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ABSTRACT. We study the behavior of the finite element condition numbers on a class of anisotropic meshes.
These newly-developed mesh algorithms can produce numerical approximations with optimal convergence to
isotropic and anisotropic singular solutions of elliptic boundary value problems in two- and three-dimensions.
Despite the simplicity and fewer geometric constraints in implementation, these meshes can be highly
anisotropic and do not maintain the maximum angle condition. We formulate a unified refinement principle
and establish sharp estimates on the growth rate of the condition numbers of the stiffness matrix from these
meshes. These results are important for effective applications of these meshes and for the design of fast
numerical solvers. Numerical tests validate the theoretical analysis.

1. INTRODUCTION

Let Q C R? d = 2,3, be a bounded polytopal domain. Namely, € is a polygon (d = 2) or a polyhedron
(d = 3). Consider the Poisson equation with the Dirichlet boundary condition as the model problem,

(1) —Au=f in u=0 on ON.

The solution regularity of elliptic boundary value problems highly depends on the geometry of the domain.
For example, even if the given data f is smooth, the solution of equation (1) may have singularities near
the non-smooth points (vertices for d = 2, and vertices and edges for d = 3) on the boundary of the
domain. These singularities can severely deteriorate the convergence of the numerical approximation. A
popular approach is to increase the mesh density near the non-smooth points capturing the high-frequency
components of the solution. For two-dimensional (2D) elliptic problems, this approach has led to mesh
algorithms [1, 8, 10, 31, 34, 36, 41] that can recover the optimal convergence of finite element methods
(FEMs) approximating singular solutions. These 2D elements vary much in size depending on their distance
to the vertices, while they are isotropic and shape regular, which is consistent with the behavior of the 2D
corner singularity.

The situation for three-dimensional (3D) problems is much more challenging. Both the vertices and the
edges of the domain can give rise to singularities in the solution. The 3D vertex singularity is isotropic,
carrying features similar to the 2D vertex singularity but in a higher dimension. The 3D edge singularity
shows a distinctive character: it is anisotropic — singular in directions orthogonal to the edge and smoother in
the edge direction. According to the aspect ratio of the element, the existing graded mesh algorithms for 3D
singularities can be divided into two categories: isotropic and anisotropic. The isotropic meshes include most
of the adaptive meshes from a-posteriori estimates [18, 19, 41] and the dyadic-partitioning meshes [2, 22, 35]
based on a-priori analysis. These meshes are shape regular but the associated FEMs lose the optimal
convergence when the edge singularity is strong or when high-order FEMs are used. The anisotropic mesh
algorithms include the one in [1, 3, 4, 5] that is based on the coordinate transformation from a quasi-uniform
mesh, and the one in [9, 11] that involves extra steps for prism refinements to maintain the angle condition
of the simplex. Although the FEMs obtain the optimal convergence on both meshes, these algorithms are
complicated to implement in general polyhedral domains, and do not result in well-structured (nested) finite
element spaces. This is largely because these algorithms have geometric restrictions on simplexes to keep the
maximum angle condition of the mesh. Recall that the maximum angle condition is often a rule of thumb
to start with in developing numerical schemes, and the use of meshes without the maximum angle condition
may lead to reduced convergence to functions in the Sobolev space. See for example the works of Babuska
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and Aziz [7] and of Kifzek [26]. We also mention the works [6, 20, 21, 23, 28, 37, 38, 39] where other relevant
2D and 3D anisotropic meshes were studied for various anisotropic problems.

Recently, a set of mesh algorithms were proposed in [10, 29, 30, 31, 32, 33, 34] for both 2D and 3D
domains. These algorithms are simple, explicit, and applied to general polytopal domains. Based on reclusive
refinements of the initial mesh, these meshes give rise to finite element solutions converging to the singular
solution at the optimal convergence rate. These algorithms merely need a reasonable initial mesh of the
domain, and the resulting meshes are conformal and similar in topology and data structure to the quasi-
uniform mesh, and therefore can potentially improve practical computations solving singular problems. Such
flexibility also means less control on the shape regularity. Existing finite element analysis is often built upon
the assumption of an isotropic and shape regular mesh. However, these new meshes can be highly anisotropic
and lose the maximum angle condition. Therefore, unconventional analytical and computational tools are
needed for further developments and to broaden the application range of these methods.

We have two main tasks in this paper. 1. We formulate a refinement principle that will cover a wide
range of 2D and 3D graded mesh algorithms in a unified frame work. This meshing principle is of interest
itself, giving rise to not only the aforementioned 2D isotropic meshes [1, 10, 31] for corner singularities and
the 3D anisotropic meshes [30, 32, 33], but also 2D anisotropic meshes for degenerate elliptic problems [29].
Due to the possible lack of the maximum angle condition, we shall hereafter refer to these meshes as no-
maximum-angle-condition (NoMAC) meshes. 2. We study the condition numbers of FEMs on 2D and 3D
NoMAC meshes. The conditioning of the numerical scheme is instructional in effective implementations of
the algorithm, and in design of fast matrix solvers for the discrete system. Most of the existing conditioning
estimates are for shape regular meshes. We here summarize some well-known results [12, 15, 40] that are
relevant to this paper. On a shape regular mesh, let N be the dimension of the finite element space and let
hmin be the smallest element size in the triangulation. Then, the condition number cond(Ay) of the scaled
finite element stiffness matrix A, satisfies

min

cond(A,) < CN?/3 (3D case).

@) { cond(A,) < CN(1+ |log(Nh2, )|) (2D case),

In addition, we refer the readers to the following works on finite element condition numbers for other 3D
graded meshes designed for vertex and edge singularities. For isotropic meshes near edges, see [2, Section 6];
for isotropic meshes near vertices and edges, see [5, Lemma 3.1 and Remark 3.2]; and for some anisotropic
meshes, see [1, Section 4.3.3], where diagonal scaling was also discussed. All these meshes satisfy the
maximum angle condition. For the anisotropic NoMAC meshes, we derive sharp estimates (Theorem 3.4
and Theorem 3.9) on the condition numbers in relation to the dimension of the discrete space and to the
grading parameter of the algorithm. These new results are quite different from those on quasi-uniform
meshes: the growth rates of the condition numbers in 2D are different for isotropic and anisotropic meshes;
while for both isotropic and anisotropic meshes in 3D, there is a threshold value for the grading parameter,
which determines whether the growth rate resembles the one on quasi-uniform meshes, or the growth rate is
largely decided by the grading parameter. The main difficulty in the analysis lies in the anisotropic nature
of the elements. The usual procedure in [12] cannot produce estimates that reflect the actual behavior of
the condition number on NoMAC meshes. Our analysis relies on new observations on the anisotropic affine
mapping for NoMAC meshes and a series of estimates in weighted function spaces.

The rest of the paper is organized as follows. In Section 2, we present the principle and algorithms for
NoMAC meshes. Important properties and observations on these meshes will be discussed. In Section 3,
we devise analysis for the condition number on 2D and 3D NoMAC meshes. Due to the nature of the mesh
algorithm, estimates are first obtained in local regions of the domain, distinguished by their distance to
different parts of the boundary. The main condition number estimates are summarized in Theorem 3.4 (2D)
and in Theorem 3.9 (3D). We report numerical test results in Section 4 from various sample meshes to verify
the theoretical prediction.

Throughout the text below, we adopt the bold notation for vectors and matrices. Let T be a triangle
(resp. tetrahedron) with vertices a,b,c (resp. a,b,c,d). Then, we denote T by its vertices: A3abc for the
triangle and A*abed for the tetrahedron, where the sup-index implies the number of vertices for 7. By a ~ b,
we mean there exists a constant C' > 0 independent of a and b, such that C~'a < b < Ca. In addition, by
A C B, we mean A is a proper subset of B or A = B. The generic constant C' > 0 in our estimates may
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be different at different occurrences. It will depend on the computational domain, but not on the functions
involved or the mesh level in the finite element algorithms.

2. THE NOMAC MESH

2.1. The finite element method. Denote by H™(Q2), m > 0, the Sobolev space that consists of functions
whose ith derivatives are square integrable for 0 < i < m. Let L*(Q) := H°(Q). Recall that H}(Q) C H'(Q)
is the subspace consisting of functions with zero trace on the boundary 9f2. The variational solution u €
H{ () of equation (1) satisfies

(3) a(u,v) = /QVU -Vudz = /vadac = (f,v), Yve H}Q).

Let 7, = {T¢} be a triangulation of Q with triangles (d = 2) or tetrahedra (d = 3). It will become clear
later that the index n represents the level of the mesh refinement. Let S,, C H}(f2) be the Lagrange finite
element space of degree k > 1 associated with 7,,. Namely,

(4) Sp ={v e C(Q), v|r € P, for any element T € T,},

where Py, is the space of polynomials of degree < k. Then, the finite element solution w,, € S,, for equation
(1) is defined by

(5) a(unavn) = (f7 Un)a Yo, € Sy,

Denote by N := dim(S,,) the dimension of the finite element space. Let ¢;, 1 <i < N, be the basis function
associated to the ith node in 7. Then, the finite element equation (5) is equivalent to the linear system of
equations

(6) Au="f,

where for 1 < 4,57 < N, A is the N x N stiffness matrix with entry a;; = a(¢i, ¢;), the vector f =
(f1, fo, -+, fn)T is defined by fi = (f, ), and the vector u = (u1,uz, - ,un)’ is the collection of the
unknown coefficients in the representation of the finite element solution u,, = vazl Ui G-

Let w € S,, be a function in the finite element space (4) and let

(7) W:(wlvw27"' ,wN)T

be the associated vector such that w = Zévzl wegy. Recall the (2-norm of w
1/2
Wiz = (w'w)/2= (> wp)’".
1<<N

Note that by equations (3) and (5), A is a real symmetric positive definite matrix and all its eigenvalues are
positive. Let

wlAw . wl Aw

min —

(8) )\maw =

max T min T
lwll,2#0 W= W lwll,2#0 W= W

be the largest and the smallest eigenvalues, respectively. Then, the /2-condition number cond(A) of the
stiffness matrix is given by

(9) COHd(A) - >\ma'r/>\m1n
It follows from a direct calculation that
(10) wlAw = a(w,w) = ||Vw||2L2(Q).

We shall study the condition number (9) on a class of anisotropic graded meshes.
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2.2. The NoMAC mesh algorithms. We here present the algorithms that cover a class of graded meshes
that appeared in [1, 10, 14, 25, 29, 31, 30, 32, 33]. These meshes can effectively improve the finite element
approximation when the solution possesses singularities in 2D and 3D, especially from the non-smoothness of
the computational domain. Unlike the conventional shape regular grids, these algorithms produce anisotropic
no-maximum-angle-condition (NoMAC) meshes.

Let V (resp. £) be the set of vertices (resp. the set of closed boundary edges) of the domain 2. For each
vertex v € V and each edge e € £, we assign the associated grading parameter &, € (0,0.5] and k. € (0,0.5],
respectively. Let T be a triangulation of Q with triangles (d = 2) or tetrahedra (d = 3).

Definition 2.1. (Singular Vertices and Edges) The singular vertices and singular edges are the special
vertices and edges of the triangles or tetrahedra in 7 defined as follows. Let pg be a closed edge of an
element T € T with p and ¢ as the endpoints. We define different singular sets based on the location of the
edge pq. We say pq is a singular edge if pg C e € £ and k. < 0.5. Namely a singular edge in 7T lies on an
edge e of the domain boundary for which the parameter k. < 0.5. We further describe two types of singular
vertices. We call p a v-singular vertex if p=v € V and &, < 0.5. In this case, p is a singular vertex for all
the element edges connecting to p. We call p an e-singular vertex of pq if the following three conditions are
satisfied: 1. p is not a v-singular vertex; 2. p lies on a singular edge that belongs to e € £ with k. < 0.5; 3.
pq ¢ e. In this case, p is a singular vertex for all the element edges intersecting e at p, but is not a singular
vertex for the singular edges on e. See Figure 1 for examples of the singular vertices and edges.

To simplify the presentation, we require that each element in 7 contains at most one singular edge and at
most one v-singular vertex; and if it contains both, the v-singular vertex is an endpoint of the singular edge.
Thus, each element edge in the triangulation has at most one singular vertex as an endpoint. Suppose p is
a singular vertex of an edge pq in the triangulation. Then, we assign p a grading parameter &, as follows

(11) o = J e if p € e € £ is an e-singular vertex,
P mingeg, (v, Ke), if p=wv €V is an v-singular vertex,

where &, C & is the set of edges that touch the vertex v.

P2
P - P3 21 Ps

po =V EV (ky <0.5)

Py P4 Pe Pe1 pe2 €€ E (Ke <0.5)

FIGURE 1. Singular vertices and edges: a v-singular vertex p, = v € V with k, < 0.5 (left);
e-singular vertices peo, Pe1, and pes on e € € (red line segment) with k. < 0.5 (right). p, is
a singular vertex for all the edges p,p;, 1 <@ < 4. pg is a singular vertex for peop1, pe1 is a
singular vertex for pe1p;, 1 < i < 3, and peo is a singular vertex for peops. PegPel and peipes
are singular edges.

The concept of singular vertices and edges shall be used to derive anisotropic mesh algorithms. In
particular, the singular edge is useful to solve 2D anisotropic elliptic problems and 3D anisotropic edge
singularities. See also Remark 2.5. According to Definition 2.1, each singular vertex p of an element edge
is assigned a parameter x, < 0.5. Then, we describe the algorithm to produce new nodes on edges in the
triangulation.

Algorithm 2.2. (New Nodes) Let pg be an edge in the triangulation 7 with p and ¢ as the endpoints.
Then, in a graded refinement, a new node r on pq is produced according to the following conditions:

1. (Neither p or ¢ is a singular vertex of pq.) We choose r as the midpoint (|pr| = |gr]).
2. (p is a singular vertex of pg.) We choose r such that |pr| = k,|pg|, where k,, is defined in (11).

See Figure 2 for an illustration.

Before presenting the NoMAC refinement algorithm, we note that based on the number of singular vertices
and the number of singular edges in an element, we can classify the elements in T as follows.
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p r q p r q

FIGURE 2. Refinement of the an edge pq (left — right): no singular vertices (midpoint); p is
a singular vertex (|pr| = kp|pg|, kp < 0.5).

TQ To Zg
Zo1 o2 To2
Zo1 Toz2 Zo1
o T1p T2 I T1o T2 In T1g )
o Zo
Io1 To2 Io1 Zo2
X1 12 T2 T 12 T2

FIGURE 3. Refinement of a triangle (green dot = v-singular vertex, green box = e-singular
vertex, red line segment = singular edge). Top row (left — right): o-element, v-element,
e-element. Bottom row (ev-elements, v-singular vertex zop = v € V and singular edge
2ox1 C e € E): Ke = Ky (left); ke > Ky (right).

Definition 2.3. (Element Types) Given the conditions on the singular vertices and singular edges in Defi-
nition 2.1. Each element T' € T falls into one of the five categories.

1. o-element: T contains no singular vertex or singular edge.
v-element: T contains a v-singular vertex but no singular edge.
ve-element: T contains an e-singular vertex but no singular edge.
e-element: T contains a singular edge but no v-singular vertex.
ev-element: T contains a v-singular vertex and a singular edge.

CU @

Now, we give the anisotropic mesh algorithm in 2D and 3D.

Algorithm 2.4. (NoMAC Meshes) Recall the triangulation 7 in Definition 2.1 and the grading parameter
kp in (11) for each singular vertex p. Then, the graded refinement, denoted by «(7T), proceeds as follows.

e Triangular Elements (d = 2). For each triangle T = A3x¢z129 € T, a new node is generated on each
edge based on Algorithm 2.2. Then, T is decomposed into four small triangles by connecting these
new nodes (Figure 3).

e Tetrahedral Elements (d = 3). For each tetrahedron T' = A%zozi79w3 € T, a new node xy; is
generated on each edge zpx;, 0 < k < < 3, based on Algorithm 2.2. Connecting these new nodes
xy; on all the faces of T', we obtain four small tetrahedra and one octahedron. The octahedron then is
cut into four tetrahedra using x13 as the common vertex. Therefore, after one refinement, we obtain
eight sub-tetrahedra for each T' € T denoted by their vertices (Figure 4):

4 4 4 4
A LoL1L02L03, A L01L1XL12L13, A T02L12X223, A L03T13L23L3,
4 4 4 4
A*x01202T03T13, A T01T02212T13, A TaT03T13T23, A T02T12T13T23.

Given an initial mesh 7y satisfying the condition in Definition 2.1, the associated family of graded meshes
{Tn, n >0} is defined recursively T, = &(T,—1). See Figures 5 — Figure 9 for example.
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FIGURE 4. Refinement of a tetrahedron (green dot = w-singular vertex, green box = e-
singular vertex, red line segment = singular edge). Top row (left — right): o-element,
v-element, e-element. Bottom row (ev-elements, v-singular vertex o = v € V and singular

edge zoz1 C e € E): Ke = Ky (left); ke > K, (right).

FIGURE 5. 2D graded refinements toward a vertex v, (k, = 0.2).

Remark 2.5. Recall the vertex singularity of equation (1) is isotropic, concentrating at the vertex of the
domain; and the 3D edge singularity is anisotropic, singular in the direction perpendicular to the edge and
smoother in the edge direction [17, 24, 30, 32, 33]. Thus, Algorithm 2.4 is based on a simple and intuitive
idea: producing the new nodes closer to the singular point and consequently having new elements that are
small in the direction of the singularity. Note that a v-singular vertex is a singular node for all the connecting
edges; while an e-singular vertex is a singular node only for non-singular edges. Algorithm 2.4 covers a variety
of graded meshes in the literature. It has shown its effectiveness in approximating 2D corner singularities
[1, 10, 31, 34], anisotropic degenerate elliptic operators [29], and solving 3D elliptic problems with vertex
and edges singularities [30, 32, 33]. The regularity of the underlying solution in general plays an important
role in deciding the singular vertices and edges and the associated grading parameters k. and k, in order
to achieve the optimal convergence in the numerical solution. Compared with existing meshes, this new
mesh enjoys advantages in practical computing for being explicit, and having fewer geometric constraints.
However, Algorithm 2.4 can lead to meshes without the maximum angle condition, especially when there
are singular edges (Figures 6, 8, and 9). This makes the analysis for this algorithm both technical and
interesting.
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FIGURE 6. 2D graded refinements toward an edge e, (ke

0.25).

FIGURE 7. 3D graded refinements toward a vertex v, (k,

FIGURE 8. 3D graded refinements toward an edge e, (ke = 0.3).

FIGURE 9. 3D graded refinements toward a vertex v and its adjacent edges, (£,

1<i<3).

2.3. Mesh layers and affine mappings. We here derive properties of the NoMAC mesh that will be useful
for the analysis. Based on the distance to the vertices and edges of the domain, we first define different layers

of the mesh.
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Definition 2.6. (Mesh Layers in Initial v- or ve-elements) Let T(g) € 7o be an initial v- or ve-element. Let
Ty C T{oy be the element in 7;, 0 < < n, that is attached to the singular vertex of T(p). For 0 <i <n, we
define the ith mesh layer of 7, on Tgy to be the region L, ; := T(;) \ T(;4+1); and for i = n, the nth layer is
Ly .y =T

Remark 2.7. For the 2D v-element T(g)y = A3zozqzo in Figure 3, L, is the trapezoid zz2z92201. For
the 3D v-element Tiq) = N*zozzoxs in Figure 4, L, is the pentahedron zgizo2xo3z1z223. In both cases
(trapezoid and pentahedron) and in the text below, we denote a polytope by its vertices. Let k), be the
grading parameter associated with the singular vertex of T{g). According to Algorithm 2.4, the elements of
T in the layer L, ; are isotropic and shape regular with mesh size O(2i_"/<;§,).

Definition 2.8. (Mesh Layers in Initial e-elements) Let T(o) € To be an initial e-element. Let U; be the
union of elements in 7;, 0 < i < n, that touch the singular edge of T{g). For 0 < i < n, we define the ith
mesh layer of 7,, on T\ to be the region L. ; := U; \ Uit1; and for ¢ = n, the nth layer is L. ,, := U,.

Remark 2.9. For the 2D e-element T{g) = A3zozimy in Figure 3, L is the trapezoid zozix12702. For
the 3D e-element T(g) = A*zox x93 in Figure 4, Lo is the pentahedron xoxooxo3z1212213. According to
Algorithm 2.4, the elements of 7, in the layer L. ; are anisotropic, whose largest angle in the face converges
to mas n — oo.

Definition 2.10. (Mesh Layers in Initial ev-elements) Let T(g) € 7o be an initial ev-element. Let T(;) C T(g)
be the ev-element in 7;, 0 < i < n, that is attached to the singular vertex and the singular edge of T(p). For
0 <i < n, we define the ith mesh layer of 7, on T(g) to be the region Le,; := T(;) \ T(i41); and for i = n,
the nth layer is Ley n := T(p)-

Remark 2.11. For the 2D ev-element Tq) = A3zgz1zo in Figure 3, Ley,o is the trapezoid x1z2z92201. For
the 3D ev-element T{g) = A*zozqzo23 in Figure 4, Ley o is the pentahedron zg;xo2zo3x12223. Although the
mesh layers in initial ev-elements follow a similar construction as those in initial v- or v.-elements (Definition
2.6), the elements of 7, in the layer L., ; are anisotropic whose largest angle in the face can be arbitrarily
close to m. One can compare this to the statements in Remarks 2.7 and 2.9.

Based on Algorithm 2.4, the refinement of an element 7" can result in small elements of different types.
For example, for d = 2, after one refinement, an e-element 7T is decomposed into four small elements:
two e-elements, one v.-element, and one o-element. For d = 3, after one refinement, an e-element T is
decomposed into eight small elements: two e-elements, two v.-elements, and four o-elements. Nevertheless,
in a refinement, we call T the parent element of the small elements, and call each small element the child
element of T.

Recall the mesh layers of the triangulation 7, in Definitions 2.6, 2.8, and 2.10. We now construct affine
mappings between a region in each layer and a reference region whose shape may depend on an initial element
in 7o but not on n.

Proposition 2.12. (Affine Mappings on Initial v-, v.-, and ev-elements) Let Tgy € To be a v-, ve-, or
ev-element in the initial triangulation. Let k, be the grading parameter associated with the singular vertez.
We use a local coordinate system such that the singular vertex of T(qy is the origin. Define two mappings

&;i 0 0 R
(12) BY=|0 «7 0], d=3 ad B = ( ; w‘) , d=2.
0 0 k,° p

Then, ford =3 and 1 < i < n, B is a bijection between the ith layer Ly ; (or Le,,; depending on the

element type of T(py) and the first layer L, o (or Leyo) on Tigy; fori =mn, BS’,’L is a bijection between L, ,
(or Ley,n) and Tigy. The dilation B'? is the 2D analogue of B Namely, B maps the 2D ith layer to

v,% v, v,1

the first layer (0 <i < n) or to the initial element Ty (i =n).

Proof. See Definition 4.2 in [30] for the proof when d = 3. The 2D case is also a direct consequence of
Algorithms 2.2 and 2.4. ]

Proposition 2.13. (Affine Mappings on Initial e-elements) Let Tigy € To be an e-element in the initial
triangulation and let k. be the grading parameter associated with the singular edge. Let T(Ii+1) € Tiy1 be an
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element, such that T(H_
cases to consider. (I) T, (+1)
for i =mn. Then, we can choose a proper local coordinate system (where the singular edge is on the y-axis
(2D) or on the z-axis (3D)) and a reference element T' whose geometry only depends on the initial element

Tio), such that

) C Lei C Ty, 0 <@ < n; and T(’n) C Leyn C Ty if i = n. Then, we have two
is a child element of an e-element Ty € T; for i <mn or T(/n) s an e-element

S0 0 i 0

(13) BY=| 0 s 0], d=3 and BF=("c, ), d=2
e,i i e, i €t bglﬁ‘, 2

bllie bgﬁ 2

are bijections from T(z+1) to T in 3D and 2D, respectively. (II) T, (’L+1) is a child element of a v.-element
Ty € Ti fori <mn or T(n) is a ve-element for i =n. Let T(y) € Ty, 1 < k < i, be the ve-element, such that
Ty C Tiwy fori <n or T(’n) C T(x) fori =n, and T(y)’s parent element Tj,_1y € Tx—1 is an e-element. Then,
we can choose a proper local coordinate system and a reference element T whose geometry only depends on

the initial element T (o, such that the transformations

1—1
Re 0 ) 0 I{lii 0
(14) B£3k) = 0 K" 0 ], d=3 and B£2k) = (b =i oh—1h— z) d=2
bl/ﬂ‘/éil bglﬁ)éil 2k71h:leffz 3Ke Ke
map T(/¢+1) to T fori <n and map T(’n) to T for i =n in 8D and 2D, respectively. In both cases (I) and

(I1), [b1],|b2], [b3] < Co, for Co > 0 depending on Tigy but not on i or k.

Proof. When d = 3, the statements for B(3.) and B(S) follow from Lemma 4.15 in [30]. As revealed in
Lemmas 4.13 and 4.14 of [30], the parameters b, and b2 can be different for different tetrahedra, but they are
uniformly bounded by a constant that depends on the initial tetrahedron T{gy. When d = 2, the statements

for B(622) and B§2k) hold since the triangles involved can be regarded as triangles on the faces of the tetrahedra

T/

(i+1) and T in 3D. The mappings Be . and B( are the restrictions of BS’I) and BE?’;@) on these faces. [

X3

3. THE CONDITIONING ON NOMAC MESHES

In this section, we study the condition numbers (9) of the finite element method on the NoMAC mesh. Let
T be the NoMAC mesh obtained after n consecutive refinements (Algorithm 2.4) from an initial triangulation
To. Throughout this section, we adopt the following notation. Let w € S,, and w be the function in the
finite element space and its vector representation (7), respectively. For each element T', we shall specify a
reference element 7" and an affine mapping K : T' — 7', such that for any (z,y) €T (d=2) or (z,y,2) €T
(d=3), (2,9) :=K(z,y) € T (d=2) or (,7,2) = K(z,y,2) € T (d = 3). In addition, for any function v
on T, we define the function o(&,§) := v(x,y) (d = 2) or ¥(%, 7, 2) == v(z,y,2) (d=3) on T

Recall the types of elements in Definition 2.3. Denote by D, C €2 the region covered by initial o-elements
in 7y. Similarly, we define D,, D, , D., and D,, to be the regions covered by the corresponding initial
elements in Ty whose type is indicated via the index of the region.

3.1. The 2D case. For the triangular mesh 7,,, we first have the following estimates on sub-regions of (2
excluding the singular edges.

Lemma 3.1. Let T' € T, be a triangle. Let I, be the set of indices of the nodes in T, that belong to D,.
Similarly, let I, and I, be the sets of indices of the nodes in T, that belong to D, and D, , respectively.
Then, we have

(15) > IVolfey <C Y0 wj,

TCD,UD,UD,, Le1,UI,UI,,
(16) > wp <022 > lwlFay
eI, TCD,

In addition, for T C D,UD,,, suppose T is in the ith mesh layer L, ; (Definition 2.6) on an initial element,
with Ky, as the grading parameter for the singular vertex. Let It be the set of indices of the nodes in T
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Then, we have

(17) > wp < Ok |wl o
Lelr

In (15) - (17), the constant C does not depend on i or n.

Proof. We consider different cases based on the location of the triangle involved.

Note that from Algorithms 2.2 and 2.4, the mesh on D, is quasi-uniform with mesh size O(27"), since the
refinement is based on the usual midpoint decomposition of a triangle. For 7, 3 T C D,, let T= T(oy be the
reference triangle, where T(q) € 7o is the initial triangle containing T'. Let K : T" — T be the standard affine
mapping [15, 16]. Note that the finite element space defined on the reference element T is finite dimensional
and therefore any two norms are equivalent. We shall use this property multiple times in the paper and will
refer to it as the norm equivalence in finite-dimensional spaces. Then, by the scaling argument and the norm
equivalence in finite-dimensional spaces, we obtain

> IVl = X [ @)+ @u)dedy

TCD, TCD,
(18) < C Z / + (9y)?didy < C Z ||wHL°°(T) C Z w?.
TCD, TCD, tel,

Similarly, by the scaling argument and the norm equivalence in finite-dimensional spaces, we have

Z ||w||%2(T) = Z/ w?dxdy = 272" Z / wrdidy

TCD, TCD, TCD,

c2m Y 19117 e 7 > 027y " wyj.

TCD, Lel,

(19)

Y

For a triangle T' € 7, in D, or in D, , suppose T is in the ith layer of an initial triangle T(¢y. As in
Definition 2.6, let T(;) C T{o) be the element in 7; (0 < i < n) that touches the singular vertex of T(g).
Then, if i = n, we have T' = T{,,); if i < n, we have T' C T(,i+1) C T{;), where T(,i+1) € Tiy1 is an o-element.
Based on Algorithm 2.4, if i < n, T is generated after n — i — 1 midpoint refinements of T(/i+1)’ Recall from
Proposition 2.12 that Bﬁ) maps T(;) to T:= T(o)- Then, the mapping K : T — T satisfies for (z,y) €T
and (2,9) = K(z,y) € T,

(20) (0,w)? + (9,w)? < 022("_i)/£;2i((8iw)2 + (0yw)*) and dady ~ 22(i_")ﬁ§id§:dﬁ.

Therefore, by (20) and the norm equivalence in finite-dimensional spaces, we have

S Vel = Y /T (Osw)? + (Oyw)*didy

TCD,UD,, TCD,UD,,
< c Y (030)% 4 (0gib)%didy < C Y 13 < 7,
TCcD,UD,, YT TCD,UD,,
(21) < 0 ) wp
Lel,Ule,

Meanwhile, using (20) and the norm equivalence in finite-dimensional spaces, we have

||w||2L2(T) = / w?dxdy ~ 22(1_")53/ w?didy
T T
(22) > 022“—”)551‘”@\\200@) > 022(i_")1<12f Z w;.
Lelr
Hence, we have proved the estimate (15) by combining (18) and (21). The estimates (16) and (17) are
due to (19) and (22), respectively. O

Now, we derive useful estimates in regions close to singular edges.
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Lemma 3.2. Let T € T, be an triangle in D.. Suppose T is in the ith mesh layer L.; (Definition 2.8) of
an initial e-element T(gy € To, with k. as the grading parameter for the singular edge. Let It be the set of
indices of the nodes in T Then, we have

(23) Vw72 < C2ke)™™ > wi,
Lelr
(24) > wi < C22 IR w3,
Lelr

where C depends on T(gy bul not on i or n.

Proof. Let T(;y € T; be the triangle such that T' C T(;). Then, according to Definition 2.8, T(; is either
an e-element or a v.-element. Based on Algorithm 2.4, if i = n, we have T' = T,,). If i < n, we have
T C (/+1) C Tis), where T( 41y € Tix1 is an o-element, and T is generated after n — ¢ — 1 midpoint
refinements of T(Z 41y

Case I. T(;y is an e-element in T: (0 < i < mn). According to the arguments above and Proposition 2.13,

Bgz maps T(’ 1) ! '
Then, the mapping K : T — T satisfies for (x,y) € T and (Z,9) € T,
(0,w)% + (Dyw)? < 022D 72 ((930)% + (9y)?)  and  dady ~ (2k,)"27*"didy.

Then, by the norm equivalence in finite-dimensional spaces, we have

(i < n)or T, (i =n) to a reference triangle T whose geometry only depends on T (o).

IVullary < C [ 20n) 7 (@) +(0410)%)2 2" wididi

(25) < C(Qﬁe)_i||1f)||2 ) < C(2ke)™ Z wi.
Lelr
Similarly, we have
|wl|Z2ery = /wzdxdy:2_2n(2me)i/w2didg
T T
(26) > 0272k 0]} oy 2 C27 (26) 3w,

Lelr

Case II. T(;) is a ve-element in 7; (0 <4 < n). Let Ty € Ty, 1 < k < i, be the ve-element, such that
Ty C Ty and Ty)’s parent element T{;_1y € Tx—1 is an e-element. Then, according to Proposition 2.13,

2
Bz(k) maps T(;, )

Then, the mapping K : T — T satisfies for (z,y) € T and (2,9) € T,
(0,w)? + (9,w)? < 022("_i)/€;2i((8j11))2 + (05)%) and  dady ~ (2k.)*F272"didg.

(i < n)or T, (i =n) to a reference triangle T whose geometry only depends on T(0)-

Then, by the norm equivalence in finite-dimensional spaces, we obtain

IVwlaqy < C / 2212120 (90)2 + (9yh)2) 22" (2, ) 2 *dirdy

(27) < ORI g < CR)TE Y ud.
Lelr
Similarly, we have
||w||2Lz(T) = /dexdy:(2&6)2i_k2_2"/w2didg
T T
(28) > k)R 2720 o 5y 2 C@2K)HTF272 Y .

lelr

Recall k <1i <n and k. < 0.5. Then, we obtain (23) by summing up the estimates (25) and (27) over all
T C D.. The estimate (24) is due to (26) and (28). O

Then, we give some useful estimates on regions close to both singular vertices and singular edges.
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Lerpma 3.3. Let T € T, be a triangle in D.,. Let I., be the set of indices of the nodes in T, that belong
to De,. Suppose T is in the ith mesh layer (Definition 2.10) of an initial ev-element, with k, and k. as the
grading parameter for the singular vertex and for the singular edge, respectively. Then, we have

(29) Z IVw|[Z2¢r) < C(2e)~ Z wg.
TCDes (el

In addition, let It be the set of indices of the nodes in T. Fori < n, let T

!
contains T'. Note that T( 41

(+1 € Tiy1 be the triangle that
) can be either an o-, ve-, or e-element. If T, (z‘+1) is an o-element or if i = n, we
have
(30) > wi <Ok 2w e,

Lelr
If T(/i+1) (i <n)is ave- or e-element, suppose T is in the kth (k < n —1i) layer (Definitions 2.6 and 2.8) of
the graded triangulation on T(/i+1) toward the singular vertex or toward the singular edge. Then, we have

(31) Yo wi < C2OTTIR R w2
tely

Proof. For a triangle T in D.,, suppose T' C T{g), where T{q) is an initial ev-element in 7g. Therefore, T is
either in the ith mesh layer L¢,; if ¢ <n and T C TZJr1 for some T(1+1) € Tiv1; 00 T =T,y C Ley,n-

We first consider the case when i = n, namely T = T{,). Then, the dilation Bg,?, in (12) maps T to
T = T(p)- Using the same scaling argument (20) as in Lemma 3.1, we obtain
(32) IVwlZzy <C > wi.

lelr

In addition, by the scaling argument (20) and the norm equivalence in finite-dimensional spaces, we have

[wlZery = /w2d$dy2052”[w2dﬁdg
T T
(33) > ORI gy = CR2T Y wi.
Lelr

We now consider the case when ¢ < n (T is in the ith mesh layer L., ; and suppose T C T(z-‘,—l) € Tit1)-

Note that the mapping B( 2 in (12) translates Ley,i t0 Ley,0 on T(gy, and therefore translates 7},

(i+1
) is an o-element.

)toa

triangle T(i+1 € T1 in Leyp. Our estimates are based on T(i+1) s element type. (I) T (i+1

Based on Algorithm 2.4, T is generated after n — ¢ — 1 midpoint refinements of T(/z‘+1)' Thus, the mapping

K:T—1T= T(i+1) satisfies for (2,y) € T and (&, 7)) € T the same condition as in (20). Following similar
calculations as in (21) and (22), we therefore have

(34) [Vl <C Y u?
telr
and
lwli3ey = /T w?dwdy > C2207 2 /T W2didj
(35) > 92(i—n) 2Z||wHLoo(T) > 92(i—n) ?)z Z w?'
Lelr
(II) T(;;1) is a ve-element. Let 7" = Bf?T cT = Tii1) = szzT(ZH) € Ti. For (z,y) € T, define

(,y) = Bq(}zz) (z,y) and w'(2',y") = w(x,y). Therefore, T' is generated after n — i — 1 graded refinements of
T(i+1) toward the singular vertex with the grading parameter x.. Suppose that 7" is in the kth (k <mn — )

layer of the triangulation on the v.-element T(i+1) that is translated from 7, on T{;;1). Then, by the
calculation involved in (21) and (15), we have

(36) IVw|[Z2¢ry < CIVW' |32y < C Z w; .

Lelr
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Meanwhile, following the scaling argument and by the estimate (17), we have

(37) ||w|\%2(T) = / w?drdy > C’K:?f/ w?dx'dy’ > C’/@;iﬁzik?(’““i) Z wy.

T ! Lelr
(IIT) T{;, ;) is an e-element. We set up the notation similar to that above. Let 7" = Bng cT= T(i-i—l) =
B1(22,2T(/i+1) € Ti. For (z,y) € T, define (2',y') = Bfl)(a:,y) and w'(z',y") = w(x,y). Therefore, T' is
generated after n — i — 1 graded refinements of 7 (i+1) toward the singular edge with the grading parameter

Ke. Suppose that 77 is in the kth (k < n — 4) layer of the triangulation on the e-element T(z‘+1) that is
translated from 7, on T(;;1). Then, by the calculation involved in (21) and by the estimate (23), we have

(38) IVl 2eiry < CIV [Bary < Ok S wf < C2x) ™ 3 wh.
telr tely
Meanwhile, following the scaling argument and by the estimate (24), we have

(39) ||w||2L2(T) = /Tdezdy = /ﬁ?f /, w?dx'dy’ > C’fiff?ﬂk*nﬂ)/@gk Z wy.
Lelr

Then, we obtain (29) by summing up the estimates (32), (34), (36), and (38) over all T C D,,. The
estimates (30) and (31) are due to (33), (35), (37), and (39). O

Consequently, we have the estimate on the condition number of the finite element matrix from 2D NoMAC
meshes.

Theorem 3.4. Let A be the stiffness matriz in (6) associated with the 2D NoMAC mesh T, (Algorithm
2.4). Then, for any w € S,, we have

(40) wiw < 02%"(|Vw|[72 (o),

where w is the coefficient vector of w defined in (7). In addition, the condition number of A satisfies
(41) cond(A) < C(2x~1)",

where kK = mine(ke, 0.5) and the minimum is taken over all the singular edges.

Proof. Recall the regions (D,, D,, D,,, D., D.,) and the index sets (I,, I, I, , Ic, Ic,) from Lemmas
3.1 — 3.3. We shall need the following weighted Poincaré inequality (42). Let p(x,y) be the distance from
(x,y) € Q to the boundary 9. Then, by Theorem 8.4 in [27], for any o € [0, 1], we have

IVwliiz@) = Clp™wllizq)

> C( Sollwliamy + Y. e wliam + > e wlia
TCD, TCD, TCDy,
(42) + 3 Do wlBary + > o wlEe)-
TCD. TCDey

We estimate these terms as follows.
Let T' € T, be a triangle in D,, or D,,,. Suppose T is in the ith layer L, ; of an initial triangle with &, as the
grading parameter toward the singular vertex. Let p,(z,y) be the distance function to the singular vertex.
In addition to p < pj, note that pp >k}, on Ly ; for i <n and p, < Cky on Ly . Define o), :=1+log,, 2.
It is clear that for 0 < k, < 0.5, 0, € (0,1). Then, we can pick any o, < o <1, and by (17), we have
o™ w32y = oy “wliieiry = C220 K2 " k20 wg > €272 wp.
Lelr Lelr
Combining these estimates over all the mesh layers on D, U D, , we have
(43) Z I~ w72y > C272" Z wg-
TCD,UDp,, eI, Ul

ve

Then, we consider a triangle T' € 7, in D, and suppose T is in the ith layer L. ; of an initial triangle with
Ke as the grading parameter toward the singular edge. By Definition 2.8 for the mesh layers, it can be seen
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that p ~ Iié on Le; for i <n and p < Cky on Ley,. Define o :=1+log, 2. Then, we have o, € (0,1). We
can pick any o, < 0 < 1, and by (24), we have

Il = O S ko = 0 Y
Lelr Lelr

Combining these estimates over all the mesh layers on D., we have

(44) Y o wllfagry = 272 Y wi.

TCD. tel,

Now let T' € T, be a triangle in D,,. Suppose T is in the ith layer L., ; of an initial triangle with «, and
Ke as the grading parameters toward the singular vertex and toward the singular edge, respectively. Suppose
TCT (’z +1) € Ti+1 for i < n. Recall the distance function to the singular vertex p,. Then, we have two cases
to consider. (I) T"is in Ley,n or T{; 4 is an o-element. Note that p, ~ Kl on Ley; for i <n and p, < Ckl!
on Ley,n. Define o, :=1+log, 2. Picking any oe, <0 <1, by (30), we have

lo~wlBair > oy “wl3acry > C220 k2 3 k%70 > 02720 3w

telr telr
(I1) T(/i+1) (1 < m)is a ve- or e-element. Suppose T is in the kth (K < n — i) mesh layer of the graded

triangulation on T(’H_l). Then, based on Algorithm 2.4, on this kth layer, p < Cﬁ;lﬁllg. Recall o¢, = 1+1og,, 2
and the fact k, < k.. Then, for any 0., < o <1, by (31), we have

—0 2 2(i+k—mn) 21,2k —2i0 . —2ko,, 2 —2n 2
P~ w2y = C2 ( )np K E Ky ke Twp > C2 E wy .
eelr eelr

Combining these estimates over all the mesh layers on D,,,, we have

(45) Do o T wlFeery = 0272 Y wy.

TCDey LE Ty

Recall that for all the singular vertices and singular edges, the grading parameters x,, k. € (0,0.5). Thus,
we can always choose o € [0,1] such that ¢ > max, (0, 0c, 0ey), Wwhere the maximum is taken over all the
singular vertices and edges. Therefore, by the estimates in (42) — (45) and by (16), we obtain the estimate
(40).

Meanwhile, let kK = min,(ke, 0.5), where the minimum is taken over all the singular edges. Following (15),
(23), and (29), we have

IVw|Ze(q) < C26) "W w.
Then, by (40) and the estimate above, we derive
C27"wlw < wlAw = HVwH%Q(Q) < C@2r)"wlw.

Thus, by (8) and (9), we obtain
cond(A) < C(2x™H)™,
which completes the proof. O

Remark 3.5. It is interesting to compare Theorem 3.4 with the classical estimate on condition numbers.
According to [12], on a 2D shape regular mesh, the condition number of the finite element stiffness matrix
A of equation (1) satisfies

(46) cond(A,) < ON(1 + |log(NAZ,.))),

where N is the dimension of the finite element space and h,,;, is the smallest element size. Note that for the
finite element method on the 2D NoMAC mesh 7, (Algorithms 2.2 and 2.4), we have N ~ 4". Therefore,
the result in Theorem 3.4 implies the following. 1. If 7, is shape regular (namely, no singular edge is
present), we have cond(A) < CN. This is consistent with the estimate (46). Note that the isotropic 2D
NoMAC mesh is a special case of the rather general “nondegenerate” mesh considered in [12]. It seems
that through our analysis the particular geometric structure of the 2D NoMAC can be exploited to obtain
a sharper estimate (without the log term) than that in (46), while the estimate (46) should still be valid for
general nondegenerate meshes. 2. If 7, is anisotropic (with special refinements toward the edge), the upper
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bound of the condition number involves the edge grading parameter and is larger than the dimension N of
the discrete space.

3.2. The 3D case. The estimates of the condition numbers in the 3D case follow a similar path as in the
2D case. For the tetrahedral mesh 7,,, we shall first derive estimates on different local sub-regions depending
on its relation with the singular vertices and singular edges. Recall that the regions D,, D,, D,,, D., and
D., are unions of initial elements in Tq whose type is indicated via the index of the region.

Lemma 3.6. Let T € T, be a tetrahedron. Let I, be the set of indices of the nodes in T, that lie in D,.
Similarly, let I, and I,,, be the sets of indices of the nodes in Ty, that lie in D,, and D, , respectively. Then,
for T C D,, we have

(47) S IVelay < €27 w?,

TCD, tel,
(48) Zw? < o2’ Z [w]|72(7)-
Lel, TCD,

ForT c D,UD,,_, suppose T is in the ith mesh layer (Definition 2.6) on an initial element with r;, as the
grading parameter toward the singular vertex. Let IT be the set of indices of the nodes in T'. Then, we have

(49) IVwlFee < C27(26,)" > wi,
Lelr
(50) D wi < 022k w3 .
Lelr

Proof. Note that the mesh on D, is quasi-uniform with mesh size O(27"). For each initial tetrahedron in
D,, such midpoint decompositions produce tetrahedra that belong to at most three similarity classes [13].
Let T be the reference tetrahedron with vertices (0,0,0), (1,0,0), (0,1,0), and (0,0,1). Let T € 7, be a
tetrahedron in D, and let K : T — T be the standard affine mapping. Then, by the scaling argument and
the norm equivalence in finite-dimensional spaces, we obtain

Z IVwl[Zary = Z /(axw)2+(5yw)2+(8zw)2dmdydz
TCD, TcD, T
< o Y / (050)% + (0y)° + (=102 dirdds
T7cD, /T
(51) < c2 "y 19117 (7 <027y wy.
TCD, Lel,

Meanwhile, by the scaling argument and the norm equivalence in finite-dimensional spaces, we have

Sollwliem = > /T wdrdydz > C27%" > /T W2 didgdz

TCD, TCD, TCD,
(52) > c27n Yy 1017 7y = C27" > wp.
TCD, Lel,

For a tetrahedron T in D, or in D, , suppose T' is in the ith layer of an initial tetrahedron T{g). As
in Definition 2.6, let T(;y C T(gy be the element in 7; (0 < i < n) that touches the singular vertex of T(g).
Then, if i = n, we have T' = T{,,); if i < n, we have T' C T(,i+1) C T{;), where T(,i+1) € Tiy1 is an o-element.
Based on Algorithm 2.4, if i < n, T is generated after n — i — 1 midpoint refinements of T(/i+1)’ Recall from

Proposition 2.12 that B® maps T{; to T .= T(o)- Then, the mapping K : T" — T satisfies for (z,y,2) €T

v,i

and (Z,9,%2) = K(x,y,2) € T,

(53) { (O0)? + (9w)* + (0.w)* < O 2 (050)? + (9y10)* + (9:10)2)

dadydz ~ 230" 3l didjds.
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Therefore, by (53) and the norm equivalence in finite-dimensional spaces, we derive

||Vw||2L2(T) = /T(&Cw)2 + (0yw)? + (0,w)*drdyd=>
< 02‘”(2/@17)"/(8@1&)2 + (050)? + (9:10)2didyds < 02—"(2mp)i||w\|2mm
T
(54) < C27"(2mp)" Y i

Lelr

Meanwhile, using the scaling argument as in (53) and the norm equivalence in finite-dimensional spaces, we
have

||w||2L2(T) = /Tdemdydz > 23(i_”')ngiéw2didgdé
(55) > C2207 w2, 3 > 2302 N " wy,
telr
Then, we have proved the estimate (47) by (51). The estimates (48) and (50) are due to (52) and (55),
respectively. The estimate (49) is due to (54). O

The estimates in the region close to the singular edge read as follows.

Lemma 3.7. Let T € Ty be an tetrahedron in D,.. Let I. be the set of indices of the nodes in T, that lie in
D.. In addition, suppose T is in the ith mesh layer (Definition 2.8) on an initial e-element with k. as the
grading parameter toward the singular edge. Let I7 be the set of indices of the nodes in T. Then, we have

(56) S IVwlagy < C27> wi,
TCD, Lel,

(57) Z w; < 023("7i)’i;3i||w||%2(T)-
Lelr

Proof. Let T'C D be in the ith layer of an initial e-element T{gy. Let T(;) € 7T; be the tetrahedron such that
T C Ty Then, according to Definition 2.8, T{;) is either an e-element or a v.-element. Based on Algorithm
2.4, if i = n, we have T = T(,,). If i < n, we have T' C T(/¢+1) C T{;), where T(Ii+1) € Tix1 is an o-element,

and T is generated after n — ¢ — 1 midpoint refinements of T(’ . We proceed as in the proof of Lemma 3.2

i+1)
by considering the following two cases.
3)

Case L. T{;) is an e-element in 7;. According to Proposition 2.13, B, maps T(/z‘+1) (i <n)or Ty (1 =n)
to a reference triangle T whose geometry only depends on 7\q). Then, the mapping K : 7" — T satisfies for
(z,y,2) € T and (,9,2) € T,

(02w)? + (Byw)? + (D-w)? < C22 =DK% ((90)% + (9yh)? + (D:0)?) ,

drdydz ~ 273" (2k,.)? didjds3.
Let I be the set of indices of the nodes in 7. Then, by the scaling argument and the norm equivalence in
finite-dimensional spaces, we have

IVwllZzry < CAQQ”(QKE)_Qi((ﬁiw)2+((’)ﬁuﬁ)z—l—(8212))2)2_3”(2m€)2id9%d;gd2

—n A2 —-n 2
(58) < 027" ) < C2 > wj.
telr
Meanwhile, using the scaling argument and the norm equivalence in finite dimensional spaces, we have

Hw||2L2(T) = /wzdxdydz202_3"(2KE)21/Aw2d§:d@d2
T T
(59) > 027 (2 |07 e ) 2 277" (206)% > wp.
Lelr

Case II. T(;) is a ve-element in 7;. Let T(xy € T, 1 < k < i, be the v.-element, such that T(;) C T,
and T(1)’s parent element T(y_1) € Ti—1 is an e-element. According to Proposition 2.13, ngk) maps T(/i+1)
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(i <n)or T, (i =n) to a reference triangle T whose geometry only depends on T(y- Then, the mapping
K : T — T satisfies for (z,y,2) € T and (&,9,2) € T,

(Opw)? + (Oyw)? + (D.w)? < C22M=D K720 ((9;)? + (9g0)? + (9:0)?)
drdydz ~ 273" (2K, ) > ~Fdidydz.

Let I be the set of indices of the nodes in T. Then, we have

IN

IVwlZ2cr) C /T 2212 72 ((9;W)? + (9g)? + (9:0)2) 273" (26) %~ Fdidyd2

IN

(60) O27" (2ke)" M0} o 5y < C27"(20) > wj.

lelr

Meanwhile, using the scaling argument and the norm equivalence in finite-dimensional spaces, we have

wlZ2) = /T w?dzdydz > C2737(2k,)%F / wrdidjdz

T
> 027" (2k0)% 70 Y wy.
Lelr

—3n 3i—k||,~]12
(61) > C2 (2ke) ([ < (T

Recall k <14 <n and k. < 0.5. Then, we obtain (56) by summing up the estimates (58) and (60) over all
T C D.. The estimate (57) is due to (59) and (61). O

Then, we present the estimates in the region that close to the singular vertex and single edge in 3D.

Lemma 3.8. Let T € T, be a tetrahedron in De,. Let I, be the set of indices of the nodes in T, that lie in
D.,. Let It be the set of indices of the nodes in T. Then, we have

(62) o AVwliagy <0277 Y wj.
TCD., (el

In addition, suppose T is in the ith mesh layer (Definition 2.10) of an initial ev-element, with k, and ke
as the grading parameter for the singular vertex and for the singular edge, respectively. For i < n, let

T(/i+1) € Tit1 be the tetrahedron that contains T. Then, if T(/i+1) is an o-element or if i = n, we have
(63) > wi < C20 Ik B w| Fa -

Lelr
If T(/i+1) (i <n)is ave- or e-element, suppose T is in the kth (k < n —1i) layer (Definitions 2.6 and 2.8) of
the graded triangulation on T(/i—i-l) toward the singular verter or toward the singular edge. Then, we have

(64) Y wi < OO T w | o o
telr

Proof. For a tetrahedron T in D.,, suppose T' C T g, where T{q) is an initial ev-element in 7y with singular
vertex v and e. Therefore, T is either in the ith mesh layer L., ; if i < n and T C T} ) for some

(i+1
T(/i+1) € Tiyr; 00 T =Ty C Lev,n-
We first consider the case when i = n, namely T = T{,). Then, the dilation Bq(,g% in (12) maps T to
T = T(0)- Therefore, using the same arguments as in Lemma 3.6 (see also (49) and (50)), we have

(65) IVwlZe(r) < Cry > i,
Lelr
(66) Z wi < Crp™lwl|Tz(py-
Lelr

We now consider the case when ¢ < n (T is in the ¢th mesh layer L., ; and suppose T' C T(/i-i-l) € Tit1)-
(3)

v,

Then, the mapping B to a tetrahedron

T(’Hl) € 71 in L, . We formulate the estimate based on T(li+1)

Based on Algorithm 2.4, T is generated after n — ¢ — 1 midpoint refinements of T(/i+1)' Thus, the mapping

in (12) translates L, ; to L, o on T{g), and therefore translates T(/i+1)

s element type. (I) 7(;,,) is an o-element.
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K:T—1T= T(/i+1) satisfies for (z,y,2) € T and (&,7,2) € T the same condition as in (53). Following
similar calculations as in (54) and (55), we therefore have

(67) IVwl|Fz(r) < C27"(2mp)" Y wi,

(el
(63) w32y > C22E™ 3> wp.

Lelr
(I1) T(/i—i-l) is a ve-element. Let TV = B,(j’gT cT = Zf’(’iﬂ) € Ti. For (z,y,2) € T, define (2/,y,2") =
Bq(}gz) (z,y,2) and w'(2',y,2") = w(x,y,z). Therefore, T" is generated after n — i — 1 graded refinements of
T(/z'+1) toward the singular vertex with the grading parameter k.. Suppose that 7" is in the kth (k < n — i)
layer of the triangulation on the wv.-element T(’Z +1) that is translated from T, on T(’Z. +1)- Then, by the
calculation involved in (54) and (49), we have
(69) IVwl[Zzery < C277(26,)" |V T2y < C27"(2) 2777 (260)F Y wf.

telyr

Meanwhile, following the scaling argument, the estimate (50), we have
(70) ||w||%2(T) = /Tdexdydz =k // wda'dy' dz’ > C/@f’)iQB(’“*"H)ng Z w3,

Lelr

(111) T(Ii+1) is an e-element. Let T = B(U"Z?T cT = T(li+1) € T1. For (z,y,z) € T, define (2/,y',2') =

Bf’z (x,y,2) and w'(2’,y,2") = w(x,y,z). Therefore, T" is generated after n — i — 1 graded refinements of

1.
(i+1)
of the triangulation on the e-element T('Z. +1) that is translated from 7, on T(’i 1y Then, by the calculation

involved in (54) and the estimates (58) and (60), we have

toward the singular edge with the grading parameter k.. Suppose that 7" is in the kth (k < n—1) layer

(71) IVw][320y < C27"(26,) |V 3270y < C220M k] >~ i
Lelr

Meanwhile, following the scaling argument, the estimate (50), and the estimate (57), we have
(72) ||w||%2(T) = / wldzdydz = mii/ w?dx'dy'dz’ > Cnﬁ@“’“‘"“%i’“ Z w3,
T ’ Lelr
Then, we obtain (62) by summing up the estimates (65), (67), (69), and (71) over all T C D,,. The
estimates (63) and (64) are due to (66), (68), (70), and (72). O

We now have the estimates on the condition number of the finite element method on 7,,.

Theorem 3.9. Let A be the stiffness matriz in (6) associated with the 3D NoMAC mesh T, (Algorithm
2.4). Let k = min, ¢(Ky, ke, 0.5), where the minimum is taken over all the singular vertices and singular
edges. Then, for any w € S,,, we have

237 for k > 0.125 )

T 2
(73) wiw < Cf[Vwllzzq) ({ k" for 0 <k < 0.125

where w is the coefficient vector of w defined in (7). In addition, the condition number of A satisfies

Cc22n for k > 0.125

(74) cond(A) < { C(2k)™™ for 0 < k < 0.125.

Proof. Recall the regions (D,, Dy, D,,, De, Dey) and the index sets (I, I, I, Ic, Io,) from Lemmas 3.6
— 3.8. Let p(x,y,z) be the distance from (z,y,z) € Q to the boundary 9Q. Then, by Theorem 8.4 in [27],



CONDITIONING ON ANISOTROPIC MESHES 19

we have the weighted Poincaré inequality

IVwlf2@y > Cllp™ w2

> (X lulBemy+ X o w0l + > o wlZa
TCD, TCD, TCD,,
(75) + 3 o7l + D T 0l )-

TCDe TCDey

We shall estimate these terms in the corresponding regions.

Let T € 7T, be a tetrahedron in D, or in D, . Suppose T is in the ith layer L, ; of an initial tetrahedron
with x, as the grading parameter to the singular vertex. Note that p ~ I{; on L, ; for i <n and p < Cky
on Ly . Then, by (50), we have

(76) lp™ wl| Gy > C27328 k(20N " wp > €273 2% ) > wy.
telr Lelr
Consider a tetrahedron T' € 7,, in D, and suppose T is in the ith layer L. ; of an initial tetrahedron with

ke as the grading parameter to the singular edge. Note that p ~ k% on L. ; for i < n and p < Ck? on Le .
Then by (57), we have

(77) lp w3 sy > C27323 320N "} > 27323 k5l Y wp
telr telr
Now let T' € T, be a tetrahedron in D,,. Suppose T is in the ith layer L, ; of an initial tetrahedron
with ), and k. as the parameters to the singular vertex and the singular edge. Suppose T' C T('Z. +1) € Tit1
if 2 < n. Let p, be the distance function to the singular vertex. It is clear that p < p,. Then, we have
two cases to consider. (I) T is in Le, , Or T(/z‘+1) is an o-element. Note that p, ~ I{; on Le, ; for i < n and
pp < Cky on Ley . Then, by (63), we have

(78) ™ wlZ 2y = oy ' wlFe gy = €273 25 k(320N " wi > C2732% kL Y~ wy.
telp telp
(II) Tf; 41y (i < n)is a ve- or e-element. Suppose T is in the kth (k < n — i) mesh layer of the graded
triangulation on T('H_l). Then, on this kth layer, p < Cn;nlg. Recall £, < ke. Then, by (64), we have
(79) ”pilw”%ﬁ(T) > 0273n23(i+k)H:S)SfQ)ngBfZ)k Z wg > 0273n23(i+k)ni7;ﬂlz Z w?
el telp

Recall the definition of k, in (11). Let N be the dimension of the finite element space. Then, for k =
min, ¢ (Ky, Ke, 0.5), where the minimum is taken over all the singular vertices and singular edges, according
to the estimates (48) and (75) — (79), we obtain

_ 273" for k > 0.125
IVwllZe@y = C Y o wllfeqy 2C Y “’?({ o o0 0.125 )
TeT, 1<EEN
273" for k > 0.125
T =
2 Cw W({ K for 0 < K < 0.125 )

Therefore, we have proved the desired estimate in (73). In addition, by (47), (49), (56), and (62), we have

1<U<N

Then, The estimate (74) on the condition number is an immediate consequence of (8) — (10), (80), and
(73). O

Remark 3.10. It is clear that the estimate on the condition number from the 3D NoMAC mesh (Theorem
3.9) is different than the 2D counterpart (Theorem 3.4). In the 3D estimate, the grading parameters to the
singular vertex and to the singular edge play a similar role in the bounds while only the edge parameter was
involved in the 2D case. Note that the dimension of the finite element space satisfies N ~ 8™ on the 3D
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NoMAC mesh 7,,. Recall from [12] the following result for a preconditioned stiffness matrix A on 3D shape
regular meshes,

cond(A,) < ON?/3,

Therefore, for mild grading NoMAC meshes in 3D (k > 0.125), the estimate (74) resembles that for the
preconditioned stiffness matrix on shape regular meshes. The threshold k = 0.125 is the by-product of the
estimates in (78) and (79), where an additional factor 23% or 23(+F) helps balance the effect from & until
K < 0.125. The estimates in Theorems 3.4 and 3.9 recover the classical estimates on condition numbers when
the usual midpoint decomposition is used in the mesh refinement. It can be seen by letting h be the mesh
size of T, after n refinements. Then h ~ 27", For both the 2D and 3D cases, since x = 0.5 for the midpoint
decomposition, the estimates in Theorems 3.4 and 3.9 become cond(A) < Ch~2.

4. NUMERICAL ILLUSTRATIONS

In this section, we report numerical test results to verify the estimates on condition numbers (Theorem 3.4
and Theorem 3.9). In particular, these are the condition numbers of the stiffness matrix (6) from equation (1)
on 2D and 3D NoMAC meshes. We focus on the growth rate of the condition numbers between consecutive
refinements in relation to different types of grading parameters. For a given domain €2, we use the same
notation: denoting by 7o and 7, the initial triangulation and the triangulation after n graded refinements
(Algorithm 2.4), respectively. Recall the finite element space S,, in (4) associated with the mesh 7, and its
dimension N = dim(S,,). Note that N ~ 4" (2D) and N ~ 8" (3D).

The first set of tests is for meshes on 2D domains: the L-shaped domain and the square domain. On
the L-shaped domain (Figure 5), graded meshes are generated toward the re-entrant vertex. These meshes
are isotropic and effectively approximating the corner singularity in the solution. In Table 1, we list the
condition numbers of the stiffness matrices from different values of the grading parameter x,. The growth
rate 7, is the ratio of the condition numbers from two consecutive mesh levels. Namely, let A,,_; and A,
(n > 1) be the stiffness matrices on 7,—1 and Ty, respectively. Then,

~ cond(A,)
~ cond(A,_1)

Recall that k, = 0.5 corresponds to the midpoint decomposition. It is clear from the table that for different
values of k,, although the actual condition numbers are different, the growth rate is the same, converging
to 4. This is consistent with the result in Theorem 3.4 and in [12]. Namely, the condition numbers grow by
a factor of 4 on such graded meshes for each refinement.

On the square domain (Figure 6), we test the NoMAC mesh with special refinements toward an edge
with the grading parameter k.. The test results are listed in Table 2. For x. < 0.5, the triangles close to
the edge e can be very thin with the maximum angle approaching = as n — oo. Therefore, the meshes
are highly anisotropic and lack of the maximum angle condition. According to Theorem 3.4, the condition
numbers grow by a factor of 2k ! for each refinement of these meshes. We see a strong agreement between
the numerical growth rates in Table 2 and this theoretical prediction.

The second set of tests is for meshes on three typical 3D domains: the tetrahedral domain, the prism
domain, and the Fichera corner domain. The NoMAC mesh has shown its effectiveness in approximating
3D singular solutions [30, 32]. We here use these domains to test the condition numbers corresponding to
different types of refinements.

On the tetrahedral domain (Figure 7), we implement the graded meshes toward a vertex with the grading
parameter x,. These meshes are isotropic and become smaller in size near the vertex v to improve the
approximation to the possible vertex singularity. On the prism domain (Figure 8), we implement the graded
meshes toward the singular edge e with the grading parameter x.. These meshes are anisotropic when
ke < 0.5 and do not maintain the maximum angle condition. Such anisotropic property in the mesh is
consistent with the anisotropic behavior of the possible singular solution near the edge. Based on Theorem
3.9, in both cases, the condition numbers grow for each refinement by a factor that is determined by the
estimate (74). Namely, when the grading parameter is greater than or equal to 0.125, the growth rate should
be 4, which is the same rate as for the midpoint refinement. When the grading parameter is less than 0.125,
the condition numbers are expected to grow by a factor of (2k)~!, where k = k, for the tetrahedral domain
and kK = k. for the prism domain. In Table 3 and Table 4, we list the condition numbers for these two
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cond Tn cond Tn cond n cond n cond n
5.18E1 | 4.22 | 4.87E1 | 4.57 | 4.73E1 | 4.73 | 4.73E1 | 4.70 | 8.97E1 | 5.75
2.11E2 | 4.06 | 2.06E2 | 4.22 | 2.01E2 | 4.24 | 2.03E2 | 4.28 | 4.01E2 | 4.47
8.47E2 | 4.02 | 8.36E2 | 4.07 | 8.15E2 | 4.07 | 8.29E2 | 4.09 | 1.65E3 | 4.12
6 | 3.40E3 | 4.01 | 3.36E3 | 4.02 | 3.28E3 | 4.02 | 3.34E3 | 4.03 | 6.66E3 | 4.03
TABLE 1. Condition numbers on NoMAC meshes: 2D vertex refinements in the L-shaped
domain (Figure 5).

T | W

cond Tn cond Tn cond Tn cond n cond T
3 | 5.15E1 | 4.07 | 5.49E1 | 4.51 | 8.61E1 | 6.09 | 2.11E2 | 9.18 | 1.30E3 | 18.3
4 | 2.07TE2 | 4.02 | 2.69E2 | 4.90 | 5.65E2 | 6.57 | 2.08E3 | 9.84 | 2.56E4 | 19.7
5 | 8.30E2 | 4.00 | 1.34E3 | 4.98 | 3.77E3 | 6.67 | 2.07E4 | 9.97 | 5.10E5 | 19.9
6 | 3.32E3 | 4.00 | 6.69E3 | 5.00 | 2.52E4 | 6.69 | 2.07E5 | 9.99 | 1.02E7 | 20.0
TABLE 2. Condition numbers on NoMAC meshes: 2D edge refinements in the square domain
(Figure 6).

cond Tn cond Tn cond Tn cond Tn
5.69E0 | 5.69 | 5.27E0 | 5.27 | 5.53E0 | 5.53 | 6.77E0 | 6.77
2.48E1 | 4.37 | 2.41E1 | 4.57 | 2.60E1 | 4.70 | 3.12E1 | 4.61
1.02E2 | 4.09 | 1.05E2 | 4.37 | 1.15E2 | 4.41 | 1.32E2 | 4.24
4.09E2 | 4.02 | 4.32E2 | 4.11 | 4.73E2 | 4.12 | 5.41E2 | 4.08
1.64E3 | 4.01 | 1.74E3 | 4.03 | 1.91E3 | 4.03 | 2.18E3 | 4.02

| O U | W

cond Tn cond n cond n
1.16E1 | 11.6 | 1.48E1 | 14.8 | 2.66E1 | 26.6
7.79E1 | 6.73 | 1.17TE2 | 7.96 | 3.40E2 | 12.8
4.20E2 | 5.39 | 7.90E2 | 6.72 | 3.61E3 | 10.6
2.15E3 | 5.12 | 5.05E3 | 6.39 | 3.68E4 | 10.2
7 | 1.08E4 | 5.03 | 3.17E4 | 6.29 | 3.70E5 | 10.1
TABLE 3. Condition numbers on NoMAC meshes: 3D vertex refinements in the tetrahedral
domain (Figure 7).

S| O | W

cond Tn cond Tn cond Tn cond Tn
2.75E1 | 4.49 | 3.28E1 | 4.82 | 4.27E1 | 5.05 | 6.39E1 | 5.71
1.15E2 | 4.18 | 1.44E2 | 4.37 | 1.90E2 | 4.44 | 2.98E2 | 4.66
4.66E2 | 4.05 | 5.95E2 | 4.15 | 7.96E2 | 4.20 | 1.26E3 | 4.25
1.87E3 | 4.02 | 2.41E3 | 4.06 | 3.25E3 | 4.08 | 5.17E3 | 4.09
7.50E3 | 4.01 | 9.69E3 | 4.02 | 1.31E4 | 4.02 | 2.08E4 | 4.03

| O U | W

cond Tn cond n cond n
1.39E2 | 7.36 | 1.91E2 | 8.37 | 4.38E2 | 12.3
7.30E2 | 5.28 | 1.10E3 | 5.78 | 4.40E3 | 10.1
3.37TE3 | 4.61 | 6.75E3 | 6.11 | 4.51E4 | 10.3
1.46E4 | 4.33 | 4.25E4 | 6.30 | 4.57E5 | 10.1
7 | 6.90E4 | 4.73 | 2.66E5 | 6.27 | 4.58E6 | 10.0
TABLE 4. Condition numbers on NoMAC meshes: 3D edge refinements in the prism domain
(Figure 8).

O O | W

21
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cond Tn cond Tn cond Tn cond n cond n
6.20E1 | 4.38 | 8.75E1 | 4.73 | 1.45E2 | 5.42 | 2.85E2 | 6.55 | 1.58E3 | 11.4
2.57E2 | 4.14 | 3.83E2 | 4.38 | 6.76E2 | 4.67 | 1.73E3 | 6.05 | 1.49E4 | 9.43
1.04E3 | 4.05 | 1.60E3 | 4.18 | 2.88E3 | 4.26 | 8.61E3 | 4.99 | 9.68E4 | 6.51
4.18E3 | 4.02 | 6.50E3 | 4.07 | 1.17TE4 | 4.07 | 3.7T9E4 | 4.41 | 5.29E5 | 5.46
7 | 1.67TE4 | 4.00 | 2.62E4 | 4.02 | 4.73E4 | 4.02 | 1.57E5 | 4.13 | 2.72E6 | 5.14
TABLE 5. Condition numbers on NoMAC meshes: 3D vertex and edge refinements (k =
Ky = Ke,;, 1 <i < 3) in the domain with the Fichera corner (Figure 9).

cond Tn cond Tn cond Tn cond Tn
5.19E0 | 5.19 | 5.07E0 | 5.07 | 5.54E0 | 5.54 | 7.30E0 | 7.30
2.26E1 | 4.36 | 2.21E1 | 4.38 | 2.47E1 | 4.46 | 3.45E1 | 4.72
9.26E1 | 4.09 | 9.14E1 | 4.12 | 1.03E2 | 4.15 | 1.46E2 | 4.24
3.72E2 | 4.02 | 3.69E2 | 4.04 | 4.15E2 | 4.05 | 5.97TE2 | 4.07
1.49E3 | 4.00 | 1.48E3 | 4.02 | 1.67E3 | 4.01 | 2.40E3 | 4.02

S| U | W

| O U | W

cond Tn cond Tn cond Tn

1.54E1 | 15.4 | 2.02E1 | 20.2 | 3.61E1 | 36.1
7.98E1 | 5.20 | 1.06E2 | 5.25 | 1.94E2 | 5.37
3.43E2 | 4.30 | 4.55E2 | 4.29 | 8.24E2 | 4.26
1.40E3 | 4.09 | 1.86E3 | 4.09 | 3.36E3 | 4.08
7 | 5.65E3 | 4.02 | 7.47TE3 | 4.02 | 1.35E4 | 4.02
TABLE 6. Condition numbers of the scaled stiffness matrix on NoMAC meshes: 3D vertex
refinements in the tetrahedral domain (Figure 7).

S| O x| W

domains. These test results verify our theory: for k > 0.125, the growth rates are 4, while for x = 0.1,0.08
and 0.05, the growth rates follow another theoretical estimate (2x)71.

On the domain with the Fichera corner (Figure 9), the graded elements are concentrating toward the
three singular edges ej, es, and e3, and also toward the singular vertex v. According to Algorithm 2.4, we
choose the same grading parameter x := K, = Kk, (1 < i < 3) for the singular vertex and edges to simplify
the implementation. Note that we need many tetrahedra in the initial mesh due to the complex geometry
of the domain. Therefore, with the same number of refinements, the size of the stiffness matrix in this test
is much larger than those in the other two tests on 3D domains. The test results are displayed in Table 5,
which also validate the estimate in Theorem 3.9: for x > 0.125, the growth rate is 4 and for x < 0.125, the
growth rate is bounded by (2x)~.

In the tests above, the stiffness matrices are defined as in (6) on NoMAC meshes. According to Algorithm
2.4, if the grading refinement is only for the vertex of the domain (see Figure 7 for a 3D example), the
resulting meshes are isotropic and shape regular [30]. In this case, a simple diagonal preconditioner [12]
will result in a scaled stiffness matrix whose condition number is bounded by the estimate in (2). In 3D,
this means the condition numbers of the scaled stiffness matrix grow by a factor of 4 for consecutive graded
refinements regardless of the grading parameter. We display the condition numbers in this case in Table 6
for the readers’ reference. Comparing the results in Table 6 and in Table 3, it is clear that the diagonal
preconditioner can improve the conditioning of the FEMs. We point out, however, that this preconditioning
technique is not well defined for anisotropic meshes toward singular edges. Further investigation is needed
to develop good preconditioners for the finite element equations on anisotropic NoMAC meshes.
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