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ABSTRACT

With Heterogeneous architectures and IoT devices connecting to
billions of devices in the network, securing the application and
tracking the data flow from different untrusted communication
channels during run time and protecting the return address is an
essential aspect of system integrity. In this work, we propose a
correlated hardware and software-based information flow
tracking mechanism to track the data using tagged logic. This
scheme leverages the open-source benefits of RISC-V by
extending the architecture with security policies providing
precise coarse-grain management along with a simulation model
with minimal overhead.
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1 Introduction

Any hardware design is vulnerable to untrusted entities and
malicious data which often exploits the integrity of the system.
Unauthorized access to a system and software-based attacks
such as code modification and memory corruption attacks
through untrusted nodes often degrades the application-level
integrity.
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Heterogeneous System on Chips (SoCs) and Internet of Things
(IoT) devices connected all over the world communicate with
untrusted communication channels that are vulnerable to the
system leading to information leakage and code injection. A
robust and secure mechanism is needed to protect the data and
to monitor the critical information flow in the devices.

Although many techniques were proposed to detect and prevent
such software-based security attacks, Information Flow Tracking
(IFT) technique has been a promising and effective analysis
technique in security applications by determining information
leakage and detecting the malicious untrusted data at run time.
Based on static verification during the design phase or
dynamical checking at the runtime, different IFT approaches
have been implemented. The precision of the IFT logic along
with the granularity of the building blocks determines the
different levels of abstraction. Gate level flow tracking has
precise tracking rules for a set of universal gates with shadow
logics [1]. Though it provides a formal basis for a system’s root
of trust with a compositional approach it results in a
computationally complex design for the shadow logic functions
with a high number of inputs and does not scale with design
size.

Register transfer level (RTL) tracking is based on propagation
rules with RTL expressions [2]. Though verification is done at
the early design stage with flow tracking libraries, RTL-based
tracking adds the security labels explicitly which leads to
precision degradation. Language-based IFT achieves a dynamic
access-control mechanism with communication channels [3]. It
focuses on security goals rather than protecting confidentiality
by controlling the information flow. This paper is based on
Instruction level (ISA) dynamic information flow tracking with
coarse granularity labels and propagation policies to track the
input data by using a tag bit which is a hardware-based approach
by modifying the architecture and defining the security policies
to track the spurious data. The most discernible problem with
the proprietary architectures is the inflexibility with the access
domain and complexity in modifying the architecture. This
proposed approach leverages the open-source benefits of RISC-V
which makes it flexible and extendable in adding security
policies with coarse-grain management.

The hardware-based custom extensions done to the RISC-V
ISA is replicated with the simulation model correlating the
feasibility and functional verification with minimal overhead for
RISC-V security. This approach exploits the open-source
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software toolchain [4] components to build a minimal working
model with custom extensions. In this paper, a hardware design
with a software simulation model emphasizes the correlation
using information flow tracking approach on the RISC-V
platform.

Our contributions in this work are following:

1) Design of hardware-based Information Flow Tracking
framework with tagged mechanism.

2) Design of simulation model of RISC-V with secure IFT
extensions.

3) Toolchain extensions to support the RISC-V hardware
security commands.

4)  Verification of the simulation model to capture the

stack attacks using return address.

2 Background
2.1 DIFT

Dynamic Information Flow Tracking includes both hardware and
software-based implementations depending on the architecture
of the system and focuses on the control as well as non-control-
data attacks. Most of the implementations can be used to detect
buffer overflow attacks, format string attacks along with various
memory corruption attacks. The DIFT mechanism flow in order
to monitor and track the untrusted data starts by allocating a tag
to the malicious channels and marks it as spurious. During
program execution, the tag propagation unit keeps track of the
information flow generated by the spurious data. Finally, a tag
checking unit detects the unsafe data by matching it with the
security policies implemented for each untrusted channel and
raises a security exception.

Many software-based approaches such as randomization [5]
masking [6], access control [7] have been implemented but they
lack isolation, and data shadowing requires additional overhead.
Some hardware-based approaches include pointer taintedness
[8], hardware-assisted data flow isolation [9], SIFT [10], SHIFT
[11], virtualization [12] etc. All these approaches lack flexibility
to certain extend and cause unavoidable overhead to the system.
Fault-based attacks that gains control of the target execution
flow by accessing the return address can be secured by IFT
approaches which are specifically designed to protect the return
address [13].

Simulation-based models provide a proof of concept in
determining the feasibility of the design by verification and
validation [14].  Thus, this approach is based on hardware
design implementation along with simulation-based verification
providing better flexibility and precision logic.

2.2 RISC-V

Security has been a major concern of RISC-V and developing
security applications with the architecture’s flexibility has led to
various advancements and programs [15]. The RISC-V ISA
security committee has proposed an abstraction augmented alSA
that extends a bridge between hardware and software beyond
the traditional ISA [16] for better control and optimization. The
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software toolchain for RISC-V supports GCC and Clang/LLVM
compilers along with various benchmark environments [17].
Many simulators for RISC-V have been developed and the most
common simulator which is used as a reference model for RISC-
V ISA is the Spike simulator [18]. Combining the hardware and
software implementations provides more coarse-grained data
flow tracking with flexibility and minimal overhead. Thus, this
paper implements a novel hardware and software simulation-
based IFT by leveraging the RISC-V platform and providing a
secure extension to the processor ISA. The ISA is modified, and
the toolchain is updated for run time security.

3 Design of Hardware and Simulation Model
for RISC-V Secure Extensions

The proposed scheme consists of the Hardware IFT mechanism
for data tracking and software model with toolchain support of
verification along with a simulation model to track the return
addresses to prevent memory corruption and software attacks.
To the authors knowledge this is a novel effort to integrate the
toolchain support for the RISC-V security extensions.

3.1 IFT in RISC-V

The IFT technique focuses on preventing memory corruption
and protects the return address from software attacks. The
control data flow integrity with tagged bits ensures that the
return address matches the corresponding address after the
context switching which prevents an adversary from hijacking
the return addresses. The tag-based analysis is flexible in
tracking the record of the data with minimal overhead if a single
bit is used as a tag. Compiler-based modification is done to add
the security policies and to assist with the additional new
instructions added to the architecture.

Stack and data protection by tracking and detecting the tagged
data eliminates software attacks which focuses on the return
address. In the tagged mechanism, labels are associated with the
address of the data that are received from the untrusted source.
With minimal hardware overhead, the tag mechanism is
implemented by using a 1-bit tag to the data address. When a
program is executed during run time the tag mechanism assigns
the tag bits to the spurious data through the tag propagation
module. The tag propagation module assigns tags by using the
new custom instructions implemented in the ISA architecture to
store and check the tag bits. The tag bits are stored in the tag
cache which reduced the dedicated memory assigned for storing
the tag bits.

The RISC-V Rocket core is modified to incorporate the security
features both in the ISA level and on the toolchain to detect and
eliminate the buffer overflow and string format attacks. At the
ISA level, the tag module consists of all the tag management
units and the translated compiler modifications are developed in
RISC-V GNU. Design verification and validation is performed on
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the RISC-V Spike Simulator. This model focusses on the stack
protection and the return address stored on the stack. The
security policy functions are used for checking the tag bits from
the return address and the untrusted data source. An exception
is raised when the framework detects a mismatch in the tag bit
of the return and data address indicating a software attack has
occurred.

3.1.1 Proposed ISA Level Extension in the Hardware model

The RISC-V core has a fixed base integer ISA with two primary
variants: RV32I and RV64l, respectively [19]. The base integer
has fixed-length 32-bit

encoding

instructions with variable-length
This

leverages the ISA to extend with more optional instruction-set

and customizable accelerator extensions.
extensions. The Load/Store architecture is dedicated to copying
the data to the memory. Loads are encoded in the I-type format
and stores are S-type format. Thus, the RISC-V core is modified
by adding new Load/Store instructions which are used to
provide security checks for the 1-bit tag in matching the return
addresses. Based on the load and store encoding specified in the
RISC-V core the new instructions are added:
e In the load instruction encoding: LDTCHECK

e In the store instruction encoding: SDTCHECK

Figure 1 shows the Load/Store Instruction format where the red
highlighted fields (funct3 and opcode) are modified for the new
instructions to specify the operations to be performed. When the
data from an untrusted source is received the SDTCHECK will
set the tag bit to 1 and LDTCHECK is used for loading the data
word and checking if the tag bit is 0 or 1.

3 20 19 15 14 1211 7 6 0

imm([11:0] rsl funct3 rd opcode
12 5 3 5 7
offset hase width dest LOAD
3 5 24 0 19 15 14 121 7 6 0
imm[11:5] rs2 rsl functd  imm[4:0] opcode
T 5 5 3 5 7
offset sIC base width offset STORE

Figure 1: Load/Store Instruction format of RISC-V Architecture

The CSR address convention which provides accessibility for
error checking by using the large CSR space is used to check the
read/write compatibility of the custom instructions with the tag
bit where the loaded tag bit and the expected tag bit in the
instruction match, if not it raises an exception. A separate Tag
cache module consists of all the tag management mechanisms
with tag initialization, tag propagation, and tag checking
modules. This module reduces the overhead of physically adding
a one-bit tag to the memory. When a one-bit tag is added to the
instruction this module fetches the tag and store it in the tag
cache with its own tag cache mapping which reduces a
significant amount of overhead in the architecture. The tag
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cache acts as a cache simulator for the tags and this is used to
validate the return addresses and the memory access of the
untrusted data. Figure 2 shows the E31 core RISC-V architecture
with the added IFT Tag module.

/" E31 Core Y
( { Debug ‘
RocketTile RaocketTile . 23
L1I |L1D L1I |L1D Power
Management
TileBus TileBus —

Tag Module
[ L2 Cache ]

[ Physical Memory Protection ]

[ Interrupts ]
[ System Ports }
¥ ¥ i i
[ TileLink Bus }

Figure 2: E31 Core RISC-V Architecture with Tag Module

The tag for each memory data is directly mapped and stored in
the tag cache by virtual address spacing and lookup tables are
used for mapping. During program execution, the tag
initialization module assigns the tag bits to the data for the new
instructions added and the tag propagation module tracks the
flow of the data and the return addresses of each data from the
new instructions. Finally, the tag check module is used to
compare the tag bits of the new instructions and if there is a
return address miss-match it raises a security exception. This
detects the return address modification attacks when an
adversary tries to modify the return address by function call and
context switching.

When sensitive data is sent from an untrusted source the tag
module initials the tag mechanism using the new instructions
with load and store request similar to lowRISC [20]. The L1 data
cache holds the data with the tag value for both read and write
request and the tag module checks for a mismatch condition
based on the tag bits.

3.1.2 Integration of the Features in Toolchain in the
Simulation model

The RISC-V toolchain is modified for the newly added load/store
instructions and the security policies for memory protection
have been implemented. This proposed scheme focuses on tag
security policy that addresses the load address, store address,
and the return address. During program execution, security
policies are applied to protect the data and the stack with
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minimal overhead. The following section discusses the security
policies to capture return address attacks.

3.1.3 Security Policies

Overwriting the return address by redirecting the execution
using buffer overflow attacks and procedure calls with format
string attacks corrupt the memory and lead to malicious code
injections. In the RISC-V growing convention, the return address
is x1(ra), stack pointer is x2(sp) and function argument/return
value is x10-11. To protect the memory and the return address
the data is tracked by tag bits.

i. Return Address attacks with procedure calls

An example of a buffer overflow attack, which modifies the
return address is demonstrated in Figure 3 and the security
policy to protect the return address is implemented using the
Tag mechanism.

main:
1 addi sp,sp, -24
2 sd ra,16(sp)
3 sdal, 8(Sp) Return Address
4 sd a0, (0)sp L
----- Function call----- al
51d a0, (0)sp
6 ld al, 8(sp) a0
7 ld ra,16(sp)
8 addi sp,sp,24
9 jr ra

Stack

Figure 3: Return Address attacks with procedure calls

In the above code snippet, the stack is adjusted to make room for
3 items. The values in registers al and a0 are saved for future use
and the return address(ra) is also pushed onto the stack and
there is a procedure call that is carried out after which the
restored. This
implementation is done using the normal load/store operations

registers and return address are simple
where an adversary can modify and overwrite the return address
during context switching which may not be noticed. One might
think that the program is executing as intended but, in the
background, this may lead to the execution of hidden
functionalities and data leakage. In order to protect the return
address from such attacks, the security policies implemented in
this scheme use the new LDTCHECK and SDTCHECK
instructions and assigns a tag bit to it. This helps in validating
the return address after a function call. If the stored and loaded
return address tag bit is not the same and a mismatch occurs it

raises a memory exception.

1 void get_fn()

2{

3 char str[20];

4 gets(str);

5/

6 int main ()

7 printf("" Print string");
8 get_fin();

9 return 0;

10 }
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Return Address

str(20 Bytes)

—

Malicious
1/0 data

Stack

Figure 4: Buffer Return address attacks with I/O data

ii. Return address attacks with I/O data

Figure 4 demonstrates the return address affected by the input
data from an untrusted communication channel and the security
policy implemented to protect it.

From the above code snippet, the main function calls the get_fn()
and the return address of the main is saved on the stack. The
local variables are created for the get fn and the specified space
is allocated to the buffer. The gets(str) function which is
highlighted gets an I/O string data that is received from a
communication channel. If an adversary takes control of the I/O
channels providing data that exceeds the limit of the buffer
capacity, it results in a buffer overflow and overwrites the return
address. To protect the return address from such attacks the
security policy implemented marks the input string which is
received by the gets function as malicious and assigns a tag bit to
it. The return address of the main function is also tagged, and
the malicious data propagation is tracked. When returning to the
main function the security tag is matched with the return
address. If a mismatch occurs, then a security exception is raised
indicating a malicious I/O data attack.

4 Experimental Evaluation of the Simulation
model

The IFT framework enables the software simulation model and
introduces a novel toolchain modification to correlate the
hardware design for verification security extensions in RISC-V.
The architecture specific extensions are translated to assembler
specific simulation model. The RISC-V toolchain is updated to
support the IFT framework by adding two instructions to the
gnu assembler and the spike simulator for software simulation.
The modifications done on the ISA architecture is replicated in
the Spike simulator verifying the minimal overhead and
feasibility in both designs.

In this work we demonstrate the security capabilities on return
address attacks where an adversary can control the targets
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execution flow by corrupting the return address in the stack and
executing an arbitrary code on the target. The security policies
are described to check the flow of the tag bit in the tag cache and
traversing through the newly added instructions. Figure 5
illustrates the security policy pseudocode for the check_tag and
store_tag functions. The check_tag function executes the tag
condition for the return address. If there is a mismatch it raises
an exception without returning to the main address. The
store_tag function checks for the untrusted channels and the
return address before procedure calls and assigns a tag bit to it
and stores the tag bit on the tag cache.

Function :check_tag

1 Offset decoding

2 Masking Address Decoding

3 Fetch tag value from tag cache for the masked address
4 condition( tag_bit = ()

5 Function executes

6 else

7 Raise an Exception

8 end

Function :store_tag

1 Offset decoding

2 Masking Address Decoding

3 Fetch tag value from tag cache for the masked address
4 condition check on the untrusted source

5 Assign tag bit =1

6 else

7 Assign tag bit =0

8 Store tag bit on tag cache
9 Store the address masked

Figure 5: Pseudocode for Check_tag and Store_tag functions

Figure 6: IFT Framework
overflow attack.

raising an exception for buffer

The IFT framework is tested on the Spike simulator by
implementing a buffer overflow attack program. The new
instructions are used with the stack operations where the return
address is saved. Tag bits are assigned to the return address and
the data to be stored on the stack. When the buffer overflow
attack occurs the return address is checked for the tag value and
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if it’s the same it executes the program. If there is a mismatch an
exception is raised, and the program execution is stopped by
eliminating buffer overflow attack. Figure 6 shows the window
where, buffer overflow attack is executed, and the program
returns to the main function when normal LOAD/STORE
instructions are used. The newly added SDTCHECK is used to
assign a tag bit for the return address and the LDTCHECK is
used to the check the tag corresponding to the return address in
the tag cache. For IFT the program raises an exception and stops
without returning to the main function using the new
instructions when there is a tag mismatch thus eliminating
buffer overflow attacks. This framework protects the stack by
using the customized instructions where the new return address
compromised by an adversary is not loaded on the stack.

This feature can be further extended to support the main
memory and detecting other software attacks by incorporating
new security policies.

5 Security Analysis

The RISC-V model is vulnerable to security leaks such as buffer
overflow, program counter attacks, fault attacks etc. The attacker
leverages the bit flips or modification to the return address (RA)
of the stack and leading to compromised devices. The hardware
integration of the security features takes much longer for
verification and security analysis.

The toolchain extension support helps in creating new software

features by adding, modifying instructions and registers
developed for our custom ISA inside the toolchain. It provides
the flexibility to add new security policies and develop test codes
and software programs to carry out security analysis for the
custom ISA. The proposed simulation model supports the design
and verification of security extensions to the RISC-V processor.
The simulation model has extended toolchain that supports new
functions and instructions such as IFT enabled execution and

encryption support.

5 Conclusion

In this paper, we designed a hardware-based Information Flow
Tracking framework with Tagged mechanism by assigning a 1-
bit tag to the spurious data address and return address and
translated the hardware architecture-specific extensions to
compiler-specific simulation model. This is a novel contribution
to integrate the hardware security to support the architectural
integration for simulation model. The results of the implemented
simulation model show that the framework tracks the tagged
address and eliminates the buffer overflow attacks and the
the design.  This
implementation has minimal design overhead with better
precision logic and higher performance in terms of verifying the
security extensions.

results are corelated to hardware
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