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Abstract

Consider the Poisson equation in a polyhedral domain with mixed boundary conditions.
We establish new regularity results for the solution with possible vertex and edge singularities
with interior data in usual Sobolev spaces Hσ with σ ∈ [0, 1). We propose anisotropic finite
element algorithms approximating the singular solution in the optimal convergence rate. In
particular, our numerical method involves anisotropic graded meshes with fewer geometric
constraints but lacking the maximum angle condition. Optimal convergence on such meshes
usually requires the pure Dirichlet boundary condition. Thus, a by-product of our result is to
extend the application of these anisotropic meshes to broader practical computations with the
price to have “smoother” interior data. Numerical tests validate the theoretical analysis.

1 Introduction
Consider the elliptic problem associated with the Laplace operator in a bounded polyhedral domain
Ω ⊂ R3 with the mixed boundary condition: −∆u = f in Ω,

u = 0 on ΓDir,
∂nu = 0 on ΓNeu,

(1)

where ΓDir and ΓNeu are open subsets of the boundary ∂Ω such that ΓDir ∪ ΓNeu = ∂Ω. For
simplicity, we suppose that each face of ∂Ω is included either in ΓDir or in ΓNeu and ΓDir 6= ∅. The
solution of equation (1) is uniquely defined in H1

ΓDir
(Ω) (see (2)) for f ∈ (H1

ΓDir
(Ω))′ [17, 26]. The

solution regularity, however, is determined by the smoothness of the given function, the geometry
of the domain, and the boundary conditions. Let us refer to the non-smooth boundary points
and the points where the boundary condition changes as singular points. Then, even for a smooth
function f , the solution may possess singularities in high-order Sobolev spaces near the singular
points [15, 18, 21, 22]. These singularities, often being the main theoretical concern, can also
severely deteriorate the efficacy of the numerical approximation.

For equation (1), the singular points are in fact the non-smooth boundary points (namely,
vertices and edges), provided that each face is either in ΓDir or in ΓNeu. Then, given a sufficiently
smooth function f , there are two types of solution singularities near the singular points in Ω̄:
the vertex singularity and the anisotropic edge singularity. For such singularities, anisotropic
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meshes are usually designed to improve the effectiveness of the finite element method (FEM). This
is different from the isotropic graded meshes in two-dimensional polygonal domains, where only
corner (vertex) singularities need special numerical treatment. The development of optimal FEMs
for elliptic equations in polyhedral domains is a technically challenging task due to the combination
of different types of singularities and due to the complexity in the three-dimensional geometry.
Meanwhile, the error analysis for the numerical scheme often demands specific anisotropic regularity
estimates. Compared with estimates in isotropic Sobolev spaces, such anisotropic regularity results
are limited and less known, most of which are for pure Dirichlet problems. Consequently, the
developments of effective mesh algorithms are extensively centered around pure Dirichlet problems.

The existing mesh algorithms for polyhedral domains usually require restrictive geometric con-
ditions on the mesh and on the domain. For example, the mesh in [2, 16] is based on the method
of dyadic partitioning. These meshes are isotropic and optimal only for weaker singular solutions.
The mesh in [1, 4, 5] is based on a coordinate transformation from a quasi-uniform mesh. It is
anisotropic along the edges and requires confining angle conditions for the simplex. The mesh in
[8, 9] is also anisotropic and leads to optimal convergence rate. The algorithm, however, requires
extra steps for prism refinements to maintain the angle condition in the simplex. There are also
tensor-product anisotropic meshes based on 2D graded meshes [6, 27] that are usually effective
on a domain with simple geometry. Recently, a new anisotropic FEM has emerged [24, 25] based
on explicit recursive refinements. With fewer geometric requirements on the simplex and on the
domain, this algorithm leads to conforming triangulations that however violates the maximum an-
gle condition in simplexes [7, 23]. Nevertheless, it was shown that for the pure Dirichlet problem,
the solution has extra regularity in the edge direction to compensate for the lack of mesh shape
regularity; and this algorithm gives rise to optimal FEMs approximating the anisotropic singular
solutions. Equations with mixed boundary conditions can possess solutions with a singular struc-
ture different from that in pure Dirichlet problems. Especially, near an edge or a vertex that is
surrounded by Neumann faces, the solution does not vanish and therefore does not belong to the
same Sobolev space as in the Dirichlet case. The rigorous theoretical and numerical justification
of anisotropic algorithms for problems with mixed boundary conditions, which occurs often in
practical computations, remains an open investigation.

In this paper, we extend the application of anisotropic algorithms to problems with mixed
boundary conditions by developing new finite element algorithms and new regularity results for
equation (1). In particular, we study the singular expansion of the solution near singular points
surrounded by Neumann faces. It turns out that part of the singular expansion resembles the
singularity in the Dirichlet problem and therefore belong to a similar weighted space. For the
rest of the singular expansion, a series of estimates on its fundamental properties shall reveal
its directional regularities. We summarize our findings by establishing new regularity results in
Theorems 6.1 and 6.2, Lemma 6.3, and Corollary 6.5 in different parts of the domain. Then, we
propose an optimal finite element algorithm (Algorithm 3.4) and validate it based on interpolation
error analysis in anisotropic weighted spaces.

The paper is organized as follows. In Section 2, we introduce necessary notation regarding the
finite element approximation of equation (1). We also define a domain decomposition according to
the distance to the singular points. In Section 3, we first review the anisotropic mesh developed in
[24]. Then we propose the anisotropic FEM for equation (1) with the mixed boundary condition.
In Section 4, we study the regularity of the equation in a dihedron, which shall lead to the local
regularity estimates near an open edge. In Section 5, we investigate the regularity of the equation
in an infinite cone, which shall lead to the local regularity estimates near a vertex of the domain.
In Section 6, we present the regularity results for the solution in the domain. In Section 7, we
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include detailed interpolation error analysis for the anisotropic finite element algorithm in weighted
spaces. These optimal interpolation error estimates in turn lead to the conclusion that the proposed
FEMs obtain the optimal convergence rate approximating the target problem. Numerical tests are
implemented in a polyhedral prism domain for different mixed boundary conditions and the results
are reported in Section 8, These numerical results are in agreement with our theoretical prediction
and hence validate our method.

Throughout the text below, we adopt the bold notation for vector fields. Let T be a triangle
(resp. tetrahedron) with vertices a, b, c (resp. a, b, c, d). Then, we denote T by its vertices: 43abc
for the triangle and44abcd for the tetrahedron, where the sup-index implies the number of vertices
for T . We denote by ab the open line segment with endpoints a and b. By a ∼ b (resp. a . b), we
mean that there exists a constant C > 0 independent of a and b, such that C−1a ≤ b ≤ Ca (resp.
a ≤ Cb). The generic constant C > 0 in our estimates may be different at different occurrences.
It will depend on the computational domain, but not on the functions involved or the mesh level
in the finite element algorithms. In addition, both of the terms are used to represent the same
directional derivative: ∂1 = ∂x, ∂2 = ∂y, and ∂3 = ∂z. For a bounded domain D (or its boundary),
the usual norm and semi-norm of Hs(D) (s ≥ 0) are denoted by ‖ · ‖s,D and | · |s,D, respectively.
For s = 0, we will drop the index 0 and for D = Ω, the index Ω. For two positive parameters s
and ρ, we finally introduce the norm ‖ · ‖s,D,ρ on Hs(D) (see [15, Definition AA.17] for instance)
defined by

‖u‖s,D,ρ = (ρ2s‖u‖2D + |u|2s,D)
1
2 ,∀u ∈ Hs(D),

that is equivalent to the usual norm ‖ · ‖s,D (with constants of equivalence depending on ρ) if D
has a Lipschitz boundary.

2 Preliminaries
In this section, we introduce the notation and recall some existing results regarding the solution
of equation (1).

2.1 The finite element approximation
By a polyhedral domain Ω ⊂ R3, we mean a bounded domain with a Lipschitz boundary ∂Ω made
of plane faces (i.e., its boundary is a finite union of polygons). Thus, the boundary of Ω is smooth,
except at the vertex points and along the edges. In a neighborhood of a vertex c, Ω coincides with
a three-dimensional cone, while near an interior point of an edge e, Ω resembles a dihedral angle.

For a bounded domain O of R3, let Hm(O), m ≥ 0, be the usual Sobolev space that consists
of functions defined in O whose kth derivatives are square-integrable for 0 ≤ k ≤ m (hence
L2(O) := H0(O)). Let Hm

loc(Ω) := {v, v ∈ Hm(G), for any open subset G with compact closure
Ḡ ⊂ Ω}. The trace operator from H1(Ω) into H

1
2 (∂Ω) will be denoted by γ. We define

(2) H1
ΓDir

(Ω) := {u ∈ H1(Ω), γu = 0 on ΓDir},

which is clearly a closed subspace of H1(Ω).
Then, for f ∈ L2(Ω), the variational solution u ∈ H1

ΓDir
(Ω) of problem (1) is defined by

(3) a(u, v) :=

∫
Ω

∇u · ∇v dx = (f, v) :=

∫
Ω

fv dx, ∀v ∈ H1
ΓDir

(Ω).
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Let Tn be a triangulation of Ω with tetrahedra. Let Sn ⊂ H1
ΓDir

(Ω) be the linear Lagrange
finite element space associated with Tn. Then, the finite element solution un ∈ Sn for equation (1)
is given by

(4) a(un, vn) = (f, vn), ∀vn ∈ Sn.

Remark 2.1 By Poincaré’s inequality, the bilinear form a(·, ·) is both continuous and coercive on
V := H1

ΓDir
(Ω). Then, by Céa’s Lemma [12, 13], un is the best approximation from Sn in V

‖u− un‖V ≤ inf
vn∈Sn

‖u− vn‖V .

It is well known that the solution u may not belong to H2(Ω) due to the presence of the non-smooth
points (vertices and edges) on the boundary. On a standard quasi-uniform triangulation Tn, the
limited regularity of u in the Sobolev space can result in a sub-optimal convergence rate for the
finite element approximation. Namely,

‖u− un‖H1(Ω) ≤ Chs‖u‖Hs+1(Ω),

where h is the mesh size in Tn and 0 < s < 1 depends on the geometry of the domain.

For equation (1), there are two types of singularities in the solution that may affect the con-
vergence of numerical methods. The vertex singularity appears in the neighborhood of a vertex
and concentrates at the vertex. The edge singularity occurs in the neighborhood of an edge; it is
however anisotropic in the sense that the solution is smoother in the direction along the edge than
toward the edge. Consequently, anisotropic graded meshes are frequently applied to improve the
convergence of the finite element solution.

2.2 The domain and the weighted Sobolev space
We denote by E the finite set of open edges and by C the finite set of vertices of Ω. We also denote
by Ec ⊂ E the set of edges joining at c ∈ C and by Ce ⊂ C the set of endpoints of e ∈ E . We say
an edge e ∈ E is a Dirichlet (Neumann) edge if the Dirichlet (Neumann) boundary conditions are
imposed on both adjacent faces of e. We say e is a DN edge if the Dirichlet condition is imposed
on one adjacent face of e and the Neumann condition is on the other. Let ωe be the opening angle
between the two adjacent faces of e. For each e ∈ E , define

νe =

{ π
ωe
, if e is a Dirichlet edge or a Neumann edge;

π
2ωe

, if e is a DN edge.
(5)

The edge e is called singular if νe < 1; otherwise it is called regular. Denote by Γc the cone that
coincides with the domain Ω at c ∈ C. Let νc be the first positive eigenvalue of the Laplace-Beltrami
operator on the intersection of Γc with the unit sphere with boundary conditions inherited from
equation (1). Then, if − 1

2 + (νc + 1
4 )

1
2 < 1

2 , c is called singular ; it is regular otherwise. For e ∈ E
and c ∈ C, we set{

λe = νe if e is singular, λe =∞ otherwise;

λc = − 1
2 + (νc + 1

4 )
1
2 if c is singular, λc =∞ otherwise.

(6)

To better describe the singular behavior of the solution near the non-smooth points, we further
define the distance functions. For any c ∈ C (resp. e ∈ E), we define Rc(x) (resp. re(x)) to be the
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distance from x ∈ Ω to c (resp. to e). We further define θc,e(x) := re(x)
Rc(x) as the angular distance

from x to the edge of e near c. Then, for any vertex c ∈ C and edge e ∈ E , as in [10, 25], we define
the following subsets of Ω

Vc = {x ∈ Ω, Rc(x) < ε},
Vec = {x ∈ Vc, θc,e(x) < ε},
V0
c = {x ∈ Vc, θc,e(x) ≥ ε, ∀e ∈ Ec},
V0
e = {x ∈ Ω, Rc(x) ≥ ε, θc,e(x) < ε, ∀c ∈ Ce},

(7)

with ε > 0 small enough, such that all these sets are disjoint for different vertices c and edges e.
We further define

(8) V0 = Ω \
(
(∪c∈CVc) ∪ (∪e∈EV0

e )
)
.

It is clear that the subsets in (7) are neighborhoods of different non-smoothness points on the
boundary. In the neighborhoods V0

e and Vec , we choose a local Cartesian coordinate system in
which the edge e ∈ E lies on the z-axis. Let α⊥ = (α1, α2) consist of the first two entries of
the multi-index α = (α1, α2, α3) ∈ Z3

≥0. Therefore, in V0
e and Vec , ∂α⊥ = ∂α1

x ∂α2
y is a partial

derivative in a direction perpendicular to the edge e. Meanwhile, we define |α| := α1 + α2 + α3

and |α⊥| := α1 + α2.
We shall need the following weighted Sobolev space of Kondratiev’s type. Let O be a subset of

R3 such that 0 belongs to its boundary. Then, for any β ∈ R, k ∈ Z≥0, we define the space

V kβ (O) = {v ∈ L2
loc(O)| rβ+|α|−kDαv ∈ L2(O), ∀|α| ≤ k},

where r is the distance to 0. Define λE := maxe∈E(0, 1 − λe). We also assume the given data in
equation (1) to satisfy f ∈ Hσ(Ω), with

(9) σ ∈ (λE , 1) if λE > 0 and σ ∈ [0, 1) if λE = 0.

3 Anisotropic finite element algorithms
In this section, we propose new anisotropic FEMs approximating equation (1). In particular, we
give explicit values for the associated parameters in the algorithm, with which we shall prove the
proposed method achieves the optimal rate of convergence, even when the solution is singular.

3.1 Anisotropic algorithms
Recall the vertex set C and the edge set E . Following the notation in [24], we first classify tetrahedra
in the triangulation of Ω.

Definition 3.1 (Tetrahedron Types) Let T be a tetrahedron. If an edge eT of T lies on e ∈ E, we
call eT a marked edge. Let cT be a vertex of T . If cT ∈ C, or if cT is an interior point of an edge
e ∈ E and cT = e ∩ T̄ , we call cT a marked vertex. Let T be a tetrahedral triangulation of Ω, such
that (I) each tetrahedron contains at most one marked vertex and at most one marked edge; (II) if
a tetrahedron contains both a marked vertex and a marked edge, the marked vertex is an endpoint
of the marked edge. Let S = E ∪ C. Then, for each tetrahedron T ∈ T , according to its relation
with S, there are five possible types.
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Figure 1: Refinements of a tetrahedron 44x0x1x2x3, top (left – right): o-tetrahedron, v- or ve-
tetrahedron, e-tetrahedron; bottom (left – right): two ev-tetrahedra with κec = κe and κec = κc.

1. o-tetrahedron: T̄ ∩ S = ∅.

2. v-tetrahedron: T̄ ∩ S = c ∈ C.

3. ve-tetrahedron: T̄ ∩ S is an interior point of an edge e ∈ E.

4. e-tetrahedron: T̄ ∩ S is a marked edge, but contains no vertex in C.

5. ev-tetrahedron: T̄ ∩ S contains a marked edge and a marked vertex.

Note that different types of tetrahedra in Definition 3.1 are associated to different sub-regions
of Ω in (7) and (8). In addition, we recall the following anisotropic mesh algorithm [24].

Algorithme 3.2 (Anisotropic Refinement) Let T be a triangulation of Ω as in Definition 3.1.
To each c ∈ C (resp. e ∈ E), we associate a grading parameter κc (resp. κe) ∈ (0, 1

2 ]. Let
T = 44x0x1x2x3 ∈ T be a tetrahedron with vertices x0, x1, x2, and x3, such that x0 is the marked
vertex if T is a v-, ve-, or ev-tetrahedron; and x0x1 is the marked edge if T is an e- or ev-
tetrahedron. Let κ be the collection of the parameters κc and κe for all c ∈ C and e ∈ E. Then, the
refinement, denoted by κ(T ), proceeds as follows. We first generate new nodes xkl, 0 ≤ k < l ≤ 3,
on each edge xkxl of T , based on its type.

(I) o-tetrahedron: xkl = (xk + xl)/2.

(II) v-tetrahedron: Suppose x0 = c ∈ C. Define κ = κec := mine∈Ec(κc, κe). Then, xkl =
(xk + xl)/2 for 1 ≤ k < l ≤ 3; x0l = (1− κ)x0 + κxl for 1 ≤ l ≤ 3.

(III) ve-tetrahedron: Suppose x0 is an interior point of e ∈ E. Let κ = κe. Then, xkl = (xk+xl)/2
for 1 ≤ k < l ≤ 3; x0l = (1− κ)x0 + κxl for 1 ≤ l ≤ 3.
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(IV) e-tetrahedron: Suppose x0x1 ⊆ e ∈ E. Then, xkl = (1 − κe)xk + κexl for 0 ≤ k ≤ 1 and
2 ≤ l ≤ 3; x01 = (x0 + x1)/2, x23 = (x2 + x3)/2.

(V) ev-tetrahedron: Suppose x0 = c ∈ C and x0x1 ⊆ e ∈ Ec. Define κec := mine∈Ec(κc, κe). Then,
for 2 ≤ l ≤ 3, x0l = (1−κec)x0 +κecxl and x1l = (1−κe)x1 +κexl; x01 = (1−κc)x0 +κcx1,
x23 = (x2 + x3)/2.

Connecting these nodes xkl on all the faces of T , we obtain four sub-tetrahedra and one octahedron.
The octahedron then is cut into four tetrahedra using x13 as the common vertex. Therefore, after
one refinement, we obtain eight sub-tetrahedra for each T ∈ T denoted by their vertices:

44x0x01x02x03, 44x1x01x12x13, 44x2x02x12x23, 44x3x03x13x23,

44x01x02x03x13, 44x01x02x12x13, 44x02x03x13x23, 44x02x12x13x23.

See Figure 1 for different types of decompositions. Given an initial mesh T0 satisfying the condition
in Definition 3.1, the associated family of anisotropic meshes {Tn, n ≥ 0} is defined recursively
Tn = κ(Tn−1). See Figure 2 for example.

Remark 3.3 The anisotropic mesh in Algorithm 3.2 is explicitly determined by the grading param-
eters κc and κe that are associated to each vertex and edge. A smaller value of the parameter leads
to a higher mesh density near the vertex or the edge, while the value κc = κe = 1

2 corresponds to a
quasi-uniform refinement. In different regions of the domain, the resulting mesh may have different
shape regularities. In V0, the mesh is isotropic and quasi-uniform. The local refinement for a v- or
ve-tetrahedron in fact follows the same rule: the mesh is isotropic and graded toward the vertex x0

based on the grading parameter κ associated to the vertex x0. In V0
e , the resulting mesh in general

is anisotropic and graded toward the edge e ∈ E. The refinement in Vce depends on the parameters
κc and κe, e ∈ Ec, which is also anisotropic, graded toward the edge e ∈ E and the vertex c ∈ C.
We also mention that the mesh in V0

e and in Vce does not satisfy the maximum angle condition
[7, 23] if κe < 1

2 , which can lead to a fair amount of difficulty in analysis. Nevertheless, it has been
shown in [24, 25] that these anisotropic meshes are effective in approximating three-dimensional
singular solutions provided the pure Dirichlet boundary condition is imposed. For mixed boundary
conditions, the singular solution no longer belongs to the same space as in [24, 25]. The algorithm
design and analysis is therefore more technically involved.

Now, we proceed to propose our finite element algorithm for equation (1) with f ∈ Hσ(Ω).

Algorithme 3.4 (Anisotropic Finite Element Algorithm) Let T0 be the initial triangulation of Ω
that satisfy the condition in Definition 3.1. Then, each parameter κc (resp. κe) ∈ (0, 1

2 ] is uniquely
determined by a new parameter ac (resp. ae) ∈ (0, 1], such that

(10) κc = 2−1/ac and κe = 2−1/ae .

We choose ac and ae, such that ac ≤ ae for any e ∈ Ec and

1− σ ≤ ae < λe if e is singular; ae = 1 if e is regular;(11)
ac < λc + 1/2 if c is singular; ac = 1 if c and all e ∈ Ec are regular.(12)

Let Tn be the mesh obtained after n anisotropic refinements (Algorithm 3.2) from T0 based on the
parameters κc and κe defined by ae and ac through (10) – (12). Then, the proposed linear finite
element approximation un to equation (1) is defined by (4) on the mesh Tn.
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Remark 3.5 For any c ∈ C, recall κec := mine∈Ec(κc, κe) in Algorithm 3.2. Based on the selec-
tions in (10) – (12), it is clear that for any c ∈ C, κec = κc. Note that ae has a lower bound 1− σ
in (11). The condition (9) σ > λE ≥ maxe∈E(1 − λe) ensures the set given in (11) is not empty.
For 0 < ae < 1, it is clear that refinements for an e- or ev-tetrahedron lead to anisotropic meshes
toward the edge that do not preserve the maximum angle condition. Namely, the maximum edge
angle in the face of the tetrahedron approaches π as the level of refinement n increases. This is a
main difficulty that we shall overcome in the error analysis.

3.2 Mesh layers
To better facilitate the error analysis for the proposed finite element algorithm (Algorithm 3.4)
solving equation (1), for each initial tetrahedron T(0) ∈ T0, we introduce the mesh layers that are
the collections of tetrahedra in Tn.

We first define mesh layers for a v- or ve-tetrahedron in T0.

Definition 3.6 (Mesh Layers in v- and ve-tetrahedra) Let T(0) = 44x0x1x2x3 ∈ T0 be either a v-
or a ve-tetrahedron with x0 ∈ C or x0 ∈ e ∈ E. We use a local Cartesian coordinate system, such
that x0 is the origin. For 1 ≤ i ≤ n, the ith refinement on T(0) produces a small tetrahedron with
x0 as a vertex and with one face, denoted by Pv,i, parallel to the face 43x1x2x3 of T(0). See Figure
1 for example. Then, after n refinements, we define the ith mesh layer Lv,i of T(0), 1 ≤ i < n, as
the region in T(0) between Pv,i and Pv,i+1. We denote by Lv,0 the region in T(0) between 43x1x2x3

and Pv,1; and let Lv,n be the small tetrahedron with x0 as a vertex that is bounded by Pv,n and
three faces of T(0). Since x0 is the only point for the special refinement, we drop the sub-index in
the grading parameter. Namely, for such T(0), we use

κ = 2−1/a

to denote the grading parameter near x0 (κ = κc if x0 ∈ C and κ = κe if x0 ∈ e ∈ E). See the
second picture in Figure 2. Then, by Algorithm 3.2, the dilation matrix

Bv,i :=

κ−i 0 0
0 κ−i 0
0 0 κ−i

(13)

maps Lv,i to Lv,0 for 0 ≤ i < n, and maps Lv,n to T(0). We define the initial triangulation of Lv,i,
0 ≤ i < n, to be the first decomposition of Lv,i into tetrahedra. Thus, the initial triangulation of
Lv,i consists of those tetrahedra in Ti+1 that are contained in the layer Lv,i.

Now, we define mesh layers for an initial e-tetrahedron T(0).

Definition 3.7 (Mesh Layers in e-tetrahedra) Based on Algorithm 3.2, in each refinement, an e-
tetrahedron is cut by a parallelogram parallel to x0x1. For example, in the e-tetrahedron of Figure
1, the quadrilateral with vertices x02, x12, x13, x03 is the aforementioned parallelogram. We denote
by Pe,i the parallelogram produced in the ith refinement, 1 ≤ i ≤ n. For the mesh Tn, let the
ith layer Le,i on T(0), 0 < i < n, be the region bounded by Pe,i, Pe,i+1, and the faces of T(0).
Define Le,0 to be the sub-region of T(0) away from e that is separated by Pe,1. Define Le,n to be
the sub-region of T(0) between Pe,n and e. See also the third picture in Figure 2. As in Definition
3.6, the initial triangulation of the layer Le,i, 0 ≤ i < n, consists of the tetrahedra in Ti+1 that are
contained in Le,i. Therefore,

(14) re ∼ κie on Le,i, 0 ≤ i < n.
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Figure 2: Anisotropic triangulations after two consecutive refinements and mesh layers on an initial
tetrahedron (left – right): o-tetrahedron, v- or ve-tetrahedron (κ = 0.3), e-tetrahedron (κe = 0.3);
ev-tetrahedron (κec = κc = 0.3, κe = 0.4).

In addition, we have the following anisotropic mapping that transforms a tetrahedron in Le,i
to a reference element (Lemma 4.13 in [24]).

Proposition 3.8 Let T(i+1) ∈ Ti+1 be a tetrahedron, such that T(i+1) ⊂ Le,i ⊂ T(0), 0 ≤ i < n.
Then, T(i+1) is contained either in an e-tetrahedron in Ti or in a ve-tetrahedron in Ti.
Case I: T(i+1) is contained in an e-tetrahedron T(i) ∈ Ti. Using a T(i)-based local coordinate system,
there is a transformation

Be,i =

 κ−ie 0 0
0 κ−ie 0

b1κ
−i
e b2κ

−i
e 2i

(15)

that maps T(i+1) to one of the four o-tetrahedra in T̂1 (hence, we have finitely many reference
elements for all T(i+1)). Here, T̂1 is the triangulation on a reference tetrahedron T̂ that is obtained
after one graded refinement to the edge. For an e-tetrahedron in the last layer T(n) ⊂ Le,n ⊂ T(0),
using a T(n)-based local coordinate system, there exists a transformation Be,n of the form (15) with
i = n that maps T(n) to a reference tetrahedron T̂ .
Case II: T(i+1) is contained in a ve-tetrahedron T(i) ∈ Ti. Let T(k) ∈ Tk, 1 ≤ k ≤ i, be the ve-
tetrahedron, such that T(i) ⊆ T(k) and T(k) is contained in an e-tetrahedron T(k−1) ∈ Tk−1. Using
a T(k−1)-based local coordinate system, there is a transformation

Bi,k =

 κ−i+1
e 0 0
0 κ−i+1

e 0
b1κ
−i+1
e b2κ

−i+1
e 2k−1κk−ie

(16)

that maps T(i+1) to one of the o-tetrahedra in T̂2 (as in Case I, we again have finitely many reference
elements for all T(i+1)). Here, T̂2 is the triangulation on a reference tetrahedron T̂ that is obtained
after two graded refinements to the edge. For a ve-tetrahedron in the last layer T(n) ⊂ Le,n ⊂ T(0),
let T(k) ∈ Tk be the ve-tetrahedron, such that T(n) ⊆ T(k) and T(k) is contained in an e-tetrahedron
T(k−1) ∈ Tk−1. Using a T(k−1)-based local coordinate system, there exists a transformation Bn,k of
the form (16) with i = n that maps T(n) to a ve-tetrahedron in T̂1.

In both cases, |b1|, |b2| ≤ C0, for C0 > 0 depending on T(0) but not on i, n, or k.

In addition, we define the mesh layers on an initial ev-tetrahedron T(0) ∈ T0.
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Definition 3.9 (Mesh Layers in ev-tetrahedra) For 1 ≤ i ≤ n, the ith refinement on T(0) produces
a small tetrahedron with x0 as a vertex. We denote by Pev,i the face of this small tetrahedron whose
closure does not contain x0 (see the last two pictures in Figure 1). Then, for the mesh Tn on T(0),
we define the ith mesh layer Lev,i, 1 ≤ i < n, as the region in T(0) between Pev,i and Pev,i+1. We
define Lev,0 to be the region in T(0) between 43x1x2x3 and Pev,1 and let Lev,n ⊂ T(0) be the small
tetrahedron with x0 as a vertex that is generated in the nth refinement.

Given the condition κec = κc in Algorithm 3.4, we see that the layer Lev,i and the layer Lv,i in
Definition 3.6 are obtained from the same procedure. Therefore, use a local Cartesian coordinate
system, such that c is the origin. For 0 ≤ i ≤ n, the mapping

Bev,i =

κ−ic 0 0
0 κ−ic 0
0 0 κ−ic

(17)

is a bijection from Lev,i to L̂, where L̂ is the reference domain for Lev,i that satisfies L̂ := T(0)

when i = n and L̂ := Lev,0 when 0 ≤ i < n. Recall that one graded refinement using the same
parameters κc and κe gives rise to a triangulation on T(0), which we denote by T̂1. We further
denote by L̂ the initial triangulation of Lev,0 that consists of the seven tetrahedra in T̂1.

4 Regularity results in a dihedron
In this section, we develop new regularity estimates for equation (1), especially in the region that
is close to the edges where different boundary conditions are imposed.

Let D = K × R be a dihedron, with K a two-dimensional cone of center 0 and opening angle
ω. In this domain, we consider u ∈ H1(D) with a support included in (K ∩B(0, R))×R for some
R > 0 to be the solution of  −∆u = f in D,

u = 0 on ΓDir × R,
∂nu = 0 on ΓNeu × R,

(18)

where f ∈ Hσ(D) for some σ ∈ [0, 1) and ΓDir ∪ΓNeu = ∂K such that ΓDir (resp. ΓNeu) is either
empty or a full half-line. In that way, we consider either the pure Dirichlet, the pure Neumann
or the mixed problem. In this section, to simplify the exposition, we use (x1, x2, x3) (instead of
(x, y, z)) to denote a point in D and suppose the edge of D is on the x3-axis.

The behavior of this solution is well known in the case of the pure Dirichlet problem [19, 15] for
data in L2 but is less studied for smoother data and in the two other cases of boundary conditions.
Our goal is to show that this solution is decomposed into a regular part and a singular one with the
appropriate behavior. For that purpose, we perform a partial Fourier transform in the x3-variable
that allows to reduce the study to an Helmholtz equation in K.

4.1 Helmholtz equation in a cone
For all ξ ∈ R, we consider the solution v ∈ H1(K) with a support included in K ∩B(0, R) of −∆v + ξ2v = g in K,

v = 0 on ΓDir,
∂nv = 0 on ΓNeu,

(19)
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where g ∈ Hσ(K) for some σ ∈ [0, 1) and show that v admits a decomposition into a regular part
and a singular one. Recall that the singularities of problem (19) are related to the singularities of
the Laplace equation, namely to the singularities of problem (19) with ξ = 0. Such singularities
are in the form [18, 15]

Sk = rλkϕk(θ),

with

(20) λk =
kπ

ω
,∀k ∈ N∗ = N \ {0},

in the pure Dirichlet and Neumann case, while

(21) λk =
(2k − 1)π

2ω
,∀k ∈ N∗,

in the mixed case. Here, r is the distance to the vertex of K. For shortness, the smallest singular
exponent λ1 is denoted by λ. The function ϕk is given by

ϕk(θ) = sin(λkθ),

in the pure Dirichlet case and in the mixed case, while

ϕk(θ) = cos(λkθ),

in the pure Neumann case.
Now we can prove the next result.

Theorem 4.1 Let σ ∈ [0, 1) be such that σ 6= λk − 1, for all k ∈ N∗. Then for all ξ ∈ R, the
solution v ∈ H1(K) with a support included in K ∩ B(0, R) of (19) with g ∈ Hσ(D) can be split
up into

(22) v = vreg(ξ) + vsing(ξ),

with vreg(ξ) ∈ H2+σ(K) and vsing(ξ) ∈ V 2
δ (K) ∩H1(K) for any δ > 1− λ satisfying the following

estimates 1

‖vreg(ξ)‖2+σ,K,1+|ξ| . ‖g‖σ,K,1+|ξ|,(23)

(1 + ξ2)‖r−σvreg(ξ)‖K . ‖g‖σ,K,1+|ξ|,(24)

(1 + |ξ|δ+σ)‖vsing(ξ)‖V 2
δ (K) . ‖g‖σ,K,1+|ξ|,(25)

(1 + |ξ|)|vsing(ξ)|1,K . ‖g‖σ,K,1+|ξ|.(26)

Proof. We distinguish the case |ξ| > 1 to the case |ξ| ≤ 1.
a) For |ξ| > 1, as in the proof of Theorem 16.9 of [15] we use a scaling argument, namely by setting
x̂ = |ξ|x and v̂(x̂) = v(x), we see that v̂ is solution of −∆v̂ + v̂ = ĝ in K,

v̂ = 0 on ΓDir,
∂nv̂ = 0 on ΓNeu,

(27)

1here and below the involved constants are independent of |ξ|
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where ĝ ∈ Hσ(K) is defined by
ĝ(x̂) = ξ−2g(x).

Clearly the weak formulation of this problem is

(v̂, w)1,K =

∫
K

ĝw dx, ∀w ∈ H1
ΓDir (K),

where H1
ΓDir

(K) := {w ∈ H1(K) : w = 0 on ΓDir} is an Hilbert space with its natural inner
product

(u,w)1,K =

∫
K

(∇u · ∇w + uw) dx,∀u,w ∈ H1
ΓDir (K).

As a direct consequence, the above problem has a unique solution v̂ ∈ H1
ΓDir

(K) with the contin-
uous dependence

(28) ‖v̂‖1,K ≤ ‖ĝ‖0,K .

Now using a localisation argument, by Theorem 23.7 of [15] (see also Remark 23.8 of [15])
near the origin and the standard shift theorem far from the origin, one deduces that v̂ admits the
splitting

(29) v̂ = v̂reg + η(r̂)
∑

k∈N∗:0<λk<1+σ

ckr̂
λkϕk,

where η ∈ D(R2) is a smooth cut-off function equal to 1 in a neighborhood of the origin that,
without loss of generality, is assumed to have a support included in K ∩B(0, R), v̂reg ∈ H2+σ(K)
and ck ∈ R with

(30) ‖v̂reg‖2+σ,K +
∑

k∈N∗:0<λk<1+σ

|ck| . ‖ĝ‖σ,K + ‖v̂‖1,K .

Combined with (28), we find that

(31) ‖v̂reg‖2+σ,K +
∑

k∈N∗:0<λk<1+σ

|ck| . ‖ĝ‖σ,K .

By a transformation back, this yields (22) by setting vreg(x) = v̂reg(x̂), and 2

(32) vsing(ξ) = η(|ξ|r)
∑

k∈N∗:0<λk<1+σ

ck|ξ|λkrλkϕk.

Furthermore using Lemma AA.19 of [15], the estimate (31) is equivalent to

(33) ‖vreg‖2+σ,K,|ξ| + |ξ|1+σ
∑

k∈N∗:0<λk<1+σ

|ck| . ‖g‖σ,K,|ξ|.

This estimate directly leads to the first estimate (23) recalling that |ξ| > 1. To prove the
second one, we first notice that the support of vsing being included in B(0, R|ξ| ) ⊂ B(0, R), vreg has
a compactly support included in K ∩B(0, R). Furthermore using the estimate

‖vreg‖2+σ,K∩B(0,R),|ξ| . ‖g‖σ,K,|ξ|,
2note that for σ < λ− 1, vsing(ξ) = 0.
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and an interpolation inequality (see [18, Theorem 1.4.3.3]), we find that

‖vreg‖σ,K∩B(0,R) . |ξ|−2‖g‖σ,K,|ξ|.

Since Theorem AA.7 of [15] guarantees that Hσ(K ∩B(0, R)) = V σ0 (K ∩B(0, R)), we deduce that

‖r−σvreg‖0,K = ‖r−σvreg‖0,K∩B(0,R) . ‖vreg‖σ,K∩B(0,R) . |ξ|−2‖g‖σ,K,|ξ|,

which is exactly (24).
To prove (25), it suffices to check that for all k ∈ N∗ such that 0 < λk < 1 + σ, one has

|ξ|δ+σ+λk |ck|‖η(|ξ|r)rλkϕk‖V 2
δ (K) . ‖g‖σ,K,|ξ|,

that, in view of (33) holds, as soon as

(34) |ξ|δ+λk−1‖η(|ξ|r)rλkϕk‖V 2
δ (K) . 1.

Now using polar coordinates, one can show that

‖η(|ξ|r)rλkϕk‖2V 2
δ (K) .

∫ ∞
0

r2(δ+λk−2){|η(|ξ|r)|2 + ||ξ|rη′(|ξ|r)|2 + ||ξ|2r2η′′(|ξ|r)|2}r dr.

and by the change of variable r̂ = |ξ|r, one finds

‖η(|ξ|r)rλkϕk‖2V 2
δ (K) . |ξ|

2(δ+λk−1)

∫ ∞
0

r̂2(δ+λk−2){|η(r̂)|2 + |r̂η′(r̂)|2 + |r̂2η′′(r̂)|2}r̂ dr̂.

The integral of this right-hand side being finite as soon as δ+λk−1 > 0 (which holds if δ+λ−1 > 0),
we have found that (34) is valid.

The proof of (25) is fully similar and is left to the reader.
b) For |ξ| ≤ 1, we first notice that

(35) ‖v‖1,K . |v|1,K ,

because v has a compact support included into K∩B(0, R). Since the weak formulation of problem
(19) is ∫

K

(∇v · ∇w + ξ2vw) dx =

∫
K

gw dx, ∀w ∈ H1
ΓDir (K),

by taking w = v in this identity and using (35) we find

‖v‖21,K . |v|21,K ≤
∫
K

(|∇v|2 + ξ2|v|2) dx =

∫
K

gv dx

Consequently by Cauchy-Schwarz’s inequality, we get

(36) ‖v‖1,K . ‖g‖0,K .

Now v can be seen as the solution of (compare with (27)) −∆v + v = g̃ in K,
v = 0 on ΓDir,
∂nv = 0 on ΓNeu,

(37)
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where g̃ := g + v − ξ2v ∈ Hσ(K) that, owing to (36) satifies (recalling that |ξ| ≤ 1)

(38) ‖g̃‖σ,K . ‖g‖σ,K .

As in the previous point, we then get the decomposition

(39) v = vreg + η(r)
∑

k∈N∗:0<λk<1+σ

ckr
λkϕk,

where vreg ∈ H2+σ(K) and ck ∈ R with

(40) ‖vreg‖2+σ,K +
∑

k∈N∗:0<λk<1+σ

|ck| . ‖g̃‖σ,K + ‖v‖1,K . ‖g̃‖σ,K .

This yields (22) with 3

vsing(ξ) = η(r)
∑

k∈N∗:0<λk<1+σ

ckr
λkϕk,

the estimate (40) corresponding to (33) with |ξ| = 1. The estimate (23) is a direct consequence of
(40), while the estimates (24)–(26) follow by using the previous arguments simply replacing |ξ| by
1.

4.2 Singular decomposition in a dihedron
Define the weighted space H2

γ,σ(D) in the dihedron D = K × R.

H2
γ,σ(D) := {v ∈ H2

loc(D)| r−1−γv, r−γ∂⊥v, r
−1∂3v ∈ L2(D),(41)

r1−γ∂2
⊥v, ∂⊥∂3v, r

−σ∂2
3v ∈ L2(D)},

with the norm

‖v‖2H2
γ,σ(D) := ‖r−σ∂2

3v‖2L2(D) +
∑
|α⊥|=1

‖∂α⊥∂3v‖2L2(D)

+‖r−1∂3v‖2L2(D) +
∑
|α⊥|≤2

‖r|α⊥|−1−γ∂α⊥v‖2L2(D),

where ∂⊥ means the first order derivatives in the x1, x2 variables, ∂3 = ∂x3
, while α⊥ means that

the third component of the multi-index is zero.
Then, we have the following regularity estimates for equation (18).

Theorem 4.2 Let σ ∈ [0, 1) be such that σ 6= λk − 1, for all k ∈ N∗. Recall λ := λ1. Suppose
f ∈ Hσ(D). Then the solution u ∈ H1(D) of (18) with a support included in (K ∩ B(0, R)) × R
for some R > 0 can be split up into

(42) u = ureg + using,

3as before for σ < λ− 1, vsing(ξ) = 0.
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with ureg ∈ H2+σ(D) such that r−σ∂2
3ureg ∈ L2(D) and using ∈ H2

γ,σ(D) for any γ < λ satisfying
the estimates

‖ureg‖2+σ,D . ‖f‖σ,D,(43)

‖r−σ∂j3ureg‖0,D . ‖f‖σ,D, ∀j = 0, 1, 2,(44)
‖using‖H2

γ,σ(D) . ‖f‖σ,D.(45)

Proof. We perform a partial Fourier transform in x3. Namely, let v(ξ) = Fx3→ξu and g(ξ) =
Fx3→ξf , then we see that v is solution of (19). Applying Theorem 4.1 to v and performing inverse
Fourier transform we find the decomposition (42) with

ureg = F−1
x3→ξvreg, using = F−1

x3→ξvsing.

The estimates (43) (resp. (44)) follows from (23) (resp. (24)) and Proposition AA.20 from [15].
Similarly using the estimate (25), we get (since δ + σ > 0)∑

|α⊥|≤2

‖r|α⊥|−2+δ∂α⊥using‖2L2(D) . ‖f‖
2
σ,D,

for all δ > 1− λ. This yields

(46)
∑
|α⊥|≤2

‖r|α⊥|−1−γ∂α⊥using‖2L2(D) . ‖f‖
2
σ,D,

by setting γ = 1− δ. Again applying (25) with δ = 2− σ (resp. δ = 0) that is clearly larger than
1− λ, we find

‖r−σ∂2
3using‖2L2(D) . ‖f‖

2
σ,D,(47)

‖r−1∂3using‖2L2(D) . ‖f‖
2
σ,D.(48)

Finally applying (26) we clearly obtain

(49) ‖∂3∂⊥using‖2L2(D) . ‖f‖
2
σ,D.

The estimates (46) to (49) show that (45) holds.

5 Regularity results in a dihedral cone
In this section, we investigate the regularity of the solution of (1) in the region where the vertex
and the edges meet. Let Γ be a dihedral cone of R3 of vertex c ∈ C (that can be identified with
0), in the sense that

Γ = {x ∈ R3 :
x

|x|
∈ G},

with G an open subset of the unit sphere S2 with a piecewise smooth boundary, each smooth part
being included in a great circle.

Let γc and γe be the parameters corresponding to a vertex c ∈ C and an edge e ∈ E of Γ,
respectively. Let γ be the collection of all the parameters γc and γe for Γ. Recall that Rc and
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re are the distances to the vertex c and to the edge e, respectively. Then, given γc, γe ≥ 0 for all
edges e of Γ, we define the weighted space

H2
γ,σ(Γ) := {v ∈ H2

loc(Γ)| Rγe−γcc r−1−γe
e v, Rγe−γcc r−γee ∂⊥v, R

1−γc
c r−1

e ∂3v ∈ L2(Vec ),(50)

Rγe−γcc r1−γe
e ∂2

⊥v, R
1−γc
c ∂⊥∂3v, R

1+σ−γc
c r−σe ∂2

3v ∈ L2(Vec );

r−1−γe
e v, r−γee ∂⊥v, r

−1
e ∂3v ∈ L2(V0

e ),

r1−γe
e ∂2

⊥v, ∂⊥∂3v, r
−σ
e ∂2

3v ∈ L2(V0
e );

R−1−γc
c v, R−γcc ∂⊥v, R

−γc
c ∂3v ∈ L2(V0

c ),

R1−γc
c ∂2

⊥v, R
1−γc
c ∂⊥∂3v, R

1−γc
c ∂2

3v ∈ L2(V0
c )},

with the norm

‖v‖2H2
γ,σ(Γ) := ‖v‖2H2(V0) +

∑
e∈Ec,

(
‖R1−γc

c θ−σc,e ∂
2
3v‖2L2(Vec ) +

∑
|α⊥|=1

‖R1−γc
c ∂α⊥∂3v‖2L2(Vec )

+‖R−γcc θ−1
c,e∂3v‖2L2(Vec ) +

∑
|α⊥|≤2

‖R|α⊥|−1−γc
c θ|α⊥|−1−γe

c,e ∂α⊥v‖2L2(Vec )

)
+

∑
c∈C,|α|≤2

‖R|α|−1−γc
c ∂αv‖2L2(V0

c ) +
∑
e∈E

(
‖r−σe ∂2

3v‖2L2(V0
e )

+
∑
|α⊥|=1

‖∂α⊥∂3v‖2L2(V0
e ) + ‖r−1

e ∂3v‖2L2(V0
e ) +

∑
|α⊥|≤2

‖r|α⊥|−1−γe
e ∂α⊥v‖2L2(V0

e )

)
,

where ∂3 is the derivative in the direction of e, ∂α⊥ = ∂α1
1 ∂α2

2 for α⊥ = (α1, α2), and α =
(α1, α2, α3).

In this domain, we consider u ∈ H1(Γ) with a support included in Γ ∩B(0, R) for some R > 0
being the solution of  −∆u = f in Γ,

u = 0 on ΓDir,
∂nu = 0 on ΓNeu,

(51)

where f ∈ Hσ(C) for some σ ∈ [0, 1) and ΓDir ∪ ΓNeu = ∂Γ such that ΓDir (resp. ΓNeu) is either
empty or a finite union of plane faces. Denote by γDir = ΓDir ∩ S2.

Since u is only in H1, by a solution of (51) we mean that u ∈ H1
Dir(Γ) = {v ∈ H1(Γ)| u =

0 on ΓDir} satisfies

(52)
∫

Γ

∇u · ∇v dx =

∫
Γ

fv dx, ∀v ∈ H1
Dir(Γ).

Note that the vertex singular exponent of problem (52) near c [18, 4] is given by

−1

2
±
√
νc,k +

1

4
,

where {νc,k}∞k=0 is the spectrum (enumerated in increasing order and repeated according to their
multiplicity) of the non-negative Laplace-Beltrami operator Lmixed

G on the intersection G between
Γ and the unit sphere with Dirichlet boundary condition on ΓDir ∩ ∂G and Neumann boundary
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condition on ΓNeu ∩ ∂G. Here we are only interested in exponents larger than − 1
2 , hence for all

k ∈ N := {0, 1, 2, . . .}, we set

λc,k = −1

2
+

√
νc,k +

1

4
,

that is always non-negative. The associated singular function σc,k is given by

(53) σc,k = R
λc,k
c ϕc,k,

where ϕc,k is the eigenvector of Lmixed
G associated with νc,k, namely

Lmixed
G ϕc,k = νc,kϕc,k.

Note that λc,0 = 0 if and only if ΓDir ∩ ∂G is empty and in that case σc,0 = 1, otherwise λc,0 > 0.
Note that in Γ, u may consist of singularities from the edge and singularities from the vertex.

In a first step, we subtract from u its corner (vertex) singularities. Namely as in Lemma 17.4 of
[15] we have the following result.

Lemma 5.1 Let σ ∈ [0, 1) be such that λc,k 6= σ + 1
2 for all k ∈ N. Let u ∈ H1(Γ) with a support

included in Γ ∩ B(0, R) for some R > 0 be the solution of equation (52) with f ∈ Hσ(Γ). Then u
admits the splitting

(54) u = u0 +
∑

− 1
2<λc,k<σ+ 1

2

ckσc,k,

where u0 ∈ V 1
−(1+σ)(Γ), ck ∈ C and ∆u0 ∈ Hσ(Γ) = V σ0 (Γ).

Proof. By Proposition AA.27 of [15], the Mellin transformM[u](λ) of u exists for all λ ∈ C with
<λ = − 1

2 and is the variational solution of

(∆′ + λ(λ+ 1))M[u](λ) =M[f ](λ− 2).

Since by assumption on the line <λ = σ + 1
2 , the operator ∆′ + λ(λ + 1) is invertible from

H1
Dir(G) = {v ∈ H1(G)| v = 0 on γDir} into its dual with

‖ (∆′ + λ(λ+ 1))
−1
h‖1,G,1+|λ| . ‖h‖G,

by the inverse Mellin transform on the line <λ = σ + 1
2 we find the result (54) as in Lemma 17.4

of [15].
We now split up u0 into a regular part and a singular one that contains the edge contribution.

Lemma 5.2 Under the assumption of Lemma 5.1, u0 admits the splitting

(55) u0 = ureg + using

with ureg ∈ V 2+σ
0 (Γ), r−σe ∂2

3ureg ∈ L2(Γ) and using ∈ H2
γ,σ(Γ) with γc = 1 + σ and γe < λe,

where λe is the smallest exponent λ1 determined in either (20) or (21) according to the associated
boundary condition with ωe instead of ω.
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Proof. We start as in the proof of Proposition 17.12 of [15], by setting

w(t, θ) = eηtu0(et, θ), h(t, θ) = e(η+2)t(∆u0)(et, θ)

with η = −(σ + 1
2 ). These functions have the regularity w ∈ H1(R×G), h ∈ Hσ(R×G) and w is

the weak solution of (meaning that w satisfies the Dirichlet condition and Neumann condition in
a weak sense) (

∆′ + ∂2
t + (1− 2η)∂t + η(η − 1)

)
w = h.

Since H1(R×G) is embedded into Hσ(R×G), this implies that(
∆′ + ∂2

t + (1− 2η)∂t
)
w = h̃ = h− η(η − 1)w ∈ Hσ(R×G).

Then as in Section 4, we apply a partial Fourier transform in t to find that W = Ft→ξv is the
weak solution of (

∆′ − ξ2 + (1− 2η)iξ)
)
W = H,

with H = Ft→ξh̃. This operator is mainly the same one as in problem (19) and therefore we
conclude that W admits a splitting similar to (22). Hence taking the Fourier transform back we
find that (see Theorem 4.2)

(56) w = wreg + wsing,

with wreg ∈ H2+σ(R×G) such that θ−σc,e ∂
j
twreg ∈ L2(R×G), for j = 0, 1, and 2 (recalling that θc,e

is the distance to the edges in R×G and hence the angular distance in Γ), and wsing ∈ H2
γ,σ(R×G)

for any γe < λe, for all e.
Coming back to u0, we find the result by setting (recalling that Rc is the distance to the vertex

c)
ureg(Rc, θ) = R−ηc wreg(Rc, θ), using(r, θ) = R−ηc wsing(Rc, θ).

Indeed the regularity ureg ∈ V 2+σ
0 (Γ) follows from wreg ∈ H2+σ(R × G) by using Theorem AA.3

of [15], while the property r−σe ∂2
3ureg ∈ L2(Γ) follows from the expression of ∂2

3 in spherical coor-
dinates, an Euler’s change of variables and the regularities of wreg mentioned above (noticing that
r−σe ∼ R−σc θ−σc,e ).

The regularity of using is proved similarly.
In summary, we have the following decomposition of the solution u of equation (52).

Corollary 5.3 Under the assumption of Lemma 5.1, u ∈ H1(Γ) with a support included in Γ ∩
B(0, R) for some R > 0 being the solution of equation (52) with f ∈ Hσ(Γ) for some σ ∈ [0, 1)
admits the splitting

(57) u = ureg + using +
∑

− 1
2<λc,k<σ+ 1

2

ckψσc,k,

with ureg ∈ V 2+σ
0 (Γ), r−σe ∂2

3ureg ∈ L2(Γ) and using ∈ H2
γ,σ(Γ) with γc = 1 + σ and γe < λe, and ψ

being a smooth (and radial) cut-off function with a compact support and equal to 1 on the support
of u.

Proof. Since u = ψu, the result follows from the two previous lemmas and Leibniz’s rule.
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6 Regularity analysis
In this section, we obtain anisotropic regularity results for equation (1) with f ∈ Hσ(Ω), for some
σ ∈ [0, 1). Our analysis is based on regularity estimates in different sub-regions (see (7)) of the
domain near the vertices and edges and uses a localization argument.

6.1 Regularity estimates in V0
e

Let us start with an improved regularity of the solution along the edges. For that purpose, for any
e ∈ E , and any point ξe ∈ e, we can fix a cartesian system of coordinates xe = (xe,1, xe,2, xe,3) such
that ξe corresponds to (0, 0, 0). In such a situation we can fix a cut-off function ηξe in the form

ηξe(xe) = η0(xe,1, xe,2)η1(xe,3),

with η0, η1 two cut-off functions such that η0 (resp. η1) is equal to 1 near (0, 0) (resp. 0) with
a sufficiently small support such that the support of ηξe is included in V0

e . For all k ∈ N∗, we
further denote by λe,k the asscoiated singular exponents defined by (20) or (21) (according to the
boundary conditions on its adjacent faces) with ωe instead of ω.

Theorem 6.1 Recall the space H2
γ,σ from (41) and λe from Lemma 5.2. Let u ∈ H1

ΓDir
(Ω) be the

solution of (3) with f ∈ Hσ(Ω) for some σ ∈ [0, 1) such that σ 6= λe,k − 1, for all k ∈ N∗. Then
for any e ∈ E and any point ξe ∈ e, we have

(58) ηξeu = uξe,reg + uξe,sing,

with uξe,reg ∈ H2+σ(V0
e ) such that r−σe ∂2

3uξe,reg ∈ L2(V0
e ) and vξe,sing ∈ H2

γe,σ(V0
e ) for any

γe ∈ [0, 1] and γe < λe satisfying the estimates

‖uξe,reg‖2+σ,V0
e

. ‖f‖σ,Ω,(59)

‖r−σe ∂j3uξe,reg‖V0
e

. ‖f‖σ,Ω, ∀j = 0, 1, 2,(60)
‖uξe,sing‖H2

γe,σ
(V0
e ) . ‖f‖σ,Ω.(61)

Proof. For the sake of simplicity we drop the indices e and ξe. Denote by D = K×R the dihedral
cone that coincides with Ω near ξ, where K is a two-dimensional cone of opening angle ω.

Now ũ := ηu is clearly a weak solution of

(62) −∆ũ = f̃ in D,

where f̃ is given by
f̃ = ηf − 2∇u · ∇η − u∆η ∈ L2(D).

But the main point is that f̃ actually belongs to Hσ(D). Indeed the first term has trivially this
property, the third term is even in H1(D), hence also in Hσ(D). Finally for the second term, we
will show that it belongs to H1(D) as well. Indeed we notice that

∇u · ∇η = η1

∑
i=1,2

∂iη0∂iu+ η0∂3η1∂3u.

Now the first term belongs to H1(D) because η1∂iη0 is zero in a neighborhood of the edges and
corners, hence the H2 regularity of u inside the domain suffices to get the request regularity. On

19



the other hand for the second term, we notice that the method of tangential differential quotients
of Nirenberg (see for instance [18, p. 87-90]) can be applied to ψu in the x3 direction, with a cut-off
function similar to η such that ψ ≡ 1 on the support of η, and deduce that ∂3(ψu) ∈ H1(Ω). This
obviously leads to η0∂3η1∂3u ∈ H1(D).

Once f̃ belongs to Hσ(D), we conclude by applying Theorem 4.2.

6.2 Regularity estimates in Vc
Now we describe the extra regularity in a neighborhood of a vertex c ∈ C. For that purpose, we fix
a cut-off function χc that depends only on the Rc variable and such that χc ≡ 1 in a neighborhood
of c and with a support included in Vc (hence χc ≡ 0 in a neighborhood of the other vertices of
Ω). We further denote by Γc the infinite cone that coincides with Ω near c.

Then, we have the following splitting of the solution near the vertex.

Theorem 6.2 Recall the space H2
γ,σ from (50) and λe from Lemma 5.2. Under the assumption

of Lemma 5.1, let u ∈ H1
ΓDir

(Ω) be the solution of (3) with f ∈ Hσ(Ω) for some σ ∈ [0, 1). Then
for any c ∈ C, χcu admits the splitting

(63) χcu = uc,reg + uc,sing +
∑

− 1
2<λc,k<σ+ 1

2

ckψσc,k,

with uc,reg ∈ V 2+σ
0 (Γc), r−σe ∂2

3uc,reg ∈ L2(Vec ), for all e ∈ E having c as an endpoint, and uc,sing ∈
H2

γ,σ(Γc) with γc = 1 + σ and γe ∈ [0, 1] and γe < λe, and finally ψ being a smooth (and radial)
cut-off function with a compact support and equal to 1 on the support of χc.

Proof. We can apply Corollary 5.3 to χu (for shortness we drop the index c) if we show that

(64) ∆(χu) ∈ Hσ(K).

As before using Leibniz’s rule, ũ := χu is clearly a weak solution of (62) with

f̃ = χf − 2∇u · ∇χ− u∆χ,

that actually belongs to Hσ(K). The first and third term have trivially this property. Hence
only the second term requires a careful inspection. Due to the choice of χ and using cartesian
coordinates centered at c, we have

∇u · ∇χ =
χ′(R)

R

∑
i=1,2,3

xi∂iu.

First we may notice that χ′ is zero near c, hence the regularity of ∇u·∇χ is related to the regularity
of u far from the corners. So as u belongs to H2 in V0 \ ∪c∈CVc, we get that

(65) ∇u · ∇χ ∈ H1(V0).

Now for a fixed edge e having c as an endpoint, we can use cartesian coordinates such that the x3-
axis contains the edge e and can use the splitting (58) of Theorem 6.1. The regular part contributes
to a H1 function, so let us show that this is the same for the singular part ue,sing. Indeed we have
to show that

xi∂iue,sing ∈ H1(Vc), ∀i = 1, 2, 3.
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For i = 3, this is a direct consequence of (61), while for i = 1 or 2 this is a consequence of (61)
and of the bound

|xi| . θc,e . θ1−γe
c,e .

All together (65) is valid and the proof is complete.
The third term of the splitting (63) of χcu is not in H2

γ,σ(Γ ∩B(0, R)) because (see (53))

σc,k = R
λc,k
c ϕc,k

and ϕc,k is not necessarily equal to zero at the corners of G (intersection of Γ with the unit sphere),
but it can be split up into a regular part and a singular one in the spirit of Theorem 3.1 with ξ = 0.
This allows us to show the next result.

Lemma 6.3 Let λc,k > 0 be fixed such that λc,k < σ + 1
2 . Recall λe from Lemma 5.2. Then

vc,k := ψσc,k with σc,k given by (53) can be split up into vc,k = v1 + v2 such that v1 satisfies

Rσcc θ
−σc,e
c,e ∂2

3v1 ∈ L2(Vec ),

Rσcc ∂
α⊥∂3v1 ∈ L2(Vec ), ∀|α⊥| = 1,

Rσcc ∂
α⊥v1 ∈ L2(Vec ), ∀|α⊥| = 2,

Rσc−2+|α|
c ∂αv1 ∈ L2(Vce), ∀|α| ≤ 1,

and v2 satisfies

Rσcc θ
−σc,e
c,e ∂2

3v2 ∈ L2(Vec ),

Rσcc ∂
α⊥∂3v2 ∈ L2(Vec ), ∀|α⊥| = 1,

Rσcc θ
σ̃c,e
c,e ∂

α⊥v2 ∈ L2(Vec ), ∀|α⊥| = 2,

Rσc−1
c θσ̃c,e−1

c,e ∂α⊥v2 ∈ L2(Vec ), ∀|α⊥| = 1,

Rσc−1
c θ−1

c,e∂3v2 ∈ L2(Vec ),

Rσc−2
c θσ̃c,e−2

c,e v2 ∈ L2(Vec ).

for any σc,e < 1, any σ̃c,e > 1 − λe, and any σc > 1
2 − λc, where λc is the smallest positive λc,k

such that − 1
2 < λc,k < σ + 1

2 , and θc,e(x) := re(x)
Rc(x) is the angular distance.

Proof. Based on simple calculations expressing the cartesian derivatives in spherical coordinates
(Rc, θc,e, ϕc,e) (where θc,e is the angular distance to the edge e) and using the splitting

ϕc,k = κ(0)
c,eχc,e(θc,e) + κc,eθ

λc,e
c,e ϕc,k,e(ϕc,e) + ϕc,k,R,

where κ(0)
c,e , κc,e ∈ C, χc,e is a cut-off function equal to 1 near θc,e = 0, ϕc,k,e is the singular function

associated with the corner singular exponent λc,e and ϕc,k,R is the regular part of ϕc,k that either
belongs to H2(G) or has to be split up into a singular part (similar to the second term of the above
right-hands side) and a regular part in H2(G). In this situation,

v2 = κc,eψR
λc,k
c θλc,ec,e ϕc,k,e(ϕc,e),

while v1 = vc,k − v2.
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Remark 6.4 The function vc,k = ψσc,k = ψRλc,kϕc,k that characterizes the vertex singularity in
(63) satisfies the following. (1) In the case λc,k = 0, σc,k =constant, because the eigenvector ϕc,k
of the Laplace-Beltrami operator corresponding to the zero eigenvalue is a constant. (2) In the
case that λc,k > 0, according to Lemma 6.3, the function vc,k admits a splitting into two functions
v1 and v2. In particular, let

σc,e ∈ (0, 1), σc = 1− ac, σ̃c,e = 1− ae,(66)

where ac and ae are parameters defined for the anisotropic mesh (Algorithm 3.4). Given the
conditions in (11) and (12), we conclude that the selections in (66) satisfy the conditions in Lemma
6.3. Namely, σc > 1

2 − λc and σ̃c,e > 1 − λe. Recall the weighted space H2
γ from (50). It is clear

that the function v2 ∈ H2
γ,σ(Vec ) with γe = ae, γc = ac, and σ = σc,e.

Recall that V0
c is part of the neighborhood of c ∈ C that excludes the edges. Based on Theorem

6.2 and Lemma 6.3, we further obtain the regularity estimate in V0
c .

Corollary 6.5 Under the assumption of Lemma 5.1, let u ∈ H1
ΓDir

(Ω) be the solution of (3) with
f ∈ Hσ(Ω), for some σ ∈ [0, 1). Let c ∈ C be a vertex and let λc be the smallest positive λc,k.
If λc < σ + 1

2 , in V
0
c , u admits the decomposition u = uc,reg + uc,sing where uc,reg ∈ H2(V0

c ) and
uc,sing ∈ V 2

σc(V
0
c ) for any σc > 1

2 − λc. If λc ≥ σ + 1
2 , we have u ∈ H2(V0

c ).

Proof. Note that the angular distance θc,e is bounded below from 0 in V0
c . Taking this into

account in (63) and in the regularity estimates (Theorem 6.2 and Lemma 6.3), we can derive the
result in this Corollary by straightforward calculations.

7 Interpolation error analysis
In this section, we carry out the interpolation error analysis for the proposed anisotropic finite
element scheme (Algorithm 3.4) for equation (1) with f ∈ Hσ(Ω) given in (9). Different from the
error analysis for the pure Dirichlet problem [25], the numerical analysis for the problem with the
mixed boundary condition, especially in the case that Neumann boundary conditions are imposed
in the adjacent faces of non-smooth points, requires new analytical tools and more involved, since
the underlying solution has quite different singular behaviors near vertices and edges as elaborated
in previous sections. We shall conduct the analysis on initial tetrahedra according to their types
(Definition 3.1).

We first have the estimate for an o-tetrahedron in the initial mesh.

Lemma 7.1 Let T(0) ∈ T0 be an o-tetrahedron. For u ∈ H2(T(0)), let Iu ∈ Sn be its nodal
interpolation on Tn. Then, we have

|u− Iu|H1(T(0)) ≤ Ch‖u‖H2(T(0)),(67)

where h = 2−n and C is independent of n and u.

Proof. Based on Algorithms 3.2 and 3.4, the restriction of Tn on T(0) is a quasi-uniform mesh
with size O(2−n). By the standard interpolation error estimate, we obtain

|u− Iu|H1(T(0)) ≤ C2−n‖u‖H2(T(0)) ≤ Ch‖u‖H2(T(0)).
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7.1 Analysis on initial v- and ve- tetrahedra
For an initial v- or ve-tetrahedron T(0) = 44x0x1x2x3 in T0, recall the mesh layers Lv,i, 0 ≤ i ≤ n
in Definition 3.6. Based on the refinement, on each Lv,i, the tetrahedra in Tn are isotropic with
mesh size O(κi2i−n). In T(0), let ρ be the distance to x0. Therefore,

(68) ρ ∼ κi on Lv,i, 0 ≤ i < n.

Namely, if T(0) is a v-tetrahedron, ρ ∼ Rc for c = x0 ∈ C; and if T(0) is a ve-tetrahedron, ρ ∼ re,
where e ∈ E is the edge containing x0.

Recall from Theorem 6.1 that the solution admits the following decomposition on an initial
ve-tetrahedron T(0):

u = uξe,reg + uξe,sing,(69)

where uξe,reg ∈ H2(T(0)) and uξe,sing ∈ Hγe,σ(T(0)) for γe ∈ [0, 1] and γe < λe. Meanwhile, by
Corollary 6.5, the solution admits the following decompositions on an initial v-tetrahedron T(0):

u = uc,reg + uc,sing,(70)

where uc,reg ∈ H2(T(0)) and uc,sing ∈ V 2
σc(T(0)) for any σc > 1

2 − λc, where λc < σ + 1
2 ; in the case

λc ≥ σ + 1
2 , we have u = uc,reg.

Then, we have the interpolation error estimate in the layer Lv,i.

Lemma 7.2 For a continuous function v, let Iv be its nodal interpolation on Tn. Let T(0) ∈ T0 be
either a v- or a ve-tetrahedron. For v ∈ H2(T(0)), we have

|v − Iv|H1(Lv,i) ≤ Ch‖v‖H2(Lv,i), 0 ≤ i ≤ n.

If T(0) ∈ T0 is a v-tetrahedron and v ∈ V 2
σc(T(0)), where σc satisfies the condition in Corollary 6.5,

then

|v − Iv|H1(Lv,i) ≤ Ch‖v‖V 2
1−ac (Lv,i), 0 ≤ i < n.

If T(0) ∈ T0 is a ve-tetrahedron and v ∈ H2
γe,σ(T(0)), where γe satisfies the condition in Theorem

6.1, then

|v − Iv|H1(Lv,i) ≤ Ch‖v‖H2
ae,σ

(Lv,i), 0 ≤ i < n.

In all these estimates, h = 2−n, C is independent of i and v, and ac and ae are the mesh grading
parameters in (11) and (12).

Proof. For (x, y, z) ∈ Lv,i, let (x̂, ŷ, ẑ) ∈ L̂ be its image under the dilation Bv,i in (13), where
L̂ = Lv,0 when i < n and L̂ = T(0) when i = n. For a function v on Lv,i, we define v̂ on L̂ by

v̂(x̂, ŷ, ẑ) := v(x, y, z).

As part of Tn, the triangulation on Lv,i is mapped by Bv,i to a triangulation on L̂ with mesh size
O(2i−n). Then, by the scaling argument and the interpolation error estimate on L̂, we have

|v − Iv|2H1(Lv,i)
= κi|v̂ − Îv|2

H1(L̂)
≤ Cκi22(i−n)|v̂|2

H2(L̂)

≤ C22(i−n)κ2i|v|2H2(Lv,i)
.(71)
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Thus, for v ∈ H2(T(0)), by (71) and κ ≤ 1
2 , for 0 ≤ i ≤ n, we have

|v − Iv|H1(Lv,i) ≤ Ch|v|H2(Lv,i),

which proves the first estimate of the lemma.
If T(0) is a v-tetrahedron, for i < n, we have Rc ∼ κi = κic on Lv,i. Note that if v ∈ V 2

σc(T(0)) for
any σc > 1

2−λc (a condition in (70)), according to the condition (12), it is clear that v ∈ V 2
1−ac(T(0)).

Therefore, by (71) and (10), we have

|v − Iv|2H1(Lv,i)
≤ C22(i−n)κ2i|v|2H2(Lv,i)

≤ C22(i−n)κ2iac
c

∑
|α|=2

‖R1−ac
c ∂αv‖2L2(Lv,i)

≤ C2−2n‖v‖2V 2
1−ac (Li,v).

This proves the second estimate of the lemma.
If T(0) is a ve-tetrahedron, for i < n, we have re ∼ κi = κie on Lv,i. Note that if v ∈ H2

γe,σ(T(0))
for any γe < λe (a condition in (69)), according to the condition (11), it is clear that v ∈ H2

ae,σ(T(0)).
Thus, by (71), (10), and (11), we have

|v − Iv|2H1(Lv,i)
≤ C22(i−n)κ2i|v|2H2(Lv,i)

≤ C22(i−n)κ2iae
e

∑
|α|=2

‖r1−ae
e ∂αv‖2L2(Lv,i)

≤ C2−2n(
∑
|α⊥|=2

‖r1−ae
e ∂α⊥v‖2L2(Lv,i)

+
∑
|α⊥|=1

‖∂α⊥∂zv‖2L2(Lv,i)
+ ‖r−σe ∂2

zv‖2L2(Lv,i)
)

≤ C2−2n‖v‖2H2
ae,σ

(Li,v).

This proves the third estimate and concludes the proof of this lemma.
Then, we give the error estimate on the whole initial tetrahedron T(0).

Corollary 7.3 Let T(0) ∈ T0 be either a v- or a ve-tetrahedron. For the solution u of equation (1)
with f given in (9), let Iu be its nodal interpolation on Tn. Then, we have

|u− Iu|H1(T(0)) ≤ Ch,

where h = 2−n and C is independent of n.

Proof. We first show the interpolation error estimate on the last layer Lv,n.
For (x, y, z) ∈ Lv,n, let (x̂, ŷ, ẑ) ∈ T(0) be its image under the dilation Bv,n. For a function v

on Lv,n, we define v̂ on T(0) by
v̂(x̂, ŷ, ẑ) := v(x, y, z).

Now, let χ be a smooth cutoff function on T(0), such that χ = 0 in a neighborhood of x0 and = 1 at
every other node of T(0). Recall the distance function ρ from (68). Thus, ρ(x̂, ŷ, ẑ) = κ−nρ(x, y, z).
Since χv̂ = 0 in the neighborhood of x0, we have

(72) |χv̂|2H2(T(0))
≤ C

∑
|α|≤2

‖ρ|α|−1∂αv̂‖2L2(T(0))
.

Define ŵ := v̂ − χv̂ and note that Î(χv̂) = Î v̂, where Î v̂ is the interpolation on T(0). We have

|v̂ − Î v̂|H1(T(0)) = |ŵ + χv̂ − Î v̂|H1(T(0)) ≤ |ŵ|H1(T(0)) + |χv̂ − Î v̂|H1(T(0))

= |ŵ|H1(T(0)) + |χv̂ − Î(χv̂)|H1(T(0)) ≤ C(‖v̂‖H1(T(0)) + |χv̂|H2(T(0))),(73)

24



where C depends on T(0). Then, using (73), (72), the scaling argument, and κ−n . ρ−1 in Lv,n,
we have

|v − Iv|2H1(Lv,n) = κn|v̂ − Î v̂|2H1(T(0))
≤ Cκn(‖v̂‖2H1(T(0))

+
∑
|α|≤2

‖ρ|α|−1∂αv̂‖2L2(T(0))
)

≤ C
∑
|α|≤2

‖ρ|α|−1∂αv‖2L2(Lv,n) ≤ Cκ
2na

∑
|α|≤2

‖ρ|α|−1−a∂αv‖2L2(Lv,n).

When T(0) is a v-tetrahedron, by ρ ∼ Rc, the definition of the weighted space, (10), and (12), we
have

|v − Iv|2H1(Lv,n) ≤ C2−2n
∑
|α|≤2

‖R|α|−1−ac
c ∂αv‖2L2(Lv,n) ≤ Ch

2‖v‖2V 2
1−ac (Lv,n).(74)

When T(0) is a ve-tetrahedron, by ρ ∼ re, the definition of the weighted space, (10), and (11), one
obtains

|v − Iv|2H1(Lv,n) ≤ C2−2n
∑
|α|≤2

‖r|α|−1−ae
e ∂αv‖2L2(Lv,n)

≤ Ch2(‖r−1
e ∂zv‖2L2(Lv,n) + ‖r−σe ∂2

zv‖2L2(Lv,n) +
∑
|α⊥|=1

‖∂α⊥∂zv‖2L2(Lv,n)(75)

+
∑
|α⊥|≤2

‖r|α⊥|−1−ae
e ∂α⊥v‖2L2(Lv,n)) ≤ Ch

2‖v‖2H2
ae,σ

(Lv,n).

For a v-tetrahedron T(0), recall the decomposition (70) u = uc,reg + uc,sing. In Lemma 7.2,
replace v by uc,reg in the first estimate; replace v by uc,sing in the second estimate; and replace v
by uc,sing in (74). Summing up these estimates over all the layers, by the regularity estimates in
Corollary 6.5 and by ac ∈ (0, 1] and ac < λc + 1/2, we therefore have

|u− Iu|H1(T(0)) ≤ |uc,reg − Iuc,reg|H1(T(0)) + |uc,sing − Iuc,sing|H1(T(0))

≤ Ch(‖uc,reg‖H2(T(0)) + ‖uc,sing‖V 2
1−ac (T(0))

) ≤ Ch.

Similarly, for a ve-tetrahedron T(0), recall the decomposition (69) u = uξe,reg + uξe,sing. In
Lemma 7.2, replace v by uξe,reg in the first estimate; replace v by uξe,sing in the third estimate;
and replace v by uξe,sing in (75). Summing up these estimates over all the layers, by the regularity
estimates in Theorem 6.1 and by ae ∈ (0, 1] and 1− σ ≤ ae < λe, we therefore have

|u− Iu|H1(T(0)) ≤ |uξe,reg − Iuξe,reg|H1(T(0)) + |uξe,sing − Iuξe,sing|H1(T(0))

≤ Ch(‖uξe,reg‖H2(T(0)) + ‖uξe,sing‖H2
ae,σ

(T(0))) ≤ Ch.

Hence the proof is completed.

7.2 Analysis on initial e-tetrahedra.
In the neighborhood of an edge e, according to Theorem 6.1, we write u = ureg + using. Recall
the nodal interpolation Iu ∈ Sn on Tn. Then, the interpolation error on an initial e-tetrahedron
T(0) ∈ T0 satisfies

(76) |u− Iu|H1(T(0)) ≤ |ureg − Iureg|H1(T(0)) + |using − Iusing|H1(T(0)).
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Lemma 7.4 Let T(0) ∈ T0 be an e-tetrahedron and let Le,i be the ith mesh layer (Definition 3.7).
Then, for σ given in (9) and ae given in (11) (namely, ae ∈ (0, 1] and 1− σ ≤ ae < λe), we have

|ureg − Iureg|H1(Le,i) ≤ Ch(‖ureg‖H2(Le,i) + ‖r−σe ∂2
zureg‖L2(Le,i)), 0 ≤ i ≤ n

|using − Iusing|H1(Le,i) ≤ Ch‖using‖H2
ae,σ

(Le,i), 0 ≤ i < n.

where n is the number of refinements, h = 2−n, and C depends on T(0), but not on i.

Proof. Recall that the layer Le,n ⊂ T(0) is the union of tetrahedra in Tn that touch the edge e;
if i < n, Le,i is formed in the (i + 1)st refinement and is the union of tetrahedra in Ti+1 between
Pe,i and Pe,i+1. Therefore, it suffices to study the interpolation error estimate on each tetrahedron
T(n) ⊂ Le,n and on Ti+1 3 T(i+1) ⊂ Le,i if i < n. Let T(i) ∈ Ti be the tetrahedron containing T(i+1)

if i < n and let T(i) = T(n) if i = n. Then, T(i) is either an e-tetrahedron or a ve-tetrahedron. To
simplify the notation, in what follows, we denote by v a function and by Iv its nodal interpolation
on Tn. The analysis is based on T(i)’s type.

Case I: T(i) is an e-tetrahedron. Let (x, y, z) ∈ T(i+1) and let (x̂, ŷ, ẑ) ∈ T̂(i+1) := Be,iT(i+1) as
defined in Proposition 3.8, where T̂(i+1) is the reference tetrahedron. Let v̂(x̂, ŷ, ẑ) := v(x, y, z).
Then, by the mapping in (15), we have

(77)

 dxdydz = 2−iκ2i
e dx̂dŷdẑ;

∂xv = (κ−ie ∂x̂ + b1κ
−i
e ∂ẑ)v̂, ∂yv = (κ−ie ∂ŷ + b2κ

−i
e ∂ẑ)v̂, ∂zv = 2i∂ẑ v̂;

∂x̂v̂ = (κie∂x − b12−i∂z)v, ∂ŷ v̂ = (κie∂y − b22−i∂z)v, ∂ẑ v̂ = 2−i∂zv.

Therefore, by (77) and the standard interpolation estimate on T̂(i+1), we have

‖∂x(v − Iv)‖2L2(T(i+1))
≤ C2−i

(
‖∂x̂(v̂ − Îv)‖2

L2(T̂(i+1))
+ ‖∂ẑ(v̂ − Îv)‖2

L2(T̂(i+1))

)
≤ C2−i22(i−n)|v̂|2

H2(T̂(i+1))

≤ C22(i−n)
∑

|α⊥|+α3=2

2−2iα3κ2i(|α⊥|−1)
e ‖∂α⊥∂α3

z v‖2L2(T(i+1))
.(78)

A similar calculation for the derivative with respect to y gives

‖∂y(v − Iv)‖2L2(T(i+1))
≤ C22(i−n)

∑
|α⊥|+α3=2

2−2iα3κ2i(|α⊥|−1)
e ‖∂α⊥∂α3

z v‖2L2(T(i+1))
.(79)

In the z-direction, by (77), and κe ≤ 1/2, following the calculation in (78), we have

‖∂z(v − Iv)‖2L2(T(i+1))
≤ C2iκ2i

e ‖∂ẑ(v̂ − Îv)‖2
L2(T̂(i+1))

≤ C2−i
(
‖∂x̂(v̂ − Îv‖2

L2(T̂(i+1))
+ ‖∂ẑ(v̂ − Îv)‖2

L2(T̂(i+1))

)
≤ C22(i−n)

∑
|α⊥|+α3=2

2−2iα3κ2i(|α⊥|−1)
e ‖∂α⊥∂α3

z v‖2L2(T(i+1))
.(80)

Thus, by (78) – (80), the estimate of the term

E := 22(i−n)
∑

|α⊥|+α3=2

2−2iα3κ2i(|α⊥|−1)
e ‖∂α⊥∂α3

z v‖2L2(T(i+1))
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is important for the error analysis. By (10) and (11), we first have

E ≤ C2−2n(2−2iκ−2i
e ‖∂2

zv‖2L2(T(i+1))
+
∑
|α⊥|=1

‖∂α⊥∂zv‖2L2(T(i+1))
+ 22iκ2i

e

∑
|α⊥|=2

‖∂α⊥v‖2L2(T(i+1))
)

≤ Ch2(κ2i(ae−1)
e ‖∂2

zv‖2L2(T(i+1))
+
∑
|α⊥|=1

‖∂α⊥∂zv‖2L2(T(i+1))
+ κ2i(1−ae)

e

∑
|α⊥|=2

‖∂α⊥v‖2L2(T(i+1))
).

Recall κe = 2−1/ae , ae ≤ 1, re ∼ κie on T(i+1) if i < n, and re < Cκne on T(n). By 1− σ ≤ ae < λe,
we have for i < n,

E ≤ Ch2(‖rae−1
e ∂2

zv‖2L2(T(i+1))
+
∑
|α⊥|=1

‖∂α⊥∂zv‖2L2(T(i+1))
+
∑
|α⊥|=2

‖r1−ae
e ∂α⊥v‖2L2(T(i+1))

).

≤ Ch2(‖r−σe ∂2
zv‖2L2(T(i+1))

+
∑
|α⊥|=1

‖∂α⊥∂zv‖2L2(T(i+1))
+
∑
|α⊥|=2

‖r1−ae
e ∂α⊥v‖2L2(T(i+1))

).(81)

For i = n, we have

E ≤ Ch2(‖rae−1
e ∂2

zv‖2L2(T(n))
+
∑
|α⊥|=1

‖∂α⊥∂zv‖2L2(T(n))
+ κ2i(1−ae)

e

∑
|α⊥|=2

‖∂α⊥v‖2L2(T(n))
).

≤ Ch2(‖r−σe ∂2
zv‖2L2(T(n))

+
∑
|α⊥|=1

‖∂α⊥∂zv‖2L2(T(n))
+
∑
|α⊥|=2

‖∂α⊥v‖2L2(T(n))
).(82)

Thus, for v = ureg, by (78) – (82), we have for i ≤ n

(83) |ureg − Iureg|H1(T(i+1)) ≤ Ch(‖ureg‖H2(T(i+1)) + ‖r−σe ∂2
zureg‖L2(T(i+1))).

For v = using, by (78) – (81), we have for i < n

(84) |using − Iusing|H1(T(i+1)) ≤ Ch‖using‖H2
ae,σ

(T(i+1)).

Hence, we have completed the proof of Case I. Note that for i = n, the scaling arguments in
(78) – (80) hold for ureg since ûreg ∈ H2 on the reference element. They hold for using only when
i < n, because using /∈ H2 on the last layer of the mesh. These is why the estimates (83) and (84)
have different forms.

Case II: T(i) is a ve-tetrahedron. Let T(k) ∈ Tk, 1 ≤ k ≤ i, be the ve-tetrahedron, such that
T(i) ⊆ T(k) and T(k) is contained in an e-tetrahedron T(k−1) ∈ Tk−1. For (x, y, z) ∈ T(i+1), let
(x̂, ŷ, ẑ) ∈ T̂(i+1) = Bi,kT(i+1) (see Proposition 3.8), where T̂(i+1) is the reference element. Let
v̂(x̂, ŷ, ẑ) := v(x, y, z). We have

(85)

 dxdydz = 21−kκ3i−k−2
e dx̂dŷdẑ, ∂x̂v̂ = (κi−1

e ∂x − b121−kκi−ke ∂z)v;
∂ŷ v̂ = (κi−1

e ∂y − b221−kκi−ke ∂z)v, ∂ẑ v̂ = 21−kκi−ke ∂zv;
∂xv = (κ1−i

e ∂x̂ + b1κ
1−i
e ∂ẑ)v̂, ∂yv = (κ1−i

e ∂ŷ + b2κ
1−i
e ∂ẑ)v̂, ∂zv = 2k−1κk−ie ∂ẑ v̂.
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Therefore, by (85), κe ≤ 1/2, and the standard interpolation estimate, we have

‖∂x(v − Iv)‖2L2(T(i+1))
≤ C21−kκi−ke

(
‖∂x̂(v̂ − Îv)‖2

L2(T̂(i+1))
+ ‖∂ẑ(v̂ − Îv)‖2

L2(T̂(i+1))

)
≤ C21−kκi−ke 22(i−n)|v̂|2

H2(T̂(i+1))

≤ C22(i−n)
∑

|α⊥|+α3=2

22(1−k)α3κ2(i−k)α3
e κ(2i−2)(|α⊥|−1)

e ‖∂α⊥∂α3
z v‖2L2(T(i+1))

≤ C22(i−n)
∑

|α⊥|+α3=2

2−2iα3κ2i(|α⊥|−1)
e ‖∂α⊥∂α3

z v‖2L2(T(i+1))
.(86)

A similar calculation for the derivative with respect to y gives

(87) ‖∂y(v − Iv)‖2L2(T(i+1))
≤ C22(i−n)

∑
|α⊥|+α3=2

2−2iα3κ2i(|α⊥|−1)
e ‖∂α⊥∂α3

z v‖2L2(T(i+1))
.

In the z-direction, by Proposition 3.8, (85), κe ≤ 1/2, and following the calculation in (86),

‖∂z(v − Iv)‖2L2(T(i+1))
≤ C(21−kκi−ke )κ2(i−1)

e (2k−1κk−ie )2‖∂ẑ(v̂ − Îv)‖2
L2(T̂(i+1))

≤ C21−kκi−ke

(
‖∂x̂(v̂ − Îv)‖2

L2(T̂(i+1))
+ ‖∂ẑ(v̂ − Îv)‖2

L2(T̂(i+1))

)
≤ C22(i−n)

∑
|α⊥|+α3=2

2−2iα3κ2i(|α⊥|−1)
e ‖∂α⊥∂α3

z v‖2L2(T(i+1))
.(88)

Then, by (86) – (88) and (81) – (82), we have obtained the desired estimates for Case II.
Thus, we complete the proof by summing up the estimates for all the tetrahedra T(i+1) in Le,i.

Then, we have the interpolation error analysis on an initial e-tetrahedron.

Theorem 7.5 Let T(0) ∈ T0 be an e-tetrahedron. Recall the decomposition u = ureg +using on T(0)

from Theorem 6.1. Let Iu be its nodal interpolation on Tn. Then, we have

|u− Iu|H1(T(0)) ≤ Ch(‖using‖H2
ae,σ

(T(0)) + ‖ureg‖H2+σ(T(0)) + ‖r−σe ∂2
zureg‖L2(T(0))),

where h = 2−n and C depends on T(0) but not on n.

Proof. By (76) and Lemma 7.4, it suffices to show

|using − Iusing|H1(T(n)) ≤ Ch‖using‖H2
ae,σ

(T(n))

for any tetrahedron T(n) ∈ Tn in the last layer Le,n. Since T(n) is either an e- or a ve-tetrahedron,
we derive this estimate in two cases. To simplify the notation, we let v = using.

Case I: T(n) is an e-tetrahedron. By Proposition 3.8, the mapping Be,n translates T(n) to
the reference tetrahedron T̂ = 44x̂0x̂1x̂2x̂3. Consequently, it maps any point (x, y, z) ∈ T(n) to
(x̂, ŷ, ẑ) ∈ T̂ . For a function v on T(n), we define v̂ on T̂ by

v̂(x̂, ŷ, ẑ) := v(x, y, z).

Now, let χ be a smooth cutoff function on T̂ such that χ = 0 in a neighborhood of the edge
ê := x̂0x̂1 and = 1 at every other Lagrange node of T̂ . Let rê be the distance to ê. Let Î v̂ be
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the interpolation of û on the reference tetrahedron T̂ . Since χv̂ = 0 in the neighborhood of ê,
Î(χv̂) = Î v̂ (v̂ = 0 on ê since v ∈ H2

γe,σ(T(0)) (Theorem 6.1)), and we have

|χv̂|2
H2(T̂ )

≤ C(‖rae−1
ê ∂2

ẑ v̂‖2L2(T̂ )
+

∑
|α⊥|+α3≤2, α3<2

‖r|α⊥|−1
ê ∂α⊥∂α3

ẑ v̂‖2
L2(T̂ )

).(89)

Define ŵ := v̂ − χv̂. Then, by the usual interpolation error estimate, we have

|v̂ − Îv|H1(T̂ ) = |ŵ + χv̂ − Îv|H1(T̂ ) ≤ |ŵ|H1(T̂ ) + |χv̂ − Îv|H1(T̂ )

= |ŵ|H1(T̂ ) + |χv̂ − Î(χv̂)|H1(T̂ ) ≤ C(‖v̂‖H1(T̂ ) + |χv̂|H2(T̂ )),(90)

where C depends on, through χ, the nodes on T̂ . Then, using the scaling argument based on (77),
by (90), (89), the relation rê(x̂, ŷ, ẑ) = κ−ne re(x, y, z), and (10), we have

‖∂x(v − Iv)‖2L2(T(n))
≤ C2−n

(
‖∂x̂(v̂ − Îv)‖2

L2(T̂ )
+ ‖∂ẑ(v̂ − Îv)‖2

L2(T̂ )

)
≤ C2−n(‖rae−1

ê ∂2
ẑ v̂‖2L2(T̂ )

+
∑

|α⊥|+α3≤2, α3<2

‖r|α⊥|−1
ê ∂α⊥∂α3

ẑ v̂‖2
L2(T̂ )

)

≤ C
(
2−2n‖rae−1

e ∂2
zv‖2L2(T(n))

+
∑

|α⊥|+α3≤2, α3<2

2−2nα3‖r|α⊥|−1
e ∂α⊥∂α3

z v‖2L2(T(n))

)
≤ C

(
2−2n(‖rae−1

e ∂2
zv‖2L2(T(n))

+
∑
|α⊥|=1

‖∂α⊥∂zv‖2L2(T(n))

+‖r−1
e ∂zv‖2L2(T(n))

) +
∑
|α⊥|≤2

‖r|α⊥|−1
e ∂α⊥v‖2L2(T(n))

)
≤ C2−2n

(
‖rae−1
e ∂2

zv‖2L2(T(n))
+
∑
|α⊥|=1

‖∂α⊥∂zv‖2L2(T(n))

+‖r−1
e ∂zv‖2L2(T(n))

+
∑
|α⊥|≤2

‖r|α⊥|−1−ae
e ∂α⊥v‖2L2(T(n))

)
.(91)

A similar calculation for the derivative with respect to y gives

‖∂y(v − Iv)‖2L2(T(n))
≤ C2−2n

(
‖rae−1
e ∂2

zv‖2L2(T(n))
+
∑
|α⊥|=1

‖∂α⊥∂zv‖2L2(T(n))

+‖r−1
e ∂zv‖2L2(T(n))

+
∑
|α⊥|≤2

‖r|α⊥|−1−ae
e ∂α⊥v‖2L2(T(n))

)
.(92)

In the z-direction, using (90), (89), (77), (10), and the calculation in (91), we have

‖∂z(v − Iv)‖2L2(T(n))
= 2nκ2n

e ‖∂ẑ(v̂ − Îv)‖2
L2(T̂ )

≤ 2−n
(
‖∂x̂(v̂ − Îv)‖2

L2(T̂ )
+ ‖∂ẑ(v̂ − Îv)‖2

L2(T̂ )

)
≤ C2−2n

(
‖rae−1
e ∂2

zv‖2L2(T(n))
+
∑
|α⊥|=1

‖∂α⊥∂zv‖2L2(T(n))

+‖r−1
e ∂zv‖2L2(T(n))

+
∑
|α⊥|≤2

‖r|α⊥|−1−ae
e ∂α⊥v‖2L2(T(n))

)
.(93)
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Recall ae − 1 ≥ −σ and ae < λe. Then, by (91) – (93), we have

|v − Iv|2H1(T(n))
≤ C2−2n

(
‖r−σe ∂2

zv‖2L2(T(n))
+
∑
|α⊥|=1

‖∂α⊥∂zv‖2L2(T(n))

+‖r−1
e ∂zv‖2L2(T(n))

+
∑
|α⊥|≤2

‖r|α⊥|−1−ae
e ∂α⊥v‖2L2(T(n))

)
≤ Ch2‖v‖2H2

ae,σ
(T(n))

,(94)

which proves the estimate for Case I.
Case II: T(n) is a ve-tetrahedron. Let T(k) ∈ Tk, 1 ≤ k ≤ n, be the ve-tetrahedron, such

that T(n) ⊆ T(k) and T(k) is contained in an e-tetrahedron T(k−1) ∈ Tk−1. By Proposition 3.8,
the mapping Bn,k transforms T(n) to a ve-tetrahedron T̂(n) ∈ T̂1. Thus, Bn,k maps every point
(x, y, z) ∈ T(n) to (x̂, ŷ, ẑ) ∈ T̂(n). As in Case I, for a function v on T(n), we define v̂ on T̂(n) by

v̂(x̂, ŷ, ẑ) := v(x, y, z).

Now let χ be a smooth cutoff function on T̂(n) such that χ = 0 in a neighborhood of ê := x̂0x̂1 of
T̂ = 44x̂0x̂1x̂2x̂3 and = 1 at every other Lagrange node of T̂(n). Recall the distance rê to ê. Since
χv̂ = 0 in the neighborhood of the refined vertex, we have Î(χv̂) = Î v̂ on T̂(n) and

|χv̂|2
H2(T̂(n))

≤ C(‖rae−1
ê ∂2

ẑ v̂‖2L2(T̂(n))
+

∑
|α⊥|+α3≤2, α3<2

‖r|α⊥|−1
ê ∂α⊥∂α3

ẑ v̂‖2
L2(T̂(n))

).(95)

Define ŵ := v̂ − χv̂. Then, by the usual interpolation error estimate, we have

|v̂ − Îv|H1(T̂(n))
= |ŵ + χv̂ − Îv|H1(T̂(n))

≤ |ŵ|H1(T̂(n))
+ |χv̂ − Îv|H1(T̂(n))

= |ŵ|H1(T̂(n))
+ |χv̂ − Î(χv̂)|H1(T̂(n))

≤ C(‖v̂‖H1(T̂(n))
+ |χv̂|H2(T̂(n))

),(96)

where C depends on, through χ, the nodes in the reference element T̂(n). In Le,n, re(x, y, z) =
κn−1
e rê(x̂, ŷ, ẑ). Therefore, by (85), (96), (95), (10), and κe ≤ 1/2, we have

‖∂x(v − Iv)‖2L2(T(n))
≤ C21−kκn−ke

(
‖∂x̂(v̂ − Îv)‖2

L2(T̂(n))
+ ‖∂ẑ(v̂ − Îv)‖2

L2(T̂(n))

)
≤ C21−kκn−ke (‖rae−1

ê ∂2
ẑ v̂‖2L2(T̂(n))

+
∑

|α⊥|+α3≤2, α3<2

‖r|α⊥|−1
ê ∂α⊥∂α3

ẑ v̂‖2
L2(T̂(n))

)

≤ C
(
22(1−k)κ2(n−k)

e ‖rae−1
e ∂2

zv‖2L2(T(n))

+
∑

|α⊥|+α3≤2, α3<2

22(1−k)α3κ2(n−k)α3
e ‖r|α⊥|−1

e ∂α⊥∂α3
z v‖2L2(T(n))

)
≤ C2−2n

(
‖rae−1
e ∂2

zv‖2L2(T(n))
+
∑
|α⊥|=1

‖∂α⊥∂zv‖2L2(T(n))

+‖r−1
e ∂zv‖2L2(T(n))

+
∑
|α⊥|≤2

‖r|α⊥|−1−ae
e ∂α⊥v‖2L2(T(n))

)
.(97)

A similar calculation for the derivative with respect to y gives

‖∂y(v − Iv)‖2L2(T(n))
≤ C2−2n

(
‖rae−1
e ∂2

zv‖2L2(T(n))
+
∑
|α⊥|=1

‖∂α⊥∂zv‖2L2(T(n))

+‖r−1
e ∂zv‖2L2(T(n))

+
∑
|α⊥|≤2

‖r|α⊥|−1−ae
e ∂α⊥v‖2L2(T(n))

)
.(98)
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In the z-direction, by (85), (96), (95), and the calculation in (97), we have

‖∂z(v − Iv)‖2L2(T(n))
= (21−kκn−ke )κ2(n−1)

e (2k−1κk−ne )2‖∂ẑ(v̂ − Îv)‖2
L2(T̂(n))

≤ 21−kκn−ke

(
‖∂x̂(v̂ − Îv)‖2

L2(T̂(n))
+ ‖∂ẑ(v̂ − Îv)‖2

L2(T̂(n))

)
≤ C2−2n

(
‖rae−1
e ∂2

zv‖2L2(T(n))
+
∑
|α⊥|=1

‖∂α⊥∂zv‖2L2(T(n))

+‖r−1
e ∂zv‖2L2(T(n))

+
∑
|α⊥|≤2

‖r|α⊥|−1−ae
e ∂α⊥v‖2L2(T(n))

)
.(99)

Therefore, by ae − 1 ≥ −σ and ae < λe and by (97) – (99), we have

|v − Iv|2H1(T(n))
≤ Ch2‖v‖2H2

ae,σ
(T(n))

,

which proves the estimate for Case II.
Hence, the theorem is proved by summing up the estimates in Lemma 7.4 and the estimates

|using − Iusing|H1(T(n)) for all the tetrahedra T(n) in Le,n.
Based on the regularity estimates in Theorem 6.1 and the interpolation error estimate in The-

orem 7.5, it is clear that on an initial e-tetrahedron T(0)

(100) |u− Iu|H1(T(0)) ≤ Ch,

where h = 2−n and C is independent of n.

7.3 Analysis on initial ev-tetrahedra.
In the neighborhood Vec of an edge e and vertex c, according to Theorem 6.2, we write u =
ureg + using + uc, where uc =

∑
− 1

2<λc,k<σ+ 1
2
ckψσc,k. Then, the interpolation error on an initial

ev-tetrahedron T(0) ∈ T0 satisfies

(101) |u− Iu|H1(T(0)) ≤ |ureg − Iureg|H1(T(0)) + |using − Iusing|H1(T(0)) + |uc − Iuc|H1(T(0)).

Theorem 7.6 Let T(0) ∈ T0 be an ev-tetrahedron and let Lev,i be its ith mesh layer (Definition
3.9). Recall the weighted space H2

γ,σ specified in Theorem 6.2. Then, for σ given in (9), ae and ac
given in (11) and (12), respectively, and 0 ≤ i ≤ n, we have in (101)

|ureg − Iureg|H1(Le,i) ≤ Ch(‖ureg‖V 2
0 (Le,i) + ‖r−σe ∂2

zureg‖L2(Le,i)),

|using − Iusing|H1(T(0)) ≤ Ch‖using‖H2
γ,σ(T(0)),

|uc − Iuc|H1(T(0)) ≤ Ch,

where n is the number of refinements, h = 2−n; in the first two estimates, C depends on T(0), but
not on i; in the last estimate, C depends on T(0) and f in (1).

Proof. Let T(i) ⊂ T(0) be the ev-tetrahedron in Ti. Recall the mesh layer Lev,i in Definition
3.9 and the mapping Bev,i in (17) that translates Lev,i to the reference domain L̂. For a point
(x, y, z) ∈ Lev,i, let (x̂, ŷ, ẑ) ∈ L̂ be its image under Bev,i. For a function v on Lev,i, define the
function v̂ on L̂ by

(102) v̂(x̂, ŷ, ẑ) := v(x, y, z).
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The distance function re to the edge e satisfies re(x, y, z) = κicre(x̂, ŷ, ẑ) on Lev,i. Meanwhile, Bev,i

maps the triangulation Tn on Lev,i to a graded triangulation on L̂ that is obtained after i+ 1− n
refinements of the initial mesh L̂. Note that the subsequent refinements on L̂ are anisotropic with
the parameter κe toward e, since L̂ does not contain ev- or v-tetrahedra. Then, by the scaling
argument using the mapping (17), we have

|v − Iv|2H1(Lev,i)
≤ Cκic

∣∣v̂ − Îv|2
H1(L̂)

.(103)

Case I (v = ureg ∈ V 2+σ
0 (T(0)) and r−σe ∂2

zv ∈ L2(T(0)).) Note that it implies v ∈ H2(Lev,i) for
i ≤ n. Then, by (103) and by similar calculations as in (81) and (82), and 1− σ ≤ ae, we have

|v − Iv|2H1(Lev,i)
≤ Cκic2

2(i−n)
(
‖rae−1
e ∂2

ẑ v̂‖2L2(L̂)
+
∑
|α⊥|=1

‖∂α⊥∂ẑ v̂‖2L2(L̂)
+
∑
|α⊥|=2

‖∂α⊥ v̂‖2
L2(L̂)

)
≤ C2−2n

(
22iκ4i−2iae

c ‖rae−1
e ∂2

zv‖2L2(Lev,i)
+ 22iκ2i

c

∑
|α⊥|=1

‖∂α⊥∂zv‖2L2(Lev,i)

+22iκ2i
c

∑
|α⊥|=2

‖∂α⊥v‖2L2(Lev,i)

)
≤ C2−2n

(
‖rae−1
e ∂2

zv‖2L2(Lev,i)
+
∑
|α|=2

‖∂αv‖2L2(Lev,i)

)
≤ C2−2n

(
‖r−σe ∂2

zv‖2L2(Lev,i)
+
∑
|α|=2

‖∂αv‖2L2(Lev,i)

)
≤ Ch2(‖v‖2V 2

0 (Le,i)
+ ‖r−σe ∂2

zv‖2L2(Le,i)
).(104)

This proves the first estimate in the theorem.
Case II (v = using ∈ H2

γ,σ(T(0)) with γc = 1 + σ and γe < λe.) The following estimate was
obtained in Corollary 5.16 of [25] for functions in H2

γ∗,µ(T(0)), where γ∗e , γ∗c ∈ [0, 1] and γ∗e < λe,
γ∗c < λc + 1/2 and 1− µ ≤ ae:

(105) |v − Iv|H1(T(0)) ≤ Ch‖v‖H2
γ∗,µ(T(0))

.

Since H2
γ,σ(T(0)) ⊂ H2

γ∗,µ(T(0)), we have

|v − Iv|H1(T(0)) ≤ Ch‖v‖H2
γ∗,µ(T(0))

≤ Ch‖v‖H2
γ,σ(T(0)).

This proves the second estimate in the theorem.
Case III (v = uc in (101).) Recall that if zero is an eigenvalue of the Laplace-Beltrami operator

in the expansion of uc, namely λc,0 = 0, the corresponding term is a constant function, which
the finite element interpolation can completely resolve. Therefore, we proceed to consider the
interpolation error in the case that λc,0 > 0. Recall from Lemma 6.3 v = v1 + v2. Therefore, to
obtain |v − Iv|H1(T0) in this case, it is sufficient to analyze |v1 − Iv1|H1(T0) and |v2 − Iv2|H1(T0),
respectively.

We first estimate |v1 − Iv1|H1(T0). For i < n, by the scaling map (17), Rc ∼ κic, (10), and the
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estimates in (86) – (88) and (81) – (82), we have

|v1 − Iv1|2H1(Lev,i)
≤ Cκic2

2(i−n)
(
‖rae−1
e ∂2

ẑ v̂1‖2L2(L̂)
+
∑
|α⊥|=1

‖∂α⊥∂ẑ v̂1‖2L2(L̂)
+
∑
|α⊥|=2

‖∂α⊥ v̂1‖2L2(L̂)

)
≤ C2−2n

(
22iκ4i−2iae

c ‖rae−1
e ∂2

zv1‖2L2(Lev,i)
+ 22iκ2i

c

∑
|α⊥|=1

‖∂α⊥∂zv1‖2L2(Lev,i)

+22iκ2i
c

∑
|α⊥|=2

‖∂α⊥v1‖2L2(Lev,i)

)
≤ C2−2n

(
‖R2−ac−ae

c rae−1
e ∂2

zv1‖2L2(Lev,i)
+
∑
|α⊥|=1

‖R1−ac
c ∂α⊥∂zv1‖2L2(Lev,i)

+
∑
|α⊥|=2

‖R1−ac
c ∂α⊥v1‖2L2(Lev,i)

)
.

According to Lemma 6.3, Rσc+σc,ec r
−σc,e
e ∂2

zv1 ∈ L2(Vec ), Rσcc ∂α⊥∂zv1 ∈ L2(Vec ) (|α⊥| = 1), and
Rσc∂α⊥v1 ∈ L2(Vec ) (|α⊥| = 2), where σc,e ∈ (0, 1) and any σc > 1

2 − λc,0. Choose σc,e > 1 − ae
and σc = 1− ac. Then, we have

|v1 − Iv1|2H1(Lev,i)
≤ C2−2n

(
‖R1−ac+σc,e

c r−σc,ee ∂2
zv1‖2L2(Lev,i)

+
∑
|α⊥|=1

‖R1−ac
c ∂α⊥∂zv1‖2L2(Lev,i)

+
∑
|α⊥|=2

‖R1−ac
c ∂α⊥v1‖2L2(Lev,i)

)
.

≤ C2−2n
(
‖Rσc+σc,ec r−σc,ee ∂2

zv1‖2L2(Lev,i)
+
∑
|α⊥|=1

‖Rσcc ∂α⊥∂zv1‖2L2(Lev,i)

+
∑
|α⊥|=2

‖Rσcc ∂α⊥v1‖2L2(Lev,i)

)
.(106)

For i = n, Bev,n(Lev,n) = L̂ = T(0). With λc > 0, recall the condition Rσc−2
c v1 ∈ L2(Vce) for any

σc >
1
2 − λc in Lemma 6.3. This implies v1(c) = 0. For (x, y, z) ∈ Lev,n, let (x̂, ŷ, ẑ) ∈ L̂ be its

image under Bev,n. For a function v on Lev,n, recall the scaling (102) v̂ on L̂.
Now, let χ be a smooth cutoff function on L̂ such that χ = 0 in a neighborhood of the vertex c

and χ = 1 at every other node of L̂. Let Î v̂ be the interpolation of v̂ on the reference tetrahedron
L̂. Since χv̂ = 0 in the neighborhood of c, Î(χv̂) = Î v̂I = Îv. Therefore, by (103), Rc ≤ Cκnc ,
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Rc(x̂, ŷ, ẑ) = κ−nc Rc(x, y, z), and re(x̂, ŷ, ẑ) = κ−nc re(x, y, z), we have

|v1 − Iv1|2H1(Lev,n) ≤ Cκ
n
c |v̂1 − Îv1|2H1(L̂)

≤ Cκnc (|v̂1 − χv̂1|2H1(L̂)
+ |χv̂1 − Î(χv̂1)|2

H1(L̂)
)

≤ Cκnc (‖v̂1‖2H1(L̂)
+ |χv̂1|2H2(L̂)

)

≤ Cκnc (‖v̂1‖2H1(L̂)
+

∑
|α|=2, α3≤1

‖R1−ac
c ∂α⊥∂α3

ẑ v̂1‖2L2(L̂)
+ ‖R1−ac+σc,e

c r−σc,ee ∂2
ẑ v̂1‖2L2(L̂)

)

≤ C2−2n
(
22nκ−2n

c ‖v1‖2L2(Lev,n) + 22n|v1|2H1(Lev,n)

+22nκ2n
c (κ2nac−2n

c )(
∑
|α⊥|=2

‖R1−ac
c ∂α⊥v1‖2L2(Lev,n) +

∑
|α⊥|=1

‖R1−ac
c ∂α⊥∂zv1‖2L2(Lev,n)

+‖R1−ac+σc,e
c r−σc,ee ∂2

zv1‖2L2(Lev,n))
)

≤ C2−2n
(
‖R−1−ac

c v1‖2L2(Lev,n) +
∑
|α|=1

‖R−acc ∂αv1‖2L2(Lev,n)

+
∑
|α⊥|=2

‖R1−ac
c ∂α⊥v1‖2L2(Lev,n) +

∑
|α⊥|=1

‖R1−ac
c ∂α⊥∂zv1‖2L2(Lev,n)

+‖R1−ac+σc,e
c r−σc,ee ∂2

zv1‖2L2(Lev,n)

)
≤ C2−2n

(
‖Rσc−2

c v1‖2L2(Lev,n) +
∑
|α|=1

‖Rσc−1
c ∂αv1‖2L2(Lev,n)

+
∑
|α⊥|=2

‖Rσcc ∂α⊥v1‖2L2(Lev,n) +
∑
|α⊥|=1

‖Rσcc ∂α⊥∂zv1‖2L2(Lev,n)

+‖Rσc+σc,ec r−σc,ee ∂2
zv1‖2L2(Lev,n)

)
,(107)

where we chose σc = 1− ac and any σc,e > 1− ae. Therefore, by (106), (107), and Lemma 6.3, we
have

|v1 − Iv1|2H1(T(0))
≤ Ch2.(108)

Now for |v2− Iv2|H1(T0). Recall from Remark 6.4 that v2 satisfies v2 ∈ H2
γ,σ(Vec ) with γe = ae,

γc = ac, and σ = σc,e. Choose σc,e ≥ 1 − ae ∈ (0, 1). Then, based on the estimates in Corollary
5.16 of [25] and in Lemma 6.3, we have

|v2 − Iv2|H1(T(0)) ≤ Ch‖v2‖H2
γ,σ(T(0)) ≤ Ch.(109)

Thus, the theorem is proved by the estimates in (104), (105), (108), and (109).

Hence, based on the interpolation error estimates for different initial tetrahedra, we obtain the
global error analysis.

Corollary 7.7 For the anisotropic finite element method proposed in Algorithm 3.4 solving equa-
tion (1) with f ∈ Hσ(Ω) and σ ∈ [0, 1) satisfying (9), σ 6= λe,k − 1, for all k ∈ N∗, e ∈ E (see
Theorem 6.1), and σ 6= λc,k − 1

2 for all k ∈ N, c ∈ C (see Theorem 6.2), we have

‖u− un‖H1(Ω) ≤ Ch,

where h = 2−n; and C depends on the initial triangulation T0 and f , but not on n.
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Proof. We first have the optimal interpolation error estimate

|u− Iu|H1(Ω) ≤ Ch

by summing up the interpolation error estimates Lemma 7.1 (o-tetrahedra), Corollary 7.3 (v- and
ve-tetrahedra), Theorem 7.5 (e-tetrahedra), and Theorem 7.6 (ev-tetrahedra), and by the regularity
estimates in Section 6. The desired estimate for ‖u − un‖H1(Ω) is a consequence of the Poincaré
inequality and Céa’s Lemma.

8 Numerical results
In this section, we present numerical test results to verify the error analysis in Corollary 7.7 for
the proposed anisotropic finite element method (Algorithm 3.4) solving elliptic equations. Our
numerical tests are implemented in two typical polyhedral domains: the prism domain and the
Fichera domain. We shall demonstrate three numerical examples (Examples 8.1 – 8.3) for the
prism domain and one example (Example 8.4) for the Fichera domain.

The first set of tests are for the prism domain. Let Ω1 be the square with vertices at (1, 0), (0, 1),
(−1, 0), (0,−1) and let Ω2 be the triangle with vertices at (0, 0), (−1, 0), (0,−1). Define the prism
domain Ωp = (Ω1 \ Ω2) × (0, 1). For a point (x, y, z) ∈ Ω, denote by (r, θ) the polar coordinates
of its projection in the xy-plane (r(x, y, z) = r(x, y) and θ(x, y, z) = θ(x, y)). In the first two
numerical examples (Examples 8.1 and 8.2), we are especially interested in the performance of the
numerical method when the Neumann condition is imposed on both adjacent faces of the singular
edge. For pure Dirichlet problems, we refer to [24, 25]. In the third example (Example 8.3), we
illustrate our method with the presence of a DN singular edge.

In the first two examples, consider the following elliptic equation with the mixed boundary
condition

(110)


−∆u = 1 in Ωp,

u = r2/3 cos
2(θ+π

2 )

3 on ΓDir,
∂nu = 0 on ΓNeu,

where ΓDir and ΓNeu consist of boundary faces of the polyhedron Ωp. By imposing Dirichlet and
Neumann boundary conditions on different faces, we keep the edge e = {(0, 0, z) for 0 < z < 1} as
the singular Neumann edge. We will use the graded mesh toward the edge e and its two endpoints,
as described in Algorithm 3.4, in the finite element approximation. See Figure 3 for the case
κe = κc = 0.2.

Example 8.1 We impose the Neumann condition on the two faces adjacent to the edge e and
impose the Dirichlet condition on all the other faces (including the top and bottom faces) in equation
(110). See Figure 4. Thus, e is a Neumann edge; and other edges are either Dirichlet edges or DN
edges (see the description before (5)).

According to (5) (see also [14]), the edge e is the only singular edge with λe = 2
3 and the two

vertices c (its two endpoints) satisfy λc + 1
2 > λe. Other vertices and edges of Ωp are regular in

this case. In addition, the right hand side function in (110) belongs to Hσ(Ωp) for any σ ∈ [0, 1).
In fact, the solution u ∈ H1+s(Ωp) for s < 2

3 . Therefore, based on the conditions in (11) and (12),
and by Corollary 7.7, it is sufficient to obtain the optimal convergence rate in the finite element
method if we choose ae ∈ (0, 2

3 ) for the edge e and ac ∈ (0, ae] for its two endpoints. This gives rise
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Figure 3: Graded meshes on the prism domain (left – right): the initial mesh, mesh after one
refinement, mesh after three refinements (κe = κc = 0.2).

to the following optimal range of the grading parameters: κc ≤ κe = 2−1/ae < 2−3/2 ∼ 0.353 near
e, and quasi-uniform meshes (the associated grading parameters being 1

2 ) for all the other edges
and vertices.

Figure 4: Example 8.1 (two Neumann faces): the top view of Ωp, top Dirichlet face marked in blue
(left); the absolute value of the numerical solution (right).

In Table 1, we display the convergence rates of the finite element solution on proposed anisotropic
meshes associated with different values of the grading parameter for Example 8.1. In all these
meshes, we choose κ = κe = κc for the singular edge e and the two endpoints c (Figure 3). Here,
j is the level of refinements. Denote by uj the linear finite element solution on the mesh after j
refinements. Since the exact solution is not known, the convergence rate is computed using the
numerical solutions for successive mesh refinements

(111) convergence rate = log2(
|uj − uj−1|H1(Ω)

|uj+1 − uj |H1(Ω))
).

As j increases, the dimension of the discrete system is O(23j). Therefore, the asymptotic con-
vergence rate in (111) is a reasonable indicator of the actual convergence rate for the numerical
solution. For example, when the numerical solution approximates the singular solution at the opti-
mal convergence rate as described in Corollary 7.7, the convergence rate in (111) shall converge to
1 as the number of refinements j increases. On quasi-uniform meshes, the convergence rate (111)
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is however asymptotically bounded by 2
3 ∼ 0.667 due to the fact that the solution is singular in Ωp

(u ∈ H1+s(Ωp) for s < 2
3 ).

j κ = 0.1 κ = 0.2 κ = 0.3 κ = 0.4 κ = 0.5
3 0.65 0.72 0.75 0.71 0.61
4 0.81 0.83 0.84 0.77 0.64
5 0.89 0.91 0.90 0.81 0.66
6 0.95 0.96 0.94 0.83 0.67
7 0.98 0.98 0.96 0.84 0.67
8 0.99 0.99 0.97 0.85 0.67

Table 1: The H1 convergence rates in Example 8.1.

It is clear that the above theoretical predictions are confirmed by the numbers in Table 1.
Namely, when the grading parameter to the singular edge and its two endpoints is in the optimal
range κ = κe = κc = 0.1, 0.2, 0.3 < 0.353, the convergence rates in Table 1 converge to 1, which
implies the optimal convergence rate in the finite element method is achieved on the anisotropic
meshes proposed in Algorithm 3.4. For κ = 0.4, 0.5 > 0.353, the convergence is not optimal.
In particular, the convergence rates for κ = 0.5 is also very close to the theoretical bound 2

3 as
discussed above.

In the second example, in addition to the Neumann edge, we shall confirm the effectiveness
of our numerical scheme when the domain has Neumann vertices, namely vertices surrounded by
Neumann faces.

Example 8.2 In equation (110), the Neumann condition is imposed on the two faces adjacent to
the edge e and also on the top and bottom faces of the domain Ωp. The Dirichlet condition is
imposed on all the other side faces. Therefore, e is a Neumann edge and its two endpoints c are
Neumann vertices.

Figure 5: Example 8.2 (four Neumann faces): the top view of Ωp, top Neumann face marked in
red (left); the absolute value of the numerical solution (right).

According to (5) (see also [14]), the edge e is the only singular edge with λe = 2
3 and the two

vertices c are regular vertices. Similar to Example 8.1, all the other vertices and edges of Ωp are
regular. Note that the right hand side function in (110) still belongs to Hσ(Ωp) for any σ ∈ [0, 1),
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and the solution u ∈ H1+s(Ωp) for s < 2
3 . Therefore, based on the conditions in (11) and (12), and

by Corollary 7.7, it is sufficient to obtain the optimal convergence rate in the finite element method
if we choose ae ∈ (0, 2

3 ) for the edge e and ac ∈ (0, ae] for its two endpoints. These are the same
conditions as in Example 8.1, because the error analysis in Section 7 ensures that the solution near
the Neumann vertex can be approximated well by the finite element solution. Hence, the optimal
range of the grading parameters are: κc ≤ κe = 2−1/ae < 2−3/2 ∼ 0.353 near e, and quasi-uniform
meshes (the associated grading parameters being 1

2 ) for all the other edges and vertices.

level κ = 0.1 κ = 0.2 κ = 0.3 κ = 0.4 κ = 0.5
3 0.64 0.70 0.73 0.68 0.57
4 0.80 0.83 0.82 0.75 0.63
5 0.88 0.90 0.89 0.81 0.66
6 0.95 0.96 0.94 0.84 0.67
7 0.98 0.98 0.96 0.85 0.67
8 0.99 0.99 0.97 0.86 0.67

Table 2: The H1 convergence rates in Example 8.2.

The numerical convergence rates (111) are reported in Table 2 on the anisotropic meshes asso-
ciated with different values of the grading parameter. As in Example 8.1, we choose κ = κe = κc
for the singular edge e and the two endpoints c. It is clear that the above theoretical predictions
are confirmed by the numbers in Table 2. The convergence rate is optimal when κ = 0.1, 0.2, 0.3 <
0.353 is in the optimal range, and it slows down when κ = 0.4, 0.5 > 0.353. As discussed above,
the anisotropic algorithm can give rise to the optimal numerical approximation for equations with
mixed boundary conditions, even with Neumann edges and vertices.

In the third example for the prism domain, we test the anisotropic algorithm with the presence
of a singular edge with the mixed boundary condition. Instead of equation (110), we shall solve
another form of equation (1).

Example 8.3 Consider equation (1) with f = 1 in the prism domain Ωp. We impose the Neumann
boundary condition on one face adjacent to the edge e and impose the Dirichlet boundary condition
on all the other faces (see Figure 6). Thus, e is the singular edge surrounded by faces with mixed
boundary conditions.

Figure 6: Example 8.3 (a DN singular edge): Neumann face marked in red and Dirichlet face in
blue (left); the numerical solution (right).
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According to (5), e is the only singular edge with λe = 1
3 . Note that the right hand side function

in (1) belongs to Hσ(Ωp) for any σ ∈ [0, 1), and the solution u ∈ H1+s(Ωp) for s < 1
3 . Based on

Algorithm 3.4, it is sufficient to obtain the optimal convergence rate in the finite element method
if we choose ae ∈ (0, 1

3 ) for the edge e and ac ∈ (0, ae] for its two endpoints. Hence, the optimal
range of the grading parameters are: κc ≤ κe = 2−1/ae < 2−3 = 0.125 near e, and quasi-uniform
meshes for all the other edges and vertices.

level κ = 0.1 κ = 0.2 κ = 0.3 κ = 0.4 κ = 0.5
3 0.43 0.43 0.48 0.56 0.60
4 0.72 0.73 0.72 0.70 0.68
5 0.87 0.86 0.81 0.72 0.64
6 0.93 0.90 0.80 0.66 0.54
7 0.96 0.90 0.76 0.58 0.45
8 0.97 0.89 0.70 0.52 0.39

Table 3: The H1 convergence rates in Example 8.3.

We summarize the numerical convergence rates for Example 8.3 in Table 3, which again verifies
the theoretical prediction. Namely, when the grading parameter κ = κe = κc < 0.125, the optimal
convergence rate is achieved, while it is not the case for κ > 0.125.

Before we discuss the last numerical example, we define a Fichera domain as follows. Let
Ω1 = (−1, 1)3 and Ω2 = (0, 1)3 be two cubes. Then, the Fichera domain is Ωf := Ω1 \ Ω2. In this
example, we shall show the test results for solving equation (1) in Ωf .

Example 8.4 In equation (1), let f = 1. We impose the Neumann boundary condition on the two
faces that touch the center vertex of the Fichera domain Ωf and impose the Dirichlet boundary
condition on all the other faces. See Figure 7.

Figure 7: Example 8.4 (three singular edges in a Fichera domain): Neumann faces marked in red
and Dirichlet faces in blue (left); the numerical solution (right).

Therefore, according to (5), there are three singular edges e (the edges touching the center
vertex); and the endpoints c of these singular edges are possible singular vertices. See Figure 8.
For the Neumann singular edge, we have λe = 2

3 ; and for the two DN singular edges, we have
λe = 1

3 . In fact, the solution satisfies the global regularity u ∈ H1+s(Ωf ) for s < 1
3 . We will use

the graded mesh toward the singular edges and their endpoints, as described in Algorithm 3.4,
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Figure 8: Graded meshes on the Fichera domain (left-right): the initial mesh, mesh after one
refinement, mesh after three refinements (κe = κc = 0.2).

in the finite element approximation. In particular, to simplify the presentation, we shall choose
the same parameter κe for all the singular edges, and the same parameter κc = κe for all their
endpoints. See Figure 8 for the case κe = κc = 0.2. Recall that for any possible singular vertex
c, λc + 1

2 > 1
2 . Hence, based on (11) and (12), it is sufficient to choose κc = κe < 2−3 = 0.125

for all the singular edges and their endpoints, in order to obtain the optimal convergence in the
numerical approximation.

The numerical convergence rates for different values of the grading parameter in Example 8.4
are listed in Table 4. As predicted by the theory, for κ = κc = κe > 0.125, the convergence
is not optimal, while for κ = 0.1 < 0.125, the numbers are increasing toward the optimal rate.
We stopped at level 7 because the resources needed to extend the calculation to the next level
of refinement have exceeded our computing capability. For instance, the refinement to the next
level will generate more than 5 billion tetrahedra and 1 billion nodes. Nevertheless, according to
Table 4, there is a clear improvement in convergence rates using the appropriate graded meshes
(κ < 0.125) compared with other graded meshes (κ > 0.125); and it is reasonable to expect the
rates for κ = 0.1 will converge to 1 when the asymptotic region is reached with further refinements.

level κ = 0.1 κ = 0.2 κ = 0.3 κ = 0.4 κ = 0.5
3 0.58 0.63 0.65 0.65 0.63
4 0.78 0.81 0.80 0.76 0.70
5 0.85 0.88 0.83 0.75 0.65
6 0.88 0.89 0.81 0.68 0.54
7 0.91 0.88 0.75 0.59 0.45

Table 4: The H1 convergence rates in Example 8.4.
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