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Abstract—With the extensive application of the Direct Memory 
Access (DMA) technique, the efficiency of data transfer between 
the peripheral and the host machine has been improved 
dramatically. However, these optimizations also introduce 
security vulnerabilities and expose the process of data 
transmission to DMA attacks that utilize the feature of direct 
access to steal the data stored in the live memory on the victim 
system. In this paper, we propose a lightweight scheme to provide 
resilience to DMA attacks without physical and protocol-level 
modification. The proposed scheme constructs a unique identifier 
for each DMA-supported PCIe device based on profiling time and 
builds a trusted database for authentication. The experimental 
result shows that the proposed methodology eliminates most of the 
noise produced in the measuring process for identifier 
construction and the success rate of authentication is 100% for all 
the devices.

Keywords— direct memory access, DMA attack, side-channel 
attack, hardware security

I. In t r o d u c t io n

Traditionally, the data transmission between the external 
device and the main memory was realized by using programmed 
input/output or interrupt-driven I/O which require the full 
involvement of the CPU. The CPU has to transfer the data word 
to word which is inefficient especially when the size of data to 
be transferred is large. DMA allows peripheral devices to 
read/write data from/to the main memory without passing it 
through the processor. In DMA protocol, the CPU only takes 
charge of initialization and termination which frees the 
processor from involvement in the transfer process. Nowadays, 
DMA is widely supported by different data buses (ISA, PCIe, 
etc.) in modern computing systems.

With the extensive application of DMA, security issues have 
become inevitable. In recent works, the vulnerability of DMA 
has been explored and demonstrated [1] [2]. The characteristic 
of direct access allows the attacker to steal data and mount the 
file system of the victim system through DMA-supported 
devices maliciously. To reduce the risk of DMA attacks, 
countermeasure techniques were introduced using memory 
virtualization and key-based authentication [3] [4], but are either 
expensive or unfeasible. Furthermore, recent attacks show that 
the DMA-based data transfer is still vulnerable even with 
security features enabled [5] [6].

In this work, we propose a lightweight authentication 
scheme for PCIe devices. To the best of our knowledge, this 
work is the first publicly reported study that utilizes the profiling

time to construct identifiers used in authentication for PCIe 
devices.

Contribution: This paper makes the following
contributions:

1. We propose a comprehensive scheme for DMA attack 
mitigation, including the registration process and the 
authentication process.

2. We design a framework to remove noise in collected 
measurements for identifier construction.

3. The effectiveness and feasibility of the proposed design 
are verified by experiments.

Paper organization: The paper is organized as follows. The 
related work is discussed in section II. Section III shows the 
detail of the attack model. Section IV  describes the proposed 
methodology and section V presents the experimental setup and 
results. The security analysis is discussed in section VI.

II. Re l a t e d  Wo r k s

A. Direct Memory Access (DMA)
In the traditional computing system, the CPU reads every 

block of data using a peripheral bus from the I/O devices and 
writes it into the main memory. In this process, the CPU is fully 
occupied and is thus not available to perform other works. This 
structure slows down the performance of the system 
significantly. In contrast, DMA allows peripheral hardware 
devices (disk drive controllers, graphics cards, network cards, 
and sound cards, etc.) to send/read I/O data directly to/from main 
memory. With DMA, the interaction between external devices 
and memory is carried out independently of the CPU, therefore 
the overload of CPU is reduced remarkably.

The feature of DMA is provided by several bus architectures, 
such as Industry Standard Architecture (ISA), Advanced 
Microcontroller Bus Architecture (AMBA), and Peripheral 
Component Interconnect (PCI). To manage the data transfer 
between the host system and DMA devices, a DMA controller 
is needed. The DMA controller is a control unit, part of the 
interface circuit, which enables the movement of data blocks 
between I/O devices and the main memory. After the 
initialization of the DMA controller by CPU, the memory 
controller provides memory addresses and initiates read or write 
cycles for data transfer, and sends an interrupt to the CPU when 
the whole process of data transmission is done.
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B. DMA attack
DMA increases the efficiency of data transfer between the 

main memory and external devices, but the native feature of 
direct access also brings some potential risks of security 

breaches. As a type of side-channel attack, the DMA 
compromise has been proved as a powerful and efficient attack 

that allows the attacker to read and write the memory on the 
victim system directly.

In 2016, [1] demonstrated a DMA attack that allows the 
attacker to read/write the memory once the peripheral PCIe 

device is connected to the victim system without the need for 
hardware drivers. Moreover, this attack is able to access the live 

RAM and the file system by inserting kernel implants. The same 
year, the Intel Advanced Threat Research team performed a 
DMA attack over the air by modifying a WiGig dock to 

compromise a laptop that is connected to the dock wirelessly [2]. 

The architecture of wireless connection allows the attacker to 
use the DMA capabilities to dump secrets out of the memory on 

the victim machine remotely. The work reported in [6] shows 
the Thunderbolt protocol with access-control enabled is not 

resilient to DMA attacks. The attacker-controlled device obtains 

full access to the main memory successfully via a Thunderbolt 
port by identity clone and spoofing.

C. DMA attack mitigation
To mitigate the risk of DMA attacks, some techniques have 

been proposed. After BitLocker was first introduced in 

Windows Vista, Microsoft provides pre-boot authentication to 
enhance data privacy. The safety of data is ensured by full-disk 

encryption with BitLocker and the key is generated by the 

Trusted Platform Module (TPM) [7]. According to the policy of 
pre-boot authentication, BitLocker accesses and stores the 

encryption key in memory only after the user provides the 
correct PIN or USB startup key. However, BitLocker can only 

be used for encrypting hard drives or removable data drives, the 
memory is still vulnerable to DMA attacks after the booting 

process is completed. Moreover, the time overhead of 
encryption/decryption is very high.

For Windows 10, a new feature is added from version 1709 
named “Disable new DMA devices when this computer is 

locked” [3]. Once this feature is enabled, all the hot-pluggable 
PCI/PCIe ports will be blocked until a user signs in to Windows. 

This policy prevents attacks that use PCI/PCIe-based devices to 
access BitLocker keys, yet at the same time brings 

inconvenience in some cases when the user wants to keep 
PCI/PCIe devices working when the system is locked.

With the introduction of the Input-Output Memory 
Management Unit (IOMMU) (This technique is branded VT-d 

[4] by Intel and AMD-Vi [8] by AMD), the risk of DMA attack 
is reduced. IOMMU connects the DMA-capable I/O bus to the 

main memory and supports DMA-remapping which translates 
the address of the incoming DMA request to the correct physical 
memory address. After activating this function, each DMA 

device can only access a part of the memory which is allocated 

by IOMMU therefore the rest of the memory is immune to DMA 
attacks on that device. This technique mitigates the risk of DMA 

attack, but it cannot protect the whole memory especially when 
the memory size of the system is small.

Another strategy of DMA attack mitigation is access control 

which can be realized by encryption-based authentication or 

Trust-On-First-Use (To Fu ) scheme [9]. [10] presents an 
authentication architecture between each component and the 

host system based on the key-based certification. However, the 
precondition of this design is that each component must be 

authenticatable at any time which is not practical. For the TOFU 
scheme, the host machine records the unique 

fingerprint/identifier of a trusted device into its trusted database 
the first time this device is attached. In this way, a device can 

access the host system only if its identifier can be found in the 
trusted database otherwise it will be blocked. However, there is 

no available unique identifier for devices in the case of PCIe 
authentication. Currently, computing systems use vendor ID, 

device ID, and PCIe slot ID to distinguish different PCIe 

devices. However, if the attacker unplugs the connected PCIe 
device and inserts a new device of the same model from the same 

manufacturer into the same slot, the host machine is not able to 
recognize whether the new connected device is the same as the 

one used previously.

In this work, we use the profiling time of each device as the 

identifier to build the trusted database on the host machine. 
Compared with existing work, our design is lightweight and 

does not require any physical modification or protocol-level 
modification on the host machine.

III. At t a c k  Mo d e l

As the successor of PCI, PCIe is a high-speed serial 
computer expansion bus standard for attaching hardware 

devices to a computer. In a PCIe system, endpoints are 
connected with the memory subsystem via the interface named 

root complex. Once the PCIe device is connected, the 
communication is achieved by exchanging Transaction Layer 

Packets (TLPs) which relate to PCIe’s uppermost layer between 
the PCIe device and the host. This standard does not implement 

any security to protect the privacy of data which makes the 
DMA attack feasible on the PCIe system.

Fig. 1. Basic DMA attack flow.

In this work, we perform an attack using a PCIe device to 
show the vulnerability of DMA. The attack presented in this 

work references the attack model presented in [1] and [11]. Fig. 
1 shows the basic attack flow. The PCIe device is connected to 

the victim machine via the PCIe port and connected to the 
attacker machine by any of the interfaces (USB, Ethernet, etc.). 

The attacker controls the PCIe device to send a Memory Read 
Request (MRd) TLP to the victim machine. Once the MRd TLP 

reaches the PCIe root complex, the victim machine will respond
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with the completion TLP which contains actual data back to the 
PCIe device, then back to the attacker. The attacker can either 

dump all the data stored in the main memory of the victim 
machine, or a part of the data using a specific range of memory 

addresses.
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Q11EAFCC70
Q11EAFCCBQ
011EAFCC90
011EAFCCA0
011EAFCCB0
OllEAFCCCO
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6C 6C 61 63 74 69 76 69 74 79 3A 22 2C 22 61 70 
70 44 69 73 70 6C 61 79 4E 61 6D 65 22 3A 22 47 
6F 6F 67 6C 65 20 43 68 72 6F 6D 65 22 2C 22 62 
61 63 6B 67 72 6F 75 6E 64 43 6F 6C 6F 72 22 3A 
22 62 6C 61 63 6B 22 7D 03 69 50 41 6B 6A 62 4C
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To configure the attack, we use a PCIe-compatible 

development board named “NeTV2” with an onboard Xilinx 
XC7A35T FPGA chip. Xilinx provides PCIe DMA and PCIe 

Bridge hard and soft IP blocks for compatible FPGA devices 
[12], as well as full access to 64-bit memory space without 
relying on a kernel module running on the victim system.

Fig. 4. A memory fragment dumped from the victim machine.

Fig. 4 shows a part of live memory dumped from the victim 
machine. This memory fragment was being used by the Google 

Chrome browser when the attacker was dumping the main 

memory illegally.

Fig. 2. Experimental setup of DMA attack.

Fig. 2 shows the experimental setup of the proposed DMA 

attack. The NeTV2 board is connected with the victim machine 
via PCIe port, and connected with the attacker by an Ethernet 

cable. There is no need to install any hardware driver on the 
victim machine. The direct access supported by DMA enables 

the attacker to control the NeTV2 board to send memory 
read/write request TLPs to the victim machine, thereby 

read/write data from/to the main memory on the victim 
maliciously.

E:\PCILeech>pcileech probe -device rawudp://ip-192. 168.0.222 ~v

DEVICE: FPGA: NeTV2 RawUDP PCIe gen2 xl [0,0,0] [v4. 2, 0200]
Memory Map:
START END ttPAGES
0000000000000000 - 000000000009ffff OOOOOOaO
00000000000C0000 - 000000006bdfffff 0006bd40
0000000100000000 -  0000000165fb5fff 00065fb6
0000000165fc0000 - 00000009Se9bbfff 007f89fc
000000095ec00000 - 000000108dffffff 0072f400

Current Action: Probing Memory
Access Mode: Normal
Progress: 67808 / 67808 (100%)
Speed: 858 MB/s
Address: 0x000000108E000000
Pages read: 16751506 / 17358848 (96%)
Pages failed:: 607342 (3%)

Memory Probe: Completed.

Fig. 3. Memory probing on the victim machine.

Fig. 3 shows the process of memory probing. The attacker 

enumerated the memory of the target system for readable 

memory pages starting from the first address to the last one. As 
shown in Fig. 3, around 96% of the whole memory space is 
readable in this case.

IV. Pr o p o s e d  Me t h o d o l o g y

To construct a unique identifier for each PCIe device, the 

profiling time is used in this work. This unique identifier serves 
as a fingerprinting of each device. Due to the variation in the 

manufacturing process, each device has a unique physical 

characteristic such as current flow, IR drop, threshold voltage, 
and unique delays. These delays affect the response time of the 

device and have a high stability (drift due to aging is not 
considered in this work). Manufacturing variations are also used 

in creating cryptographic functions such as Physical Unclonable 
Functions (PUFs).

Before building the trusted database with the profiling time 

of each device, one issue is the high variance among multiple 
samples which makes the raw data unusable. This variance is 

caused by multiple reasons, such as the change of environmental 

parameters and real-time resource utilization. In this work, we 
design a data processing framework to reduce the noise in raw 

measurements for extracting accurate and stable profiling time.

1 

^ S ^ e c o r d ^ ^

/^Registration at First Time

Trusted Database On Host
b l o c k  t h e

device
grant perm ission  to

the device

Fig. 5. Proposed registration and authentication scheme.

Fig. 5 shows the proposed scheme which consists of two 
main parts: registration and authentication.

A. Trusted Device Registration
In the registration process, when a trusted PCIe device is first 

time connected to the host machine, the authorized user
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measures the profiling time of this device, constructs an 

identifier with ROI selection algorithms for this device, and 
stores the identifier (Vendor ID, Device ID, Region of Interest 
(ROI) and Range of Profiling Time (RPT)) into the trusted 

database.

1) Data collection
For each device, multiple sub-datasets are collected, and 

each sub-dataset contains an equal number of profiling time 
measurements. Let R denote the number of sub-datasets for each 

device, and S denotes the number of recorded measurements of 
profiling time in each sub-dataset. Totally, there are (R x S) 

measurements for each device. After data collection, the raw 
measurements of profiling time are sorted from lowest to highest 

in each sub-dataset.

2) Region Of Interest (ROI) selection
In data processing, ROI is a group of samples selected from 

a dataset for a particular purpose. In this work, the goal of ROI 

selection is to find the region in the sub-dataset that has the 
lowest noise. Since the variance in raw measurements is too 

high, we propose two different algorithms to seek the most 
valuable ROI in the sorted sub-dataset.

a) Difference based algorithm
In the difference based algorithm, we calculate the difference 

of the same selected regions between each pair of sub-datasets 

from the first measurement to the last one. Let L denote the 
length of the Difference-based ROI (DROI). For R sub-datasets 

(each sub-dataset has S measurements of profiling time), there 
are C(R, 2) different combinations of comparison pairs, and (S -  

L) possible regions. Algorithm 1 gives the detail of DROI 
selection.

Algorithm 1: DROI selection

Inputs:
• Number of sub-datasets (R), Number of measurements in each sub-

dataset (S), Length of DROI (L)

Output:
• Difference-based ROI (DROI)

Steps:
1: Res[] ^  empty list

2: for i = 1 to (S -  L) //for all the possible regions

3: for j = 1 to (R -  1)
4: for k = (j + 1) to R //for all the combinations

5: calculate AD (absolute difference value between sub-

dataset[j][i : i + L] and sub-dataset[k][i : i + L])
6: TD (accumulative difference for region i) ^  TD + AD

7: end for

8: end for

9: Res[i] ^  TD
10: TD ^  0

11: end for

12: DROI ^  [d : d + L] where d is the index of the minimum value in

Res[]

b) Correlation coefficient based algorithm
The correlation coefficient is a statistical index used to 

measure the dependency of two variables. If the same regions 
from different sub-datasets have the highest correlation with 
each other, it means that the noise level in this region is the 

lowest. In this work, we compute the Pearson’s correlation 
coefficient of all the regions from each pair of sub-datasets to 

find the Correlation-based ROI (CROI). The detail of CROI 
selection is shown in Algorithm 2.

Algorithm 2: CROI selection

Inputs:
• Number of sub-datasets (R), Number of measurements in each sub-

dataset (S), Length of CROI (L)

Output:
• Correlation-based ROI (CROI)

Steps:
1: Res[] ^  empty list
2: for i = 1 to (S -  L) //for all the possible regions

3: for j = 1 to (R -  1)
4: for k = (j + 1) to R //for all the combinations

5: calculate CC (correlation coefficient between sub-

dataset[j][i : i + L] and sub-dataset[k][i : i + L])
6: TC (accumulative coefficient for region i) ^  TC + CC
7: end for

8: end for
9: Res[i] ^  TC
10: TC ^  0

11: end for
12: CROI ^  [d : d + L] where d is the index of the maximum value in

Res[]

In DROI selection, the lowest value in result list Res[] is used 
because the lowest difference means the same selected regions 

from each pair of sub-datasets have the highest similarity (in 
other words, the lowest noise). However, in CROI selection, the 

highest value in result list Res[] is selected because the highest 
coefficient represents the highest similarity. At the end of the 

selection process, the overlapped region between the DROI and 
CROI is selected as the ROI for identifier construction.

3) Construct and store identifier
The process of ROI selection figures out the region with the 

lowest level of noise. By calculating the average profiling time 

of all the measurements in ROI for each sub-dataset and 
combining the results of all the sub-datasets, we get the Range 
of Profiling Time (RPT) which can be used as a part of the 

identifier. The ROI and RPT will be stored in the trusted 

database on the host machine, along with the vendor ID and 

device ID of this trusted device.

B. Authentication
For authentication, every time a new PCIe connection is 

detected, the system reads the vendor ID and device ID of this 
PCIe device. Once the vendor ID and device ID are found in the 

trusted database, the host machine will collect a number of 

profiling time measurements and calculate the average profiling 

time based on the ROI stored in the same record. If the average 

profiling time of this device is within the RPT stored in the same 
record, the permission will be granted to the device, otherwise 

the system will recheck for other records that contain the same 
vendor ID and device ID (in case of more than one device of the 

same model are registered) until all the records have been 
traversed.

V. Ex p e r i m e n t a l  Se t u p  a n d  Re s u l t

In this work, three TL-WN881ND wireless PCIe adapters 
from TP-LINK [13] that have the same properties (called device 

A, device B, and device C) are used for verifying the proposed 
design. In data collection, the elapsed time of reading 

configuration space on the PCIe device is measured as profiling 
time.

In experiments, we measured the profiling time of each 
device 10000 times and repeated this process 30 times under the
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same conditions. After data collection, we have 30 sub-datasets 

and each sub-dataset has 10000 measurements of profiling time 
for each device.

Measurements

Fig. 6. All 10000 measurements of profiling time in one sub-dataset 
collected from device A.

Fig. 7. Comparison of all 30 sorted sub-datasets collected from device A.

Fig. 6 shows all 10000 measurements of profiling time in 

one sub-dataset collected from device A, and Fig. 7 shows all 30 

sub-datasets with sorted measurements collected from device A. 
Without data processing, the variance of profiling time is very 

high (from 12 ms to 23 ms), and the difference among different 
sub-datasets is also very high in some regions which makes 
identifier construction difficult. Then, we applied the two 

proposed algorithms of ROI selection on the raw measurements 

collected from device A. In this case, we set the length of DROI 
and CROI to 3000 (to balance the uniqueness and the 

applicability, the length of CROI/DROI should be between 20% 
and 40% of the sub-dataset’s size). Fig. 8 and Fig. 9 show the 

result of DROI selection and CROI selection.

Min Difference: 0.02302205618222555
Difference based ROI (DROI): 5464 - 8464
»>
Max correlation: 434.7485805839838
Correlation based ROI {CROI): 6991 - 9991
»>

(6991st - 8464th). This region has the lowest noise and the highest 

stability because samples in this region from data collections 
over different periods (sub-datasets in this case) have both the 
lowest difference and the highest correlation with each other. 

Moreover, based on the result of comparison among three 
devices, we noticed that all the devices of the same type have 

very similar ROIs with each other, so we used the ROI of device 
A for all three devices to construct the identifier.

RPT of device A 
RPT of device B 
RPT of device C

19550 us 19600 us 19650 us 19700 us 19750 us 19800 us 19850 us 19900 us 19950 us 20000 us

Profiling Time

Fig. 10. Range of Profiling Time (RPT) of each device.

For each device, we calculated the average profiling time of 

all the measurements in ROI in each sub-dataset. The average 
profiling times of all the sub-datasets were combined to form the 
RPT for each device. As shown in Fig. 10, RPTs range from 
19577.90 us to 19692.26 us, 19865.05 us to 19994.50 us, 

19734.17 us to 19831.31 us for device A, B, and C, respectively. 
There is no overlapped area among the three devices, which 

means that the Rp T of each device is unique. RPTs were used 
as identifiers of each device and stored in the trusted database 
with vendor ID, device ID, and ROI on the host machine for 

future authentication.

In authentication, each time we collected 10000 
measurements of profiling time and calculated the average 

profiling time of all the measurements in the ROI. This process 
was repeated 20 times for each device. The result shows that all 

the average profiling times of each device are within their 
respective RPTs, the success rate of authentication is 100% for 

all three devices.

VI. Se c u r i t y  An a l y s i s

The proposed framework uses profiling time to construct 

identifiers for PCIe devices. In comparison with other existing 
mitigation countermeasures, the delay-based authentication 

model has two major advantages:

Fig. 8. The output of DROI selection and CROI selection.

The result shows that the DROI of device A is from the 
5464th point to the 8464th point in each sorted sub-dataset, and 

the CROI is from the 6991st point to the 9991st point. We 
selected the overlapped region of DROI and CROI as ROI

• The proposed design does not require any hardware-level 
or protocol-level modification. Existing 

countermeasures to DMA attacks, such as [10] and [14], 

need either an adjustment to the current protocol or 
physical modification of devices that make designs less 

practical in the real world. In this work, the 
authentication is achieved by extracting the time-delay 

characteristic in device profiling and no additional 
change on the hardware is needed, therefore it is more 

feasible as compared to other existing works.

• The cost of the proposed design is low. IOMMU has 

been proved as an efficient countermeasure to DMA 
attacks, but activating IOMMU will reduce the real-time 

performance of computing systems significantly [15]. As 
a contrast, the delay-based authentication model 

presented in this work is lightweight. The registration is
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a one-time process and there is no impact on 

performance after the authentication is done.

There are two types of overhead in this design. The first one 
is the resource overhead which is caused by the storage of the 

trusted database. In the real world, the PCIe devices are fewer 
therefore the size of the trusted database is fairly small. For 

example, if the trusted database has 30 records, the overall 
overhead of storage is only 1.81 KB.

TABLE I. Ti m e  Ov e r h e a d  (Ea c h  De v i c e )

Time
Overhead

Registration 
Overhead (in minutes)

Authentication 
Overhead (in minutes)

Measuring Construction Measuring Calculation

100 mins 15.7 mins 3.4 mins 4e-7 mins

Another overhead is the time overhead which is shown in 
Table I. In this design, there are two kinds of time overhead: 

registration overhead and authentication overhead. For each 
device, we collected 300000 measurements in the registration 

process which took 100 minutes and the process of identifier 
construction took 15.7 minutes. For authentication, 10000 

measurements were collected which took 3.4 minutes and the 
calculation of average profiling time took 4e-7 minutes. The 

registration process takes longer, but it is just a one-time process. 

In comparison, the time overhead of authentication is 3.4 

minutes. It is important to note that, the time overhead of 

identifier construction depends on the performance of the host 

machine. For both the registration process and authentication 

process, the CPU used is Core i5-3470.

In this work, we use a Python-based interface for PCIe and 
the profiling time is measured using the time library of Python. 
As shown in Fig. 6, the variance of profiling time is very high. 

Even the proposed design is able to seek out the ROI with the 

lowest noise and construct unique identifiers for different 
devices, the lack of high accuracy brings two major issues:

• Overlapping. As shown in Fig. 10, there is no overlapped 

area. However, if the number of devices increases, there 

might be some areas of overlap which makes each 
identifier not unique anymore. Assuming the devices 

from the same vendor and the same family will remain 
fewer per PCIe interface, this proposed scheme works.

• High overhead of registration time. The higher the 
accuracy of measurement, the less quantity of samples 

for identifier construction is needed. If the accuracy of 
measurement can be increased, the registration process 

will need fewer measurements for constructing 
identifiers therefore the time overhead will be also 

reduced.

In order to avoid overlapping of RPTs and reduce the time 

overhead of registration, further research will focus on 
improving the accuracy of measurement. In addition, applying 

classification algorithms can be valuable to reduce the number 
of measurements required in the authentication process.

VII. Co n c l u s i o n

In this paper, we discussed the threats of DMA attacks and 
demonstrated a successful attack on the victim machine. To

mitigate the DMA attacks, we propose a lightweight 

authentication scheme for DMA-supported PCIe devices based 
on the unique identifiers constructed with the profiling time. By 

applying the proposed ROI selection algorithms, the noise in 
measurements can be further reduced. The results show that 

there is no overlapped area among RPTs of three PCIe devices 
and the success rate of authentication is 100%. The proposed 

design does not require any modifications to hardware and 
protocol, and does not have any negative effect on the 

performance of computing systems, make this design more 
feasible than any other existing countermeasures.
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