
20
21

 2
2n

d
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

Q
ua

lit
y

E
le

ct
ro

ni
c

D
es

ig
n

(I
S

Q
E

D
)

| 9
78

-1
-7

28
1-

76
41

-3
/2

0/
$3

1.
00

 ©
20

21
 IE

E
E

 |
D

O
I:

10
.1

10
9/

IS
Q

E
D

51
71

7.
20

21
.9

42
42

62

A Lightweight Delay-based Authentication Scheme
for DMA Attack Mitigation

Yutian Gui, Ali Shuja Siddiqui, Geraldine Shirley Nicholas, Marcus Hughes, Fareena Saqib
University of North Carolina at Charlotte, NC, USA

ygui@uncc.edu, asiddiq6@uncc.edu, gnichola@uncc.edu, mhughe35@uncc.edu, fsaqib@uncc.edu

Abstract—With the extensive application of the Direct Memory
Access (DMA) technique, the efficiency of data transfer between
the peripheral and the host machine has been improved
dramatically. However, these optimizations also introduce
security vulnerabilities and expose the process of data
transmission to DMA attacks that utilize the feature of direct
access to steal the data stored in the live memory on the victim
system. In this paper, we propose a lightweight scheme to provide
resilience to DMA attacks without physical and protocol-level
modification. The proposed scheme constructs a unique identifier
for each DMA-supported PCIe device based on profiling time and
builds a trusted database for authentication. The experimental
result shows that the proposed methodology eliminates most of the
noise produced in the measuring process for identifier
construction and the success rate of authentication is 100% for all
the devices.

Keywords— direct memory access, DMA attack, side-channel
attack, hardware security

I. In t r o d u c t io n

Traditionally, the data transmission between the external
device and the main memory was realized by using programmed
input/output or interrupt-driven I/O which require the full
involvement of the CPU. The CPU has to transfer the data word
to word which is inefficient especially when the size of data to
be transferred is large. DMA allows peripheral devices to
read/write data from/to the main memory without passing it
through the processor. In DMA protocol, the CPU only takes
charge of initialization and termination which frees the
processor from involvement in the transfer process. Nowadays,
DMA is widely supported by different data buses (ISA, PCIe,
etc.) in modern computing systems.

With the extensive application of DMA, security issues have
become inevitable. In recent works, the vulnerability of DMA
has been explored and demonstrated [1] [2]. The characteristic
of direct access allows the attacker to steal data and mount the
file system of the victim system through DMA-supported
devices maliciously. To reduce the risk of DMA attacks,
countermeasure techniques were introduced using memory
virtualization and key-based authentication [3] [4], but are either
expensive or unfeasible. Furthermore, recent attacks show that
the DMA-based data transfer is still vulnerable even with
security features enabled [5] [6].

In this work, we propose a lightweight authentication
scheme for PCIe devices. To the best of our knowledge, this
work is the first publicly reported study that utilizes the profiling

time to construct identifiers used in authentication for PCIe
devices.

Contribution: This paper makes the following
contributions:

1. We propose a comprehensive scheme for DMA attack
mitigation, including the registration process and the
authentication process.

2. We design a framework to remove noise in collected
measurements for identifier construction.

3. The effectiveness and feasibility of the proposed design
are verified by experiments.

Paper organization: The paper is organized as follows. The
related work is discussed in section II. Section III shows the
detail of the attack model. Section IV describes the proposed
methodology and section V presents the experimental setup and
results. The security analysis is discussed in section VI.

II. Re l a t e d Wo r k s

A. Direct Memory Access (DMA)
In the traditional computing system, the CPU reads every

block of data using a peripheral bus from the I/O devices and
writes it into the main memory. In this process, the CPU is fully
occupied and is thus not available to perform other works. This
structure slows down the performance of the system
significantly. In contrast, DMA allows peripheral hardware
devices (disk drive controllers, graphics cards, network cards,
and sound cards, etc.) to send/read I/O data directly to/from main
memory. With DMA, the interaction between external devices
and memory is carried out independently of the CPU, therefore
the overload of CPU is reduced remarkably.

The feature of DMA is provided by several bus architectures,
such as Industry Standard Architecture (ISA), Advanced
Microcontroller Bus Architecture (AMBA), and Peripheral
Component Interconnect (PCI). To manage the data transfer
between the host system and DMA devices, a DMA controller
is needed. The DMA controller is a control unit, part of the
interface circuit, which enables the movement of data blocks
between I/O devices and the main memory. After the
initialization of the DMA controller by CPU, the memory
controller provides memory addresses and initiates read or write
cycles for data transfer, and sends an interrupt to the CPU when
the whole process of data transmission is done.

978-1-7281-7641-3/21/$31.00 ©2021 IEEE 263 22nd Int'l Symposium on Quality Electronic Design

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on August 12,2021 at 02:23:08 UTC from IEEE Xplore. Restrictions apply.

B. DMA attack
DMA increases the efficiency of data transfer between the

main memory and external devices, but the native feature of
direct access also brings some potential risks of security

breaches. As a type of side-channel attack, the DMA
compromise has been proved as a powerful and efficient attack

that allows the attacker to read and write the memory on the
victim system directly.

In 2016, [1] demonstrated a DMA attack that allows the
attacker to read/write the memory once the peripheral PCIe

device is connected to the victim system without the need for
hardware drivers. Moreover, this attack is able to access the live

RAM and the file system by inserting kernel implants. The same
year, the Intel Advanced Threat Research team performed a
DMA attack over the air by modifying a WiGig dock to

compromise a laptop that is connected to the dock wirelessly [2].

The architecture of wireless connection allows the attacker to
use the DMA capabilities to dump secrets out of the memory on

the victim machine remotely. The work reported in [6] shows
the Thunderbolt protocol with access-control enabled is not

resilient to DMA attacks. The attacker-controlled device obtains

full access to the main memory successfully via a Thunderbolt
port by identity clone and spoofing.

C. DMA attack mitigation
To mitigate the risk of DMA attacks, some techniques have

been proposed. After BitLocker was first introduced in

Windows Vista, Microsoft provides pre-boot authentication to
enhance data privacy. The safety of data is ensured by full-disk

encryption with BitLocker and the key is generated by the

Trusted Platform Module (TPM) [7]. According to the policy of
pre-boot authentication, BitLocker accesses and stores the

encryption key in memory only after the user provides the
correct PIN or USB startup key. However, BitLocker can only

be used for encrypting hard drives or removable data drives, the
memory is still vulnerable to DMA attacks after the booting

process is completed. Moreover, the time overhead of
encryption/decryption is very high.

For Windows 10, a new feature is added from version 1709
named “Disable new DMA devices when this computer is

locked” [3]. Once this feature is enabled, all the hot-pluggable
PCI/PCIe ports will be blocked until a user signs in to Windows.

This policy prevents attacks that use PCI/PCIe-based devices to
access BitLocker keys, yet at the same time brings

inconvenience in some cases when the user wants to keep
PCI/PCIe devices working when the system is locked.

With the introduction of the Input-Output Memory
Management Unit (IOMMU) (This technique is branded VT-d

[4] by Intel and AMD-Vi [8] by AMD), the risk of DMA attack
is reduced. IOMMU connects the DMA-capable I/O bus to the

main memory and supports DMA-remapping which translates
the address of the incoming DMA request to the correct physical
memory address. After activating this function, each DMA

device can only access a part of the memory which is allocated

by IOMMU therefore the rest of the memory is immune to DMA
attacks on that device. This technique mitigates the risk of DMA

attack, but it cannot protect the whole memory especially when
the memory size of the system is small.

Another strategy of DMA attack mitigation is access control

which can be realized by encryption-based authentication or

Trust-On-First-Use (To Fu) scheme [9]. [10] presents an
authentication architecture between each component and the

host system based on the key-based certification. However, the
precondition of this design is that each component must be

authenticatable at any time which is not practical. For the TOFU
scheme, the host machine records the unique

fingerprint/identifier of a trusted device into its trusted database
the first time this device is attached. In this way, a device can

access the host system only if its identifier can be found in the
trusted database otherwise it will be blocked. However, there is

no available unique identifier for devices in the case of PCIe
authentication. Currently, computing systems use vendor ID,

device ID, and PCIe slot ID to distinguish different PCIe

devices. However, if the attacker unplugs the connected PCIe
device and inserts a new device of the same model from the same

manufacturer into the same slot, the host machine is not able to
recognize whether the new connected device is the same as the

one used previously.

In this work, we use the profiling time of each device as the

identifier to build the trusted database on the host machine.
Compared with existing work, our design is lightweight and

does not require any physical modification or protocol-level
modification on the host machine.

III. At t a c k Mo d e l

As the successor of PCI, PCIe is a high-speed serial
computer expansion bus standard for attaching hardware

devices to a computer. In a PCIe system, endpoints are
connected with the memory subsystem via the interface named

root complex. Once the PCIe device is connected, the
communication is achieved by exchanging Transaction Layer

Packets (TLPs) which relate to PCIe’s uppermost layer between
the PCIe device and the host. This standard does not implement

any security to protect the privacy of data which makes the
DMA attack feasible on the PCIe system.

Fig. 1. Basic DMA attack flow.

In this work, we perform an attack using a PCIe device to
show the vulnerability of DMA. The attack presented in this

work references the attack model presented in [1] and [11]. Fig.
1 shows the basic attack flow. The PCIe device is connected to

the victim machine via the PCIe port and connected to the
attacker machine by any of the interfaces (USB, Ethernet, etc.).

The attacker controls the PCIe device to send a Memory Read
Request (MRd) TLP to the victim machine. Once the MRd TLP

reaches the PCIe root complex, the victim machine will respond

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on August 12,2021 at 02:23:08 UTC from IEEE Xplore. Restrictions apply.

with the completion TLP which contains actual data back to the
PCIe device, then back to the attacker. The attacker can either

dump all the data stored in the main memory of the victim
machine, or a part of the data using a specific range of memory

addresses.

011EAFCC40
O11EAFCC50
011EAFCC60
Q11EAFCC70
Q11EAFCCBQ
011EAFCC90
011EAFCCA0
011EAFCCB0
OllEAFCCCO

00 00 5E EE 52 AO 5F 29 A6 43 7B 22 64 69 73 70
6C 61 79 54 65 78 74 22 3A 22 47 6F 6F 67 6C 65
20 43 68 72 6F 6D 65 22 2C 22 61 63 74 69 76 61
74 69 6F 6E 55 72 69 22 3A 22 6D 73 2D 73 68 65
6C 6C 61 63 74 69 76 69 74 79 3A 22 2C 22 61 70
70 44 69 73 70 6C 61 79 4E 61 6D 65 22 3A 22 47
6F 6F 67 6C 65 20 43 68 72 6F 6D 65 22 2C 22 62
61 63 6B 67 72 6F 75 6E 64 43 6F 6C 6F 72 22 3A
22 62 6C 61 63 6B 22 7D 03 69 50 41 6B 6A 62 4C

.."lR _) J C{"disp
layText":"Google
Chrome","activa

tionUri":"ms-she
llactivity:", "ap
pDisplayName":"G
oogle Chrome",nb
ackgroundColor":
"black"}.iPAkjbL

To configure the attack, we use a PCIe-compatible

development board named “NeTV2” with an onboard Xilinx
XC7A35T FPGA chip. Xilinx provides PCIe DMA and PCIe

Bridge hard and soft IP blocks for compatible FPGA devices
[12], as well as full access to 64-bit memory space without
relying on a kernel module running on the victim system.

Fig. 4. A memory fragment dumped from the victim machine.

Fig. 4 shows a part of live memory dumped from the victim
machine. This memory fragment was being used by the Google

Chrome browser when the attacker was dumping the main

memory illegally.

Fig. 2. Experimental setup of DMA attack.

Fig. 2 shows the experimental setup of the proposed DMA

attack. The NeTV2 board is connected with the victim machine
via PCIe port, and connected with the attacker by an Ethernet

cable. There is no need to install any hardware driver on the
victim machine. The direct access supported by DMA enables

the attacker to control the NeTV2 board to send memory
read/write request TLPs to the victim machine, thereby

read/write data from/to the main memory on the victim
maliciously.

E:\PCILeech>pcileech probe -device rawudp://ip-192. 168.0.222 ~v

DEVICE: FPGA: NeTV2 RawUDP PCIe gen2 xl [0,0,0] [v4. 2, 0200]
Memory Map:
START END ttPAGES
0000000000000000 - 000000000009ffff OOOOOOaO
00000000000C0000 - 000000006bdfffff 0006bd40
0000000100000000 - 0000000165fb5fff 00065fb6
0000000165fc0000 - 00000009Se9bbfff 007f89fc
000000095ec00000 - 000000108dffffff 0072f400

Current Action: Probing Memory
Access Mode: Normal
Progress: 67808 / 67808 (100%)
Speed: 858 MB/s
Address: 0x000000108E000000
Pages read: 16751506 / 17358848 (96%)
Pages failed:: 607342 (3%)

Memory Probe: Completed.

Fig. 3. Memory probing on the victim machine.

Fig. 3 shows the process of memory probing. The attacker

enumerated the memory of the target system for readable

memory pages starting from the first address to the last one. As
shown in Fig. 3, around 96% of the whole memory space is
readable in this case.

IV. Pr o p o s e d Me t h o d o l o g y

To construct a unique identifier for each PCIe device, the

profiling time is used in this work. This unique identifier serves
as a fingerprinting of each device. Due to the variation in the

manufacturing process, each device has a unique physical

characteristic such as current flow, IR drop, threshold voltage,
and unique delays. These delays affect the response time of the

device and have a high stability (drift due to aging is not
considered in this work). Manufacturing variations are also used

in creating cryptographic functions such as Physical Unclonable
Functions (PUFs).

Before building the trusted database with the profiling time

of each device, one issue is the high variance among multiple
samples which makes the raw data unusable. This variance is

caused by multiple reasons, such as the change of environmental

parameters and real-time resource utilization. In this work, we
design a data processing framework to reduce the noise in raw

measurements for extracting accurate and stable profiling time.

1

^ S ^ e c o r d ^ ^

/^Registration at First Time

Trusted Database On Host
b l o c k t h e

device
grant perm ission to

the device

Fig. 5. Proposed registration and authentication scheme.

Fig. 5 shows the proposed scheme which consists of two
main parts: registration and authentication.

A. Trusted Device Registration
In the registration process, when a trusted PCIe device is first

time connected to the host machine, the authorized user

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on August 12,2021 at 02:23:08 UTC from IEEE Xplore. Restrictions apply.

measures the profiling time of this device, constructs an

identifier with ROI selection algorithms for this device, and
stores the identifier (Vendor ID, Device ID, Region of Interest
(ROI) and Range of Profiling Time (RPT)) into the trusted

database.

1) Data collection
For each device, multiple sub-datasets are collected, and

each sub-dataset contains an equal number of profiling time
measurements. Let R denote the number of sub-datasets for each

device, and S denotes the number of recorded measurements of
profiling time in each sub-dataset. Totally, there are (R x S)

measurements for each device. After data collection, the raw
measurements of profiling time are sorted from lowest to highest

in each sub-dataset.

2) Region Of Interest (ROI) selection
In data processing, ROI is a group of samples selected from

a dataset for a particular purpose. In this work, the goal of ROI

selection is to find the region in the sub-dataset that has the
lowest noise. Since the variance in raw measurements is too

high, we propose two different algorithms to seek the most
valuable ROI in the sorted sub-dataset.

a) Difference based algorithm
In the difference based algorithm, we calculate the difference

of the same selected regions between each pair of sub-datasets

from the first measurement to the last one. Let L denote the
length of the Difference-based ROI (DROI). For R sub-datasets

(each sub-dataset has S measurements of profiling time), there
are C(R, 2) different combinations of comparison pairs, and (S -

L) possible regions. Algorithm 1 gives the detail of DROI
selection.

Algorithm 1: DROI selection

Inputs:
• Number of sub-datasets (R), Number of measurements in each sub-

dataset (S), Length of DROI (L)

Output:
• Difference-based ROI (DROI)

Steps:
1: Res[] ^ empty list

2: for i = 1 to (S - L) //for all the possible regions

3: for j = 1 to (R - 1)
4: for k = (j + 1) to R //for all the combinations

5: calculate AD (absolute difference value between sub-

dataset[j][i : i + L] and sub-dataset[k][i : i + L])
6: TD (accumulative difference for region i) ^ TD + AD

7: end for

8: end for

9: Res[i] ^ TD
10: TD ^ 0

11: end for

12: DROI ^ [d : d + L] where d is the index of the minimum value in

Res[]

b) Correlation coefficient based algorithm
The correlation coefficient is a statistical index used to

measure the dependency of two variables. If the same regions
from different sub-datasets have the highest correlation with
each other, it means that the noise level in this region is the

lowest. In this work, we compute the Pearson’s correlation
coefficient of all the regions from each pair of sub-datasets to

find the Correlation-based ROI (CROI). The detail of CROI
selection is shown in Algorithm 2.

Algorithm 2: CROI selection

Inputs:
• Number of sub-datasets (R), Number of measurements in each sub-

dataset (S), Length of CROI (L)

Output:
• Correlation-based ROI (CROI)

Steps:
1: Res[] ^ empty list
2: for i = 1 to (S - L) //for all the possible regions

3: for j = 1 to (R - 1)
4: for k = (j + 1) to R //for all the combinations

5: calculate CC (correlation coefficient between sub-

dataset[j][i : i + L] and sub-dataset[k][i : i + L])
6: TC (accumulative coefficient for region i) ^ TC + CC
7: end for

8: end for
9: Res[i] ^ TC
10: TC ^ 0

11: end for
12: CROI ^ [d : d + L] where d is the index of the maximum value in

Res[]

In DROI selection, the lowest value in result list Res[] is used
because the lowest difference means the same selected regions

from each pair of sub-datasets have the highest similarity (in
other words, the lowest noise). However, in CROI selection, the

highest value in result list Res[] is selected because the highest
coefficient represents the highest similarity. At the end of the

selection process, the overlapped region between the DROI and
CROI is selected as the ROI for identifier construction.

3) Construct and store identifier
The process of ROI selection figures out the region with the

lowest level of noise. By calculating the average profiling time

of all the measurements in ROI for each sub-dataset and
combining the results of all the sub-datasets, we get the Range
of Profiling Time (RPT) which can be used as a part of the

identifier. The ROI and RPT will be stored in the trusted

database on the host machine, along with the vendor ID and

device ID of this trusted device.

B. Authentication
For authentication, every time a new PCIe connection is

detected, the system reads the vendor ID and device ID of this
PCIe device. Once the vendor ID and device ID are found in the

trusted database, the host machine will collect a number of

profiling time measurements and calculate the average profiling

time based on the ROI stored in the same record. If the average

profiling time of this device is within the RPT stored in the same
record, the permission will be granted to the device, otherwise

the system will recheck for other records that contain the same
vendor ID and device ID (in case of more than one device of the

same model are registered) until all the records have been
traversed.

V. Ex p e r i m e n t a l Se t u p a n d Re s u l t

In this work, three TL-WN881ND wireless PCIe adapters
from TP-LINK [13] that have the same properties (called device

A, device B, and device C) are used for verifying the proposed
design. In data collection, the elapsed time of reading

configuration space on the PCIe device is measured as profiling
time.

In experiments, we measured the profiling time of each
device 10000 times and repeated this process 30 times under the

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on August 12,2021 at 02:23:08 UTC from IEEE Xplore. Restrictions apply.

same conditions. After data collection, we have 30 sub-datasets

and each sub-dataset has 10000 measurements of profiling time
for each device.

Measurements

Fig. 6. All 10000 measurements of profiling time in one sub-dataset
collected from device A.

Fig. 7. Comparison of all 30 sorted sub-datasets collected from device A.

Fig. 6 shows all 10000 measurements of profiling time in

one sub-dataset collected from device A, and Fig. 7 shows all 30

sub-datasets with sorted measurements collected from device A.
Without data processing, the variance of profiling time is very

high (from 12 ms to 23 ms), and the difference among different
sub-datasets is also very high in some regions which makes
identifier construction difficult. Then, we applied the two

proposed algorithms of ROI selection on the raw measurements

collected from device A. In this case, we set the length of DROI
and CROI to 3000 (to balance the uniqueness and the

applicability, the length of CROI/DROI should be between 20%
and 40% of the sub-dataset’s size). Fig. 8 and Fig. 9 show the

result of DROI selection and CROI selection.

Min Difference: 0.02302205618222555
Difference based ROI (DROI): 5464 - 8464
»>
Max correlation: 434.7485805839838
Correlation based ROI {CROI): 6991 - 9991
»>

(6991st - 8464th). This region has the lowest noise and the highest

stability because samples in this region from data collections
over different periods (sub-datasets in this case) have both the
lowest difference and the highest correlation with each other.

Moreover, based on the result of comparison among three
devices, we noticed that all the devices of the same type have

very similar ROIs with each other, so we used the ROI of device
A for all three devices to construct the identifier.

RPT of device A
RPT of device B
RPT of device C

19550 us 19600 us 19650 us 19700 us 19750 us 19800 us 19850 us 19900 us 19950 us 20000 us

Profiling Time

Fig. 10. Range of Profiling Time (RPT) of each device.

For each device, we calculated the average profiling time of

all the measurements in ROI in each sub-dataset. The average
profiling times of all the sub-datasets were combined to form the
RPT for each device. As shown in Fig. 10, RPTs range from
19577.90 us to 19692.26 us, 19865.05 us to 19994.50 us,

19734.17 us to 19831.31 us for device A, B, and C, respectively.
There is no overlapped area among the three devices, which

means that the Rp T of each device is unique. RPTs were used
as identifiers of each device and stored in the trusted database
with vendor ID, device ID, and ROI on the host machine for

future authentication.

In authentication, each time we collected 10000
measurements of profiling time and calculated the average

profiling time of all the measurements in the ROI. This process
was repeated 20 times for each device. The result shows that all

the average profiling times of each device are within their
respective RPTs, the success rate of authentication is 100% for

all three devices.

VI. Se c u r i t y An a l y s i s

The proposed framework uses profiling time to construct

identifiers for PCIe devices. In comparison with other existing
mitigation countermeasures, the delay-based authentication

model has two major advantages:

Fig. 8. The output of DROI selection and CROI selection.

The result shows that the DROI of device A is from the
5464th point to the 8464th point in each sorted sub-dataset, and

the CROI is from the 6991st point to the 9991st point. We
selected the overlapped region of DROI and CROI as ROI

• The proposed design does not require any hardware-level
or protocol-level modification. Existing

countermeasures to DMA attacks, such as [10] and [14],

need either an adjustment to the current protocol or
physical modification of devices that make designs less

practical in the real world. In this work, the
authentication is achieved by extracting the time-delay

characteristic in device profiling and no additional
change on the hardware is needed, therefore it is more

feasible as compared to other existing works.

• The cost of the proposed design is low. IOMMU has

been proved as an efficient countermeasure to DMA
attacks, but activating IOMMU will reduce the real-time

performance of computing systems significantly [15]. As
a contrast, the delay-based authentication model

presented in this work is lightweight. The registration is

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on August 12,2021 at 02:23:08 UTC from IEEE Xplore. Restrictions apply.

a one-time process and there is no impact on

performance after the authentication is done.

There are two types of overhead in this design. The first one
is the resource overhead which is caused by the storage of the

trusted database. In the real world, the PCIe devices are fewer
therefore the size of the trusted database is fairly small. For

example, if the trusted database has 30 records, the overall
overhead of storage is only 1.81 KB.

TABLE I. Ti m e Ov e r h e a d (Ea c h De v i c e)

Time
Overhead

Registration
Overhead (in minutes)

Authentication
Overhead (in minutes)

Measuring Construction Measuring Calculation

100 mins 15.7 mins 3.4 mins 4e-7 mins

Another overhead is the time overhead which is shown in
Table I. In this design, there are two kinds of time overhead:

registration overhead and authentication overhead. For each
device, we collected 300000 measurements in the registration

process which took 100 minutes and the process of identifier
construction took 15.7 minutes. For authentication, 10000

measurements were collected which took 3.4 minutes and the
calculation of average profiling time took 4e-7 minutes. The

registration process takes longer, but it is just a one-time process.

In comparison, the time overhead of authentication is 3.4

minutes. It is important to note that, the time overhead of

identifier construction depends on the performance of the host

machine. For both the registration process and authentication

process, the CPU used is Core i5-3470.

In this work, we use a Python-based interface for PCIe and
the profiling time is measured using the time library of Python.
As shown in Fig. 6, the variance of profiling time is very high.

Even the proposed design is able to seek out the ROI with the

lowest noise and construct unique identifiers for different
devices, the lack of high accuracy brings two major issues:

• Overlapping. As shown in Fig. 10, there is no overlapped

area. However, if the number of devices increases, there

might be some areas of overlap which makes each
identifier not unique anymore. Assuming the devices

from the same vendor and the same family will remain
fewer per PCIe interface, this proposed scheme works.

• High overhead of registration time. The higher the
accuracy of measurement, the less quantity of samples

for identifier construction is needed. If the accuracy of
measurement can be increased, the registration process

will need fewer measurements for constructing
identifiers therefore the time overhead will be also

reduced.

In order to avoid overlapping of RPTs and reduce the time

overhead of registration, further research will focus on
improving the accuracy of measurement. In addition, applying

classification algorithms can be valuable to reduce the number
of measurements required in the authentication process.

VII. Co n c l u s i o n

In this paper, we discussed the threats of DMA attacks and
demonstrated a successful attack on the victim machine. To

mitigate the DMA attacks, we propose a lightweight

authentication scheme for DMA-supported PCIe devices based
on the unique identifiers constructed with the profiling time. By

applying the proposed ROI selection algorithms, the noise in
measurements can be further reduced. The results show that

there is no overlapped area among RPTs of three PCIe devices
and the success rate of authentication is 100%. The proposed

design does not require any modifications to hardware and
protocol, and does not have any negative effect on the

performance of computing systems, make this design more
feasible than any other existing countermeasures.

Re f e r e n c e s

[1] Direct Memory Attack The Kernel. (2016). Ulf Frisk. Accessd Sep 15,

2020. [Online]. Available:
https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%2

0presentations/DEF%20C0N%2024%20-%20Ulf-Frisk-Direct-
Memory-Attack-the-Kernel.pdf

[2] Memory Lane - Direct Memory Access Attacks. (2020). Accessd Sep 15,
2020. [Online]. Available: https://eclypsium.com/2020/01/30/direct-
memory-access-attacks/

[3] BitLocker Countermeasures (Windows 10) - Microsoft 365 Security.
(2019). Accessd Sep 17, 2020. [Online]. Available:
https://docs.microsoft.com/en-us/windows/security/information-
protection/bitlocker/bitlocker-countermeasures#pre-boot-authentication

[4] Intel® Virtualization Technology for Directed I/O (VT-d). (2012). Intel.
Accessd Sep 17, 2020. [Online]. Available:
https://software.intel.com/content/www/us/en/develop/articles/intel-
virtualization-technology-for-directed-io-vt-d-enhancing-intel-
platforms-for-efficient-virtualization-of-io-devices.html.

[5] B. Morgan, E. Alata, V. Nicomette and M. Kaaniche, "Bypassing

IOMMU Protection against I/O Attacks," 2016 Seventh Latin-American
Symposium on Dependable Computing (LADC), Cali, 2016, pp. 145-150.

[6] When Lightning Strikes Thrice: Breaking Thunderbolt 3 Security. (2020).
Thunderspy. Accessd Sep 20, 2020. [Online]. Available:
https://thunderspy.io/

[7] Trusted Platform Module (TPM) Summary. (2018). Trusted Computing
Group. Accessed Sep 20, 2020. [Online]. Available:
https://trustedcomputinggroup.org/resource/trusted-platform-module-
tpm-summary

[8] AMD I/O Virtualization Technology (IOMMU) Specification. (2020).

AMD. Accessed Sep 20, 2020. [Online]. Available:
https://www.amd.com/en/support/tech-docs/amd-io-virtualization-
technology-iommu-specification

[9] D. Wendlandt, D. Andersen and A. Perrig, WendlanB. "Perspectives:
Improving SSH-style Host Authentication with Multi-Path Probing,"
2008 USENIX Annual Technical Conference, Boston, MA, 2008.

[10] PCIe® Component Authentication. (2019). PCI-SIG. Accessed Sep 25,
2020. [Online]. Available: https://pcisig.com/pcie%C2%AE-component-
authentication

[11] PCILeech. (2020). GitHub. Accessed Sep 25, 2020. [Online]. Available:
https://github.com/ufrisk/pcileech

[12] PCI Express and Xilinx Technology. (2020). Xilinx. Accessed Sep 26,
2020. [Online]. Available:
https://www.xilinx.com/products/technology/pci-express.html

[13] TL-WN881ND. (2020). TP-LINK. Accessed Sep 29, 2020. [Online].
Available: https://www.tp-link.com/il/home-networking/adapter/tl-
wn881nd/

[14] PCIe* Device Security Enhancements Specification. (2018). Intel.
Accessed Oct 10, 2020. [Online]. Available:

https://www.intel.com/content/www/us/en/io/pci-express/pcie-device-
security-enhancements-spec.html

[15] M. Ben-Yehuda, J. Xenidis, M. Ostrowski, K. Rister, A. Bruemmer, and
L. V. Doom. "The Price of Safety: Evaluating IOMMU Performance,"
2007 Ottawa Linux Symposium, Ottawa, Ontario, Canada, 2007, Vol. 1.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on August 12,2021 at 02:23:08 UTC from IEEE Xplore. Restrictions apply.

