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Abstract

Consider the Poisson equation in a polyhedral domain with mixed boundary conditions.
We establish new regularity results for the solution with possible vertex and edge singularities
with interior data in usual Sobolev spaces H? with o € [0,1). We propose anisotropic finite
element algorithms approximating the singular solution in the optimal convergence rate. In
particular, our numerical method involves anisotropic graded meshes with fewer geometric
constraints but lacking the maximum angle condition. Optimal convergence on such meshes
usually requires the pure Dirichlet boundary condition. Thus, a by-product of our result is to
extend the application of these anisotropic meshes to broader practical computations with the
price to have “smoother” interior data. Numerical tests validate the theoretical analysis.

1 Introduction

Consider the elliptic problem associated with the Laplace operator in a bounded polyhedral domain
2 C R? with the mixed boundary condition:

—Au=f in Q,
(1) u=0 on I'pj,
Opu =0 on I'Neu,

where I'pj; and I'yey are open subsets of the boundary 09 such that I'pi U Inew = 0. For
simplicity, we suppose that each face of 99 is included either in I'p;, or in I'yey and I'py, # @. The
solution of equation (1) is uniquely defined in H}_(Q) (see (2)) for f € (H{_ (€)' [17, 26]. The
solution regularity, however, is determined by the smoothness of the given function, the geometry
of the domain, and the boundary conditions. Let us refer to the non-smooth boundary points
and the points where the boundary condition changes as singular points. Then, even for a smooth
function f, the solution may possess singularities in high-order Sobolev spaces near the singular
points [15, 18, 21, 22]. These singularities, often being the main theoretical concern, can also
severely deteriorate the efficacy of the numerical approximation.

For equation (1), the singular points are in fact the non-smooth boundary points (namely,
vertices and edges), provided that each face is either in I'p;; or in I'ney. Then, given a sufficiently
smooth function f, there are two types of solution singularities near the singular points in Q:
the vertex singularity and the anisotropic edge singularity. For such singularities, anisotropic

*Department of Mathematics, Wayne State University, Detroit, MI 48202, USA, li@wayne.edu
TUniversité de Valenciennes et du Hainaut Cambrésis, LAMAV, FR CNRS 2956, Institut des Sciences et Tech-
niques of Valenciennes, F-59313 - Valenciennes Cedex 9 France, Serge.NicaiseQuniv-valenciennes.fr



meshes are usually designed to improve the effectiveness of the finite element method (FEM). This
is different from the isotropic graded meshes in two-dimensional polygonal domains, where only
corner (vertex) singularities need special numerical treatment. The development of optimal FEMs
for elliptic equations in polyhedral domains is a technically challenging task due to the combination
of different types of singularities and due to the complexity in the three-dimensional geometry.
Meanwhile, the error analysis for the numerical scheme often demands specific anisotropic regularity
estimates. Compared with estimates in isotropic Sobolev spaces, such anisotropic regularity results
are limited and less known, most of which are for pure Dirichlet problems. Consequently, the
developments of effective mesh algorithms are extensively centered around pure Dirichlet problems.

The existing mesh algorithms for polyhedral domains usually require restrictive geometric con-
ditions on the mesh and on the domain. For example, the mesh in [2, 16] is based on the method
of dyadic partitioning. These meshes are isotropic and optimal only for weaker singular solutions.
The mesh in [1, 4, 5] is based on a coordinate transformation from a quasi-uniform mesh. It is
anisotropic along the edges and requires confining angle conditions for the simplex. The mesh in
[8, 9] is also anisotropic and leads to optimal convergence rate. The algorithm, however, requires
extra steps for prism refinements to maintain the angle condition in the simplex. There are also
tensor-product anisotropic meshes based on 2D graded meshes [6, 27| that are usually effective
on a domain with simple geometry. Recently, a new anisotropic FEM has emerged [24, 25| based
on explicit recursive refinements. With fewer geometric requirements on the simplex and on the
domain, this algorithm leads to conforming triangulations that however violates the maximum an-
gle condition in simplexes [7, 23|. Nevertheless, it was shown that for the pure Dirichlet problem,
the solution has extra regularity in the edge direction to compensate for the lack of mesh shape
regularity; and this algorithm gives rise to optimal FEMs approximating the anisotropic singular
solutions. Equations with mixed boundary conditions can possess solutions with a singular struc-
ture different from that in pure Dirichlet problems. Especially, near an edge or a vertex that is
surrounded by Neumann faces, the solution does not vanish and therefore does not belong to the
same Sobolev space as in the Dirichlet case. The rigorous theoretical and numerical justification
of anisotropic algorithms for problems with mixed boundary conditions, which occurs often in
practical computations, remains an open investigation.

In this paper, we extend the application of anisotropic algorithms to problems with mixed
boundary conditions by developing new finite element algorithms and new regularity results for
equation (1). In particular, we study the singular expansion of the solution near singular points
surrounded by Neumann faces. It turns out that part of the singular expansion resembles the
singularity in the Dirichlet problem and therefore belong to a similar weighted space. For the
rest of the singular expansion, a series of estimates on its fundamental properties shall reveal
its directional regularities. We summarize our findings by establishing new regularity results in
Theorems 6.1 and 6.2, Lemma 6.3, and Corollary 6.5 in different parts of the domain. Then, we
propose an optimal finite element algorithm (Algorithm 3.4) and validate it based on interpolation
error analysis in anisotropic weighted spaces.

The paper is organized as follows. In Section 2, we introduce necessary notation regarding the
finite element approximation of equation (1). We also define a domain decomposition according to
the distance to the singular points. In Section 3, we first review the anisotropic mesh developed in
[24]. Then we propose the anisotropic FEM for equation (1) with the mixed boundary condition.
In Section 4, we study the regularity of the equation in a dihedron, which shall lead to the local
regularity estimates near an open edge. In Section 5, we investigate the regularity of the equation
in an infinite cone, which shall lead to the local regularity estimates near a vertex of the domain.
In Section 6, we present the regularity results for the solution in the domain. In Section 7, we



include detailed interpolation error analysis for the anisotropic finite element algorithm in weighted
spaces. These optimal interpolation error estimates in turn lead to the conclusion that the proposed
FEMs obtain the optimal convergence rate approximating the target problem. Numerical tests are
implemented in a polyhedral prism domain for different mixed boundary conditions and the results
are reported in Section 8, These numerical results are in agreement with our theoretical prediction
and hence validate our method.

Throughout the text below, we adopt the bold notation for vector fields. Let T be a triangle
(resp. tetrahedron) with vertices a,b, ¢ (resp. a,b,c,d). Then, we denote T by its vertices: A3abc
for the triangle and A*abcd for the tetrahedron, where the sup-index implies the number of vertices
for T. We denote by ab the open line segment with endpoints a and b. By a ~ b (resp. a < b), we
mean that there exists a constant C' > 0 independent of a and b, such that C~'a < b < Ca (resp.
a < Cb). The generic constant C' > 0 in our estimates may be different at different occurrences.
It will depend on the computational domain, but not on the functions involved or the mesh level
in the finite element algorithms. In addition, both of the terms are used to represent the same
directional derivative: 91 = 0, 02 = 0y, and 03 = 0,. For a bounded domain D (or its boundary),
the usual norm and semi-norm of H*(D) (s > 0) are denoted by || - ||s,p and | - |s,p, respectively.
For s = 0, we will drop the index 0 and for D = 2, the index ). For two positive parameters s
and p, we finally introduce the norm || - ||s,p,, on H*(D) (see [15, Definition AA.17| for instance)
defined by )

o = (2 ull} + [uf2 )3, Yu € H*(D),

[[u

that is equivalent to the usual norm || - ||s,p (with constants of equivalence depending on p) if D
has a Lipschitz boundary.

2 Preliminaries

In this section, we introduce the notation and recall some existing results regarding the solution
of equation (1).

2.1 The finite element approximation

By a polyhedral domain Q C R3, we mean a bounded domain with a Lipschitz boundary 052 made
of plane faces (i.e., its boundary is a finite union of polygons). Thus, the boundary of €2 is smooth,
except at the vertex points and along the edges. In a neighborhood of a vertex ¢, €2 coincides with
a three-dimensional cone, while near an interior point of an edge e, {2 resembles a dihedral angle.

For a bounded domain O of R?, let H™(O), m > 0, be the usual Sobolev space that consists
of functions defined in O whose kth derivatives are square-integrable for 0 < k& < m (hence
L*(0) := H°(0)). Let H™.(Q) := {v, v € H™(G), for any open subset G with compact closure

G C Q}. The trace operator from H' () into Hz(9Q) will be denoted by ~. We define
(2) Hi_ (Q):={ue H'(Q), yu=0on I'py},

which is clearly a closed subspace of H!(Q).
Then, for f € L*(Q2), the variational solution v € Hf_ () of problem (1) is defined by

(3) a(u,v) = /QVU -Vodz = (f,v) = /va dz, Yv € H%Dir(Q).



Let 7, be a triangulation of € with tetrahedra. Let S, C H}Dir (©2) be the linear Lagrange
finite element space associated with 7,,. Then, the finite element solution u,, € S, for equation (1)
is given by

(4) a(“n,”n) = (f7 Un)a Vv, € Sp.

Remark 2.1 By Poincaré’s inequality, the bilinear form a(-,-) is both continuous and coercive on
V= H%D(Q) Then, by Céa’s Lemma [12, 13], u, is the best approximation from S, in V

- < inf — .
lu —unllv < inf fju—oallv
It is well known that the solution u may not belong to H2(Q) due to the presence of the non-smooth
points (vertices and edges) on the boundary. On a standard quasi-uniform triangulation T,, the
limited regularity of w in the Sobolev space can result in a sub-optimal convergence rate for the
finite element approximation. Namely,

||u — Un”Hl(Q) < Chs||uHHs+1(Q),
where h is the mesh size in T, and 0 < s < 1 depends on the geometry of the domain.

For equation (1), there are two types of singularities in the solution that may affect the con-
vergence of numerical methods. The vertex singularity appears in the neighborhood of a vertex
and concentrates at the vertex. The edge singularity occurs in the neighborhood of an edge; it is
however anisotropic in the sense that the solution is smoother in the direction along the edge than
toward the edge. Consequently, anisotropic graded meshes are frequently applied to improve the
convergence of the finite element solution.

2.2 The domain and the weighted Sobolev space

We denote by £ the finite set of open edges and by C the finite set of vertices of 2. We also denote
by &, C & the set of edges joining at ¢ € C and by C. C C the set of endpoints of e € £. We say
an edge e € £ is a Dirichlet (Neumann) edge if the Dirichlet (Neumann) boundary conditions are
imposed on both adjacent faces of e. We say e is a DN edge if the Dirichlet condition is imposed
on one adjacent face of e and the Neumann condition is on the other. Let w, be the opening angle
between the two adjacent faces of e. For each e € £, define

& if e is a Dirichlet edge or a Neumann edge;
(5) Ve = { 27> if e is a DN edge.
The edge e is called singular if v, < 1; otherwise it is called regular. Denote by I'. the cone that
coincides with the domain Q at ¢ € C. Let v, be the first positive eigenvalue of the Laplace-Beltrami
operator on the intersection of I'. with the unit sphere with boundary conditions inherited from
equation (1). Then, if —% + (ve + i)% < %, c is called singular; it is regular otherwise. For e € £
and ¢ € C, we set

(6)

Ae = V. if e is singular, A\, = co otherwise;
Ae = f% + (v + i)% if ¢ is singular, \. = co otherwise.

To better describe the singular behavior of the solution near the non-smooth points, we further
define the distance functions. For any ¢ € C (resp. e € &), we define R.(x) (resp. r.(z)) to be the



distance from z € § to ¢ (resp. to e€). We further define 6. .(z) := %&)) as the angular distance
from z to the edge of e near ¢. Then, for any vertex ¢ € C and edge e € £, as in [10, 25|, we define

the following subsets of €2

V.={z €Q, R.z) < e},
(1) VeE={x eV, b..(z) <e},
VO ={z €V, O.c(x) >¢, Ve€&},
VO ={z€Q, R(x) >¢, O..(x) <e, YVeel},

with € > 0 small enough, such that all these sets are disjoint for different vertices ¢ and edges e.
We further define

(8) VO =\ ((UeeeVe) U (Ueee VD)) -

It is clear that the subsets in (7) are neighborhoods of different non-smoothness points on the
boundary. In the neighborhoods V? and V¢, we choose a local Cartesian coordinate system in
which the edge e € £ lies on the z-axis. Let ay = (a1,a9) consist of the first two entries of
the multi-index a = (a1, a2,a3) € Z3,. Therefore, in V{ and V¢, 9+ = 92195 is a partial
derivative in a direction perpendicular to the edge e. Meanwhile, we define |a| := a3 + as + a3
and |ay | =g + as.

We shall need the following weighted Sobolev space of Kondratiev’s type. Let O be a subset of
R? such that 0 belongs to its boundary. Then, for any 8 € R, k € Z>(, we define the space

VE(0) = {v € Li,(0)| rPH*I7* D € L*(0), Vla| < K},

where r is the distance to 0. Define A¢ := max.ce(0,1 — A.). We also assume the given data in
equation (1) to satisfy f € H7(Q2), with

(9) O'G()\g,l) if)\g>0and06[0,1) if Ae =0.

3 Anisotropic finite element algorithms

In this section, we propose new anisotropic FEMs approximating equation (1). In particular, we
give explicit values for the associated parameters in the algorithm, with which we shall prove the
proposed method achieves the optimal rate of convergence, even when the solution is singular.

3.1 Anisotropic algorithms

Recall the vertex set C and the edge set £. Following the notation in [24], we first classify tetrahedra
in the triangulation of €.

Definition 3.1 (Tetrahedron Types) Let T be a tetrahedron. If an edge er of T lies on e € £, we
call ey a marked edge. Let cp be a vertex of T. If cp € C, or if cr is an interior point of an edge
e€ & and cy = eNT, we call cr a marked vertex. Let T be a tetrahedral triangulation of Q, such
that (I) each tetrahedron contains at most one marked vertex and at most one marked edge; (II) if
a tetrahedron contains both a marked vertex and a marked edge, the marked vertexr is an endpoint
of the marked edge. Let S = £EUC. Then, for each tetrahedron T € T, according to its relation
with S, there are five possible types.



Zo1

Z12

Figure 1: Refinements of a tetrahedron A*zoxiwo23, top (left — right): o-tetrahedron, v- or v-
tetrahedron, e-tetrahedron; bottom (left — right): two ev-tetrahedra with ke. = ke and ke = Ke.

1. o-tetrahedron: T NS = 0.

2. v-tetrahedron: TNS =c € C.

3. we-tetrahedron: T NS is an interior point of an edge e € E.

4. e-tetrahedron: T NS is a marked edge, but contains no vertex in C.
5. ev-tetrahedron: T NS contains a marked edge and a marked vertex.

Note that different types of tetrahedra in Definition 3.1 are associated to different sub-regions
of Qin (7) and (8). In addition, we recall the following anisotropic mesh algorithm [24].

Algorithme 3.2 (Anisotropic Refinement) Let T be a triangulation of Q as in Definition 3.1.
To each ¢ € C (resp. e € &), we associate a grading parameter k. (resp. k) € (0,1]. Let
T = AN*zox12903 € T be a tetrahedron with vertices xg, x1, %2, and xs, such that xo is the marked
vertex if T is a v-, v.-, or ev-tetrahedron; and xoxy is the marked edge if T is an e- or ev-
tetrahedron. Let k be the collection of the parameters k. and k. for allc € C and e € £. Then, the
refinement, denoted by k(T), proceeds as follows. We first generate new nodes xy;, 0 <k <1< 3,

on each edge xix; of T, based on its type.
(I) o-tetrahedron: xy = (x + 1) /2.

(I1I) v-tetrahedron: Suppose xg = ¢ € C. Define kK = Kee 1= Mineeg, (Ke, ke). Then, xp =
(xp +21)/2 for 1 <k <1<3; 20 =(1—K)xg+ Ky for 1 <1< 3.

(III) v.-tetrahedron: Suppose g is an interior point of e € £. Let & = ke. Then, v = (zr+x1)/2
for1<k<l1<3;zyq=(1—kK)xg+ka for 1 <1<3.



(IV) e-tetrahedron: Suppose xoxy C e € E. Then, xx = (1 — ke)Tk + Kexy for 0 < k < 1 and
2<1<3; 201 = (Io +l‘1)/2, o3 = (1‘2 +l‘3)/2.

(V) ev-tetrahedron: Suppose xg = ¢ € C and xox1 C e € E.. Define kee := mineeg, (Ke, ke). Then,
for2 <1 <3, 2o = (1 — Kee)Zo + Kectr and x1; = (1 — ke)T1 + Ker; o1 = (1 — Ke)Zo + Ke1,
Tog = ({,CQ + xd)/2

Connecting these nodes xy; on all the faces of T, we obtain four sub-tetrahedra and one octahedron.
The octahedron then is cut into four tetrahedra using xr13 as the common vertex. Therefore, after
one refinement, we obtain eight sub-tetrahedra for each T € T denoted by their vertices:

4 4 4 4
A ZToL01L02203, A L1T01L12T13, A T2T02L12T23, A L3LO3L13L23,

4 4 4 4
A Z01202203T13; A ZL01L02L12X13, A Z02203L13723, A Z02L12L13L23-

See Figure 1 for different types of decompositions. Given an initial mesh To satisfying the condition
in Definition 3.1, the associated family of anisotropic meshes {T,, n > 0} is defined recursively
Trn = &(Tn—1). See Figure 2 for example.

Remark 3.3 The anisotropic mesh in Algorithm 3.2 is explicitly determined by the grading param-
eters ke and k. that are associated to each vertex and edge. A smaller value of the parameter leads
to a higher mesh density near the vertex or the edge, while the value k. = Ke = % corresponds to a
quasi-uniform refinement. In different regions of the domain, the resulting mesh may have different
shape regularities. In V°, the mesh is isotropic and quasi-uniform. The local refinement for a v- or
ve-tetrahedron in fact follows the same rule: the mesh is isotropic and graded toward the verter xg
based on the grading parameter k associated to the vertex xo. In V?, the resulting mesh in general
s anisotropic and graded toward the edge e € £. The refinement in VS depends on the parameters
Ke and ke, e € E., which is also anisotropic, graded toward the edge e € £ and the vertex ¢ € C.
We also mention that the mesh in VO and in V¢ does not satisfy the mazimum angle condition
[7, 23] if ke < %, which can lead to a fair amount of difficulty in analysis. Nevertheless, it has been
shown in [24, 25] that these anisotropic meshes are effective in approximating three-dimensional
singular solutions provided the pure Dirichlet boundary condition is imposed. For mized boundary
conditions, the singular solution no longer belongs to the same space as in [24, 25]. The algorithm

design and analysis is therefore more technically involved.
Now, we proceed to propose our finite element algorithm for equation (1) with f € H7(Q).

Algorithme 3.4 (Anisotropic Finite Element Algorithm) Let To be the initial triangulation of
that satisfy the condition in Definition 3.1. Then, each parameter k. (resp. ke) € (0, %} is uniquely
determined by a new parameter a. (resp. a.) € (0,1], such that

(10) ke =2"Y% and kK, =2 1/%,
We choose a. and ae, such that a. < a. for any e € €. and

(11) 1—0<a. <\ if eis singular; a. =1 if e is regular;
(12) ac < Ae+1/2 if ¢ is singular; a. =1 if cand all e € £, are regular.
Let Ty, be the mesh obtained after n anisotropic refinements (Algorithm 3.2) from Ty based on the

parameters k. and k. defined by a. and a. through (10) — (12). Then, the proposed linear finite
element approximation u, to equation (1) is defined by (4) on the mesh T,.



Remark 3.5 For any ¢ € C, recall ke := minecg, (Ke, ke) in Algorithm 3.2. Based on the selec-
tions in (10) — (12), it is clear that for any ¢ € C, Kee = K. Note that a. has a lower bound 1 — o
in (11). The condition (9) 0 > Ae > maxece(l — Ae) ensures the set given in (11) is not empty.
For 0 < a. < 1, it is clear that refinements for an e- or ev-tetrahedron lead to anisotropic meshes
toward the edge that do not preserve the mazximum angle condition. Namely, the maximum edge
angle in the face of the tetrahedron approaches w as the level of refinement n increases. This is a
main difficulty that we shall overcome in the error analysis.

3.2 Mesh layers

To better facilitate the error analysis for the proposed finite element algorithm (Algorithm 3.4)
solving equation (1), for each initial tetrahedron T{o) € 7o, we introduce the mesh layers that are
the collections of tetrahedra in 7.

We first define mesh layers for a v- or v.-tetrahedron in 7.

Definition 3.6 (Mesh Layers in v- and ve-tetrahedra) Let Ty = ANzozizozs € To be either a v-
or a ve-tetrahedron with xqg € C or xg € e € £. We use a local Cartesian coordinate system, such
that xq is the origin. For 1 < i <, the ith refinement on T(g) produces a small tetrahedron with
To as a verter and with one face, denoted by P, ;, parallel to the face N3xyz9m3 of T(0)- See Figure
1 for example. Then, after n refinements, we define the ith mesh layer Ly ; of Toy, 1 <1i <n, as
the region in T gy between P, ; and P, ;+1. We denote by L, o the region in T(gy between A3z zox3
and P, 1; and let L, , be the small tetrahedron with xo as a vertex that is bounded by P, , and
three faces of T(gy. Since g is the only point for the special refinement, we drop the sub-index in
the grading parameter. Namely, for such Ty, we use

k=2"1e
to denote the grading parameter near xo (k = ke if xg € C and K = ke if zg € e € £). See the
second picture in Figure 2. Then, by Algorithm 3.2, the dilation matriz

-0 0
(13) Byi=( 0 x7% 0

maps Ly ; to Ly for 0 <i <n, and maps Ly n to T(gy. We define the initial triangulation of L. ;,
0 < i < n, to be the first decomposition of L, ; into tetrahedra. Thus, the initial triangulation of
L, ; consists of those tetrahedra in Tiy1 that are contained in the layer L, ;.

Now, we define mesh layers for an initial e-tetrahedron T .

Definition 3.7 (Mesh Layers in e-tetrahedra) Based on Algorithm 3.2, in each refinement, an e-
tetrahedron is cut by a parallelogram parallel to xoxy. For example, in the e-tetrahedron of Figure
1, the quadrilateral with vertices xoz2, T12, 13, To3 1S the aforementioned parallelogram. We denote
by P.; the parallelogram produced in the ith refinement, 1 < ¢ < n. For the mesh T,, let the
ith layer Le; on Ty, 0 < i < n, be the region bounded by P.;, Peiy1, and the faces of T(y.
Define Leo to be the sub-region of Ty away from e that is separated by P 1. Define L, to be
the sub-region of T(gy between P, and e. See also the third picture in Figure 2. As in Definition
3.6, the initial triangulation of the layer L. ;, 0 < i <mn, consists of the tetrahedra in Tiy1 that are
contained in L ;. Therefore,

(14) re ~ KL on Le;, 0<i<n.
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Figure 2: Anisotropic triangulations after two consecutive refinements and mesh layers on an initial
tetrahedron (left — right): o-tetrahedron, v- or v.-tetrahedron (k = 0.3), e-tetrahedron (k. = 0.3);
ev-tetrahedron (kee = ke = 0.3, ke = 0.4).

In addition, we have the following anisotropic mapping that transforms a tetrahedron in L. ;
to a reference element (Lemma 4.13 in [24]).

Proposition 3.8 Let T(;11) € Tit1 be a tetrahedron, such that T(;11) C Le; C Ty, 0 < i < n.
Then, Ti;41) is contained either in an e-tetrahedron in T: or in a v.-tetrahedron in T;.
Case I: T(; 41y is contained in an e-tetrahedron T(;) € T;. Using a T(;)-based local coordinate system,
there is a transformation

K 0 0

e

(15) B.; = 0 kot 0

) (&

b1 F&e_i by I'iB_i 20

that maps T;41y to one of the four o-tetrahedra in T (hence, we have finitely many reference

elements for all T;11y). Here, 71 is the triangulation on a reference tetrahedron T that is obtained
after one graded refinement to the edge. For an e-tetrahedron in the last layer T,y C Len C T(0),
using a T(,)-based local coordinate system, there exists a transformation Be ,, of the form (15) with
i =n that maps T(,) to a reference tetrahedron T.

Case II: T(;11) is contained in a v.-tetrahedron T(;y € T;. Let Ty € T, 1 < k <4, be the ve-
tetrahedron, such that T(;y C Ty and T(y) is contained in an e-tetrahedron T(x_1) € Tr.—1. Using
a T(—1)-based local coordinate system, there is a transformation

koL 0 0
(16) B = 0 Kk, 0
bl”;i+1 bzhje_H—l 2k—1ﬁlg—i

that maps T(; 41y to one of the o-tetrahedra in Ts (as in Case I, we again have finitely many reference
elements for all T;11y). Here, T3 is the triangulation on a reference tetrahedron T that is obtained
after two graded refinements to the edge. For a ve-tetrahedron in the last layer T(,,y C Len C T(0),
let Txy € Tr be the ve-tetrahedron, such that T,y C T(xy and T(y is contained in an e-tetrahedron
Tik—1) € Te—1. Using a T(x—1)-based local coordinate system, there exists a transformation B,, i of
the form (16) with i = n that maps T(,) to a v.-tetrahedron in Ti.

In both cases, |b1],|ba| < Co, for Cy > 0 depending on T(gy but not on i, n, or k.

In addition, we define the mesh layers on an initial ev-tetrahedron T\gy € 7To.



Definition 3.9 (Mesh Layers in ev-tetrahedra) For 1 <1 < n, the ith refinement on T produces
a small tetrahedron with xo as a vertex. We denote by P, ; the face of this small tetrahedron whose
closure does not contain xo (see the last two pictures in Figure 1). Then, for the mesh T, on T(q),
we define the ith mesh layer Le, ;, 1 <1 < n, as the region in T(0) between P, ; and Peyiy1. We
define Le, o to be the region in T(oy between A3z 2913 and Py and let Leyn C Tioy be the small
tetrahedron with xo as a vertex that is generated in the nth refinement.

Given the condition k. = k. in Algorithm 3.4, we see that the layer L., ; and the layer L, ; in
Definition 3.6 are obtained from the same procedure. Therefore, use a local Cartesian coordinate
system, such that c is the origin. For 0 < ¢ < n, the mapping

kb 00
(17) Bev,i = 0 K/C_Z 0
0

—i
0 kg

is a bijection from L, ; to f/, where L is the reference domain for Le,,; that satisfies L= T
when i = n and L := Leyo when 0 <4 < n. Recall that one graded refinement using the same
parameters k. and k. gives rise to a triangulation on 7T\g), which we denote by 71. We further
denote by £ the initial triangulation of L, ¢ that consists of the seven tetrahedra in 71

4 Regularity results in a dihedron

In this section, we develop new regularity estimates for equation (1), especially in the region that
is close to the edges where different boundary conditions are imposed.

Let D = K x R be a dihedron, with K a two-dimensional cone of center 0 and opening angle
w. In this domain, we consider u € H'(D) with a support included in (K N B(0, R)) x R for some
R > 0 to be the solution of

—Au=f in D,
(18) u=20 on I'p;r X R,
Opu =0 on I'yey X R,

where f € H?(D) for some o € [0,1) and I'p; UT ey, = OK such that T'p;, (resp. T'ney) is either
empty or a full half-line. In that way, we consider either the pure Dirichlet, the pure Neumann
or the mixed problem. In this section, to simplify the exposition, we use (x1,x2,x3) (instead of
(z,y,2)) to denote a point in D and suppose the edge of D is on the zs-axis.

The behavior of this solution is well known in the case of the pure Dirichlet problem [19, 15] for
data in L? but is less studied for smoother data and in the two other cases of boundary conditions.
Our goal is to show that this solution is decomposed into a regular part and a singular one with the
appropriate behavior. For that purpose, we perform a partial Fourier transform in the x3-variable
that allows to reduce the study to an Helmholtz equation in K.

4.1 Helmholtz equation in a cone

For all £ € R, we consider the solution v € H!(K) with a support included in K N B(0, R) of

~Av+E&v=g in K,
(19) v=0 on I'pir,
Opv =20 on I'yey,
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where g € H?(K) for some o € [0,1) and show that v admits a decomposition into a regular part
and a singular one. Recall that the singularities of problem (19) are related to the singularities of
the Laplace equation, namely to the singularities of problem (19) with £ = 0. Such singularities
are in the form [18, 15]
Sk = ox(0),
with
k

(20) Akzg,\ﬂceN*:N\{O},

in the pure Dirichlet and Neumann case, while

(2k— )7 .
21 -
(21) Ak % ,Vk € N*|

in the mixed case. Here, r is the distance to the vertex of K. For shortness, the smallest singular
exponent A; is denoted by A. The function ¢y is given by

er(0) = sin(Aeb),
in the pure Dirichlet case and in the mixed case, while

©r(0) = cos(Aib),

in the pure Neumann case.
Now we can prove the next result.

Theorem 4.1 Let o € [0,1) be such that o # A\, — 1, for all k € N*. Then for all £ € R, the
solution v € H'(K) with a support included in K N B(0, R) of (19) with g € H° (D) can be split
up into

(22) U = Ureg (6) + Using (6)?

With vreg(€) € H*T(K) and veing(§) € VZ(K) N HY(K) for any 6 > 1 — X satisfying the following
estimates !

) l[vreg () l2+o,1, 14161 S 9llo, 56,1416
24) 1+ ) Ir Tvreg (Ol S N9llorc 14161

) A+ 1€ ) osing O vy S Ngllo, el

) (L4 €D |vsing ()1, < N19llo,5,14+1¢-
Proof. We distinguish the case |¢] > 1 to the case |¢| < 1.
a) For |£] > 1, as in the proof of Theorem 16.9 of [15] we use a scaling argument, namely by setting
& = |&|x and 0(Z) = v(z), we see that ¢ is solution of

—Av+0=g in K,

(27) =0 on ]-—‘Dira
Op =0 on I'yew,

There and below the involved constants are independent of |£|
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where g € H(K) is defined by
g(@) = € 2g(2).

Clearly the weak formulation of this problem is
(0, w)1,x = /ngdx,Vw € Hllmp(K)7

where Hf (K) := {w € H'(K) : w = 0 on I'p;,} is an Hilbert space with its natural inner
product

(v,w)1, Kk = / (Vu - Vw 4 uw) dz, Yu, w € H%DM(K).
K

As a direct consequence, the above problem has a unique solution 0 € H%Dir (K) with the contin-
uous dependence

(28) 10111, < |90,

Now using a localisation argument, by Theorem 23.7 of [15] (see also Remark 23.8 of [15])
near the origin and the standard shift theorem far from the origin, one deduces that ¢ admits the
splitting

(29) b = Breg + 1(7) > e Mo,
kEN*:0< A\ <140

where n € D(R?) is a smooth cut-off function equal to 1 in a neighborhood of the origin that,
without loss of generality, is assumed to have a support included in K N B(0, R), Oyeg € H 2o (K)
and ¢, € R with

(30) [[Oreg ll240, 5 + > ekl S Nglloxc + 1[0
keN*:0<\y <140

1,K-

Combined with (28), we find that

(31) [Oreg 240, 5 + > lex] S 114
kEN*:0< g <140

o, K-

By a transformation back, this yields (22) by setting vyeg (%) = Oreg (), and 2
(32) Vsing (§) = n([¢]7) > crlel e o
kEN*:0<Ap <1+0
Furthermore using Lemma AA.19 of [15], the estimate (31) is equivalent to
(33) [vreg oo, 16 + 161 > ekl S N9llox el
keEN*:0< A\, <1+0o

This estimate directly leads to the first estimate (23) recalling that || > 1. To prove the
second one, we first notice that the support of vging being included in B(0, %) C B(0, R), vyeg has

a compactly support included in K N B(0, R). Furthermore using the estimate

||vreg||2+o,KnB(o,R),\g\ < H9| o,K,[¢]»

Znote that for 0 < A — 1, vging(§) = 0.
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and an interpolation inequality (see [18, Theorem 1.4.3.3]), we find that

vregllo.knB0.R) S €172 N9ll0, K, 1€

Since Theorem AA.7 of [15] guarantees that H° (K N B(0, R)) = V¥ (K N B(0, R)), we deduce that

7™ 7 vregllo, 5 = |7 “vregllo,xnB(0,R) S Vregllo,knB(0,R) S |€|72”9”0,K,\§\7

which is exactly (24).
To prove (25), it suffices to check that for all k¥ € N* such that 0 < A, < 1+ o, one has

€17 el In(€lr)r™ erllva ) < llg

o, K, [€]
that, in view of (33) holds, as soon as
(34) €17 in (gl eellvae < 1.

Now using polar coordinates, one can show that

(1€l enlT S/O 2O (1€l 2+ 1€l (€12 + 11Er2n" (1€]r)*}r dr

and by the change of variable # = [£|r, one finds
(Il orlla ) S |§|2(‘5“’“_1)/O PO L) + o (PP + 720" (F) P} 7 di.

The integral of this right-hand side being finite as soon as +Ax—1 > 0 (which holds if §+A—1 > 0),
we have found that (34) is valid.

The proof of (25) is fully similar and is left to the reader.
b) For |¢] < 1, we first notice that

(35) vl S vl 5,

because v has a compact support included into K N B(0, R). Since the weak formulation of problem
(19) is

/K(Vv -V + E2ow) dr = /K gwdz,Yw € H}. (K),

by taking w = v in this identity and using (35) we find

ol s $ ol e < [ (Vo + 0P do = [ gudo
K K
Consequently by Cauchy-Schwarz’s inequality, we get
(36) [ollnx < llgllo,sx-
Now v can be seen as the solution of (compare with (27))
—Av+v=g in K,

(37) v=20 on FDira
Opv =0 on I'yeu,
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where § := g +v — £%v € H?(K) that, owing to (36) satifies (recalling that |¢] < 1)

(38) 19llo.c < llgl

As in the previous point, we then get the decomposition

o,K-

(39) V = Upeg + 1)(1) Z ™M o,
keEN*:0< A\, <140

where veg € H2T7(K) and ¢; € R with

(40) [vregll2 o, + > ekl S 11gllo.x + vl S 19llo,x -
kEN*:0< A\ <1+0
This yields (22) with 3
Using (§) = n() > cxr P,

kEN*:0< A\ <140

the estimate (40) corresponding to (33) with |£| = 1. The estimate (23) is a direct consequence of
(40), while the estimates (24)-(26) follow by using the previous arguments simply replacing |¢| by
1. =

4.2 Singular decomposition in a dihedron

Define the weighted space H2 (D) in the dihedron D = K x R.

(41) 'H,zw,(D) ={ve H2 (D) v~ v, r770, v, r~'osv € L*(D),
7793 v, 91050, 77030 € L*(D)},

with the norm

H’UH?-LZ/,U(D) = ||7'703§U||%2(D) + Z ||3M83U||%2(D)
Ialel
Hr T Os0ll7zpy + Y 0% 0 Gy,
lay|<2

where 0, means the first order derivatives in the z1, x4 variables, 03 = 0,,, while o) means that
the third component of the multi-index is zero.
Then, we have the following regularity estimates for equation (18).

Theorem 4.2 Let o € [0,1) be such that o # Ay — 1, for all k € N*. Recall \ := \;. Suppose
f € H°(D). Then the solution u € H*(D) of (18) with a support included in (K N B(0, R)) x R
for some R > 0 can be split up into

(42) U = Ureg + Using s

3as before for o < A — 1, Vsing (§) = 0.
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with Ureg € H*T7(D) such that r=7 03ureg € L*(D) and uging € H2 (D) for any v < X satisfying
the estimates

(43) luregll24o.p S I fllo,Ds
(44) ||T_Ua§ureg| 0,D g ||f‘ o,D> V] = 07 17 27
(45) ”using”?-l%,a(D) N ||f‘ o,D-

Proof. We perform a partial Fourier transform in z3. Namely, let v(§) = Fy,cu and g(§) =
Fuy—ef, then we see that v is solution of (19). Applying Theorem 4.1 to v and performing inverse
Fourier transform we find the decomposition (42) with

— -1 . — -1 .
Ureg = ‘Faj3ﬁgvreg7 Using = f$3H5U51ng-

The estimates (43) (resp. (44)) follows from (23) (resp. (24)) and Proposition AA.20 from [15].
Similarly using the estimate (25), we get (since § + o > 0)

Z ||7’|allf2+63aLusing||%2(D) SIAIZ b
la <2

for all § > 1 — A\. This yields

(46) Yo T 0% g 72y S 1112 s

a1 ] <2

by setting v =1 — 4. Again applying (25) with 6 = 2 — o (resp. 6 = 0) that is clearly larger than
1— ), we find
(47) Ir=? O3 usingl|72(py < IF17.p5

(48) Ir=" Osusing |22 (py < 1115, -

Finally applying (26) we clearly obtain

(49) 1050 tsing | 22y < IF115,p-

The estimates (46) to (49) show that (45) holds. m

5 Regularity results in a dihedral cone

In this section, we investigate the regularity of the solution of (1) in the region where the vertex
and the edges meet. Let I' be a dihedral cone of R? of vertex ¢ € C (that can be identified with
0), in the sense that
3 T
I'={reR®: = €G},
|z
with G an open subset of the unit sphere S? with a piecewise smooth boundary, each smooth part
being included in a great circle.
Let 7. and v, be the parameters corresponding to a vertex ¢ € C and an edge e € £ of T,
respectively. Let « be the collection of all the parameters v. and 7. for I'. Recall that R, and
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r. are the distances to the vertex ¢ and to the edge e, respectively. Then, given 7., v, > 0 for all
edges e of I', we define the weighted space

(50) H2 ,(T) :={v € Ho(D)| RY*er; v, RY*™Ter 70 v, R "er dsv € L*(VY),
chf%rif%aiv, Rif'YC@Lagv, Ri“’*%r;”@gv € L2(V§);

ro e, %0 v, o 030 € LA(VY),

re v, 91050, 77050 € LA(VY);

R;'7w, R;70,v, R 050 € L*(VY)

RI770%v, R0, 050, R 70530 € L2(V))},

)

)

with the norm

HUH%ZW(F) = (ol 00y + D <||R277“9;§5§U||%2(Vg) + ) |RE 7204 50|72 (1
ecé&,, oy |=1
+||R*’Yc0*18 ||2 + ||R|O‘L|717'Yc9|ai|7177C8QL ||2
c ¢,e O3V L2(ve) c ce UllLz(ve)
lay|<2

Y IRy + D (e Bl ey
ceC,|al<2 ee&

£ 107 0l + I 00y + S I 0] ).

lay|=1 lay <2

where 03 is the derivative in the direction of e, 9%+ = 9705 for a; = (a1,a2), and o =
(a1, 0, 3).

In this domain, we consider u € H!(T") with a support included in I' N B(0, R) for some R > 0
being the solution of

—Au=f in T,
(5].) u=>0 on FDiI‘7
Opu =0 on I'veu,

where f € H?(C) for some o € [0,1) and T p; Uy, = OT such that I'p;,. (resp. T'yeq) is either
empty or a finite union of plane faces. Denote by ypir = I'pir N S2.

Since u is only in H', by a solution of (51) we mean that v € H}, (') = {v € H'(I')| u =
0 on I'py; } satisfies

(52) / Vu-Vodr = / fvdr, Yo e Hp, (T).
r r
Note that the vertex singular exponent of problem (52) near ¢ [18, 4] is given by

1 / 1
_ii chkﬁ—z,

where {v.1}72, is the spectrum (enumerated in increasing order and repeated according to their
multiplicity) of the non-negative Laplace-Beltrami operator L&*°d on the intersection G' between
I' and the unit sphere with Dirichlet boundary condition on I'p;; N dG and Neumann boundary
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condition on I'nyey N IG. Here we are only interested in exponents larger than —%, hence for all

keN:={0,1,2,...}, we set
1 / 1
)\c,k:_§+ Vc,k"'ia

that is always non-negative. The associated singular function o, is given by
Ae,k
(53) Ock = R Pe ks
where ¢, 1, is the eigenvector of Lré‘ixed associated with v, j, namely
Lgixedﬁac,k = Ve kPc,k-

Note that Ac o = 0 if and only if I'pi, N 0G is empty and in that case .o = 1, otherwise Az o > 0.

Note that in I', w may consist of singularities from the edge and singularities from the vertex.
In a first step, we subtract from wu its corner (vertex) singularities. Namely as in Lemma 17.4 of
[15] we have the following result.

Lemma 5.1 Let o € [0,1) be such that Aey, # 0 + 5 for all k € N. Let u € H'(I') with a support
included in T' N B(0, R) for some R > 0 be the solution of equation (52) with f € H°(I"). Then u
admits the splitting

(54) u=1up+ Z CrOc ks

—i<hekw<o+i
where ug € VE(HU)(F), e, € C and Aug € H°(T) = V@ (I).

Proof. By Proposition AA.27 of [15], the Mellin transform M{u](\) of u exists for all A € C with
RN = —% and is the variational solution of

(A" + XA+ 1) Mu](\) = M[f](XA —2).

Since by assumption on the line R\ = o + 1, the operator A’ + A(X + 1) is invertible from
HL, (G) = {ve HY(G)| v =0 on yp;, } into its dual with

(A +AA+1) "R

Lai+n S lhlle,
by the inverse Mellin transform on the line fA = o + % we find the result (54) as in Lemma 17.4
of [15]. m

We now split up ug into a regular part and a singular one that contains the edge contribution.
Lemma 5.2 Under the assumption of Lemma 5.1, ug admits the splitting
(55) Uy = Ureg + Using
with Ureg € V02+‘7(F), r;”@%ureg € L*(T) and Using € ’H?N,(F) with v = 14+ 0 and 7. < A,

where A\ is the smallest exponent Ay determined in either (20) or (21) according to the associated
boundary condition with w, instead of w.
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Proof. We start as in the proof of Proposition 17.12 of [15], by setting
w(t,0) = eMug(et,0), h(t,0) = e Aug)(et, 0)

with 7 = —(o + 3). These functions have the regularity w € H' (R x G), h € H’(R x G) and w is
the weak solution of (meaning that w satisfies the Dirichlet condition and Neumann condition in
a weak sense)

(A +07 + (1 —20)0; +n(n—1))w = h.
Since H'(R x G) is embedded into H? (R x (), this implies that

(A + 07+ (1—20)0)w=h=h—nn—-1we H (R xG).

Then as in Section 4, we apply a partial Fourier transform in ¢ to find that W = F;_,¢v is the
weak solution of
(A" =&+ (1 —2m)ig)) W = H,

with H = .Ft_>§i~z. This operator is mainly the same one as in problem (19) and therefore we
conclude that W admits a splitting similar to (22). Hence taking the Fourier transform back we
find that (see Theorem 4.2)

(56) W = Wreg + Wsing,

with wyeg € H*T7 (R x G) such that 9;ga{wreg € L>(Rx G), for j = 0,1, and 2 (recalling that 0,
is the distance to the edges in R x G and hence the angular distance in ), and wsing € H2 ,(Rx G)
for any v. < A, for all e.

Coming back to ug, we find the result by setting (recalling that R, is the distance to the vertex
c)

Ureg(Re, 0) = R "Wreg(Re, 0),  Using (1,0) = R, "Wsing (R, 0).

Indeed the regularity umeg € Vit (T) follows from wyeg € H?H(R x G) by using Theorem AA.3
of [15], while the property 7, °03uyes € L?(T") follows from the expression of 93 in spherical coor-
dinates, an Euler’s change of variables and the regularities of w,e; mentioned above (noticing that
7% ~ R;"H;g).

The regularity of ugine is proved similarly. m

In summary, we have the following decomposition of the solution u of equation (52).

Corollary 5.3 Under the assumption of Lemma 5.1, w € H*(T) with a support included in T N
B(0,R) for some R > 0 being the solution of equation (52) with f € H°(I") for some o € [0,1)
admits the splitting

(57) U = Ureg + Using + Z Ckwgc,kv

—3<Aek<o+3

with Ureg € V02+‘7(F), 7o % 03Upeg € L*(T') and uging € 'H?Y’a(lﬂ) with v =14+ 0 and Ve < Ae, and ¢
being a smooth (and radial) cut-off function with a compact support and equal to 1 on the support
of u.

Proof. Since u = vYu, the result follows from the two previous lemmas and Leibniz’s rule. =
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6 Regularity analysis

In this section, we obtain anisotropic regularity results for equation (1) with f € H? (), for some
o € [0,1). Our analysis is based on regularity estimates in different sub-regions (see (7)) of the
domain near the vertices and edges and uses a localization argument.

6.1 Regularity estimates in V°

Let us start with an improved regularity of the solution along the edges. For that purpose, for any
e € &, and any point &, € e, we can fix a cartesian system of coordinates x. = (Ze,1, Te,2, Te,3) such
that & corresponds to (0,0,0). In such a situation we can fix a cut-off function 7, in the form

M. (Ie) =To (Ie,la xe,2)771 (I€,3)a

with 79,71 two cut-off functions such that ny (resp. 71) is equal to 1 near (0,0) (resp. 0) with
a sufficiently small support such that the support of ne, is included in V0. For all k € N*, we
further denote by A, j the asscoiated singular exponents defined by (20) or (21) (according to the
boundary conditions on its adjacent faces) with w, instead of w.

Theorem 6.1 Recall the space 2 , from (41) and X, from Lemma 5.2. Let u € Hp () be the
solution of (3) with f € H?(Q) for some o € [0,1) such that 0 # Ay — 1, for all k € N*. Then
for any e € £ and any point &, € e, we have

(58) e, U = Ug, reg + Ug, sing,

with ug, reg € H?*T7(VY) such that r;703ue, reg € L*(V0) and ve, sing € H2_ ,(V0) for any
Ye € [0,1] and v < A, satisfying the estimates

(59) g, regllarove S [Ifllo;
(60) e ?03ue, wegllve < (I flloes  Vi=0,1,2,
(61) lug. singllaz, 000y < [ flloe-

Proof. For the sake of simplicity we drop the indices e and &.. Denote by D = K x R the dihedral
cone that coincides with {2 near ¢, where K is a two-dimensional cone of opening angle w.
Now 4 := nu is clearly a weak solution of

(62) ~At=finD,
where f is given by ~
f=nf—2Vu-Vn—ulnec L*(D).

But the main point is that f actually belongs to H?(D). Indeed the first term has trivially this
property, the third term is even in H'(D), hence also in H°(D). Finally for the second term, we
will show that it belongs to H'(D) as well. Indeed we notice that

Vu-Vn=m Z 0inodsu + Mo03m Ozu.
i=1,2

Now the first term belongs to H'(D) because 1;9;19 is zero in a neighborhood of the edges and
corners, hence the H? regularity of u inside the domain suffices to get the request regularity. On
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the other hand for the second term, we notice that the method of tangential differential quotients
of Nirenberg (see for instance [18, p. 87-90]) can be applied to 1u in the x3 direction, with a cut-off
function similar to n such that 1) = 1 on the support of 1, and deduce that d3(pu) € H(Q). This
obviously leads to ngd3m103u € H (D).

Once f belongs to H? (D), we conclude by applying Theorem 4.2. m

6.2 Regularity estimates in V.

Now we describe the extra regularity in a neighborhood of a vertex ¢ € C. For that purpose, we fix
a cut-off function y. that depends only on the R, variable and such that x. = 1 in a neighborhood
of ¢ and with a support included in V. (hence x. = 0 in a neighborhood of the other vertices of
Q). We further denote by I'. the infinite cone that coincides with € near c.

Then, we have the following splitting of the solution near the vertex.

Theorem 6.2 Recall the space H%’U from (50) and X\, from Lemma 5.2. Under the assumption
of Lemma, 5.1, let u € HE_ () be the solution of (3) with f € H?(Q) for some o € [0,1). Then
for any c € C, xc.u admits the splitting

(63) XcU = Uc reg + Uc,sing + § dejac,ka
—%<)\c,k<ﬂ+%

With Ue reg € V02+‘7(FC), 7.7 03Uc reg € L2(VE), for all e € € having ¢ as an endpoint, and U sing €
’H?W(FC) with v = 1+ 0 and . € [0,1] and v < A, and finally 1 being a smooth (and radial)
cut-off function with a compact support and equal to 1 on the support of xc.

Proof. We can apply Corollary 5.3 to xu (for shortness we drop the index c¢) if we show that

(64) A(xu) € H° (K).

As before using Leibniz’s rule, @ := yu is clearly a weak solution of (62) with
f=xf—-2Vu-Vx—uAy,

that actually belongs to H?(K). The first and third term have trivially this property. Hence
only the second term requires a careful inspection. Due to the choice of xy and using cartesian
coordinates centered at c, we have

!
Vu-Vyx = X ](%R) Z ;0.

i=1,2,3

First we may notice that x’ is zero near c, hence the regularity of Vu-Vy is related to the regularity
of u far from the corners. So as u belongs to H? in Vg \ Ueec Ve, we get that

(65) Vu-Vy e H' (V).

Now for a fixed edge e having c as an endpoint, we can use cartesian coordinates such that the x3-
axis contains the edge e and can use the splitting (58) of Theorem 6.1. The regular part contributes
to a H' function, so let us show that this is the same for the singular part Ue sing. Indeed we have
to show that

xi(?iuming S Hl(Vc), Vi = 1,2,3.
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For ¢ = 3, this is a direct consequence of (61), while for i = 1 or 2 this is a consequence of (61)
and of the bound
2] S Oce S 02;%.

~

All together (65) is valid and the proof is complete. ®
The third term of the splitting (63) of xcu is not in #2 ,(I'N B(0, R)) because (see (53))

A,k
Oc,k = R Pe,k

and . is not necessarily equal to zero at the corners of G (intersection of I with the unit sphere),
but it can be split up into a regular part and a singular one in the spirit of Theorem 3.1 with £ = 0.
This allows us to show the next result.

Lemma 6.3 Let Ao > 0 be fized such that A\ < o + % Recall A, from Lemma 5.2. Then
Ve 1= Y0k with o given by (53) can be split up into v.p = v1 + v2 such that v satisfies

R7°07 70501 € L*(VY),
RI<9%+dsv; € L2(VS), V]aL|=1,
RZ=0%tvy € L2(VS), Vay| =2,

Rge—2Hlgoyy € L2(VE), Vol <1,
and v satisfies

RZ°6, 7o D30y € L*(VE),

RI:0%03vy € L2(VE), V|ai|=1,
RI¢07:20% vy € L*(VE), Vl|ayr|=2,

RI 1727 9% vy € L2(VE), V]ay|=1,
R0 050y € L2 (VY),

R7267% 20y € L*(VY).

C

for any oce <1, any Gce > 1 — Ae, and any o, > % — X, where . is the smallest positive M.y

such that —% < Aej, < o+ 5, and O c(x) := 17428((?) is the angular distance.

Proof. Based on simple calculations expressing the cartesian derivatives in spherical coordinates
(Re,0c.c,9ce) (Where 0. is the angular distance to the edge e) and using the splitting

Pek = "‘“'coeXc,e(ecx) + Kc,eeéféewc,k,e(wc,e) + Pc.k,Rs

)

where mg?g, Ke,e € C, Xc,e 1s a cut-off function equal to 1 near .. = 0, @, .. is the singular function
associated with the corner singular exponent .. and ¢. 1 r is the regular part of ¢, that either
belongs to H2(G) or has to be split up into a singular part (similar to the second term of the above
right-hands side) and a regular part in H?(G). In this situation,

e,k
V2 = Ke Y Re ’keg\fée(ﬂc,k,e(@c,e)a

while v1 = Ve —v2. B
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Remark 6.4 The function v, = Yo = @[JR/\Cvkcpc’k that characterizes the vertex singularity in
(63) satisfies the following. (1) In the case A, = 0, 0. =constant, because the eigenvector @
of the Laplace-Beltrami operator corresponding to the zero eigenvalue is a constant. (2) In the
case that A.j > 0, according to Lemma 6.3, the function v, j admits a splitting into two functions
v1 and vy. In particular, let

(66) Oce €(0,1), oc=1—a., bce=1—a.,

where a. and a. are parameters defined for the anisotropic mesh (Algorithm 3.4). Given the
conditions in (11) and (12), we conclude that the selections in (66) satisfy the conditions in Lemma
6.3. Namely, o. > % — Ac and 6. > 1 — A.. Recall the weighted space 7-[,27 from (50). It is clear
that the function vy € H?yvg(Vf) with ve = ae, Ve = G¢, and 0 = 0.

Recall that V2 is part of the neighborhood of ¢ € C that excludes the edges. Based on Theorem
6.2 and Lemma 6.3, we further obtain the regularity estimate in 2.

Corollary 6.5 Under the assumption of Lemma 5.1, let u € H%Dir(Q) be the solution of (3) with
f e H°(Q), for some o € [0,1). Let ¢ € C be a vertex and let \. be the smallest positive \¢ .
If \e < 0+ %, in VO, u admits the decomposition u = Ue,reg 1 Ue,sing WhETe U reg € H2(V%) and
Ue,sing € VUQC(VS) for any o, > % —Xe. If Ao >0+ %, we have u € H*(V?).

Proof. Note that the angular distance 6. . is bounded below from 0 in VY. Taking this into
account in (63) and in the regularity estimates (Theorem 6.2 and Lemma 6.3), we can derive the
result in this Corollary by straightforward calculations. m

7 Interpolation error analysis

In this section, we carry out the interpolation error analysis for the proposed anisotropic finite
element scheme (Algorithm 3.4) for equation (1) with f € H?(Q) given in (9). Different from the
error analysis for the pure Dirichlet problem [25], the numerical analysis for the problem with the
mixed boundary condition, especially in the case that Neumann boundary conditions are imposed
in the adjacent faces of non-smooth points, requires new analytical tools and more involved, since
the underlying solution has quite different singular behaviors near vertices and edges as elaborated
in previous sections. We shall conduct the analysis on initial tetrahedra according to their types
(Definition 3.1).
We first have the estimate for an o-tetrahedron in the initial mesh.

Lemma 7.1 Let T(gy € To be an o-tetrahedron. For u € HQ(T(O)), let Tu € S, be its nodal
interpolation on T,. Then, we have

(67) |U71U|H1(T(O>) S Ch||uHH2(T(O)),
where h = 27" and C 1is independent of n and u.

Proof. Based on Algorithms 3.2 and 3.4, the restriction of 7, on T(p) is a quasi-uniform mesh
with size O(27"). By the standard interpolation error estimate, we obtain

|lu — IU|H1(T(0)) < C2in||’u,||H2(T(O>) < C’h||u||H2(T(O)).
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7.1 Analysis on initial v- and v.- tetrahedra

For an initial v- or ve-tetrahedron T{g) = A*zozzo3 in To, recall the mesh layers Ly, 0<i<n
in Definition 3.6. Based on the refinement, on each L, ;, the tetrahedra in 7, are isotropic with
mesh size O(k'2'~"). In T\, let p be the distance to xo. Therefore,

(68) p~ K on L,;, 0<i<n.

Namely, if T{g) is a v-tetrahedron, p ~ R, for ¢ = xg € C; and if T{) is a ve-tetrahedron, p ~ 7,
where e € £ is the edge containing x.

Recall from Theorem 6.1 that the solution admits the following decomposition on an initial
ve-tetrahedron T{gy:

(69) U = Ug, reg T Ug, sing;

where ug, reg € H*(T(0)) and ug, sing € H,,0(T(0)) for 7. € [0,1] and 7. < A.. Meanwhile, by
Corollary 6.5, the solution admits the following decompositions on an initial v-tetrahedron T{g):

(70) U = Uc,reg T Uc,sing,

L. in the case

where Uc yeg € HZ(T(O)) and Uc sing € VUQC (T(0y) for any o, > % — ¢, where A\ < 0+ 3;

Ae > 0+ 3, we have U = U reg.
Then, we have the interpolation error estimate in the layer L, ;.

Lemma 7.2 For a continuous function v, let Iv be its nodal interpolation on Tp,. Let Tioy € To be
either a v- or a v.-tetrahedron. For v € H? (T(0y), we have

|'U_IU|H1(L1,,Z') SChHUHHQ(LU,i)v 0<<n.

If Tioy € To is a v-tetrahedron and v € VUQC (T(0y), where 0. satisfies the condition in Corollary 6.5,
then

v — I'U|H1(Lv,i) < Ch”’UHVf,aC(Lv,i)’ 0<i<n.

If Tioy € To is a ve-tetrahedron and v € H?YE’J(T(O)), where 7y, satisfies the condition in Theorem
6.1, then

|’U - [U|H1(Lv,i) S Ch”vH’HgE,U(Lv,i)’ 0 S i < n.

In all these estimates, h = 27", C' is independent of i and v, and a. and a. are the mesh grading

parameters in (11) and (12).

Proof. For (z,y,2) € Ly, let (,7,2) € L be its image under the dilation B, ; in (13), where

L =L, when i <n and L = T{gy when i = n. For a function v on L, ;, we define ¢ on L by
ﬁ(‘i’ Z/J? 2) = U(x7 y? Z)'

As part of T, the triangulation on L, ; is mapped by B, ; to a triangulation on L with mesh size
O(2=™). Then, by the scaling argument and the interpolation error estimate on L, we have

v — Ivﬁp(LM) = KO- IU‘?{l(ﬁ) < CﬁiQZ(i_”)w@Q@)
(71) < O ol -
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Thus, for v € H%(T{g)), by (71) and k < 3, for 0 < i < n, we have

|”U — IU|H1(LU11-) S Ch|U|H2(L

v,i)?

which proves the first estimate of the lemma.

If T(p) is a v-tetrahedron, for i < n, we have R, ~ k' = k. on L, ;. Note that if v € V2 (T{¢)) for
any 0. > -\ (a condition in (70)), according to the condition (12), it is clear that v € V2, (T{q)).
Therefore, by (71) and (10), we have

|’U*I’U|?_I1(Lv 7) S 022(1-7”)/{2“’0@[2([1“ 1)

< ORI Y RO, ) < C27 0T -

|a]=2

This proves the second estimate of the lemma.

If T{o) is a ve-tetrahedron, for i < n, we have r, ~ k' =Kl on L, ;. Note that if v € ch’a (T(0y)
for any 7. < A (a condition in (69)), according to the condition (11), it is clear that v € H2_, (T(0))-
Thus, by (71), (10), and (11), we have

|1} . IUﬁJl(L,, J < CQQ(iin)/ﬁ%Wﬁqz(Lv 3 < 022(i*”)/§3m6 Z ”Téiaeaav”%?(Lv 3
|a|=2

<O Y 0™l Fa, )+ D 10% 00l Ta g,y + Ire 7020l )

i |=2 i |=1

< 02_2"||U||3{ge,6(m,v)-

This proves the third estimate and concludes the proof of this lemma. =
Then, we give the error estimate on the whole initial tetrahedron ().

Corollary 7.3 Let Ty € To be either a v- or a ve-tetrahedron. For the solution u of equation (1)
with f given in (9), let Iu be its nodal interpolation on T,. Then, we have

|lu — IU|H1(T<O)) < Ch,

where h = 27" and C' is independent of n.

Proof. We first show the interpolation error estimate on the last layer L, .
For (z,y,2) € Lyn, let (2,7, 2) € T(g) be its image under the dilation B, ,,. For a function v
on Ly ,, we define © on T{g) by
0(Z,9,2) == v(z,y, 2).
Now, let x be a smooth cutoff function on T{g), such that x = 0 in a neighborhood of 2y and = 1 at
every other node of T{). Recall the distance function p from (68). Thus, p(Z,7, 2) = ™" p(z,y, 2).
Since x© = 0 in the neighborhood of zg, we have

(72) X0l 27,y < C > ||P|a|_la%||i2(nm)-

la|<2
Define w := © — x0 and note that f(xf}) = fﬁ, where 19 is the interpolation on T{p). We have
[0 = I0| (o) = |0+ X0 — L0[m1()) < [@]H1(T4)) + XD — L0[H1(T))

(73) = |@|m1(1,) +IX0 — j(X@)|H1(T(O)) < CO(|0]l 51(10y) + XD H2(T10)) )
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where C' depends on T{g). Then, using (73), (72), the scaling argument, and =" < p~tin Ly,
we have

o= I,y = K10 = I8ln(r.) < CK (1013 e + D 10710%072(z)))
la] <2
< C Z ||p‘a|_1aaUHZL2(Lﬂ,n) < COg2ne Z lea‘_l_aaaUH%Q(Lv,n)'
la|<2 |a]<2

When T{g) is a v-tetrahedron, by p ~ R., the definition of the weighted space, (10), and (12), we
have

(79 Jo—Ivling,,) < 0277 Y |IREITIT0%|Ta,

la|<2

o) S Ch2||UH%/1{aC(L1,,n)-

When T(g) is a v-tetrahedron, by p ~ re, the definition of the weighted space, (10), and (11), one
obtains

lv—Iv[fg, ) < €277 Z ||7“|ea‘_1_%8%”%2(%”)
|| <2
(75) < Ch2(||7“e_lazv||2L2(Lv,n) + ||7"6_033UH2L2(LU,”) + Z ||6aL5zU||%2(Lv,n)
|OLL|:1
+ ) [rles =m0 g |32 ) §0h2||v\|3{gm(m,n)~
a1 |<2

For a v-tetrahedron T{g), recall the decomposition (70) © = ¢ reg + Ucsing. In Lemma 7.2,
replace v by ucreg in the first estimate; replace v by ¢ ging in the second estimate; and replace v
by Ucsing in (74). Summing up these estimates over all the layers, by the regularity estimates in
Corollary 6.5 and by a. € (0,1] and a. < A. + 1/2, we therefore have

|uc,reg - Iuc,reg|H1(T(0)) + |uc,sing - Iuc,sinngl(T(O))
Ch(”uc,rf:‘g”Hz(T(o)) + Huc,singHVf_ac(T(o))) < Ch.

|U_IU|H1(T(U)) S
<

Similarly, for a v.-tetrahedron T{g), recall the decomposition (69) u = ue¢, reg + Ug, sing. In
Lemma 7.2, replace v by ug, rep in the first estimate; replace v by ug, ging in the third estimate;
and replace v by g, ging in (75). Summing up these estimates over all the layers, by the regularity
estimates in Theorem 6.1 and by a. € (0,1] and 1 — 0 < a, < A, we therefore have

|U — IU|H1(T(0)) < |U§E,reg - IU&,reg|Hl(T(0)) + |U§e,sing - IU&,Sing‘Hl(T(O))
S Oh(||u§e,reg“H2(T(o)) + ||u§e,singH’H2 (T(o))) S Ch.

ae,0

Hence the proof is completed. m

7.2 Analysis on initial e-tetrahedra.

In the neighborhood of an edge e, according to Theorem 6.1, we write & = Ureg + Using. Recall
the nodal interpolation Iu € S, on 7,. Then, the interpolation error on an initial e-tetrahedron
Tioy € To satisfies

(76) |U' - IU/‘Hl(T(O)) < lureg - IUreg'Hl(T(o)) + ‘using - Iusing|H1(T(0))-
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Lemma 7.4 Let T(g) € To be an e-tetrahedron and let L ; be the ith mesh layer (Definition 3.7).
Then, for o given in (9) and a. given in (11) (namely, a. € (0,1] and 1 — o < a. < A.), we have

ltreg = Ttreglmir,.) < Ch(|ltwegllmz(r..) + Ire 02 tnegll 21, ), 0<i<n

|using — Iusing‘Hl(Le,i) < Chllusing”?-tﬁmg(Le,i% 0<i<n.

where n is the number of refinements, h = 27", and C depends on T(q), but not on i.

Proof. Recall that the layer L., C T{o) is the union of tetrahedra in 7, that touch the edge e;
if i <n, L., is formed in the (i 4+ 1)st refinement and is the union of tetrahedra in 7,41 between
P, ; and P, ;11. Therefore, it suffices to study the interpolation error estimate on each tetrahedron
Tiny C Leyn and on Tiyq 3 T(i41) C Ley; if i < n. Let T(;) € T; be the tetrahedron containing T(;1)
if i <n and let T(;) =Ty if i = n. Then, T(;) is either an e-tetrahedron or a v.-tetrahedron. To
simplify the notation, in what follows, we denote by v a function and by Iv its nodal interpolation
on 7T,. The analysis is based on T(;)’s type.

Case I: T(;) is an e-tetrahedron. Let (z,y,z) € T(;4+1) and let (2,9, 2) € T(i+1) = BeiT(;41) as
defined in Proposition 3.8, where T(H_l) is the reference tetrahedron. Let 9(&,¢,2) = v(z,y, 2).
Then, by the mapping in (15), we have

drdydz = 27"k d2djdz;

(77) Oz¥ = (Fc;ié)@ + bm;iﬁg)@, ay’l) = (Iﬁ:gza@ + bgligiag)f), 0,v = 2i82©;
0;0 = (mi@m — b12_i82)v7 @ﬁ; = (Héay — b22_’62)v, 0:0 = 2_i8Zv.

Therefore, by (77) and the standard interpolation estimate on T(i+1)7 we have

”a:c(v - IW)H%E(T( 0271(“850({) - IU)”iz(T(Hl)) + ”82('& - IU)”iz(T(Hl)))

it1)) <

—i92(i—n) |52
< (027"2 ‘U‘H2(T(i+1))
(78) < 22(i=n) Z 2—2ia3,€gi(|%|—1)HamagaU”?p(T(iH))_

ol [+az=2

A similar calculation for the derivative with respect to y gives

(79) |0y (v — IU)H%Q(T“H)) < 022(i-n) Z 9=2ica . 2i(|aL|-1) ”8(“82&3@”%2(

ol [+az=2

T(it1))

In the z-direction, by (77), and k. < 1/2, following the calculation in (78), we have

10:(w = I)lfar,,y < C2RZNO0 =T0) 30z,
- A T2 A~ TNI2
< 02 (Haf(v_IU”L%T(HU)+||82(U_IU)||L2(T(H1>))
(80) < C22(i—n) Z 2—2m3ﬁgi(|all—1)||6aL3§asv||2LQ(T(i+l))_

ol |[+az=2

Thus, by (78) — (80), the estimate of the term

F = 92(i-n) Z 2*2ia3,{zi(lan*1)||3aL3?30||%2(T(H1))

|aL|+a3:2
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is important for the error analysis. By (10) and (11), we first have

B o< 022w 2 0%y b S 10700y + 262 S 0% 0l )

i |=1 lay [=2
< OR(EC R )+ S 10700,y +REOT S o).
lar|=1 |y |=2

Recall k, = 27 Y% q, <1, r, ~ k% on Tiiv1y if i <n,and ro < Cky on Tiyy. By 1 —0 < ae < A,
we have for i < n,

B o< ORI ol + S 1070l )+ 3 0™ ol )
|D¢L|:1 ‘Ou“:2

81) < ChQ(HTe_UanEZ(T@H))+ Z ||3a*5z”||%2(T(i+1))+ Z ||7”;_a630uU||i2(T<M)))-
lai]=1 lay|=2

For ¢ = n, we have

E o< ORI 0% g,y + S0 10° 00300,y + 1207 ST 0% 03, ).

lay|=1 lay =2
(82 < ORI 0o, )+ 3 107 0u0lZar,, + 3 10%0lRar, ).
lai[=1 lay|=2

Thus, for v = uyeg, by (78) — (82), we have for i <n

(83) |ureg - Iureg‘Hl(T(i,+1)) < Ch(””‘"egHHz(T(iJrl)) + ||re_nagureg||L2(T(1:+1)))'

For v = uging, by (78) — (81), we have for i < n

(84) |Using Iuslng|H1 T(1+1)) < Oh”“smg”?{ae G(T(iJrl))-

Hence, we have completed the proof of Case I. Note that for i = n, the scaling arguments in
(78) — (80) hold for wuyeg since dyeg € H? on the reference element. They hold for ugng only when
i < n, because using ¢ H? on the last layer of the mesh. These is why the estimates (83) and (84)
have different forms.

Case II: T(;) is a ve-tetrahedron. Let T(yy € Tr, 1 < k < i, be the v.-tetrahedron, such that
Ty € Ty and Ty is contained in an e- tetrahedron T 1 € Te—1. For (x,y,2) € T(iq1), let
(z,9,2) € T(z—i—l) = BixT(;+1) (see Proposition 3.8), where T(z—i—l) is the reference element. Let
(2,9, 2) :=v(x,y,z). We have

dxdydz = 21*’“/<zg’i*k*2di"dyd73, 030 = (K710, — b121*’“/<;2*’“82)v;

(85) 050 = (K710, — b2 7FKI7F0 Yo, 9:0 = 217 kKI7k0,0;
0pv = (K170 + b1kl ™005)0, Oyv = (K170 + bakl™10:)0, 0,0 = 2F"1KkF=1050.
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Therefore, by (85), ke < 1/2, and the standard interpolation estimate, we have

1000 = T0) 32y S C2RRER (1000 = TO) s, ) + 100 = T 2az )

1—k _i—kg2(i—n) |52
<277 PR |’U|H2(T(i+1))

< ¢226-n) Z 22(1—k)a3Kg(i_k)aiiﬁgzi_Q)(‘aL‘_1)|‘80‘L6;13UH%2(T“+1))

lay [+az=2

(86) < 0226=n) Z 2—21’(13Kgi(‘0u_‘—1)“aa¢8§3v||%2(T(i+l)).

lai|+az=2
A similar calculation for the derivative with respect to y gives
(87) Hay(v _ IU)”%}(T(H_U) < C22(Z—n) Z 2—21’04:3%31'(‘(11_‘—1)|‘80¢J_8?3U‘|%2(T(i+1)).
‘O{L ‘+OA3:2

In the z-direction, by Proposition 3.8, (85), k. < 1/2, and following the calculation in (86),

10-(v = Iv)|[Z2(7,,,)) < 0(21”“%”“)%3“’”(Qk’lfi’é’i)Qllaﬁ(@—Iv)lliz(f(m))
1=k ik (|9 (5 _ T2 5 — T2
< 02 kT (]|0a (0 Tz, T 10202 Iv)l\p(T(M)))
(88) < 020 N prRes el )90 gesy | Ta e

oy |[+az=2

Then, by (86) — (88) and (81) — (82), we have obtained the desired estimates for Case II.

Thus, we complete the proof by summing up the estimates for all the tetrahedra T; 1) in Le ;.
]

Then, we have the interpolation error analysis on an initial e-tetrahedron.

Theorem 7.5 Let Ty € To be an e-tetrahedron. Recall the decomposition u = Ureg + Using 01 T(0)
from Theorem 6.1. Let Iu be its nodal interpolation on T,. Then, we have

u— Tul g (10)) < Chl|[usingllz(10)) + [treg || 5240 (70)) + 172 702 treg|l L2(730,))s

where h = 27" and C depends on T(gy but not on n.
Proof. By (76) and Lemma 7.4, it suffices to show
|Using - IUsing|H1 (Tny) < Ch”usingH’ng’a(T(n))

for any tetrahedron T(,) € 7, in the last layer L. ,. Since T\, is either an e- or a v.-tetrahedron,
we derive this estimate in two cases. To simplify the notation, we let v = uging.
Case I: T{,) is an e-tetrahedron. By Proposition 3.8, the mapping B, translates T{,) to

the reference tetrahedron 7' = A*#g414243. Consequently, it maps any point (w,y,2) € T(y) to
(z,9,%) € T. For a function v on T(n), we define ¢ on T by

0(2,9,2) == v(x,y, 2).

Now, let x be a smooth cutoff function on T such that x = 0 in a neighborhood of the edge
é := ZoZ1 and = 1 at every other Lagrange node of T. Let rs; be the distance to é. Let [0 be
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the interpolation of @& on the reference tetrahedron 7. Since yo = 0 in the neighborhood of é,

I(x®) =1TId (6 =0 on é since v € H2_ ,(T(0)) (Theorem 6.1)), and we have

a 1 qc asg A
Pogy+ > o062, 4

los |[+a3<2, az<2

(89) < C(||re 020

Define w := 0 — x0. Then, by the usual interpolation error estimate, we have

0= Tvlg ) = |+ xo — Iv|Hl <|w|Hl ) X0 = Tl gy
(90) = bl sy + [0 — (xv>|H1(T)s0<||@||H1(T>+|x@|mm>,

where C' depends on, through y, the nodes on T. Then, using the scaling argument based on (77),
by (90), (89), the relation rs(&, 9, 2) = k. "re(x,y, 2), and (10), we have

102 (v = I0)l1 320z, < C27"(19a(0 = T0)|[3a 3 + 1020 = T0) 34 1)
—n Ae— ~ a 15« fe%
<C2 (g oy + D I T O a0l )
lay [+as<2, az<2
<O@ free Ol e,y + D, 2 T 0 0 g )

|al|+a3§2, az<2

<O (ree 22 r,,) + > 10°+ 820227,

lai|=1

Hire 0ollEagr, )+ D I o0 R, )

ey [<2

< O ([ 0l + D 10700,

lar|=1

(o1) Hirz 0ol + 3o e o ).

lovr |<2
A similar calculation for the derivative with respect to y gives

10y (0 = I0)|Fair,y < C272 (I 20l Teer,) + D 1000l

i |=1

(92) HlrS 0o Ban ) + 3 Irles a2 ).

o |<2

In the z-direction, using (90), (89), (77), (10), and the calculation in (91), we have

10-(v = I0)[[F2(ry,,) = 2"w2"[0:(0 — To)|2,
< 27028 = T0)l[3 0y + 1028 = T0) 72 )
< O (e vl Taer,y + D 107 0:0ll72r,)
lai]=1
(93) Hire o0l eim, )+ D I 0 0 e gy )-

oy [<2
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Recall a, — 1> —o and a. < Ae. Then, by (91) — (93), we have
v — Ivﬁ{l(T(n)) < CQ*Q“(||7"2033”||2L2(T(M) + Z ||3Mazv||%2(T(n))
lai]=1

(94) +Hr;182vH%Z(T(”)) + Z ||7"LMlflfaEaMU||2L2(T("))) < ChZ”””?—[ge,a(T(

lar|<2

ny)’

which proves the estimate for Case I.
Case II: T(,,) is a ve-tetrahedron. Let Ty € Ti, 1 < k < n, be the ve-tetrahedron, such
that T(,,y C T(x) and T is contained in an e-tetrahedron T(k 1) € Ty—1. By Proposition 3.8,

the mapping B,, i transforms T(n) to a ve-tetrahedron T e 7. Thus, B, maps every point
(x,y,2) € Ty to (2,9, 2) € T(n). As in Case I, for a functlon v on T{;), we define © on T(n) by

ﬁ(‘%’ Z)? 2) = /U(x7 y7 Z)'
NOW let x be a smooth cutoff function on T(n) such that y = 0 in a neighborhood of é := #y2; of

= A*#y2129%5 and = 1 at every other Lagrange node of T(n) Recall the distance 7z to é. Since
X = 0 in the neighborhood of the refined vertex, we have I(x#) = I% on T(n and

6_1 N 1
95) X0z, ) < CUre Rl (Do ool ).
lor |[+a3<2, az<2

Define w := © — x0. Then, by the usual interpolation error estimate, we have

0= Tolia,,) = [0+X0= Dol < 1@l + X0 = Tolgz,,)
(96) = |1Z)|H1(T(n)) + |Xﬁ - I(Xﬁ)|H1(T(n)) g C(H’lA}HHl(T(n)) + ‘XIIA)|H2(T(”)))7

where C' depends on, through y, the nodes in the reference element T(n). In Ly, me(z,y,2) =
k" Lrs(2,9, 2). Therefore, by (85), (96), (95), (10), and k. < 1/2, we have

e

”aw(U_IU)H%Q(T n)) < CQl_kHZ_k(Hai'(ﬁ_IU)HiZ(T(”))+H82(@_IU)H2Lz(T(n)))

A~ 71 0
< 021k k(”Tr}e 1820”L2(T( 9 Z ||r\éﬂu\ 8QL823U||§,2(T(H)))
los [+a3<2, as<2
< 0@ PRt 203,
N Z 22(1,]9)043 ﬁg(nfk)ag ||TLQL|718QL a?ﬁszLz(T(n)))

Jay [+a3<2, az<2

<27 (e 020l a(r, )+ Y 0% 0u0)12(r,)

lay|=1

(97) +||T(:162U||%/2(T(n))+ Z HTIEQLI_l_aeaaLUHZL?(T(n)))'

laL]<2
A similar calculation for the derivative with respect to y gives

10,0 = 10)[3ary < C22n(Ire ™ 020 Ry + S 107400 30r,, )

lay|=1

(98) Hlrs 0eoBan ) + 3 Il a2 ).

oy |<2
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In the z-direction, by (85), (96), (95), and the calculation in (97), we have

10:(w = I0) G2z, = @7 RETROTDE@TRET0:(8 — To)a g,
< 2 FRE(10a(0 = T0)1 30, ) A 1020 = T0)I3as, )
< O ([re T 0l Fagry D 1070203,y
lay]=1
(99) Hirs 0ol Faer,) + D I T 0% vl )

lal]<2
Therefore, by a. — 1 > —0 and a. < Ae and by (97) — (99), we have
o = Ivl% 7, < Ch2\|v||3¢3610(71(n))a

which proves the estimate for Case II.

Hence, the theorem is proved by summing up the estimates in Lemma 7.4 and the estimates
|tsing — Iusing|H1(T(n)) for all the tetrahedra T\, in Le,. ®

Based on the regularity estimates in Theorem 6.1 and the interpolation error estimate in The-
orem 7.5, it is clear that on an initial e-tetrahedron T{g)

(100) lu — Tul g1 (1) < Ch,

where h = 27" and C is independent of n.

7.3 Analysis on initial ev-tetrahedra.

In the neighborhood V¢ of an edge e and vertex ¢, according to Theorem 6.2, we write u =
Ureg + Using + Ue, Where u, = Z—%O\C <o+l cpoc . Then, the interpolation error on an initial
ev-tetrahedron T{g) € To satisfies '

(101) |u — IU|H1(T(0)) < |Ureg - IUreg|H1(T(0)) + |using - Iusing|H1(T(0)) + ‘uc - Iuc‘Hl(T(O))~

Theorem 7.6 Let Ty € To be an ev-tetrahedron and let Le, ; be its ith mesh layer (Definition

3.9). Recall the weighted space 7—[,2“, specified in Theorem 6.2. Then, for o given in (9), a. and a.

given in (11) and (12), respectively, and 0 < i < n, we have in (101)

|ureg - Iurengl(Le o = Ch(”“!regHV2 Les) T Hre_aafureg”L?(Le i))’
, o (Le,i) ,
|Using - IUsing|H1(T(o>) < Ch”usingHH?,V(,(T(o))?
|UC — IUC|H1(T(0)) < Ch,

where n is the number of refinements, h = 27"; in the first two estimates, C' depends on T(g), but
not on i; in the last estimate, C' depends on T(gy and f in (1).

Proof. Let T{;) C T{o) be the ev-tetrahedron in 7;. Recall the mesh layer L, ; in Definition
3.9 and the mapping B,,; in (17) that translates L., ; to the reference domain L. For a point
(r,y,2) € Leyi, let (2,9,2) € L be its image under B., ;. For a function v on L., ;, define the
function ¥ on L by

(102) (2,9,2) == v(z,y, 2).

>
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The distance function r. to the edge e satisfies r.(z,y, z) = Iii?“e(i', 9,2) on Ley ;. Meanwhile, B, ;
maps the triangulation 7, on L, ; to a graded triangulation on L that is obtained after i +1 —n
refinements of the initial mesh L. Note that the subsequent refinements on L are anisotropic with
the parameter k. toward e, since £ does not contain ev- or v-tetrahedra. Then, by the scaling
argument using the mapping (17), we have

(103) o= Tv|} ., ) < Crelo - IU\Hl(L

Case I (0 = ureg € V577 (T(0)) and 77020 € L?(T\¢)).) Note that it implies v € H?(Le,,;) for
i < mn. Then, by (103) and by similar calculations as in (81) and (82), and 1 — ¢ < a., we have

o= Toftn,,,) < Cki2C(|ree 102003, ;) + > o o: 0120z, + > 0%+ 0132 ;)

jas|=1 s =2
< C27 (@ e T Ol e, 20 D 107 00l e
i ]|=1
+2%62 N 0™l Tern, )
ol |=2
< 0272 ([lrge 020l Far,, o+ D 100N, )
=2
< 2 (rg 7020l r,, o + D 100l s, )
|a|=2

(104) < CP([vlTp, ) + Ire7O2ullZar, ,)-

This proves the first estimate in the theorem.

Case II (v = Uging € ’H o(T(0)) with 7. = 1+ 0 and 7. < Ac.) The following estimate was
obtained in Corollary 5.16 of [25] for functions in HZ2. ,(T(p)), where 77,75 € [0,1] and 7} < X,
YE<Ac+1/2and 1 —p < ae:

(105) |U — IUlHl(T(U)) S ChHUHH?Y*Y‘L(T(O))'
Since HZ ,(T(o)) C H2- ,(T(0)), we have
[0 = Tvg1 (1)) < Chllvllaz, (1) < Chlvlag (10))-

This proves the second estimate in the theorem.

Case III (v = u, in (101).) Recall that if zero is an eigenvalue of the Laplace-Beltrami operator
in the expansion of u., namely A.o = 0, the corresponding term is a constant function, which
the finite element interpolation can completely resolve. Therefore, we proceed to consider the
interpolation error in the case that A.o > 0. Recall from Lemma 6.3 v = v; 4+ vo. Therefore, to
obtain |v — Iv|g1 (7, in this case, it is sufficient to analyze |v1 — Ivi|g1(7,y and |[va — Tva| g1 (),
respectively.

We first estimate |vy — Ivi|g1 (7). For i < n, by the scaling map (17), R. ~ k%, (10), and the
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estimates in (86) — (88) and (81) — (82), we have

|’Ul_IUl|%{1(Lev,i) < 0'4;22(1.7”)(Hrge_lagﬁl”iz(ﬁ)+ Z ”60&82@1”%2@)""_ Z ”80@@1”%2@))

jas]=1 o 1=2
< C2T (BT e T v e, o + 2 D 10 Dl
lar|=1
+22520 3" 0t 3, )
lar|=2
< C272(|[RE e erge T 0o, )+ Y IR0 Oy,
lai|=1
+ Z IR0 01| 2(p., 1))

oy [=2

According to Lemma 6.3, R{T7r; 7920, € L2(V¢), RI0*+ 9,01 € L2(V¢) (laL| = 1), and
Ro<9% vy € L?(V¢) (|| = 2), where 0., € (0,1) and any o. > % — Ac,0. Choose 0, > 1 —a.
and o, = 1 — a.. Then, we have

lon = Tofin,, ) < C2 (RS 7 d2o e, )+ 2 IR0 v 7ar,,
[l |=1
+ Y R0 v |Fa )
‘DéL‘:Q
< Ce P (|RZFTeer Ol far,, g+ Y IRZOM 20T
Ialel
(106) + 3RO i [Fa s, ).

lay|=2

For i = n, Beyn(Levn) = L = T(o)- With X, > 0, recall the condition RZ*~2v; € L*(V¢) for any
oe > % — X¢ in Lemma 6.3. This implies v1(¢) = 0. For (z,y,2) € Leyn, let (£,9,2) € L be its
image under B., ,,. For a function v on L., ,, recall the scaling (102) ¢ on L.

Now, let x be a smooth cutoff function on L such that x = 0 in a neighborhood of the vertex c

and x =1 at every other node of L. Let Id be the interpolation of ¢ on the reference tetrahedron
L. Since x% = 0 in the neighborhood of ¢, I(x?d) = Io; = Tv. Therefore, by (103), R. < CkKZ,
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R.(%,9,%2) = k;"Re(2,y, 2), and r.(Z, 7, 2) = k. "re(x,y, 2), we have
IUl - IUll%Il(Lev,n) < Cﬁ?wl - IUl'i{l(ﬁ) < C“Z(wl - Xﬁl‘ip(m + |X'01 - IA(Xﬁl) ?{1@))

< CH?(H{UHQHl(i) + |X’01‘§12(i))

ORIl + X0 NRES0 080 ) + RIS Toer a2 2, ;)
la|=2, az<1
< 2 (2 i lTa .y, ) + 2 0 1)
+22nﬁgn(/€gnac—2n)( Z HRi_acaalvl‘I%?(Lm,,n)+ Z ”Ri—acaouazlhH%z(Lw,n)
‘OCJ_‘=2 |Ou_|=1

H|RE et ey ST 920, ||2L2(Lev,n)))

< 027%(\|Rcflfa”vl||%2(Le,,yn) + Z ||Rc7a”3avl||2L2(Lm,,,,)

Jal=1

+ Z HRifacaMUlH%%Lm,m)+ Z ||Ri7acaouaz”1H2L2(Lw,n)

lay|=2 lay|=1

HIRe et Teer e 00| L)

< CQ*zn(HRZCﬁvl||2L2(Lem) + Z \Rgcfla%lnzmuwn)

|a]=1
+ ) IR0 oG,y + Y, RSO 0v32 s,
|al|:2 ‘QL‘:l
(107) +||Rgc+"“*ere_”“3301||%2(ch,n)),

where we chose 0, = 1 — a. and any o, > 1 — a.. Therefore, by (106), (107), and Lemma 6.3, we
have

(108) o1 = Tvi[3,,)) < CR®.

Now for |va — Iva| g1 (). Recall from Remark 6.4 that vy satisfies vy € H%U(Vﬁ) with v, = a.,
Ye = G, and 0 = 0. Choose o, > 1 —a, € (0,1). Then, based on the estimates in Corollary
5.16 of [25] and in Lemma 6.3, we have

(109) |’02 - I'UQ‘Hl(T(O)) < OhH/UQH’H?Y’g(T(Q)) < Ch.

Thus, the theorem is proved by the estimates in (104), (105), (108), and (109).

]

Hence, based on the interpolation error estimates for different initial tetrahedra, we obtain the
global error analysis.

Corollary 7.7 For the anisotropic finite element method proposed in Algorithm 3.4 solving equa-
tion (1) with f € H°(Q) and o € [0,1) satisfying (9), 0 # de — 1, for all k € N*e € £ (see
Theorem 6.1), and o # e, — % for allk € N;c € C (see Theorem 6.2), we have

lu—un|lmr () < Ch,

where h = 27"; and C depends on the initial triangulation Ty and f, but not on n.
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Proof. We first have the optimal interpolation error estimate
|u — Tu|g (o) < Ch

by summing up the interpolation error estimates Lemma 7.1 (o-tetrahedra), Corollary 7.3 (v- and
ve-tetrahedra), Theorem 7.5 (e-tetrahedra), and Theorem 7.6 (ev-tetrahedra), and by the regularity
estimates in Section 6. The desired estimate for |[u — u,||z1(q) is a consequence of the Poincaré
inequality and Céa’s Lemma. m

8 Numerical results

In this section, we present numerical test results to verify the error analysis in Corollary 7.7 for
the proposed anisotropic finite element method (Algorithm 3.4) solving elliptic equations. Our
numerical tests are implemented in two typical polyhedral domains: the prism domain and the
Fichera domain. We shall demonstrate three numerical examples (Examples 8.1 — 8.3) for the
prism domain and one example (Example 8.4) for the Fichera domain.

The first set of tests are for the prism domain. Let 1 be the square with vertices at (1,0), (0,1),
(—1,0), (0,—1) and let Q2 be the triangle with vertices at (0,0), (—1,0), (0,—1). Define the prism
domain Q, = (21 \ Q2) x (0,1). For a point (z,y,2) € Q, denote by (r,0) the polar coordinates
of its projection in the xy-plane (r(z,y,z) = r(z,y) and 6(z,y,z) = 0(x,y)). In the first two
numerical examples (Examples 8.1 and 8.2), we are especially interested in the performance of the
numerical method when the Neumann condition is imposed on both adjacent faces of the singular
edge. For pure Dirichlet problems, we refer to [24, 25]. In the third example (Example 8.3), we
illustrate our method with the presence of a DN singular edge.

In the first two examples, consider the following elliptic equation with the mixed boundary
condition

—Au=1 in Qp,
(110) u = r2/3 cos 2(037) on I'pir,
anu =0 on 1—‘Neuy

where I'pir and I'ney consist of boundary faces of the polyhedron §2,. By imposing Dirichlet and
Neumann boundary conditions on different faces, we keep the edge e = {(0,0,2) for 0 < z < 1} as
the singular Neumann edge. We will use the graded mesh toward the edge e and its two endpoints,
as described in Algorithm 3.4, in the finite element approximation. See Figure 3 for the case
Ke = Ke = 0.2.

Example 8.1 We impose the Neumann condition on the two faces adjacent to the edge e and
impose the Dirichlet condition on all the other faces (including the top and bottom faces) in equation
(110). See Figure 4. Thus, e is a Neumann edge; and other edges are either Dirichlet edges or DN
edges (see the description before (5)).

According to (5) (see also [14]), the edge e is the only singular edge with Ac = 2 and the two
vertices ¢ (its two endpoints) satisfy Ac + 2 > A.. Other vertices and edges of €, are regular in
this case. In addition, the right hand side function in (110) belongs to H?(£2,) for any o € [0, 1).
In fact, the solution u € H'™5(Q,) for s < % Therefore, based on the conditions in (11) and (12),
and by Corollary 7.7, it is sufficient to obtain the optimal convergence rate in the finite element
method if we choose a. € (0, 2) for the edge e and a. € (0, ac] for its two endpoints. This gives rise
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Figure 3: Graded meshes on the prism domain (left — right): the initial mesh, mesh after one
refinement, mesh after three refinements (k. = k. = 0.2).

to the following optimal range of the grading parameters: k. < k. = 27 /% < 273/2 ~ 0.353 near
e, and quasi-uniform meshes (the associated grading parameters being %) for all the other edges
and vertices.

Figure 4: Example 8.1 (two Neumann faces): the top view of €, top Dirichlet face marked in blue
(left); the absolute value of the numerical solution (right).

In Table 1, we display the convergence rates of the finite element solution on proposed anisotropic
meshes associated with different values of the grading parameter for Example 8.1. In all these
meshes, we choose kK = k. = K, for the singular edge e and the two endpoints ¢ (Figure 3). Here,
Jj is the level of refinements. Denote by u; the linear finite element solution on the mesh after j
refinements. Since the exact solution is not known, the convergence rate is computed using the
numerical solutions for successive mesh refinements

Uj — Uj—
(111) convergence rate = log,( [ = Uyl @)

lwjr1 = wilm)”

As j increases, the dimension of the discrete system is O(237). Therefore, the asymptotic con-
vergence rate in (111) is a reasonable indicator of the actual convergence rate for the numerical
solution. For example, when the numerical solution approximates the singular solution at the opti-
mal convergence rate as described in Corollary 7.7, the convergence rate in (111) shall converge to
1 as the number of refinements j increases. On quasi-uniform meshes, the convergence rate (111)
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is however asymptotically bounded by % ~ 0.667 due to the fact that the solution is singular in €2,
(u € H™(Qy,) for s < 2).

k=01|k=02|k=03|k=04] k=05
0.65 0.72 0.75 0.71 0.61
0.81 0.83 0.84 0.77 0.64
0.89 0.91 0.90 0.81 0.66
0.95 0.96 0.94 0.83 0.67
0.98 0.98 0.96 0.84 0.67
0.99 0.99 0.97 0.85 0.67

oo| 1| o e x| ol

Table 1: The H' convergence rates in Example 8.1.

It is clear that the above theoretical predictions are confirmed by the numbers in Table 1.
Namely, when the grading parameter to the singular edge and its two endpoints is in the optimal
range K = ke = K. = 0.1,0.2,0.3 < 0.353, the convergence rates in Table 1 converge to 1, which
implies the optimal convergence rate in the finite element method is achieved on the anisotropic
meshes proposed in Algorithm 3.4. For x = 0.4,0.5 > 0.353, the convergence is not optimal.
In particular, the convergence rates for K = 0.5 is also very close to the theoretical bound % as
discussed above.

In the second example, in addition to the Neumann edge, we shall confirm the effectiveness
of our numerical scheme when the domain has Neumann vertices, namely vertices surrounded by
Neumann faces.

Example 8.2 In equation (110), the Neumann condition is imposed on the two faces adjacent to
the edge e and also on the top and bottom faces of the domain Q,. The Dirichlet condition is
imposed on all the other side faces. Therefore, e is a Neumann edge and its two endpoints ¢ are
Neumann vertices.

Figure 5: Example 8.2 (four Neumann faces): the top view of €, top Neumann face marked in
red (left); the absolute value of the numerical solution (right).

According to (5) (see also [14]), the edge e is the only singular edge with Ac = 2 and the two
vertices c are regular vertices. Similar to Example 8.1, all the other vertices and edges of 2, are
regular. Note that the right hand side function in (110) still belongs to H?(£2,) for any o € [0,1),
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and the solution u € H'™(Q,) for s < 2. Therefore, based on the conditions in (11) and (12), and
by Corollary 7.7, it is sufficient to obtain the optimal convergence rate in the finite element method
if we choose a. € (0, 2) for the edge e and a. € (0,ac] for its two endpoints. These are the same
conditions as in Example 8.1, because the error analysis in Section 7 ensures that the solution near
the Neumann vertex can be approximated well by the finite element solution. Hence, the optimal
range of the grading parameters are: k., < ko = 271/% < 273/2 ~ (0.353 near e, and quasi-uniform
meshes (the associated grading parameters being %) for all the other edges and vertices.

level | k=01 |k=02|k=03]|k=04|xk=0.5
3 0.64 0.70 0.73 0.68 0.57
0.80 0.83 0.82 0.75 0.63
0.88 0.90 0.89 0.81 0.66
0.95 0.96 0.94 0.84 0.67
0.98 0.98 0.96 0.85 0.67
0.99 0.99 0.97 0.86 0.67

QO | | T =~

Table 2: The H! convergence rates in Example 8.2.

The numerical convergence rates (111) are reported in Table 2 on the anisotropic meshes asso-
ciated with different values of the grading parameter. As in Example 8.1, we choose k = ke = K¢
for the singular edge e and the two endpoints c. It is clear that the above theoretical predictions
are confirmed by the numbers in Table 2. The convergence rate is optimal when x = 0.1,0.2,0.3 <
0.353 is in the optimal range, and it slows down when x = 0.4,0.5 > 0.353. As discussed above,
the anisotropic algorithm can give rise to the optimal numerical approximation for equations with
mixed boundary conditions, even with Neumann edges and vertices.

In the third example for the prism domain, we test the anisotropic algorithm with the presence
of a singular edge with the mixed boundary condition. Instead of equation (110), we shall solve
another form of equation (1).

Example 8.3 Consider equation (1) with f =1 in the prism domain Q,. We impose the Neumann
boundary condition on one face adjacent to the edge e and impose the Dirichlet boundary condition
on all the other faces (see Figure 6). Thus, e is the singular edge surrounded by faces with mized
boundary conditions.

Figure 6: Example 8.3 (a DN singular edge): Neumann face marked in red and Dirichlet face in
blue (left); the numerical solution (right).
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According to (5), e is the only singular edge with A\, = % Note that the right hand side function
in (1) belongs to H?(£,) for any o € [0,1), and the solution u € H'*%(€,) for s < +. Based on
Algorithm 3.4, it is sufficient to obtain the optimal convergence rate in the finite element method
if we choose a. € (0, %) for the edge e and a. € (0, a.] for its two endpoints. Hence, the optimal
range of the grading parameters are: k. < ko = 2~ /% < 273 = (.125 near e, and quasi-uniform
meshes for all the other edges and vertices.

level | k=01 |k=02|k=03]|k=04| k=05
3 0.43 0.43 0.48 0.56 0.60
0.72 0.73 0.72 0.70 0.68
0.87 0.86 0.81 0.72 0.64
0.93 0.90 0.80 0.66 0.54
0.96 0.90 0.76 0.58 0.45
0.97 0.89 0.70 0.52 0.39

QO | | O =

Table 3: The H' convergence rates in Example 8.3.

We summarize the numerical convergence rates for Example 8.3 in Table 3, which again verifies
the theoretical prediction. Namely, when the grading parameter k = k. = k. < 0.125, the optimal
convergence rate is achieved, while it is not the case for k > 0.125.

Before we discuss the last numerical example, we define a Fichera domain as follows. Let
0 = (—1,1)% and Q2 = (0,1)? be two cubes. Then, the Fichera domain is 2 := 2 \ Q2. In this
example, we shall show the test results for solving equation (1) in Q.

Example 8.4 In equation (1), let f = 1. We impose the Neumann boundary condition on the two
faces that touch the center vertex of the Fichera domain Q0 and impose the Dirichlet boundary
condition on all the other faces. See Figure 7.

Figure 7: Example 8.4 (three singular edges in a Fichera domain): Neumann faces marked in red
and Dirichlet faces in blue (left); the numerical solution (right).

Therefore, according to (5), there are three singular edges e (the edges touching the center

vertex); and the endpoints ¢ of these singular edges are possible singular vertices. See Figure 8.
For the Neumann singular edge, we have A\, = %; and for the two DN singular edges, we have
Ae = % In fact, the solution satisfies the global regularity u € H1+S(Qf) for s < % We will use

the graded mesh toward the singular edges and their endpoints, as described in Algorithm 3.4,
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Figure 8: Graded meshes on the Fichera domain (left-right): the initial mesh, mesh after one
refinement, mesh after three refinements (k. = k. = 0.2).

in the finite element approximation. In particular, to simplify the presentation, we shall choose
the same parameter k. for all the singular edges, and the same parameter k. = k. for all their
endpoints. See Figure 8 for the case k. = k. = 0.2. Recall that for any possible singular vertex
¢, Ae + 3 > 1. Hence, based on (11) and (12), it is sufficient to choose k. = k. < 273 = 0.125
for all the singular edges and their endpoints, in order to obtain the optimal convergence in the
numerical approximation.

The numerical convergence rates for different values of the grading parameter in Example 8.4
are listed in Table 4. As predicted by the theory, for k = k. = k. > 0.125, the convergence
is not optimal, while for k = 0.1 < 0.125, the numbers are increasing toward the optimal rate.
We stopped at level 7 because the resources needed to extend the calculation to the next level
of refinement have exceeded our computing capability. For instance, the refinement to the next
level will generate more than 5 billion tetrahedra and 1 billion nodes. Nevertheless, according to
Table 4, there is a clear improvement in convergence rates using the appropriate graded meshes
(k < 0.125) compared with other graded meshes (k > 0.125); and it is reasonable to expect the
rates for k = 0.1 will converge to 1 when the asymptotic region is reached with further refinements.

level | k=01 |k=02|k=03]|k=04|xk=0.5
3 0.58 0.63 0.65 0.65 0.63
0.78 0.81 0.80 0.76 0.70
0.85 0.88 0.83 0.75 0.65
0.88 0.89 0.81 0.68 0.54
0.91 0.88 0.75 0.59 0.45

~| O Y >

Table 4: The H' convergence rates in Example 8.4.
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