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ARTICLE INFO ABSTRACT
Keywords: This paper leverages recent progress on orthonormal splines for solving uncertainty quan-
B-splines tification (UQ) problems from linear structural dynamics. The resulting methods, premised

Frequency response function
Polynomial chaos expansion
Random eigenvalue problem
Spline chaos expansion

Spline dimensional decomposition

on spline chaos expansion (SCE) and spline dimensional decomposition (SDD), both construe
Fourier-like expansion of a dynamic system response of interest with respect to measure-
consistent orthonormalized basis splines in input random variables and standard least-squares
regression for estimating the expansion coefficients. The SCE and SDD methods are capable
of capturing high nonlinearity and non-smoothness, if they exist, in a stochastic dynamic
response markedly better than the polynomial chaos expansion (PCE) method. However, due
to the tensor-product structure, SCE, like PCE, also suffers from the curse of dimensionality. In
contrast, SDD, equipped with a desirable dimensional hierarchy of input variables, deflates the
curse of dimensionality to a great extent. Numerical results from frequency response analysis
of a two-degree-of-freedom dynamic system indicate that a low-order SCE with fewer basis
functions removes or markedly reduces the spurious oscillations generated by high-order PCE
in estimating the response statistics. Finally, a high-dimensional modal analysis of a fighter jet
comprising 110 random variables was conducted, demonstrating the ability of SDD in solving
large-scale UQ problems.

1. Introduction

Computational modeling and simulation of complex dynamical systems in engineering and applied sciences often mandate
uncertainty quantification (UQ) due to the natural variability of system properties, external excitations, and initial/boundary
conditions [1,2]. The propagation of uncertainties from the input to the output of a dynamic system is commonly associated with
the sampling-based methods, for instance, Monte Carlo simulation (MCS), which are robust but not suitable when only a small
number of full-scale dynamic simulations are manageable. As a result, UQ is now witnessing a massive surge in the development of
surrogate or approximate computational methods with the goal of achieving risk mitigation through scientific prediction. Indeed,
there exists a myriad of UQ methods, namely, polynomial chaos expansion (PCE) [3,4], polynomial dimensional decomposition
(PDD) [5,6], the stochastic collocation methods [7,8], and sparse-grid quadrature [9,10], which are often viewed as surrogates for
expensive-to-run MCS and its variants [11,12]. These methods and a few others not explicitly stated here for brevity, while successful
in conducting UQ analysis of quasi-static problems, are known to face severe technical hurdles when dealing with time-dependent or
stochastic-dynamics problems [13-15]. In addition, most existing methods begin to break down for truly high-dimensional problems,
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List of abbreviations

CDF Cumulative distribution function
Cov Coefficient of variation

FEA Finite-element analysis

FRF Frequency response function

MCS Monte Carlo simulation

PCE Polynomial chaos expansion

PDD Polynomial dimensional decomposition
PDF Probability density function

SCE Spline chaos expansion

SDD Spline dimensional decomposition
SLS Standard least-squares

UuQ Uncertainty quantification

where hundreds of input random variables are necessary to characterize dynamic system states and forecast their evolution in time.
Therefore, development of new surrogate methods capable of effectively handling high-dimensional stochastic-dynamics problems
is desirable.

For linear systems subject to harmonic excitations, determining frequency response functions (FRFs) is a fundamental task
in structural dynamics. They provide valuable dynamic response characteristics over a frequency range with a clear physical
interpretation. However, due to possible uncertainty in mass, damping, and stiffness properties, FRFs are actually random functions,
requiring evaluation of their probabilistic attributes. Relevant works entail mode-based meta models for probabilistic analysis of
FRFs [16], modal approaches for stochastic dynamic analysis in the frequency domain [17], and polynomial expansion leading
to bounds of statistical properties of FRFs [18], to name a few. Later on, Kundu and Adhikari [19] obtained FRFs of a stochastic
system by projecting the response on a reduced subspace of eigenvectors. A few additional studies employing PCE as the surrogate
method of UQ analysis have also been reported. For instance, Jacquelin et al. [20] exploited PCE in calculating the second-moment
statistics of FRFs for a two-degree-of-freedom system. They reported spurious oscillations generated by standard PCE around resonant
frequencies. The problem becomes further compounded when the uncertainty in the system properties causes the randomness of
natural frequencies. Through numerical experiments, they showed that the PCE approximations converge very slowly, requiring
impractically large expansion orders to produce satisfactory estimates of the second-moment properties of FRF. Their subsequent
work involved convergence acceleration of PCE using Aitken’s transformation [21]. A more recent work on PCE consists of a
transformation of FRF, where the expansion is applied on a scaled frequency axis [22]. While these latter works helped in resolving
some of the PCE-related issues, UQ methods exploiting basis functions more powerful than polynomials have yet to materialize.

Another prominent topic in UQ for dynamic systems is solving random eigenvalue problems. The fundamental objective of
random eigenvalue analysis is to characterize quantitatively the uncertainty of the natural frequencies and mode shapes from the
known probability distribution of mass, damping, and stiffness properties. Classical methods for solving random eigenvalue problems
are dominated by the perturbation method [23], a long-standing staple, but no longer contemporary, as it is restricted to problems
with small uncertainties or small nonlinearities. Other methods include the iteration method [23], the Ritz method [24], the crossing
theory [25], PCE [26], and PDD [27,28], to mention just five. Moreover, the foregoing stochastic collocation and sparse-grid
quadrature can be applied to solve random eigenvalue problems. All of these methods are known to offer significant computational
advantages over MCS. However, for truly high-dimensional problems, the PCE or collocation methods require astronomically large
numbers of basis functions, succumbing to the curse of dimensionality [29]. Although basis splines (B-splines) have been employed
to construct the sparse-grid quadrature, they are neither orthogonal nor measure-consistent, meaning that the underlying basis
functions are not adapted to the probability measure of input random variables. While PDD is known to reduce PCE’s computational
cost to a significant margin [30], both expansions, founded on globally supported polynomial basis, are largely predicated on the
smoothness assumption of the output function. For oscillatory, non-smooth, or discontinuous responses, PDD also requires overly
large expansion orders, causing unreliable predictions of stochastic performance. This is chiefly because polynomials, being too
smooth, are susceptible to unstable swings when the expansion order exceeds four or five [31]. The authors contend that alternative
expansions, such as those rooted in low-order splines, should be exploited to generate an accurate but practical way of solving
random eigenvalue problems. The rationale for selecting locally supported splines over globally supported polynomials stems from
the argument that a highly nonlinear or non-smooth stochastic response, be it an eigenvalue or an eigenfunction, is better suited to
be picked up accurately by the former, which comprises smoothly connected locally polynomial functions.

The principal objective of this study is to introduce two novel expansions, referred to as spline chaos expansion (SCE) and
spline dimensional decomposition (SDD), for solving UQ problems in structural dynamics involving frequency response analysis
and modal analysis. While this paper focuses on the computational and practical aspects of the expansions, readers interested
in rigorous mathematical analyses of SCE and SDD, including theoretical results and their formal proofs, should consult the
respective prequels [32,33]. The paper is organized as follows. Section 2 begins with mathematical preliminaries and requisite
assumptions. Section 3 presents a problem description for each class of UQ analysis addressed in this work, leading to a consolidated
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general problem statement. Section 4 describes the construction of measure-consistent, univariate orthonormalized B-splines in each
coordinate direction. Section 5 introduces SCE and SDD for a square-integrable output random variable of interest, including the
approximations or methods emanating from their truncations. In the same section, analytical formulae for the mean and variance of
a truncated SCE/SDD are derived. The calculation of the SCE/SDD coefficients is discussed in Section 6. Two numerical examples,
one focusing on the FRFs of two-degree-of-freedom dynamic systems and the other entailing the natural frequencies and mode shapes
of a 110-dimensional, industrial-scale engineering problem, are provided in Section 7. Finally, conclusions are drawn in Section 8.

2. Input random variables and dynamic system matrices

Let N :={1,2,...}, Ny :=NU{0}, R := (-0, +), ]R(’)’ := [0, +00), RT := (0, +00), and C be the sets of positive integers (natural),
non-negative integers, all real numbers, non-negative real numbers, positive real numbers, and complex numbers, respectively.
Denote by [a,, b,] a finite closed interval, where a,,b, € R and b, > a. Then, given N € N, AN = ><1’:’= \lak, by ] represents a closed
bounded domain of RN .

Let (£2, F,P) be a probability space, where 2 is a sample space representing an abstract set of elementary events, F is a c-algebra
on Q,and P : F — [0, 1] is a probability measure. Defined on this probability space, consider an N-dimensional input random vector
X :=(X},.... Xn)T, describing the statistical uncertainties in the mass, damping, and stiffness properties of a linear dynamic system.
Denote by Fx(x) := P(ni’i X <x b the joint cumulative distribution function (CDF) of X. The kth component of X is a random
variable X, which has the marginal CDF Fy L) 1= P(X G < x). The positive integer N, which represents the total number of input
random variables, is often referred to as the dimension of the stochastic or UQ problem.

For M € N, consider a linear, M-degree-of-freedom, dynamic system with random mass matrix M(X) € R™*M  random damping
matrix C(X) € RM*M and random stiffness matrix K(X) € RM*M, The probabilistic characteristics of these system matrices are
derived from the probability law of X. As an example, consider a mass—-spring—damper model of a single-degree-of-freedom dynamic
system with mass M, damping coefficient C, and spring constant K. If all of these input parameters are modeled as random variables,
then X := (M, C, K)T with stochastic dimension N = 3.

The requisite assumptions on input random variables and dynamic system matrices are as follows.

Assumption 1. The input random vector X := (X, ..., X )7 satisfies all of the following conditions:

(1) All component random variables X,, k = 1, ..., N, are statistically independent, but not necessarily identically distributed.
(2) Each input random variable X, is defined on a bounded interval [a,, b;] C R. Therefore, all moments of X, exist, that is, for
all/ e N,

E [X!] :=/QX,’((w)d]P’(w)<oo, (€8]

where E is the expectation operator with respect to the probability measure P.

(3) Each input random variable X, has absolutely continuous marginal CDF Fy, (x;) and continuous marginal probability density
function (PDF) fy (X)) 1= 0Fx, (x)/0x, with a bounded support [a,,b,] C R. Consequently, with Items (1) and (2) in mind,
the joint CDF Fx(x) and joint PDF fx(x) := 0" Fx(x)/dx, --- 0xy of X are obtained from

N N
Fx) =[] Fx,(x0 and fx00 =[] fx, 0, @
k=1 k=1
respectively, with a bounded support AN c RY of the density function.

Assumption 2. The dynamic system matrices fulfill all of the following conditions:

(1) The mass matrix M(X) is real, symmetric, and positive-definite, whereas the stiffness matrix K(X) and damping matrix C(X)
are real, symmetric, and positive semi-definite.

(2) The damping matrix C(X) can be proportional or non-proportional. If proportional, the damping matrix is a linear combination
of the mass and stiffness matrices.

Assumption 1 ensures the existence of a relevant sequence of orthogonal polynomials or splines consistent with the input
probability measure. Assumption 2 guarantees real-valued eigensolutions for undamped or proportionally damped systems. For
non-proportionally damped systems, the eigensolutions can be real-valued or complex-valued, depending on the damping matrix.

3. UQ problems in structural dynamics

Consider a linear, M-degree-of-freedom, dynamic system with random mass matrix M(X) € RM*M  random damping matrix
C(X) € RMXM_  and random stiffness matrix K(X) € RM*M gatisfying Assumption 2. Under external excitation with an
M-dimensional deterministic force vector f(r), the governing equation of motion in the time domain is

MX)i(t; X) + CX)z(t; X) + KX)z(t; X) = £(1), 3)

where 1 € [0,T] C ]R(J)’, T € R*, is time, z(t;X) is the M-dimensional displacement vector, z(r; X) is the M-dimensional velocity
vector, and Z(#; X) is the M-dimensional acceleration vector. The second arguments of the displacement, velocity, and acceleration
responses indicate that they also depend on the input random vector X. Two prominent UQ problems from structural dynamics in
conjunction with frequency response analysis and modal analysis are described as follows.
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3.1. Frequency response analysis

Consider a deterministic harmonic excitation with the complex-valued force vector
£(r) = F(w) exp(io?), 4

where i = V-1, o € [0, 0,] CR*, 0 < w; < w, < o0, is the excitation (angular) frequency, and F(w) € RM is the real-valued force
amplitude vector. For a linear system, the steady-state displacement response is

2(t; X) = Z(w; X) exp(iot), )

where Z(w; X) € CM is the complex-valued displacement amplitude vector that also depends on X. It is elementary to show that
Z(w;X) satisfies

[0’ MX) +i0C(X) + K(X)] Z(w: X) = F(), ©)
the governing equation of motion in frequency domain. Inverting Eq. (6), the displacement amplitude

Z(@;X) = [~0™M(X) +i0C(X) + K(X)]_1 F(w) = H(w; X)F(w), )
where, in the second equality,

H(®; X) = [~0’M(X) +i0CX) + KX)| " € CMM ®)

defines a matrix of complex-valued FRFs for the dynamic system. In UQ analysis, one is interested in propagating the uncertainty
of input X to FRFs, leading to the probabilistic characterization of Z(w; X).

Consider a special case where the ith component of F(w) is one and other components are zero. Then, from Eq. (7), the ith
component of Z(w; X), denoted by Z;(w;X) € C, is

Zj@:X) = Hy(@:X), i=1,..., M, ©)

where H;;(w;X) € C is the ith diagonal element of H(w; X). Define by

|Z(@:X)| = |Hy(@: X)| = \/[Re(H,-i(aJ;X))]2+ [Im(H(@: X)), i=1,.... M, (10)

the modulus or magnitude of Z;(w; X) or H;;(w; X) with Re(-) and Im(-) representing, respectively, the real and imaginary parts. Here,
UQ for frequency response analysis is aimed at calculating the probabilistic characteristics of | H;;(w; X)| when the input uncertainty
is arbitrarily prescribed, provided that Assumptions 1 and 2 are fulfilled.

According to Eq. (10), only the point FRFs have been considered. The extension to the analysis of cross FRFs is trivial.

3.2. Modal analysis

Consider, again, an M-degree-of-freedom, dynamic system with the system matrices M(X), C(X), and K(X) defined earlier and
a general nonlinear function f. The probabilistic characteristics of the system matrices can be derived from the known probability
law of X. A non-trivial solution of

S AX):; M(X), CX), K(X)) ¢(X) = 0, an

if it exists, defines the random eigenvalue A(X) € R or C and the random eigenvector ¢(X) € RM or CM of a general nonlinear
eigenvalue problem. Depending on the applications, a wide variety of functions f and, hence, eigenvalue problems exists. Table 1,
reported by Rahman and Yadav [30], lists a few examples of random eigenvalue problems frequently encountered in dynamic
systems. Two prominent examples are a linear eigenvalue problem associated with an undamped or proportionally damped system
and a quadratic eigenvalue problem affiliated with a non-proportionally damped system. Other types of nonlinear eigenvalue
problems, such as palindromic, polynomial, and rational eigenvalue problems, may appear in various applications, where additional
system matrices are involved. In the latter cases, dedicated eigenvalue solvers must be used to find a solution, as discussed in modal
analysis of viscoelastic sandwich plates [34]. In this work, only linear or quadratic eigenvalue problems are considered.
In general, the eigensolutions depend on the random input X via solution of the matrix characteristic equation

det [/ (AX); M(X), C(X), K(X)] = 0 12)

and subsequent solution of Eq. (11). A principal objective in solving a random eigenvalue problem is to determine the probabilistic
characteristics of eigenpairs

{A(i)(X), ¢(i)(X)} ,i=1,....,.M,

from the known probability distribution of the input random vector X. For an undamped linear dynamic system, the natural
frequencies are the square-root of eigenvalues, whereas the mode shapes are the same as the eigenvectors.

Once the random eigenvalues 1)(X) and random eigenvectors ¢)(X) are determined, say, for a proportionally damped system,
they can be used for either time domain or frequency domain analysis. For time domain analysis, the displacement vector z(t; X)
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Table 1
Random eigenvalue problems in dynamical systems [30].

Eigenvalue problem® Problem type and application(s)

Linear; undamped or proportionally
damped systems
Quadratic; non-proportionally damped

[-AXOM(X) + K(X)] (X) =0

[Z2EOMX) + AX)CX) + KX)| ¢(X) =0 ) .
systems, singularity problems

[A(X)MI(X) +My(X) + M{ (X)/A(X)] $X)=0 li’izi::z;;z:tlcr;li:zoustlc emissions in
[Z A"(X)Ak(X):| X) =0 Polynomial; control and dynamics
m problems
Rational; plate vibration (¢ = 1), fluid—
} ¢X)=0 structure vibration (g = 2), vibration of
viscoelastic materials

MX)C(X)

[A(X)M(X) —KX) + Z TS
-

k

aM(X), C(X), and K(X) are mass, damping, stiffness matrices, respectively; M,(X), M, (X), A;(X), and C,(X) are various coefficient
matrices.

is obtained from the linear transformation z(;X) = @®(X)q(t;X), where q(,X) € RM is the vector of normal coordinates and
@&(X) € RM*XM g the matrix of M random eigenvectors as its columns. Due to proportional damping, the governing equations for a
multi-degree-of-freedom system are uncoupled in normal coordinates, thus obtaining q(; X) by solving a series of governing ordinary
differential equations for single-degree-of-freedom systems. For frequency domain analysis, under the assumption of viscous damping
and mass-normalized eigenvectors, an FRF can also be expressed as a nonlinear function of natural frequencies, mode shapes, and
modal damping. Therefore, the solution of random eigenvalue problems has several applications in stochastic dynamic analysis.

3.3. A general problem statement

Given an input random vector X := (X,...,Xpy) : (2,F) — (AN, BN) with known PDF fx(x) on AN c RN, denote by
yX) := y(X|,...,Xy) a real-valued, measurable transformation on (£2,F), describing a general output response of a stochastic
dynamic system. For instance, y(X) = |H;;(w;X)| from frequency response analysis in Eq. (10); or yX) = A(X) from eigenvalue
analysis in Eq. (12). For eigenvalue analysis, y(X) may also represent any component of the eigenvector ¢(X) in Eq. (11), provided
that a consistent normalization of the mode shape is employed. If the eigensolutions are complex-valued, then y(X) represents either
the real or imaginary parts of eigenvalues and eigenvectors. Regardless of which stochastic-dynamics problem is being solved, the
output function y is implicit, is not analytically available, and can only be viewed as a high-dimensional input-output mapping,
where the evaluation of the output function y for a given sample input x requires expensive finite-element analysis (FEA). A major
objective of UQ analysis is to estimate the probabilistic characteristics of an output random variable Y = y(X), including its statistical
moments and CDF, when the probability law of the input random vector X is prescribed. More often than not, Y is assumed to belong
to a reasonably large class of random variables, such as the weighted L? space

L*(Q,F,P) := {Y QR / lyX(@))|* dP(w) =/ lyx)|? fx(x)dx < co}, (13)
Q AN
which is a Hilbert space with the inner product
X, zX) 20 p) = /Q Y X(@))z(X(w)) dP(w) = /A N »(x)z(x) fx (x) dx (14
and norm

”y(X)”LZ(Q,r,]p) = \V (¥X), y(X))LZ(Q,r,]p) = \//Q yz(X(a))) dP(w) = \/4/AN yz(X)fX(X) dx. (15)

4. Univariate basis functions

Let X = (x;,...,xy) be an arbitrary point in A". For the coordinate direction k, k = 1,..., N, define a non-negative integer
pr € Ny and a positive integer n, > p; + 1, representing the degree or order? and total number of basis functions, respectively. The
rest of this section briefly describes necessary details of univariate B-splines.

2 Degree and order are used interchangeably in this paper.
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4.1. Standard B-splines

For the coordinate direction k = 1, ..., N, define a knot vector

&k = {fk,ik}nkm+1 {ay = &p1-Skar - Emprpert = O} 16)

ip=1

on the interval [a, b] by a non-decreasing sequence of real numbers, where & ; is the i th knot with i, = 1,2,...,n; + p, + 1. Any
knot may appear up to p, + 1 times in the sequence. Hence, the knot vector can be rewritten as

my | times myp times My —1 Limes Micp, times
—iN— — ~
Er=Aar =G 1 GG Gk s Chrmto o> Sk =1 Sk -+ > Sk, = s 17)

ap =8 <o << C:k,rk—l < Ck,rk = by,

where ¢ . jx = 1,2,...,r;, are r; unique knots, each of which has multiplicity 1 < m, ; < p,+1. Aknot vector is called (p; +1)-open
if the end knots have multiplicities pi + 1. In this work, only (p, + 1)-open knot vectors are considered. For more details, readers are
referred to Appendix of this paper and Chapter 2 of the book by Cottrell et al. [35].

Denote by B" (xk) the i th univariate B-spline with degree p,. Given the knot vector &, and zero-degree basis functions, all
higher-order B- sphne functions on [a,, b ] are defined recursively, where 1 <k < N, 1 <i; <n, and 1 < p; < 0. See Appendix for
an explicit definition of B i (xk)

The B-splines are bequeathed with a number of attractive properties, delivering superb approximating power to numerical
methods. More precisely, they are [35,36]: (1) non-negative; (2) locally supported on the interval [§,;, &, +p,+1) for all ii; (3)
linearly independent; (4) committed to partition of unity; and (5) pointwise C*-continuous everywhere except at the knots ¢ ; of
multiplicity my ; for all j,, where they are CP¥~"kjr -continuous, provided that 1 < m, g <P+l

4.2. Measure-consistent orthonormalized B-splines

The aforementioned B-splines, although they form a basis of the spline space of degree p, and knot vector &, are not necessarily
orthogonal with respect to the probability measure fy, (x,)dx, of X,. A three-step procedure, originally proposed in a past work [32],
is summarized here to generate their orthonormal version.

(1) Given a set of B-splines of degree p,, create an auxiliary set by replacing any element, arbitrarily chosen to be the first, with
one. Arrange the elements of the set into an n,-dimensional vector

P (x,) = (1,B§’pk,€k(xk),..., - gk(xk)) (18)

comprising the auxiliary B-splines. The linear independence of the auxiliary B-splines is preserved [32].
(2) Construct an n;, x n;, spline moment matrix

Gy = E[P (X )PL(X))]. (19)

The matrix G, exists because X, has finite moments up to order 2p,, as stated in Assumption 1. Furthermore, it is symmetric
and positive-definite [32], ensuring the existence of a non-singular n, x n, whitening matrix W such that

wWIW, = G, (20
(3) Apply a whitening transformation to create a vector of orthonormalized B-splines
Y (xp) = Wi Pr(xp), (21
consisting of uncorrelated components
(xp), ip=1,....m, k=1,...,N

lk Pi-Sk

Note that the invertibility of G, does not uniquely determine W,. Indeed, there are several ways to choose W, such that the
condition described in Step (2) is satisfied [32]. One prominent, relatively stable option is to invoke the Cholesky factorization
Gy = Q,Qj, leading to

W, =Q;', (22)
where Q, is an n; X n; lower-triangular matrix. As a result, the transformation becomes

we(x) = QP (xp), (23)

where the orthonormal splines are obtained by linear combinations of auxiliary B-splines. The rest of the paper will use the
Cholesky factorization.
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5. Orthogonal spline expansions

In this section, two novel UQ methods exploiting measure-consistent B-splines are presented for solving both classes of UQ
problems discussed in Section 3. The methods are founded on Fourier-spline expansion of any square-integrable output function of
interest.

5.1. Spline chaos expansion

The input random vector X, as it subsumes independent components, is endowed with a product-type probability measure.
Therefore, multivariate orthonormalized B-splines in N variables are readily constructed from an N-dimensional tensor product of
univariate orthonormalized B-splines, resulting in SCE.

5.1.1. Multivariate orthonormalized basis

Define three multi-indices i := (iy,...,ixy) € NV, n := (n,...,ny) € NV, and p := (p,,...,py) € NV, representing the knot
indices, numbers of basis functions, and degrees of splines, respectively, in all N coordinate directions. Denote by = := {&,..., &y}
a family of all N knot vectors. Associated with i, define an index set

I, :={i=(Gy....iy) 1 1<ig <m, k=1,...,Ny c NV 24

with cardinality
N

1l =[] s (25)

k=1

For the coordinate direction k, define by

I, :i=r -1 (26)
the number of subintervals corresponding to the knot vector &, with r, distinct knots. Then the partition defined by the knot
sequences &, k= 1,..., N, splits AN := x,’(\’: \[ai, b] into smaller N-dimensional rectangles

{x = (Koo Xy) Gy S X < Ggar k= 1,...,N}, Je=1 1, 27)

where {; ; is the jith distinct knot in the coordinate direction k. A mesh is defined by a partition of AV into such rectangular
elements. Define the largest element size in each coordinate direction k by

he= | max, (gk,jkﬂ - g,w.k), k=1,...,N. (28)
Then, given the family of knot sequences = = {&,,....,&xn ),

hi=(hy....hy) and hi= max b, (29)

define a vector of the largest element sizes in all N coordinates and the global element size, respectively, for the domain AY. As
a result, the multivariate orthonormalized B-splines in x consistent with the probability measure fx(x)dx are obtained from the
product

N
¥ipz(X) 1= Hw,id,k,gk () A= (ipseensiy) € 1y (30)

When the input random variables X, ..., Xy, instead of real variables x,, ..., xy, are inserted in the argument, the multivariate
splines ¥; , =(X), i € I,,, become functions of input random variables. Their second-moment properties are [32]

1, i=1:=(,...,1),
E ¥, =X)| = 31
[#ip.2X)] {07 i1 31
and
1, i=j,
E %, =2X)¥,, =X)| = 32
[ ip,2(X)¥jp=( )] {07 i (32)

5.1.2. SCE approximation

Given a degree p and a family of knot sequences Z, recall that {¥;, =(X) : i € 1,,} represents the set comprising multivariate
orthonormalized B-splines that is consistent with the probability measure fx(x)dx. Then, for any random variable y(X) € L*(2, F,P),
there exists an orthogonal expansion in multivariate orthonormal splines in X, referred to as an SCE approximation [32]

Yp.sX) = Y Gy =i 2(X) (33)

i€,
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of y(X), where the SCE expansion coefficients Cipz ER,IE T, are defined as
Cipz =E [yX)¥, =(X)] := / YO (0 fx(0dx, FE T, (34)
A

According to Eq. (33), the SCE of any random variable y(X) € L*(@2,F,P) is an orthogonal projection onto the spline space Sp.=
(say) spanning the set of measure-consistent multivariate orthonormalized B-splines.

5.2. Spline dimensional decomposition

Due to the tensor-product structure, the number of basis functions of SCE escalates rapidly when confronted with high-
dimensional UQ problems. Therefore, development of an alternative expansion, referred to as SDD, which is capable of exploiting
low effective dimensions [37] of high-dimensional functions, is desirable.

5.2.1. Dimensionwise multivariate orthonormal basis

Denote by @ # u = {ky,...,k,;} € {l,..., N} a non-empty subset of the index set {1,..., N} with cardinality 1 < |u| < N. For
such a subset, let X, := (X, e X kw)T be a subvector of X defined on the abstract probability space (L%, F*,P¥), where Q" is the
sample space of X,, F“ is a c-algebra on Q“, and P“ is a probability measure. As X comprises independent random variables, the
PDF of X, is

|u|

£x, 0 = [T o =[] £, G 30 1= G O (35)
keu I=1
Define three multi-indices i, := (i\.....i;,) € N, n, := (N = NM, and p, = (py,. .- Pr,) € N(‘)“l, representing
the knot indices, numbers of basis functions, and degrees of splines, respectively, in all |u| coordinate directions. Denote by
B, ={&,, - ,gk‘ul } a family of all |u| knot sequences. Associated with i,, define an index set
L, = {iu = (g gy D 1S Sy, 1= 1,...,|u|} c Nl (36)
with cardinality
|Iu,nu| = H"k' (37)
keu

For the coordinate direction k;, define by

L, i=r =1 (38)
the number of subintervals corresponding to the knot vector &, with r, distinct knots. Then the partition, defined by the knot
vectors & ..., &y, » decomposes the |u|-dimensional rectangle A* := x;c,[a;, b;] into smaller rectangles

{xu = (ko) Gy <%t < iy = 1,...,|u|}, Ji = Lo Iy, (39)

where ¢, ; is the j, th distinct knot in the coordinate direction k,. A mesh is defined by a partition of A" into such rectangular
elements. Define the largest element size in each coordinate direction k € u by

Py = jk,=nllfl?.(,1k, (gk”jk/"'l - ck"jkz ) dl=1 ful. (40)
Then, given the knot vectors =, = (&, - ’gkw }
b, = (oo hyy,) and h, = _max hyg, (41

define a vector of the largest element sizes in all |u| coordinates and the global mesh size, respectively, for the domain A“.

Consequently, for § # u = {k, ...k} € {1,...., N}, with p, = (.. ... Pr,) € Ng’l and =, = {§,, ... &y, Hin mind, the multivariate
orthonormalized B-splines in x, = (x;, ... X)) consistent with the probability measure fx (x,)dx, are
u| .
u — k — 1 s o— (i ; 7
Tiuvpuvsu (x,) = g Vo &i () = Hwik,fpk,vfk, (xk/)’ L= (lkl T lklu\) € I"’“u’ (42)
u =

where

Iyn, 1={iu=(ik,~--,ik‘ul) P2Ziy Smy 1= 1»...,|u|} CN\ {1pH (43)
is a reduced index set, which has cardinality

1Zym, | =[O = 1. (44)

keu
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The key difference between the index sets I_u,nu and 7,, is that the former limits the range of index iy, I = 1,..., |ul, associated
with the kth variable x,, to 2,...,n,,. The exclusion of i, = 1 removes the first constant element of y, (x,,) in order to prevent
reduction of the degree of interaction of the corresponding multivariate spline basis below |u|.

When the input random variables X, ..., Xy, instead of real variables x,, ..., xy, are inserted in the argument, the multivariate
splines ‘Pi':_pu_su X)), 3 #uc{l,.. ,N}i, € Z_u,n“, become functions of random input variables. Then, for @ # u,v C {1,...,N},
i, €1,,,and], €1,, , the first- and second-order moments of multivariate orthonormalized B-splines are [33]

E[7, = X)|=0 (45)

and
1, u=vandi, =j,,
Bl - X0, o (X )] = = do (46)
LopuE = 0, otherwise,
respectively.
5.2.2. SDD approximation
Suppose the degree and family of knot sequences in all coordinate directions have been specified as p = (p, ..., py) € Ny il and

E={&.....&n ], respectively. For § # u C {1,....N} and X, 1= (X;,..... X )T © (2 F) > (A", BY), with p, = (o, .. Py, ) € N'"'
and £, = {§,, ..., &y, } in mind, denote by {’I’” oz X i, € 1,5 ) a set comprising multivariate orthonormalized B-splines that

is consistent with the probability measure fx,(x)dx,. Then, for any random variable y(X) € L?(2, F,P), there exists a hierarchically
expanded Fourier-like series in multivariate orthonormal splines in X, referred to as the SDD [33]

YozX) i=yy+ Y DL I (47)
4uC(L....N} i, €L, n,

of y(X), where the SDD expansion coefficients y; € R and c .5, € R,##uc{l,....,N},i, € Z_u,nu, are defined as

yp = E[X)] := /A | YOO x(dx, (48)

LoPy=y u

Cl g, =E OOV, o (X)) = / YOOF - (%) fx(0d%, i, € T (49)
usPu>=u AN usPu>=u

In a practical setting, the output function y(X) is likely to have an effective dimension [37] much lower than N, meaning that
the right side of Eq. (47) can be effectively approximated by a sum of lower-dimensional component functions of y, =(X) but still
maintain all random variables X of a high-dimensional UQ problem. Due to the dimensional hierarchical structure of SDD, this
can be done keeping all basis functions in at most 1 < .§ < N variables, thereby retaining the degrees of interaction among input
variables less than or equal to .S. The result is an S-variate SDD approximation

TP SRESURD YR YR o o &) (50)

PAuC|1,.. N) iel
1<ul<: uStun,

of y(X). When S < N, as it is anticipated to hold in real-life applications, the number of coefficients in the SDD approximation
drops precipitously, ushering in substantial savings of computational effort.

When S = 1 or S = 2, the resulting SDD approximations are referred to as univariate and bivariate SDD approximations,
respectively. In such cases, the functions Yip.X) or y, , =(X) should not be interpreted as first- and second-order approximations,
as S does not limit the accuracy of SDD in capturing the potential nonlinearity of y(X). On the contrary, depending on how
the orders and knot vectors are chosen, arbitrarily high-order univariate and bivariate terms of y(X), including discontinuity and
nonsmoothness, could be lurking inside y; , =(X) or y, , =(X).

5.3. Computational cost
The computational cost and complexity of SCE and SDD approximations with respect to stochastic dimension N can be judged

by examining the corresponding numbers of basis functions involved. To do so, consider the SCE approximation in Eq. (33) and the
S-variate SDD approximation in Eq. (50). The numbers of basis functions from such SCE and SDD approximations are

N
Lys= H ny, (51
k=1
and
N
Lspz=1+ Y JJow-0<]]m=Lps (52)
P#uci{l....N} k€u k=1

1s\ul<s

respectively. If n, = nforall k = 1,..., N, then Lyz= O") from Eq. (51) and Lgy== O3 N®) from Eq. (52). Hence, given a fixed
value of n, the computational effort with respect to N grows exponentially for the SCE approximation and S-degree polynomially
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for the SDD approximation. For example, when N = 10 and n = 5, the univariate (S = 1) and bivariate (S = 2) SDD approximations
involve 41 and 761 basis functions, respectively. In contrast, the number of basis functions in the SCE approximation jumps to
510, which is significantly greater than that required by either of the two SDD approximations. Therefore, SDD reduces the curse
of dimensionality of SCE by a substantial extent. Having said this, SCE is still useful for fundamental studies on low-dimensional
academic-type problems, while SDD, due to its improved scalability, is meant for tackling high-dimensional practical problems
expected in real-life applications. Numerical examples featuring SCE and SDD will be presented in a forthcoming section.

5.4. Convergence

For any y(X) € L%(Q,F,P), a sequence of SCE approximations { Vp.2X) 05 with h = (hy, ..., hy) representing the vector of
largest element sizes, converges to y(X) in mean-square [32], that is,

lim [\yoo - yp,_=<X))2] =0. (53)

In addition, if S = N, then yy , =(X) = y, =(X). Therefore, the sequence of SDD approximations {yg, =(X)}1<s<n, n-o also converges
to y(X) in mean-square [33], that is,

) 2
Sa}\}fnhAO]E [|y(X) - yS’P’E(X)‘ ] =0. (54)

Moreover, as the SCE and SDD approximations both converge in mean-square, they also converge in probability and in distribution.
Readers interested in formal proofs are directed to prior theoretical works [32,33].

5.5. Output statistics and other properties

The SCE and SDD approximations y, =(X) and y ;, =(X) can both be viewed as surrogates of y(X). Therefore, relevant probabilistic
characteristics of y(X), including its first two moments and PDF, if it exists, can be estimated from the statistical properties of these
approximations.

Applying the expectation operator on y, =(X) in Eq. (33) and yg , =(X) in Eq. (50) and recognizing Egs. (31) and (45), the means
of SCE and SDD approximations

E [3p.50] = E [y55500] = Cppz =3y =EyX], 1=(1, .., 1), (55)

are the same and independent of .S, p, and =. More importantly, the SCE and SDD approximations always yield the exact mean,
provided that the expansion coefficient Cy, = or y, is determined exactly.

Applying the expectation operator on [yp,E(X)_Cl,p,E]z and [ys,p,E(X)—y(;,]2 and employing Egs. (31), (32), (45), and (46) results
in the variance

var [y, =2X)] = Y G 2 = CF = < var [y(X)] (56)

i€1,

of Vp.2X) and in the variance

2
var [ys.p.zX)] = Z Z (Ci':,pu,su> < var [y(X)] ”
ﬂ#u]g‘li..gm i, €L, p,

of yg p =(X). Therefore, the second-moment properties of SCE/SDD approximations are solely determined by the relevant expansion
coefficients. The formulae for the mean and variance of the SCE/SDD approximations are the same as those reported for the PCE/PDD
approximations [3,5], although the respective expansion coefficients involved are not. The primary reason for this similarity is rooted
in the use of the orthonormal basis in both expansions.

Being convergent in probability and in distribution, the PDF and CDF of y(X), if they exist, can also be estimated economically
by resampling y, =(X) or ys , =(X). They will be illustrated in numerical examples.

5.6. A few remarks

From the independence of input random variables stated in Assumption 1, the stochastic domain AN is always a rectangle.
Therefore, B-splines are appropriate or adequate for function approximations on that domain. If the domain is non-rectangular, such
as those expected for dependent random variables, then more advanced non-uniform rational basis splines (NURBS) or T-splines may
be considered. However, tackling dependent random variables head-on is not a trivial task in general, because multivariate basis
functions can no longer be constructed from the tensorization of univariate basis functions. Having said so, the use of NURBS or T-
spline becomes necessary for function approximations on physical domains with boundary described by free-form surfaces and conic
sections, such as circles, ellipses, cylinders, spheres, ellipsoids, and tori. In this case, NURBS functions equipped with judiciously
selected weights can represent the physical domain exactly [35]. This was exemplified in the authors’ recent work on stochastic
isogeometric analysis where NURBS are used for describing geometry, displacement responses, and random field discretization, but
B-splines are still used for stochastic analysis [38]. It is worth mentioning that a deterministic meta modeling technique using NURBS

10
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in tandem with an optimization strategy has been reported to ascertain the NURBS parameters automatically [39]. Additionally,
there exists an enhanced version of SDD where the knot vectors have been derived optimally [40].

The orthonormalized B-splines in SCE and SDD are both consistent with arbitrary probability measures of input random variables
with bounded domains. However, there are many UQ problems where there exist random variables with unbounded domains. In
such a case, an appropriate probability preserving transformation, mapping a random variable with unbounded domain to another
with bounded domain is required. The transformation will be identified when numerical examples are presented.

6. Calculation of expansion coefficients

A natural propensity for calculating the SCE and SDD coefficients is to invoke their respective definitions in Egs. (34), (48), and
(49), followed by numerical integration. However, in practical applications, the output function y is often determined algorithmically
by performing time-consuming FEA or other expensive numerical calculations. Clearly, for a high-dimensional UQ problem, say, with
N exceeding ten, evaluating the N-dimensional sums stemming from an N-dimensional numerical integration is computationally
formidable and likely prohibitive. While reduced-order methods, such as the dimension-reduction techniques [38,41], have been
used to curb the computational demand by a great magnitude, here, a more practical alternative to numerical integration, such as
regression analysis, is exploited to estimate these coefficients.

6.1. SCE and SDD approximations: single-index versions

For a simpler description of SCE/SDD approximations, consider listing the terms of the expansions with respect to a single index.
In reference to the concise forms of SCE in (33) and SDD in (50), arrange the elements of the sets
{?’i,p,E(X) ie znu} = {¢1(X), ,¢LPV5(X)} (58)
and

(w2 K1l <8, iy € T, b= {02X. 01, .0}, 010 =1, (59)

LoPu=y

consisting of L, = and Ly, = basis functions, respectively. By doing so, the same basis functions of SCE and SDD in the sets are
indexed with a single integer i. Obviously, the basis functions ¢;(X) and ¢;(X) also depend on p and =, but the latter symbols are
suppressed for brevity.

Associated with eachi=1,...,L,zori=1,...,L Sp.Es denote by C; € R or C; € R the ith SCE or SDD coefficient. As a result,

p.E
the SCE and S-variate SDD approximations can also be written as
Lps
YpzX) = Y Cipy(X). G = / L YOKX X dx, i=1 Ly (60)
i=1 A
and
Lgp=
Vspz(X) = Z Cip,X), C, := /N YX)@,X) fx(®)dx, i=1,...Lg,z. (61)
i=1 A
respectively.

Henceforth, the mean and variances of Vp.sX) and Vs pz(X) are calculated from the expansion coefficients as

E [p,2X)] = E [ysp2X)] = C, = C; =E [y(X)] (62)
and
Lps Lspz
var [y, =(X)] = Y € <var [y(X)], var [ys,=X)] = Y €7 < var [p(X)], (63)
i=2 i=2
respectively.

6.2. Least-squares regression

The standard least-squares (SLS) regression is predicated on the best approximation properties of SCE and SDD methods, which
are described, in the mean-square sense, by [32]

E [y(X) - yp,s(X)]2 = inf E[X) -gX)7P (64)
8ESp =
and

2 _ . _ 2
E OO -5 20" =, ol BDOO AP, (65)

11
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where S, - and Sy, = are relevant spline spaces. Therefore, the approximate expansion coefficients of y, =(X) and yg , =(X) are
determined from the minimizations of

2
Ly Lsp=

E|yX) - Y C¢X)| and E|yX) - Y CoX| . (66)

i=1 i=1

2

Given a UQ problem with known distribution of random input X and an output function y : AN — R, consider an input-output
data set {x, yx)}[  of size L € N. The mapping y can be as simple as an explicitly defined mathematical function or as intricate
as an implicitly described function obtained via computational simulation, such as FEA of complex dynamical systems. In either
case, the data set, often referred to as the experimental design, can be generated by calculating the function y(x() at each input
data point xV. Various sampling methods, namely, standard MCS, quasi MCS, and Latin hypercube sampling, can be used to build
the experimental design.

According to SLS, the expansion coefficients of the SCE and SDD approximation are estimated by minimizing

2

L Lpz
o _ =L 0) o
Gz =T Z‘ yx) — ; C;¢;x'") ©7)
and
1 L Lsp= . 2
tspz =7 2N = ¥ Gox™| 68)

=1 i=1

respectively, which are empirical analogs of Eq. (66). Denote by

d;x D) ¢Lp_5(x(l)) o x) (pLS_p‘_:(x(l))
A= : : , A= : : , (69)
1 (xD) ¢Lp,E(X(L)) o xD) (pLS,p‘E(X(L))
and
b := (yx), ..., yx®))T (70)

an L X L, z matrix, L X Lg, = matrix, and L-dimensional column vector, respectively, comprising evaluations of the orthonormal
spline basis functions from SCE and SDD approximations and output function at the data points, respectively. Then, the estimated
coefficients C‘,-, i=1..,Lyz, of SCEand C;, i = 1,..., Lgp=s of SDD are obtained as

o>

= (G Cpy ) = (ATA) AT 71)

and

= (G oy, ) = (ATA) T AT, 72

on

respectively. Here, ATA is an L, = X L, = matrix, while ATAisan L sp.2 X Lgp = matrix; each of them is often referred to as the
information or data matrix. A necessary condition for the SLS solution is L > L, z or L > Lg, =, that is, the data size must be larger
than the respective number of coefficients involved. Therefore, the computational cost of SCE/SDD approximations, which primarily
comes from generating L samples of an output response, is directly proportional to the number of basis functions or coefficients, as
alluded to in Section 5.3. Even when this condition is satisfied, the experimental design must be judiciously selected in such a way
that the information matrices are well-conditioned.

In lieu of Eq. (66), different error measures are possible to estimate the SCE and SDD coefficients [39]. However, convergence
properties associated with such error measures in the context of SCE/SDD approximations have yet to be studied rigorously.

7. Numerical examples

Two numerical examples illustrating the SCE and SDD approximations are presented for solving UQ problems in structural
dynamics. The first example discusses frequency response analysis by SCE, whereas the second example addresses modal analysis
by SDD. For the SCE/SDD methods, the degrees p, and knot vectors &, are identical in all coordinate directions. Therefore, the
index k will be dropped when discussing the degrees p, knot vectors &, and number of subintervals I in this section. In addition, all
knot vectors are (p, + 1)-open with simple (Examples 1 and 2) or repeated (Example 1) knots. Depending on the example, the knots
are uniformly spaced and/or non-uniformly spaced. The optimal determination of these B-spline parameters, as demonstrated, for
instance, using NURBS in a deterministic setting [39] and using SDD in a stochastic setting [40], was not pursued in this work.

12
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Fig. 1. A two-degree-of-freedom spring-mass—damper system.

7.1. Example 1: frequency response analysis of a two-degree-of-freedom system (N =1 or 3)

Consider a two-degree-of-freedom, proportionally damped, dynamic system, shown in Fig. 1, with possibly random masses,
damping coefficients, and spring constants

M, =M, =(1+6yXy) kg, C; =C,=(+6-Xc) N/(ms),

and K, = K, = 15000(1 + 65 X ) N/m,

respectively, where X,,, X, and X are independent, standard Gaussian random variables with 6,,, 6., and §; representing their
corresponding coefficients of variation (COVs). By selecting appropriate values of the COVs, various dynamic systems, whether fully
deterministic (all COVs = 0), fully random (all COVs # 0), or a random-deterministic combination (some COVs = 0), can be studied.
Therefore, for a fully random dynamic system, the input random vector X = {X,,;, X, Xg}T.

The dynamic system is subjected to a harmonic excitation force vector f(t) = F,, exp(iwr) with the force amplitude vector F =
{1,0}7 N and angular frequency 20z < @ < 70z rad/s. In terms of ordinary frequency f := w/(2x), the range is 10 < f < 35 Hz. From
linear dynamics, the steady-state displacement response vector is z(t) = Z(w; X) exp(iwt), where the complex-valued displacement
amplitude vector Z(w; X) = (Z,(w; X), Z,(w; X))T satisfies

<_w2 [M1 0 ] tim [Cl +C, —02] + [Kl + K, —K2]> (Zl(co;X)> _ <1> 73)
0 M, -G, o -K, K, Z(@: X) 0

The objective of this example is to calculate the second-moment statistics and probability distributions of | Z,(w; X)| or |Z,2z f;X)|

by PCE and SCE for a range of frequencies due to the uncertainty in system properties.

For UQ analysis, the basis functions of PCE are orthonormal Hermite polynomials that are consistent with the standard Gaussian
probability distribution of input random variables. In contrast, the basis functions of SCE are orthonormal splines that are consistent
with the truncated Gaussian probability distribution on the bounded domain [-3,+3]" of input random variables. In addition, for
SCE, the output function was transformed to a function of truncated Gaussian variable by matching the CDFs of standard and
truncated Gaussian variables. It is necessary to do so because splines require bounded support by definition. It is best practice to
select a transformation yielding as little difference between the original and mapped distributions as is possible. Hence, the truncated
Gaussian distribution is an appropriate choice for the transformation.

All expansion coefficients of PCE and SCE were calculated from their respective definitions, requiring N-dimensional integrations,
such as Eq. (34) from SCE. These integrals were subsequently estimated by respective Gauss quadrature rules for both PCE and
SCE, where the quadrature in the latter was performed in each subinterval determined by the chosen knot vector. Therefore, the
following results of PCE and SCE are due to not only their respective projections, but also due to numerical approximations of
expansion coefficients. No detailed numerical study was performed to eliminate the error from the latter.

Two distinct cases, one considering the randomness of the spring stiffness only (N = 1) and the other allowing the randomness of
mass, damping, and stiffness properties (N = 3), were studied. For the mean input in both cases, the natural (ordinary) frequencies
are f, :=w,/(27) = 12.047 Hz and f, := w,/(27) = 31.539 Hz.

7.1.1. Case 1: randomness in stiffness only (N = 1)

For the first case, set 6,;, = 6 = 0 and 6 = 0.05, and assume X to be a standard Gaussian random variable with zero mean
and standard deviation of one. Therefore, the system has deterministic masses M, = M, = 1 kg, deterministic damping coefficients
C, = C, =1 N/(ms), and random spring constants K; = K, = 15000(1 + 0.05Xx) N/m. There is only one input random variable, so
that X = { X} and N = 1. Although the Gaussian assumption theoretically allows a negative value of spring stiffness, the probability
of such event is very low, given the smallness (5%) of the COV used. Moreover, such an assumption permits a fair comparison with
past studies [20,21], where the old results can be compared with the new ones produced from this work.

Five UQ methods — a 50th-order PCE (m = 50), two linear or first-order SCEs (p =1, I = 8; p = 1, I = 16), two quadratic or
second-order SCEs (p =2, I =8; p =2, I = 16) — along with crude MCS (100,000 samples) as a benchmark solution were employed
to calculate the statistical properties of |Z,(27f; Xg)| for this one-dimensional UQ problem. Here, p and I refer to the B-spline
order and the number of subintervals, respectively, of SCE. Table 2 lists both instances of uniformly spaced and non-uniformly
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Table 2
Uniformly spaced and non-uniformly spaced knot vectors for the SCE approximations in Example 1.

SCE method Knot vector

(a) Uniformly spaced knots
Ist-order (p=1, I =8) &={-3,-3,-225,-15,-0.75,0,0.75,1.5,2.25,3,3}

& ={-3,-3,-2.625,-2.25,-1.875,-1.5,-1.125,-0.75, -0.375,

Ist-order (p=1, I = 16
st-order (p ) 0,0375,0.75, 1.125, 1.5, 1.875,2.25,2.625, 3,3}

2nd-order (p=2, I =8) &={-3,-3,-3,-2.25,-1.5,-0.75,0,0.75,1.5,2.25, 3,3, 3}

&=1{-3,-3,-3,-2.625,-2.25,-1.875,—-1.5,-1.125,-0.75, -0.375,

2nd-order (p=2, I =16) 0,0375,0.75,1.125, 1.5, 1.875,2.25, 2.625,3,3,3)

(b) Non-uniformly spaced knots
1st-order (p=1, I =8) &={-3,-3,-1.5,-0.65,-0.25,0,0.25,0.65,1.5,3,3}

4

{-3.-3,-2.25,-1.75,-1.25,-0.8,-0.4,-0.25, -0.1,

1st-ord: =1,I=1
storder (p=1, 6 0,0.1,0.25,0.4,0.8,1.25,1.75,2.25,3,3}

2nd-order (p=2, I =8) &={-3,-3,-3,-1.5,-0.65,-0.25,0,0,0.25,0.65,1.5,3, 3,3}

& ={-3,-3,-3,-2.25,-1.75,-1.25,-0.8,-0.4,-0.25, 0.1,

2nd-order (p=2, T = 16
nd-order (p ) 0,0,0.1,0.25,0.4,0.8, 1.25, 1.75,2.25,3,3,3}

spaced knots considered in this example. For linear SCEs (p = 1), all knot vectors comprise simple knots, whereas for quadratic
SCEs (p = 2), the knot vectors have either uniformly spaced simple knots or non-uniformly spaced repeated knots. The need for
a very high-order PCE is justified based on past works [20,21], where lower-order expansions provided vastly erroneous results.
The number of polynomial basis functions required by the PCE approximation is 51, whereas only 9 or 17 spline basis functions
are involved in the first-order (p = 1) SCE approximations associated with I = 8 and I = 16, respectively. For the second-order
(p = 2) SCE methods, there are 10 or 18 basis functions for uniformly spaced knots and 11 or 19 basis functions for non-uniformly
spaced knots for I =8 and I = 16, respectively. The expansion coefficients were estimated by numerical integration as follows: for
PCE coefficients, the (m+ 20)-point Gauss-Hermite quadrature rule was employed, whereas for SCE coefficients, the Gauss-Legendre
quadrature rule was used with p + 20 Gauss points on each subinterval of the knot vectors defined.

Figs. 2(a) and 2(b) present the plots of the standard deviations of |Z,(2x f; X )| for the range of external (ordinary) frequency
f between 10 and 35 Hz, obtained by the abovementioned SCE approximations with uniformly spaced knots and non-uniformly
spaced knots, respectively. The PCE estimates, also shown in both figures, are in good agreement with the MCS results only for the
non-resonant frequencies. In the vicinity of the resonant frequencies (12.047 Hz, 31.539 Hz), PCE, even with such a high order,
exhibits spurious oscillations that have no physical meaning. Displayed on the right by the enlarged views of the parts of these
plots, such oscillations are more pronounced in the neighborhood of the lower natural frequency. This is primarily because FRFs
are non-smooth functions, emanating from sudden changes of the amplitude that occur around resonant frequencies. For instance,
when |Z,(2x f;; xg)|, determined at f = f; = 12.047 Hz, is plotted against the real variable xy, the non-smoothness at xx = 0
is clearly visible in Figs. 3(a) or 3(b). In contrast, the PCE approximation of |Z, (27 f;xx)l|, also presented in the aforementioned
figures, is smooth and oscillatory, despite the use of an ultra high-order (m = 50) expansion. Note that the harshness of the actual
response function in the vicinity of the resonant frequencies also makes the numerical integration, required to estimate the high-
order PCE coefficients, daunting. To reduce the magnitudes of such oscillations, an impractically large-order PCE as well as an
extremely accurate numerical integration scheme are required, which are computationally prohibitive for large-scale systems. On
the other hand, the SCE-generated function approximations and standard deviations, also plotted in the two foregoing sets of figures,
demonstrate more stable behavior by markedly reducing the oscillations around the resonant frequencies. For quadratic (p = 2) SCE
methods, the approximations [Fig. 3(b)] improve significantly by using repeated knots at xx = 0, which is due to the nonsmoothness
of the original function at xx = 0. For non-uniformly spaced knots, the SCE and MCS results are nearly coincident or extremely close
to each other, regardless of the approximation order or the number of subintervals. This is possible because splines are more flexible
than polynomials in selecting expansion orders and dealing with subdomains. In consequence, low-degree SCE approximations with
appropriate knot vectors produce results superior to those of high-order PCE approximations. Furthermore, SCE achieves this feat
using at most nearly a third of the number of basis functions mandated by PCE.

Once the aforementioned PCE and SCE approximations are constructed, they are re-sampled 100,000 times, facilitating
calculation of the PDF or CDF of |Z,(2zf,; Xx)| at the chosen frequency of f = f; = 12.047 Hz. Figs. 4(a) and 4(b) exhibit the
plots of such PDFs and CDFs, where the SCE results are reported separately for uniformly spaced knots and non-uniformly spaced
knots, respectively. The comparisons with the CDF/PDF generated by crude MCS (100,000 samples), also depicted in these figures,
indicate that SCE calculates the probabilistic characteristics of FRFs, especially at the tail region, more accurately than PCE as
well, provided that the number of subintervals is adequately large (I = 16) for either linear or quadratic SCE. Furthermore, the
quality of SCE results enhances substantially when non-uniformly spaced knots [Fig. 4(b)] are used as opposed to uniformly spaced
knots [Fig. 4(a)]. This is obviously due to SCE’s finer approximation quality with non-uniformly spaced knots and the presence of
repeated knots for quadratic SCE approximations of non-smooth functions, as established in Fig. 3(b). Indeed, given the harshness of
the functions under study, the SCE results are convergent with the increase in the number of subintervals, and quadratic SCE (p = 2,
I = 16) outperforms the 50th-order PCE. Hence, the proposed SCE method is extremely powerful in handling random functions,
especially those involving non-smoothness or heavily oscillatory behavior.
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Fig. 2. Standard deviations of |Z,(2xf; X)| for 10 < f <35 Hz obtained by SCE and other methods for Case 1: (a) uniformly spaced knots; (b) non-uniformly
spaced knots.

7.1.2. Case 2: randomness in mass, damping, and stiffness (N = 3)

The second case involves modeling mass, damping, and stiffness to be all random variables, that is, M| = M, = (1+0.05X,,) kg,
C, =C, =(1+0.05X,) N/(ms), and K; = K, = 15000(1 +0.05X ) N/m, obtained by selecting 6, = 6. = 6x = 0.05. Therefore, there
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Fig. 3. |Z,2xf|:xg)| at f = f; = 12.047 Hz vs. xx and its approximations by SCE and PCE for Case 1: (a) uniformly spaced knots; (b) non-uniformly spaced
knots.

are three input random variables, so that X = {X,;, X, X,}T and N = 3. All three random variables are mutually independent and
follow standard Gaussian probability distributions.

Figs. 5(a) and 5(b) feature similar plots of the second-moment properties of |Z,;(2zf;X)| for the aforementioned range of
frequencies, obtained using (1) a 20th-order PCE (m = 20), (2) a first-order SCE (p = 1, I = 8), and (3) a relatively finer first-order
SCE (p = 1, I = 16). Once again, uniformly spaced and non-uniformly spaced simple knots as those defined in Table 1 are used in
the SCE approximations, where the B-spline order (p) and the number of subintervals (/) are identical in all coordinate directions
k = 1,2,3 of the stochastic domain. The numbers of respective basis functions by the PCE (m = 20), SCE (p = 1,1 = 8), and SCE
(p = 1,1 = 16) methods are 9261, 729, and 4913, respectively. All expansion coefficients were calculated using tensor-products of
(m+ 5)- or (p+ 5)-point Gauss-Hermite or Gause-Legendre quadrature rules for PCE or SCE coefficients, respectively, where p + 5 is
associated with each subinterval of the knot vectors used in SCE. When compared with the results of crude MCS (100,000 samples),
SCE for this three-dimensional UQ problem also substantially reduces oscillations around the resonant frequencies, whereas PCE
continues to struggle. Once again, SCE outperforms PCE, using significantly fewer basis functions than those required by the latter.
Indeed, the results of both Cases 1 and 2, which are qualitatively the same, reveal greater approximation quality of splines over
polynomials.

Despite the success of SCE in probabilistic analysis of FRFs, its application is limited to solving low-dimensional UQ problems
(N < 10). For high-dimensional problems (N > 10), SCE becomes computationally prohibitive, raising the need for SDD as a practical
remedy. The SDD will be featured next in the context of modal analysis.

7.2. Example 2: modal analysis of Dassault Rafale fighter jet (N = 110)

The second example delves into solving a practical UQ problem in tandem with modal analysis of a Dassault Rafale fighter jet
introduced in 2001 [42]. The problem is large-scale, as there are 110 random variables, and the aim is to quantify the uncertainties
in the natural frequencies and mode shapes of the jet by means of the proposed SDD method. The principal objective is to investigate
the accuracy and efficiency of the SDD method in solving this industrial-scale engineering problem.

A picture of the actual jet is shown in Fig. 6(a). While the material composition of the jet is not publicly available in detail,
Fig. 6(b) uses color coding to illustrate 11 types of materials considered for use in manufacturing the different parts of the jet.
The materials, including Kevlar, composite, Aluminum 2024 alloy, and Titanium Ti6Al4V alloy, are all common in the aerospace
industry. All 11 materials have orthotropic elastic properties. According to the data provided in Table 3, each material has three
random Young’s moduli E,, E,, and E, in GPa, three random shear moduli G,,, G,,, and G, in GPa, three random Poisson’s ratios
Vyys Vaz» @nd vy, and one random mass density p in kg/m?, adding up to 10 random variables. No damping is included. Therefore,
there are 110 random variables in this UQ problem. Such high-dimensional problems are extremely challenging and provide an
onerous test for the SDD method.
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Fig. 4. CDF and PDF of |Z,(2zf; Xg)| at f = f, = 12.047 Hz obtained by SCE and other methods for Case 1: (a) uniformly spaced knots; (b) non-uniformly

spaced knots.

In reference to Assumption 1, recall that for an SDD method to be applicable, all probability distributions of input random
variables must be defined on bounded domains [a,,b,], k = 1, ..., 110.> The mass densities in Table 3 all follow truncated Gaussian
distributions, while the Young’s moduli, the shear moduli, and the Poisson’s ratios all have uniform probability distributions. For
each material in Table 3, the mean, COV, and bound limits [a, ] are defined for E,, E, E;, G,,, Gy;, Gy, Vyys Vi Vs and p. In

the table, the subscript k has been dropped from a, and b, for brevity.
As the deterministic black-box solver, an FEA model, with the mesh delineated in Fig. 6(c), was developed using ABAQUS (Version

2019) [43]. The model consists of 30,869 linear tetrahedral elements and 9247 nodes and was not constrained to mimic free-free
vibration. Note that the problem was solved for a fixed FEA model. In other words, the impact of ABAQUS mesh refinement on

3 If an input random variable has unbounded distribution, then a transformation to a random variable with bounded distribution is required. For further

details, the readers are referred to a prior work by the authors [38].
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Fig. 5. Standard deviations of |Z,(2xf;X)| for 10 < f < 35 Hz obtained by SCE and other methods for Case 2: (a) uniformly spaced knots; (b) non-uniformly

spaced knots.

the quality of the results was not studied. Nevertheless, the model demonstrated in Fig. 6(c) was deemed satisfactory in terms of
accuracy and computational expediency. To solve for the natural frequencies and mode shapes, the standard Lanczos method [44]
was employed.

For UQ analysis, the statistical moments of the natural frequencies and mode shapes were estimated by crude MCS with 10,000
samples (FEA) as the benchmark solution and three univariate SDD methods, comprising two of linear orders (p = 1, I = 2,4)
and one of the quadratic order (p = 2, I = 4). Here, p and I refer to the B-spline order and the number of subintervals, equal in
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Fig. 6. Dassault Rafale fighter jet problem [42]: (a) the actual jet; (b) a CAD model showing eleven materials; and (c) an FEA model. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

all coordinate directions k = 1, ..., 110 of the stochastic domain. Moreover, only univariate SDD methods would be affordable to
efficiently solve this ultra high-dimensional UQ problem. In other words, .S = 1 in all three SDD methods described earlier. Overall,
there were 221, 441, and 551 basis functions in the SDD (p = 1, I = 2), SDD (p = 1, I = 4), and SDD (p = 2, I = 4) methods,
respectively.

The SDD coefficients were estimated by the SLS regression with the data size being slightly more than four times the number
of basis functions used by the SDD methods. Note that although there are some rules of thumb for how many samples to pick for
regression purposes, there is no perfect suggestion that would guarantee obtaining good results by SLS. Eventually, 972, 1940, and
2424 samples (FEA) were used for estimating the expansion coefficients of the SDD (p = 1, I = 2), SDD (p = 1, I = 4), and SDD
(p =2, I = 4) methods, respectively, which are larger than four times the number of basis functions for each SDD method.

The results will be presented in two subsections: one for the second-moment analysis of the natural frequencies and mode shapes,
and the other for the CDF analysis of an output random variable of interest.

7.2.1. Second-moment analysis

As the FEA model was not constrained, the first six mode shapes correspond to rigid-body motions with their associated
frequencies practically zero. Therefore, Table 4 lists the means and standard deviations of the first ten non-rigid-body natural
frequencies of the jet computed by the crude MCS and three SDD methods. As observed from the table, there is an outstanding match
between the results obtained by all three SDD methods and those provided by crude MCS as the reference solution. Moreover, the
mean values are estimated more accurately, which is expected, since in UQ, relatively higher-order moments — standard deviation in
this case — are generally more challenging to accurately compute. Nevertheless, the SDD methods are able to economically estimate
the second-moment statistical properties of the natural frequencies. For instance, the SDD (p = 1,1 = 2) method does so by using
only 972 samples (FEA), which is less than one tenth of the number of FEA employed by MCS.

Figs. 7 and 8 illustrate the standard deviations of the fifth and sixth non-rigid-body mode shapes, respectively, calculated by MCS
and three SDD methods. Consistent with the results of natural frequencies in Table 4, the contour plots are generally similar, although
those of the SDD (p = 2,1 = 4) method are the closest to their MCS counterparts. This match between the SDD (p = 2,1 = 4) and
MCS methods is more perceptible to the naked eye in Fig. 8. Hence, the proposed SDD method is able to accurately and efficiently
estimate the second statistical moments of the outputs of interest for this 110-dimensional problem by taking advantage of the
dimensionwise expansion of the random function.

7.2.2. CDF analysis
The results presented in the previous section cover only up to the second-order statistical moment, namely mean and standard

deviation. However, in many applications, the PDF or CDF are required because they include all statistical moments of an output
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Table 3
Mean, COV, and bound limits associated with the random material properties for the jet problem.
Material Type E, E, E, G,, G,. G,, Vi Vys Vyz P
(GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (kg/m?)
1 Kevlar Mean 65.2 78.4 51.9 24.1 36.4 27.4 0.41 0.38 0.32 1440
cov 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05
a 58.7 70.6 46.7 21.7 32.8 24.7 0.37 0.34 0.29 1152
b 71.7 86.2 57.1 26.5 40.0 30.1 0.45 0.42 0.35 1728
2 Composite Mean 441 409 462 167 190 171 0.32 0.38 0.33 1870
Ccov 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.08
a 397 368 416 151 171 154 0.29 0.34 0.30 1403
b 485 450 508 184 209 188 0.35 0.42 0.36 2338
3 Aluminum 2024 Mean 62.1 78.7 70.3 28.8 38.0 23.5 0.29 0.23 0.25 2781
cov 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.1
a 52.8 66.9 59.8 24.5 32.3 20.0 0.25 0.20 0.21 1947
b 71.4 90.5 80.8 33.1 43.7 27.0 0.33 0.26 0.29 3615
4 Aluminum 2024 Mean 71.8 84.0 63.9 29.1 23.5 32.3 0.27 0.31 0.26 2653
cov 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.1
a 64.6 75.6 57.5 26.2 21.2 29.1 0.24 0.28 0.23 1857
b 79.0 92.4 70.3 32.0 25.9 35.5 0.30 0.34 0.29 3449
5 Titanium Ti6Al4V Mean 121.7 103.6 107.7 35.5 48.2 42 0.31 0.28 0.34 4407
cov 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.1
a 97.4 82.9 86.2 28.4 38.6 33.6 0.25 0.22 0.27 3085
b 146 124 129 42.6 57.8 50.4 0.37 0.34 0.41 5729
6 Aluminum 2024 Mean 67.5 70.9 78.4 33.1 30.9 26.2 0.37 0.34 0.28 2835
cov 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.08
a 60.8 63.8 70.6 29.8 27.8 23.6 0.33 0.31 0.25 1985
b 74.2 78.0 86.2 36.4 34.0 28.8 0.41 0.37 0.31 3686
7 Kevlar Mean 79.9 66.8 70.0 27.6 25.3 21.9 0.41 0.38 0.32 1389
cov 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.05
a 67.9 56.8 59.5 23.5 21.5 18.6 0.35 0.32 0.27 1111
b 91.9 76.8 80.5 31.7 29.1 25.2 0.47 0.44 0.37 1667
8 Composite Mean 410 463 457 159 177 142 0.33 0.32 0.27 1935
cov 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.08
a 369 417 412 143 159 127 0.30 0.29 0.24 1451
b 451 510 503 175 194 156 0.36 0.35 0.30 2419
9 Composite Mean 423 451 434 166 177 155 0.29 0.35 0.32 1903
cov 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.08
a 380 406 391 149 159 140 0.26 0.32 0.29 1427
b 465 497 477 183 194 171 0.32 0.39 0.35 2379
10 Kevlar Mean 69.9 59.3 63.1 25.5 22.4 29.8 0.39 0.41 0.37 1463
cov 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.05
a 59.4 50.4 53.6 21.7 19.0 25.3 0.33 0.35 0.31 1170
b 80.4 68.2 72.6 29.3 25.8 34.3 0.45 0.47 0.43 1756
11 Aluminum 2024 Mean 72.8 66.3 61.9 29.9 25.7 35.3 0.25 0.26 0.29 2859
Ccov 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.1
a 58.2 53.0 49.5 23.9 20.6 28.2 0.20 0.21 0.23 2001
b 87.4 79.6 74.3 35.9 30.8 42.4 0.30 0.31 0.35 3717

random variable of interest and important probabilistic information. The CDF is generally challenging to efficiently calculate by
the UQ methods, especially in a tail region, which is crucial for evaluating probability of failure, including applications to design
optimization.

Fig. 9 presents four estimates of the CDF of the first non-rigid-body mode natural frequency, denoted by Fy, (f1) :=PLf; < fi]-
The CDF curves generated by the MCS and SDD methods match very well and are consistent with the second-moment statistics
provided in the previous section. In addition, SLS has proven to be successful in providing accurate estimates of the expansion
coefficients. For the SDD methods, however, the CDFs do not change significantly by increasing either p or I. This clearly shows
that the proposed SDD method can handle this UQ problem by using very low-order basis functions and only 2 or 4 subintervals.
Evidently, this is because the original function under study is dominantly univariate. In other words, by truncating the SDD expansion
at S = | and retaining only the univariate component functions, not much is lost in terms of accuracy. However, even solving such
a problem using the PCE and SCE methods would have been impossible due to the curse of dimensionality, as these methods are
hindered, if not prohibited, when the stochastic dimension is generally greater than 10. The bottom line here is that the proposed
SDD method can solve very high-dimensional UQ problems accurately and economically.
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Table 4
Mean and standard deviation values of the first ten non-rigid-body frequencies of the jet by various methods.
Mode Univariate SDD methods?® Crude MCS?*
p=1,1=2 p=1,1=4 p=2,1=4 (10,000 samples)
Mean St. dev. Mean St. dev. Mean St. dev. Mean St. dev.
1 44.614 2.343 44.614 2.349 44.614 2.351 44.609 2.412
2 45.033 2.331 45.039 2.338 45.039 2.338 45.032 2.395
3 49.344 2.332 49.345 2.334 49.344 2.334 49.342 2.391
4 50.463 2.608 50.466 2.613 50.465 2.614 50.462 2.669
5 71.979 2.417 71.980 2.401 71.978 2.402 71.963 2.477
6 80.128 1.589 80.103 1.603 80.098 1.668 80.088 1.677
7 82.177 1.779 82.207 1.776 82.213 1.839 82.177 1.829
8 90.364 2.982 90.379 2.994 90.377 3.025 90.335 2.998
9 101.25 5.154 101.25 5.187 101.26 5.207 101.24 5.206
10 109.54 5.739 109.55 5.756 109.55 5.756 109.53 5.769

aAll frequencies are reported in Hz.

(a) MCS (20,000 samples) (b) SDD (p = 1,1 =2, 972 samples)

(¢) SDD (p =1, I = 4, 1940 samples) (d) SDD (p = 2, I = 4, 2424 samples)

Fig. 7. Standard deviation contour plot of the fifth non-rigid-body mode shape.

Notwithstanding the achievement of the univariate SDD approximations in this particular example, it is possible that higher-

variate SDD approximations, prominently, the bivariate SDD approximations, may be required in other applications [30]. In this

case, the computational effort of SDD will slowly ramp up, pointing to a need for further improvement in efficiency.
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Fig. 8. Standard deviation contour plot of the sixth non-rigid-body mode shape.

8. Conclusion

Two novel spline expansions, designated as SCE and SDD, were studied for solving UQ problems commonly encountered in
structural dynamics of linear systems. Both methods feature Fourier-like expansions of a dynamic system response of interest with
respect to measure-consistent orthonormalized B-splines in input random variables and SLS regression for estimating the expansion
coefficients. SCE is similar to PCE, but by swapping polynomials for B-splines, SCE achieves a greater flexibility in selecting expansion
orders and dealing with subdomains. For this very reason, SCE can effectively tackle stochastic responses that contain locally high
fluctuations and that are non-smooth. However, due to the tensor-product structure, SCE, like its polynomial sibling, suffers from the
curse of dimensionality. This is chiefly because the number of SCE’s multivariate B-splines grows exponentially with the number of
input random variables. In contrast, SDD impedes the proliferation of the requisite number of such basis functions as much as possible
while maintaining the desired accuracy in stochastic solutions. SDD accomplishes this task by exploiting multivariate B-splines in a
progressive, dimensionwise way to create the resulting expansion. Consequently, SDD alleviates the curse of dimensionality to an
appreciable magnitude.

Numerical results from frequency response analysis of a two-degree-of-freedom dynamic system indicate that a low-order SCE
with fewer basis functions eliminates or substantially mitigates the spurious oscillations generated by high-order PCE in calculating
the second-moment statistics and probability distributions of FRFs. A truly high-dimensional UQ problem, encompassing modal
analysis of a fighter jet with 110 random variables, was solved by SDD and crude MCS. From the comparisons of results, SDD
produces satisfactory estimates of the probabilistic characteristics of natural frequencies and mode shapes incurring less than ten
percent of the computational effort by MCS. Therefore, SDD, unlike SCE, is capable of solving large-scale UQ problems from real-life
applications.
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Fig. 9. CDF of the first non-rigid-body mode frequency.
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Appendix. Univariate B-splines
Let x = (xq,...,xy) be an arbitrary point in AV. For the coordinate direction k, k = 1,..., N, define a positive integer n, € N

and a non-negative integer p, € N, representing the total number of basis functions and polynomial degree, respectively. The rest

of this appendix briefly describes paraphernalia of univariate B-splines.

A.1. Knot vector
In order to define B-splines, the concept of knot vector, also referred to as knot sequence, for each coordinate direction k is

needed.
Definition 3. A knot vector &, for the interval [a;, b;] C R, given n; > p, > 0, is a vector comprising a non-decreasing sequence of

real numbers

&, are called knots.

. n+p+l
£ 1= (6 )

St S&a S L& gt
where & ; is the i th knot with iy = 1,2,...,n; + p, + | representing the knot index for the coordinate direction k. The elements of

lay = &8k > Ekmprpert = bichs

(A1)

My Then the knot vector in

According to Eq. (A.1), there are a total of n, +p, +1 knots, which may be equally or unequally spaced. To monitor knots without

repetitions, denote by ..., ¢, the r; distinct knots in &, with respective multiplicities m, ;,
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Eq. (A.1) can be expressed more compactly by

my | times my, times My —1 times My, times
Er=Aar =G G Chr Gk s Chrmt o> Sk =1 Sl -+ > S, = B hs (A.2)

a, = gk,l < gk,Z < e <L gk,rk—l < Cks’k = by,

which consists of a total number of
T'k
Y omy, =+t (A.3)
Jk=1
knots. As shown in Eq. (A.2), each knot, whether interior or exterior, may appear 1 < m, ; < p, + 1 times, where m, ; is referred
to as its multiplicity. The multiplicity has important implications on the regularity properties of B-spline functions. A knot vector is
called open if the end knots have multiplicities p, + 1. In this case, definitions of more specific knot vectors are in order.

Definition 4. A knot vector is said to be (p, + 1)-open if the first and last knots appear p, + 1 times, that is, if

p+1 times myp times Mpc -1 Limes pi+1 times
r—_—/\_—.—.\ ’._-__/\____.\
Er=Aar =Gt GGz Gk oo Ckrmto o> Srm 1 o> -+ Sk, = i} (A.4)

@ =G <G < <G < i = by

Definition 5. A knot vector is said to be (p, + 1)-open with simple knots if it is (p, + 1)-open and all interior knots appear only
once, that is, if

p+1 times p+1 times
——— —
E=Aar=C1r GGk Chrp=15 Gk o+ > S, = bichs (A.5)

ap =81 <Ga < <Gt <&y = by

A (p; + 1)-open knot vector with or without simple knots is commonly found in applications [35]. However, only simple knots
are used in this work.

A.2. B-splines
The B-spline functions for a given degree are defined in a recursive manner using the knot vector as follows.

Definition 6. Let £, be a general knot vector of length at least p, + 2 for the interval [a,, b;], as defined by Eq. (A.1). Denote by
Ii - (x;) the i th univariate B-spline function with degree p, € N, for the coordinate direction k. Given the zero-degree basis
furfctions,

Lo &ip <% < &pjprts

Bf |, (xp) 1= (A.6)
08k 0, otherwise,
for k =1, ..., N, all higher-order B-spline functions on R are defined recursively by
Xp = S Skiptpe+! — Xk
k _ ik k S tPk k
Bik,l’k,fk (xk) - ig.pp—1.&x (xk) + i +1,p—1.E (xk)’ (A7)

Skigtp ~ Skiy Skigtpet] ~ Skiig+1

where 1 <k <N, 1<i, <m, 1< p; <o, and 0/0 is considered as zero.

The recursive formula in Definition 6 was derived by Cox [45] and de Boor [36].
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