding the vector stores. VEGEN
uses these shuffle instructions—without which it is not profitable
to vectorize this kernel—to form vector operands that are not di-
rectly produced by compute instructions such as vpmaddwd. VEGEN
discovers this code sequence with beam search (i.e., k € {64, 128})
but not with the SLP heuristic (k = 1).

7.3 Optimizing OpenCV’s Dot-Product Kernels

For our next set of experiments, we evaluated VEGEN on OpenCV’s
reference dot-product kernel implementations. OpenCV’s refer-
ence implementation is a C++ template parameterized with different
data types and kernel sizes. These kernels are challenging to auto-
vectorize because they have interleaved memory accesses as well
as reduction.

Figure 13 shows the benchmarking results. VEGEN found non-
trivial vectorization schemes for three of the four kernels. The
SLP heuristic and beam search generate identical code, so we only
report a single set of numbers. VEGEN vectorizes the first bench-
mark naively—essentially vectorizing across the unrolled iterations
and paying the shuffle cost for the interleaved accesses—and only
yielded a 10% speedup. We investigated the slowdown VEGEN in-
curred on AVX512 (VNNI). It turned out that for the first kernel,
VEGEN actually emitted identical vector IR/intrinsics for both AVX2
and AVX-512. The performance difference comes down to how
LLVM’s backend lowered the shuffles emitted by VEGEN. For the
AVX2, LLVM emitted the vpshufb instruction, whose latency and
inverse throughput are both one cycle. For the AVX-512, LLVM
instead emitted the vpmovdb instruction, whose inverse throughput
is two cycles (and latency four cycles) and slower than vpshufb.

Of note is the vector code VEGEN generated for the int32 X 8
kernel (Figure 14), which matches OpenCV’s expert-optimized code.
We inspected the machine code and confirmed that VEGEN used
the same high-level algorithm used by OpenCV’s expert developer.



VEGEN: A Vectorizer Generator for SIMD and Beyond

Vector Extension = AVX2

ASPLOS 21, April 19-23, 2021, Virtual, USA

Vector Extension = AVX512-VNNI

SR
m ™
NN
e S
oV vV D
© 9 » & ~
N~ 0
~ ~ =
NN ~ 9
¥V S N NN N A
~N NN Y ~ ~ =
é? NN NN o‘?
~ ~ 4
el BN BESE BN EEEE B BN S Gy EEEEEEE SR
g S ©
o S)

4.0
Pack Selection Heuristic
3.5 Beam-1 o
BN Beam-64 mo
3.0 Beam-128 o
. . . )
25 B Beam-128 (w/o canonicalization) o~
£ SS8S ShHE &b
§ 20 NN N o~ o~ ,'\\ RN
Ng ~
Q o NN NN NOoD o
wn m ¥ v
15{° 232322 NS ~
(=)}
© o 5}
0.5
fft4 ft8 sbc idct8 idct4 chroma
Benchmarks

chroma

fft4 fft8 sbc idct8 idct4
Benchmarks

Figure 11: Speedup (over LLVM, higher is better) on kernels we selected from x265 (idct4 and idct8) and FFmpeg

vpermi2d

xmm3 , xmm7 , xmm5
vphaddd xmmo , xmm@,  xmm3
vpmaddwd xmm1 , xmm2,  xmml
vpackssdw xmm1 , xmm1,  xmm2
vpunpckldq xmm2, xmm@, xmml
vmovdqu [rsi], xmm2
vpunpckhdg xmmo, xmm@,  xmml
vmovdqu [rsi+16], xmm@

Figure 12: Snippets of vector code generated by VEGEN (us-
ing a beam-width of 128) for the idct4 kernel.

(a) Results on AVX2 (b) Results on AVX-512 (VNNI)

Kernel Size Speedup Kernel Size Speedup
int§ X 32 1.1 int8 X 32 0.7
uint8 X 32 2.0 uint8 X 32 2.2
int32 X 8 1.5 int32 X 8 1.7
intl6 X 16 1.6 intl6 X 16 2.5

Figure 13: OpenCV’s dot-product kernels specialized for
AVX2 and AVX-512 (VNNI) and different kernel sizes.

The reference (naive) implementation of the int32 x 8 kernel sign-
extends the input elements from 32-bit to 64-bit, multiplies the
two input arrays elementwise, and then reduces every adjacent
pair of elements by addition. There is no single instruction that
can implement this kernel by itself, and the high-level strategy
of VEGEN (and OpenCV) is to perform the odd multiplications
separate from the even ones and finally add the odd and even en-
tries together. To multiply the odd (and even) entries, VEGEN uses
the instruction vpmuldg, which is deceivingly complicated and per-
forms sign-extended multiplications only on the odd input elements
(Figure 6). The multiplications of the odd elements therefore map
naturally to vpmuldg.

912

vmovdqu ymm@, [rdi]
vmovdqu ymm1, [rsi]
vpmuldq ymm2, ymml, ymmo@
vpshufd ymmo, ymmo, 245
vpshufd ymm1, ymm1, 245
vpmuldq ymm@, ymml, ymmo@
vpaddq ymm@, ymm@, ymm2
vmovdqu [rdx], ymme@

## ymmo
## ymmi

ymme[1,1,3,3,5,5,7,7]
ymm1[1,1,3,3,5,5,7,7]

Figure 14: Vector code that VEGEN generated for the int32 X
8 dot-product kernel in OpenCV. vpmuldq multiplies (with
sign-extension) the odd elements of its two vector operands.

vmovupd xmm@, rsi vmovsd xmm@, [rdi]
vpermilpd xmm1, xmm@, 1 vmovsd xmml, [rdi + 8]
vmovddup xmm2, [rdi+8] vmovsd xmm2, [rsi]
vmulpd xmm1, xmml, xmm2 vmovsd xmm3, [rsi + 8]
vmovddup xmm2, [rdi] vmulsd xmm4 ,  xmm2, xmml
vfmaddsub213pd xmm2, xmm@, xmml vfmadd231sd xmm4, xmm3, xmm@
vmovupd [rdx], xmm2 vmulsd xmm1, xmm3, xmml
vfmsub231sd xmm1, xmm2, xmm@
vmovsd [rdx], xmml
vmovsd [rdx + 8], xmm4

(a) Instructions generated by VEGEN (b) Instructions generated by

(vfmaddsub213pd does multiply-addon LLVM
the odd lanes and multiply-sub on the
even lanes)

Figure 15: Complex multiplication kernel, generated by VE-
GEN (Figure 15(a)) and LLVM (Figure 15(b)). VEGEN’s version
is 1.27x faster.

7.4 Optimizing Complex Multiplication

Complex arithmetic is a motivating application for SIMOMD in-
structions. In fact, (to the best knowledge of our knowledge) the first
SIMOMD instructions were designed for complex arithmetic [2].
Figure 15 shows the complex multiplication kernel compiled by
VEGEN (both the SLP heuristic and beam search generated the same
code) and by LLVM. VEGEN uses the instruction vfmaddsub213pd
(which performs fused multiply-add on the odd lanes and multiply-
sub on the even lanes). LLVM does not vectorize in this case, even



ASPLOS 21, April 19-23, 2021, Virtual, USA

though (as noted earlier) LLVM’s SLP vectorizer has been specifi-
cally modified to support such a pattern. We stepped through the
LLVM'’s optimization decisions and discovered that the root cause
is an error in its cost-benefit analysis. Since LLVM’s SLP vector-
izer is target-independent, it models such an alternating pattern as
two vector arithmetic instructions followed by a vector blending
instruction that combines the results. The error occurs when the
LLVM’s vectorizer includes the cost of the blending instruction
into its analysis and overestimates the total vectorization overhead.
VEGEN does not suffer from such issues because VEGEN has direct
knowledge of which target instructions are available.

8 RELATED WORK

Auto-vectorization. Loop vectorization and SLP vectorization
are the two dominant vectorization techniques used by modern
compilers. Both types of vectorization techniques do not model non-
SIMD vector instruction in principle, but their implementations
in mainstream compilers such as LLVM have some special case
non-SIMD support.

Nuzman and Zaks [20] proposed a technique for vectorizing in-
terleaved memory accesses within a loop-based vectorizer. Eichen-
berger et al. proposed a technique for vectorizing misaligned mem-
ory accesses [11], and FlexVec [3] extends loop vectorizers to sup-
port vectorizing irregular programs with manually written rules. In
contrast, VEGEN systematically adds support to generate non-SIMD
instructions automatically and is not limited to a particular class of
non-SIMD instructions.

The vectorizer generated by VEGEN is more similar to SLP vec-
torization introduced by Larsen and Amarasinghe [15]. However,
VEGEN supports a more general type of parallelism (LLP) and can
therefore target non-SIMD instructions. Almost all published SLP
vectorization techniques propose algorithmic improvements to cap-
ture more parallelism within the SLP framework. Some examples
are Holistic SLP vectorization [17], Super-node SLP [26], TSLP [23],
PSLP [24], VW-SLP [25], and ILP solver-aided goSLP [19].

There are domain-specific vectorizers that exploit architecture-
specific vector instructions as well as application-specific patterns.
The SPIRAL project [27] proposes several auto-vectorization schemes
specific to DSP algorithms. More specifically, they propose a target-
independent search-based vectorizing compiler targeting DSP algo-
rithms [12] and show how to use the vector swizzle instructions
supported by the AVX and Larrabee ISAs to implement the matrix
transpositions found in FFTs [18]. Compared to SPIRAL and its ex-
tensions, VEGEN is a general-purpose vectorizer and not designed
to target any specific vector instruction sets.

Instruction Selection. VEGEN closely related to the research on
building retargetable compilers. VEGEN is different from this line
of work in that it focuses on extracting fine-grained parallelism
(as a vectorizer) while simultaneously being aware of the detailed
operations supported by these target instructions (similar to an
instruction selector). Instruction selection—regardless of the qual-
ity of the code generator—alone is insufficient for automatically
targeting non-SIMD vector instructions because traditional instruc-
tion selectors only lowers IR vector instructions—thus requiring
cooperation with the vectorizer.

913

Yishen Chen, Charith Mendis, Michael Carbin, and Saman Amarasinghe

Ganapathi et al. [13] presented a survey on retargetable code
generation. Cattell [7] investigated automatically generating code
generators from machine descriptions. Ramsey and Fernandez [28]
proposed a specification language for describing instruction encod-
ing. Buchwald et al. [6] synthesized instruction selection rules for
32-bit x86 integer instructions from their bit-vector specification.

Superoptimization. VEGEN is more broadly related to super-
optimization, which uses search techniques to directly generate
optimized programs based on instruction semantics. In principle,
a superoptimizer can accomplish what VEGEN does, but in prac-
tice, existing superoptimizers are orders of magnitude slower than
auto-vectorizers such as VEGEN.

Bansal and Aiken [4] constructed a peephole superoptimizer
by exhaustively enumerating short sequences of x86 instructions.
Schkufza et al. [31] proposed a stochastic superoptimizer that trades
completeness for scalability via a Markov Chain Monte Carlo sam-
pler. Barthe et al. [5] proposed a synthesizing vectorizer that works
by first unrolling the scalar code and then using an enumerative syn-
thesizer to find more an efficient vector program that implements
the unrolled loop body. Phothilimthana et al. [22] build on previous
work on enumerative [5], stochastic [31], and solver-based synthe-
sis to scale up superoptimization. Sasnauskas et al. [30] described a
superoptimizer for straight-line scalar LLVM IR.

9 CONCLUSIONS

We have described a framework for building target-aware vectoriz-
ers that can use non-SIMD instructions. We introduce Lane Level
Parallelism, a new model of short vector parallelism that captures
the kind of parallelism implemented by non-SIMD instructions. We
realize this framework with VEGEN, a system that takes vector in-
struction semantics as input and generates a target-aware vectorizer
that uncovers LLP found in straight-line code sequences. VEGEN
is flexible: to target a new vector instruction set, the developers
only need to describe the semantics of the new vector instructions.
VEGEN allows compilers to target new vector instructions with less
development effort and thus enable the creation of more robust
vectorizers in future compilers.

ACKNOWLEDGMENTS

We thank Jesse Michel, Ajay Brahmakshatriya, Teodoro Fields
Collin, Logan Weber, and Alex Renda for reading early drafts and
offering insightful feedback. We also thank our shepherd Guy
Steele and the anonymous reviewers for guidance and valuable
suggestions. Our work is supported by the Application Driving
Architectures (ADA) Research Center, a JUMP Center co-sponsored
by SRC and DARPA; the Toyota Research Institute; the Office of
Advanced Scientific Computing Research under Award Numbers
DE-SC0008923 and DESC0018121; the National Science Founda-
tion under Grant No. CCF-1533753; and DARPA under Awards
HR0011-18-3-0007 and HR0011-20-9-0017. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the
aforementioned funding agencies.



VEGEN: A Vectorizer Generator for SIMD and Beyond ASPLOS 21, April 19-23, 2021, Virtual, USA

REFERENCES

[16] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for

[1

Randy Allen and Ken Kennedy. 1987. Automatic Translation of FORTRAN
Programs to Vector Form. ACM Transactions on Programming Languages and
Systems (1987).

Lifelong Program Analysis & Transformation. In International Symposium on
Code Generation and Optimization: Feedback-directed and Runtime Optimization.

[17] Jun Liu, Yuanrui Zhang, Ohyoung Jang, Wei Ding, and Mahmut Kandemir. 2012.

A Compiler Framework for Extracting Superword Level Parallelism. In ACM

[2] Leonardo Bachega, Siddhartha Chatterjee, Kenneth A. Dockser, John A. Gun- - . !
nels, Manish Gupta, Fred G. Gustavson, Christopher A. Lapkowski, Gary K. Liu, SIGP'LAN Conf'erence on Programming Language Design ‘?”d Implementatzfm.
Mark P. Mendell, Charles D. Wait, and T. J. Chris Ward. 2004. A high-performance ] Daniel McFarlin, Volodymyr Arbatov, Franz Franchetti, and Markus Piischel.
SIMD floating point unit for BlueGene/L: Architecture, compilation, and algo- 2011. Automatic SIMD Vectorization of Fast Fourier Transforms for the Larrabee
rithm design. In International Conference on Parallel Architecture and Compilation and AVX Instruction Sets. In International Conference on Supercomputing.
Techniques. ] Charith Mendis and Saman Amarasinghe. 2018. goSLP: Globally Optimized
[3] Sara S. Baghsorkhi, Nalini Vasudevan, and Youfeng Wu. 2016. FlexVec: Auto- Superword Level Parallelism Framework. Proceedings of the ACM on Programming
vectorization for Irregular Loops. In ACM SIGPLAN Conference on Programming Languages (2018). L
Language Design and Implementation. ] Dorit Nuzman, Ira Rosen, and Ayal Zaks. 2006. Auto-vectorization of Interleaved
[4] Sorav Bansal and Alex Aiken. 2006. Automatic Generation of Peephole Superop- Data for SIMD. h} ACM SIGPLAN Conference on Programming Language Design
timizers. In International Conference on Architectural Support for Programming and.Implementatmn L .
Languages and Operating Systems. ] Dorit Nuzman and Ayal Zaks. 2008. Outer-loop Vectorization: Revisited for Short
[5] Gilles Barthe, Juan Manuel Crespo, Sumit Gulwani, Cesar Kunz, and Mark Marron. SIMD Architectures. In International Conference on Parallel Architectures and
2013. From Relational Verification to SIMD Loop Synthesis. In Symposium on Comp ilation Techniques. o . . . .
Principles and Practice of Parallel Programming. ] Phitchaya Mangpo Phothilimthana, Aditya Thakur, Rastislav Bodik, and Dinakar
[6] Sebastian Buchwald, Andreas Fried, and Sebastian Hack. 2018. Synthesizing an Dhultlatl‘ 2016. Scaling up Superoptlmlzatlon. In Internatiorml Conference on
Instruction Selection Rule Library from Semantic Specifications. In International Arcﬁl{ectural Support for 'Programmmg Languages and Qperatmg Sys'tems. X
Symposium on Code Generation and Optimization. ] Vasileios Porpodas and Timothy M. Jones. 2015. Throttling Automatic Vectoriza-
[7] R. G. Cattell. 1980. Automatic Derivation of Code Generators from Machine tioqz W’hen Less is More. In Confer?nce on Parallel Architecture and Compilation.
Descriptions. ACM Transaction on Programming Languages and Systems (1980). ] Vasileios Porpodas, Albertf) Magni, and T1}m0thy M. ]opes. 2015. PSLP: Padd?d
[8] Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan SLP Autf)n}atlg Vectorization. In International Symposium on Code Generation
Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and' Optzmtzatlan. . 3 X
and Arvind Krishnamurthy. 2018. TVM: An automated end-to-end optimizing Vasﬂel'os I"orpm}las, Rodr}go Y Rocha, and Luis FW Ges. 2018. VW-SLP: auto-
compiler for deep learning. In Symposium on Operating Systems Design and vectorization with adaptive vector width. In International Conference on Parallel
Implementation Arciiitectures andd Com;éilation Techniques. d
. o . . . . Vasileios Porpodas, Rodrigo C. O. Rocha, Evgueni Brevnov, Luis F. W. Gées, an
[9] fntzl. Cor‘porflltl(tn}. 29126 If;te/l Intrinsics Guide. https://software.intel.com/sites/ Timothy Mattson. 2019. Super-Node SLP: Optimized Vectorization for Code
[10] ;;;:fg:%ee Iil/lgglrsamasndull\liiolaj Bjorner. 2008. Z3: An Efficient SMT Solver. In Sequences Contai;ing Operators an Their Inverse Elements. In International
. NN . - Symposium on Code Generation and Optimization.
{;t;;zz;z:al Conference on Tools and Algorithms for the Construction and Analysis ] Markus Puschel, José MF Moura, Jeremy R Johnson, David Padua, Manuela M
. 1 i ianxin Xi Fi Fi hetti, A ic, Ye -

[11] Alexandre E. Eichenberger, Peng Wu, and Kevin O’Brien. 2004. Vectorization for er;)]fs’ ggﬁ:t“\;(/S;gfz:gfﬁ?p)ﬁlc?is li?jr;zzolroanzcoo?tlsypl’;\(]‘fcclg deevgrel:r;/toi:x’l
SIMD Architectures with Alignment Constraints. In ACM SIGPLAN Conference for DS’P transfor;ns Proc ’IEEE (2005) ’ ’ ’ 8
on Programming Language Design and Implementation. ) : e . .

[12] Franz Franchetti and Markus Piischel. 2002. A SIMD Vectorizing Compiler for 1 I;Ziﬁiz i{isl:;ii};zg;i I\A/I(@/a‘?; ;};:sr;i;ie;l 1}’?‘37;asrilJ:filrlfyT(JgnR;Erissizr;t;glogzr(r)li
Digital Signal Processing Algorithms. In International Parallel and Distributed (1997) ' J 8 Languag Y
Processing Symposium. ) . . .

[13] Mahadevan Ganapathi, Charles N. Fischer, and John L. Hennessy. 1982. Retar- ] g;;‘i(l);;:;sgzrr:"l:l;zman, and Ayal Zaks. 2007. Loop-aware SLP in GCC. In GCC

etable Compiler Code Generation. Comput. Surveys (1982). . ’ . .

[14] iRM Holdilfgs 2011.  Arm Architectufe Referen}:‘e (Manlal Armv8.  https: ] Rmmf)ndas Sasnauskas, Yang Chen, Peter Colhngbgurne, Jeroen K gtema, Jubi
//developer arm.com y documentation /ddi0487/latest/ ) ’ Taneja, and John Regehr. 2017. Souper: A Synthesizing Superoptimizer. arXiv

[15] Samuel Larsen and Saman Amarasinghe. 2000. Exploiting Superword Level preprint arXiv:1711.04422 (2017).

Parallelism with Multimedia Instruction Sets. In ACM SIGPLAN Conference on
Programming Language Design and Implementation.

Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013. Stochastic Superoptimization.
In International Conference on Architectural Support for Programming Languages
and Operating Systems.


https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://developer.arm.com/documentation/ddi0487/latest/
https://developer.arm.com/documentation/ddi0487/latest/

	Abstract
	1 Introduction
	2 Motivational Example
	3 Lane Level Parallelism
	4 VeGen's Workflow
	4.1 Vector Instruction Description Language
	4.2 Generating Pattern Matchers
	4.3 Pattern Matching
	4.4 Vectorization
	4.5 Code Generation

	5 Vector Pack Selection
	5.1 Pack Selection Using the SLP heuristic
	5.2 Improving the SLP Heuristic with Search

	6 Implementation
	6.1 Target Instruction Specification
	6.2 Cost Model

	7 Experimental Results
	7.1 Synthetic Benchmarks
	7.2 Optimizing Image and Signal Processing Kernels
	7.3 Optimizing OpenCV's Dot-Product Kernels
	7.4 Optimizing Complex Multiplication

	8 Related Work
	9 Conclusions
	Acknowledgments
	References

