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Abstract. We study the behavior of the finite element condition numbers on a class of anisotropic meshes.

These newly-developed mesh algorithms can produce numerical approximations with optimal convergence to
isotropic and anisotropic singular solutions of elliptic boundary value problems in two- and three-dimensions.

Despite the simplicity and fewer geometric constraints in implementation, these meshes can be highly

anisotropic and do not maintain the maximum angle condition. We formulate a unified refinement principle
and establish sharp estimates on the growth rate of the condition numbers of the stiffness matrix from these

meshes. These results are important for effective applications of these meshes and for the design of fast

numerical solvers. Numerical tests validate the theoretical analysis.

1. Introduction

Let Ω ⊂ Rd, d = 2, 3, be a bounded polytopal domain. Namely, Ω is a polygon (d = 2) or a polyhedron
(d = 3). Consider the Poisson equation with the Dirichlet boundary condition as the model problem,

−∆u = f in Ω, u = 0 on ∂Ω.(1)

The solution regularity of elliptic boundary value problems highly depends on the geometry of the domain.
For example, even if the given data f is smooth, the solution of equation (1) may have singularities near
the non-smooth points (vertices for d = 2, and vertices and edges for d = 3) on the boundary of the
domain. These singularities can severely deteriorate the convergence of the numerical approximation. A
popular approach is to increase the mesh density near the non-smooth points capturing the high-frequency
components of the solution. For two-dimensional (2D) elliptic problems, this approach has led to mesh
algorithms [1, 8, 10, 31, 34, 36, 41] that can recover the optimal convergence of finite element methods
(FEMs) approximating singular solutions. These 2D elements vary much in size depending on their distance
to the vertices, while they are isotropic and shape regular, which is consistent with the behavior of the 2D
corner singularity.

The situation for three-dimensional (3D) problems is much more challenging. Both the vertices and the
edges of the domain can give rise to singularities in the solution. The 3D vertex singularity is isotropic,
carrying features similar to the 2D vertex singularity but in a higher dimension. The 3D edge singularity
shows a distinctive character: it is anisotropic – singular in directions orthogonal to the edge and smoother in
the edge direction. According to the aspect ratio of the element, the existing graded mesh algorithms for 3D
singularities can be divided into two categories: isotropic and anisotropic. The isotropic meshes include most
of the adaptive meshes from a-posteriori estimates [18, 19, 41] and the dyadic-partitioning meshes [2, 22, 35]
based on a-priori analysis. These meshes are shape regular but the associated FEMs lose the optimal
convergence when the edge singularity is strong or when high-order FEMs are used. The anisotropic mesh
algorithms include the one in [1, 3, 4, 5] that is based on the coordinate transformation from a quasi-uniform
mesh, and the one in [9, 11] that involves extra steps for prism refinements to maintain the angle condition
of the simplex. Although the FEMs obtain the optimal convergence on both meshes, these algorithms are
complicated to implement in general polyhedral domains, and do not result in well-structured (nested) finite
element spaces. This is largely because these algorithms have geometric restrictions on simplexes to keep the
maximum angle condition of the mesh. Recall that the maximum angle condition is often a rule of thumb
to start with in developing numerical schemes, and the use of meshes without the maximum angle condition
may lead to reduced convergence to functions in the Sobolev space. See for example the works of Babuška

H. Li was supported in part by the National Science Foundation Grant DMS-1819041 and by the Wayne State University
Career Development Chair Grant. X. Lu was supported in part by the Natural Science Foundation of China Grant 11801484.

1



2 H. LI AND X. LU

and Aziz [7] and of Kř́ıžek [26]. We also mention the works [6, 20, 21, 23, 28, 37, 38, 39] where other relevant
2D and 3D anisotropic meshes were studied for various anisotropic problems.

Recently, a set of mesh algorithms were proposed in [10, 29, 30, 31, 32, 33, 34] for both 2D and 3D
domains. These algorithms are simple, explicit, and applied to general polytopal domains. Based on reclusive
refinements of the initial mesh, these meshes give rise to finite element solutions converging to the singular
solution at the optimal convergence rate. These algorithms merely need a reasonable initial mesh of the
domain, and the resulting meshes are conformal and similar in topology and data structure to the quasi-
uniform mesh, and therefore can potentially improve practical computations solving singular problems. Such
flexibility also means less control on the shape regularity. Existing finite element analysis is often built upon
the assumption of an isotropic and shape regular mesh. However, these new meshes can be highly anisotropic
and lose the maximum angle condition. Therefore, unconventional analytical and computational tools are
needed for further developments and to broaden the application range of these methods.

We have two main tasks in this paper. 1. We formulate a refinement principle that will cover a wide
range of 2D and 3D graded mesh algorithms in a unified frame work. This meshing principle is of interest
itself, giving rise to not only the aforementioned 2D isotropic meshes [1, 10, 31] for corner singularities and
the 3D anisotropic meshes [30, 32, 33], but also 2D anisotropic meshes for degenerate elliptic problems [29].
Due to the possible lack of the maximum angle condition, we shall hereafter refer to these meshes as no-
maximum-angle-condition (NoMAC) meshes. 2. We study the condition numbers of FEMs on 2D and 3D
NoMAC meshes. The conditioning of the numerical scheme is instructional in effective implementations of
the algorithm, and in design of fast matrix solvers for the discrete system. Most of the existing conditioning
estimates are for shape regular meshes. We here summarize some well-known results [12, 15, 40] that are
relevant to this paper. On a shape regular mesh, let N be the dimension of the finite element space and let
hmin be the smallest element size in the triangulation. Then, the condition number cond(As) of the scaled
finite element stiffness matrix As satisfies{

cond(As) ≤ CN(1 + | log(Nh2
min)|) (2D case),

cond(As) ≤ CN2/3 (3D case).
(2)

In addition, we refer the readers to the following works on finite element condition numbers for other 3D
graded meshes designed for vertex and edge singularities. For isotropic meshes near edges, see [2, Section 6];
for isotropic meshes near vertices and edges, see [5, Lemma 3.1 and Remark 3.2]; and for some anisotropic
meshes, see [1, Section 4.3.3], where diagonal scaling was also discussed. All these meshes satisfy the
maximum angle condition. For the anisotropic NoMAC meshes, we derive sharp estimates (Theorem 3.4
and Theorem 3.9) on the condition numbers in relation to the dimension of the discrete space and to the
grading parameter of the algorithm. These new results are quite different from those on quasi-uniform
meshes: the growth rates of the condition numbers in 2D are different for isotropic and anisotropic meshes;
while for both isotropic and anisotropic meshes in 3D, there is a threshold value for the grading parameter,
which determines whether the growth rate resembles the one on quasi-uniform meshes, or the growth rate is
largely decided by the grading parameter. The main difficulty in the analysis lies in the anisotropic nature
of the elements. The usual procedure in [12] cannot produce estimates that reflect the actual behavior of
the condition number on NoMAC meshes. Our analysis relies on new observations on the anisotropic affine
mapping for NoMAC meshes and a series of estimates in weighted function spaces.

The rest of the paper is organized as follows. In Section 2, we present the principle and algorithms for
NoMAC meshes. Important properties and observations on these meshes will be discussed. In Section 3,
we devise analysis for the condition number on 2D and 3D NoMAC meshes. Due to the nature of the mesh
algorithm, estimates are first obtained in local regions of the domain, distinguished by their distance to
different parts of the boundary. The main condition number estimates are summarized in Theorem 3.4 (2D)
and in Theorem 3.9 (3D). We report numerical test results in Section 4 from various sample meshes to verify
the theoretical prediction.

Throughout the text below, we adopt the bold notation for vectors and matrices. Let T be a triangle
(resp. tetrahedron) with vertices a, b, c (resp. a, b, c, d). Then, we denote T by its vertices: 43abc for the
triangle and 44abcd for the tetrahedron, where the sup-index implies the number of vertices for T . By a ' b,
we mean there exists a constant C > 0 independent of a and b, such that C−1a ≤ b ≤ Ca. In addition, by
A ⊂ B, we mean A is a proper subset of B or A = B. The generic constant C > 0 in our estimates may
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be different at different occurrences. It will depend on the computational domain, but not on the functions
involved or the mesh level in the finite element algorithms.

2. The NoMAC mesh

2.1. The finite element method. Denote by Hm(Ω), m ≥ 0, the Sobolev space that consists of functions
whose ith derivatives are square integrable for 0 ≤ i ≤ m. Let L2(Ω) := H0(Ω). Recall that H1

0 (Ω) ⊂ H1(Ω)
is the subspace consisting of functions with zero trace on the boundary ∂Ω. The variational solution u ∈
H1

0 (Ω) of equation (1) satisfies

(3) a(u, v) =

∫
Ω

∇u · ∇vdx =

∫
Ω

fvdx = (f, v), ∀v ∈ H1
0 (Ω).

Let Tn = {T`} be a triangulation of Ω with triangles (d = 2) or tetrahedra (d = 3). It will become clear
later that the index n represents the level of the mesh refinement. Let Sn ⊂ H1

0 (Ω) be the Lagrange finite
element space of degree k ≥ 1 associated with Tn. Namely,

Sn = {v ∈ C(Ω), v|T ∈ Pk, for any element T ∈ Tn},(4)

where Pk is the space of polynomials of degree ≤ k. Then, the finite element solution un ∈ Sn for equation
(1) is defined by

(5) a(un, vn) = (f, vn), ∀vn ∈ Sn.

Denote by N := dim(Sn) the dimension of the finite element space. Let φi, 1 ≤ i ≤ N , be the basis function
associated to the ith node in Tn. Then, the finite element equation (5) is equivalent to the linear system of
equations

Au = f ,(6)

where for 1 ≤ i, j ≤ N , A is the N × N stiffness matrix with entry aij = a(φi, φj), the vector f =
(f1, f2, · · · , fN )T is defined by fi = (f, φi), and the vector u = (u1, u2, · · · , uN )T is the collection of the

unknown coefficients in the representation of the finite element solution un =
∑N
i=1 uiφi.

Let w ∈ Sn be a function in the finite element space (4) and let

w = (w1, w2, · · · , wN )T(7)

be the associated vector such that w =
∑N
`=1 w`φ`. Recall the l2-norm of w

‖w‖l2 = (wTw)1/2 =
( ∑

1≤`≤N

w2
`

)1/2
.

Note that by equations (3) and (5), A is a real symmetric positive definite matrix and all its eigenvalues are
positive. Let

λmax = max
‖w‖l2 6=0

wTAw

wTw
, λmin = min

‖w‖l2 6=0

wTAw

wTw
(8)

be the largest and the smallest eigenvalues, respectively. Then, the l2-condition number cond(A) of the
stiffness matrix is given by

cond(A) = λmax/λmin.(9)

It follows from a direct calculation that

wTAw = a(w,w) = ‖∇w‖2L2(Ω).(10)

We shall study the condition number (9) on a class of anisotropic graded meshes.
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2.2. The NoMAC mesh algorithms. We here present the algorithms that cover a class of graded meshes
that appeared in [1, 10, 14, 25, 29, 31, 30, 32, 33]. These meshes can effectively improve the finite element
approximation when the solution possesses singularities in 2D and 3D, especially from the non-smoothness of
the computational domain. Unlike the conventional shape regular grids, these algorithms produce anisotropic
no-maximum-angle-condition (NoMAC) meshes.

Let V (resp. E) be the set of vertices (resp. the set of closed boundary edges) of the domain Ω. For each
vertex v ∈ V and each edge e ∈ E , we assign the associated grading parameter κv ∈ (0, 0.5] and κe ∈ (0, 0.5],
respectively. Let T be a triangulation of Ω with triangles (d = 2) or tetrahedra (d = 3).

Definition 2.1. (Singular Vertices and Edges) The singular vertices and singular edges are the special
vertices and edges of the triangles or tetrahedra in T defined as follows. Let pq be a closed edge of an
element T ∈ T with p and q as the endpoints. We define different singular sets based on the location of the
edge pq. We say pq is a singular edge if pq ⊂ e ∈ E and κe < 0.5. Namely a singular edge in T lies on an
edge e of the domain boundary for which the parameter κe < 0.5. We further describe two types of singular
vertices. We call p a v-singular vertex if p = v ∈ V and κv < 0.5. In this case, p is a singular vertex for all
the element edges connecting to p. We call p an e-singular vertex of pq if the following three conditions are
satisfied: 1. p is not a v-singular vertex; 2. p lies on a singular edge that belongs to e ∈ E with κe < 0.5; 3.
pq 6⊂ e. In this case, p is a singular vertex for all the element edges intersecting e at p, but is not a singular
vertex for the singular edges on e. See Figure 1 for examples of the singular vertices and edges.

To simplify the presentation, we require that each element in T contains at most one singular edge and at
most one v-singular vertex; and if it contains both, the v-singular vertex is an endpoint of the singular edge.
Thus, each element edge in the triangulation has at most one singular vertex as an endpoint. Suppose p is
a singular vertex of an edge pq in the triangulation. Then, we assign p a grading parameter κp as follows

κp :=

{
κe, if p ∈ e ∈ E is an e-singular vertex,
mine∈Ev (κv, κe), if p = v ∈ V is an v-singular vertex,

(11)

where Ev ⊂ E is the set of edges that touch the vertex v.

Figure 1. Singular vertices and edges: a v-singular vertex pv = v ∈ V with κv < 0.5 (left);
e-singular vertices pe0, pe1, and pe2 on e ∈ E (red line segment) with κe < 0.5 (right). pv is
a singular vertex for all the edges pvpi, 1 ≤ i ≤ 4. pe0 is a singular vertex for pe0p1, pe1 is a
singular vertex for pe1pi, 1 ≤ i ≤ 3, and pe2 is a singular vertex for pe2p3. pe0pe1 and pe1pe2
are singular edges.

The concept of singular vertices and edges shall be used to derive anisotropic mesh algorithms. In
particular, the singular edge is useful to solve 2D anisotropic elliptic problems and 3D anisotropic edge
singularities. See also Remark 2.5. According to Definition 2.1, each singular vertex p of an element edge
is assigned a parameter κp < 0.5. Then, we describe the algorithm to produce new nodes on edges in the
triangulation.

Algorithm 2.2. (New Nodes) Let pq be an edge in the triangulation T with p and q as the endpoints.
Then, in a graded refinement, a new node r on pq is produced according to the following conditions:

1. (Neither p or q is a singular vertex of pq.) We choose r as the midpoint (|pr| = |qr|).
2. (p is a singular vertex of pq.) We choose r such that |pr| = κp|pq|, where κp is defined in (11).

See Figure 2 for an illustration.

Before presenting the NoMAC refinement algorithm, we note that based on the number of singular vertices
and the number of singular edges in an element, we can classify the elements in T as follows.
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Figure 2. Refinement of the an edge pq (left – right): no singular vertices (midpoint); p is
a singular vertex (|pr| = κp|pq|, κp < 0.5).

Figure 3. Refinement of a triangle (green dot = v-singular vertex, green box = e-singular
vertex, red line segment = singular edge). Top row (left – right): o-element, v-element,
e-element. Bottom row (ev-elements, v-singular vertex x0 = v ∈ V and singular edge
x0x1 ⊂ e ∈ E): κe = κv (left); κe > κv (right).

Definition 2.3. (Element Types) Given the conditions on the singular vertices and singular edges in Defi-
nition 2.1. Each element T ∈ T falls into one of the five categories.

1. o-element: T̄ contains no singular vertex or singular edge.
2. v-element: T̄ contains a v-singular vertex but no singular edge.
3. ve-element: T̄ contains an e-singular vertex but no singular edge.
4. e-element: T̄ contains a singular edge but no v-singular vertex.
5. ev-element: T̄ contains a v-singular vertex and a singular edge.

Now, we give the anisotropic mesh algorithm in 2D and 3D.

Algorithm 2.4. (NoMAC Meshes) Recall the triangulation T in Definition 2.1 and the grading parameter
κp in (11) for each singular vertex p. Then, the graded refinement, denoted by κ(T ), proceeds as follows.

• Triangular Elements (d = 2). For each triangle T = 43x0x1x2 ∈ T , a new node is generated on each
edge based on Algorithm 2.2. Then, T is decomposed into four small triangles by connecting these
new nodes (Figure 3).
• Tetrahedral Elements (d = 3). For each tetrahedron T = 44x0x1x2x3 ∈ T , a new node xkl is

generated on each edge xkxl, 0 ≤ k < l ≤ 3, based on Algorithm 2.2. Connecting these new nodes
xkl on all the faces of T , we obtain four small tetrahedra and one octahedron. The octahedron then is
cut into four tetrahedra using x13 as the common vertex. Therefore, after one refinement, we obtain
eight sub-tetrahedra for each T ∈ T denoted by their vertices (Figure 4):

44x0x01x02x03, 44x01x1x12x13, 44x02x12x2x23, 44x03x13x23x3,

44x01x02x03x13, 44x01x02x12x13, 44x02x03x13x23, 44x02x12x13x23.

Given an initial mesh T0 satisfying the condition in Definition 2.1, the associated family of graded meshes
{Tn, n ≥ 0} is defined recursively Tn = κ(Tn−1). See Figures 5 – Figure 9 for example.



6 H. LI AND X. LU

Figure 4. Refinement of a tetrahedron (green dot = v-singular vertex, green box = e-
singular vertex, red line segment = singular edge). Top row (left – right): o-element,
v-element, e-element. Bottom row (ev-elements, v-singular vertex x0 = v ∈ V and singular
edge x0x1 ⊂ e ∈ E): κe = κv (left); κe > κv (right).

Figure 5. 2D graded refinements toward a vertex v, (κv = 0.2).

Remark 2.5. Recall the vertex singularity of equation (1) is isotropic, concentrating at the vertex of the
domain; and the 3D edge singularity is anisotropic, singular in the direction perpendicular to the edge and
smoother in the edge direction [17, 24, 30, 32, 33]. Thus, Algorithm 2.4 is based on a simple and intuitive
idea: producing the new nodes closer to the singular point and consequently having new elements that are
small in the direction of the singularity. Note that a v-singular vertex is a singular node for all the connecting
edges; while an e-singular vertex is a singular node only for non-singular edges. Algorithm 2.4 covers a variety
of graded meshes in the literature. It has shown its effectiveness in approximating 2D corner singularities
[1, 10, 31, 34], anisotropic degenerate elliptic operators [29], and solving 3D elliptic problems with vertex
and edges singularities [30, 32, 33]. The regularity of the underlying solution in general plays an important
role in deciding the singular vertices and edges and the associated grading parameters κe and κv in order
to achieve the optimal convergence in the numerical solution. Compared with existing meshes, this new
mesh enjoys advantages in practical computing for being explicit, and having fewer geometric constraints.
However, Algorithm 2.4 can lead to meshes without the maximum angle condition, especially when there
are singular edges (Figures 6, 8, and 9). This makes the analysis for this algorithm both technical and
interesting.
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Figure 6. 2D graded refinements toward an edge e, (κe = 0.2).

Figure 7. 3D graded refinements toward a vertex v, (κv = 0.25).

Figure 8. 3D graded refinements toward an edge e, (κe = 0.3).

Figure 9. 3D graded refinements toward a vertex v and its adjacent edges, (κv = κei = 0.3,
1 ≤ i ≤ 3).

2.3. Mesh layers and affine mappings. We here derive properties of the NoMAC mesh that will be useful
for the analysis. Based on the distance to the vertices and edges of the domain, we first define different layers
of the mesh.
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Definition 2.6. (Mesh Layers in Initial v- or ve-elements) Let T(0) ∈ T0 be an initial v- or ve-element. Let
T(i) ⊂ T(0) be the element in Ti, 0 ≤ i ≤ n, that is attached to the singular vertex of T(0). For 0 ≤ i < n, we
define the ith mesh layer of Tn on T(0) to be the region Lv,i := T(i) \ T(i+1); and for i = n, the nth layer is
Lv,n := T(n).

Remark 2.7. For the 2D v-element T(0) = 43x0x1x2 in Figure 3, Lv,0 is the trapezoid x1x2x02x01. For

the 3D v-element T(0) = 44x0x1x2x3 in Figure 4, Lv,0 is the pentahedron x01x02x03x1x2x3. In both cases
(trapezoid and pentahedron) and in the text below, we denote a polytope by its vertices. Let κp be the
grading parameter associated with the singular vertex of T(0). According to Algorithm 2.4, the elements of

Tn in the layer Lv,i are isotropic and shape regular with mesh size O(2i−nκip).

Definition 2.8. (Mesh Layers in Initial e-elements) Let T(0) ∈ T0 be an initial e-element. Let Ui be the
union of elements in Ti, 0 ≤ i ≤ n, that touch the singular edge of T(0). For 0 ≤ i < n, we define the ith
mesh layer of Tn on T(0) to be the region Le,i := Ui \ Ui+1; and for i = n, the nth layer is Le,n := Un.

Remark 2.9. For the 2D e-element T(0) = 43x0x1x2 in Figure 3, Le,0 is the trapezoid x0x1x12x02. For

the 3D e-element T(0) = 44x0x1x2x3 in Figure 4, Le,0 is the pentahedron x0x02x03x1x12x13. According to
Algorithm 2.4, the elements of Tn in the layer Le,i are anisotropic, whose largest angle in the face converges
to π as n→∞.

Definition 2.10. (Mesh Layers in Initial ev-elements) Let T(0) ∈ T0 be an initial ev-element. Let T(i) ⊂ T(0)

be the ev-element in Ti, 0 ≤ i ≤ n, that is attached to the singular vertex and the singular edge of T(0). For
0 ≤ i < n, we define the ith mesh layer of Tn on T(0) to be the region Lev,i := T(i) \ T(i+1); and for i = n,
the nth layer is Lev,n := T(n).

Remark 2.11. For the 2D ev-element T(0) = 43x0x1x2 in Figure 3, Lev,0 is the trapezoid x1x2x02x01. For

the 3D ev-element T(0) = 44x0x1x2x3 in Figure 4, Lev,0 is the pentahedron x01x02x03x1x2x3. Although the
mesh layers in initial ev-elements follow a similar construction as those in initial v- or ve-elements (Definition
2.6), the elements of Tn in the layer Lev,i are anisotropic whose largest angle in the face can be arbitrarily
close to π. One can compare this to the statements in Remarks 2.7 and 2.9.

Based on Algorithm 2.4, the refinement of an element T can result in small elements of different types.
For example, for d = 2, after one refinement, an e-element T is decomposed into four small elements:
two e-elements, one ve-element, and one o-element. For d = 3, after one refinement, an e-element T is
decomposed into eight small elements: two e-elements, two ve-elements, and four o-elements. Nevertheless,
in a refinement, we call T the parent element of the small elements, and call each small element the child
element of T .

Recall the mesh layers of the triangulation Tn in Definitions 2.6, 2.8, and 2.10. We now construct affine
mappings between a region in each layer and a reference region whose shape may depend on an initial element
in T0 but not on n.

Proposition 2.12. (Affine Mappings on Initial v-, ve-, and ev-elements) Let T(0) ∈ T0 be a v-, ve-, or
ev-element in the initial triangulation. Let κp be the grading parameter associated with the singular vertex.
We use a local coordinate system such that the singular vertex of T(0) is the origin. Define two mappings

B
(3)
v,i =

κ−ip 0 0
0 κ−ip 0
0 0 κ−ip

 , d = 3 and B
(2)
v,i =

(
κ−ip 0
0 κ−ip

)
, d = 2.(12)

Then, for d = 3 and 1 ≤ i < n, B
(3)
v,i is a bijection between the ith layer Lv,i (or Lev,i depending on the

element type of T(0)) and the first layer Lv,0 (or Lev,0) on T(0); for i = n, B
(3)
v,n is a bijection between Lv,n

(or Lev,n) and T(0). The dilation B
(2)
v,i is the 2D analogue of B

(3)
v,i . Namely, B

(2)
v,i maps the 2D ith layer to

the first layer (0 ≤ i < n) or to the initial element T(0) (i = n).

Proof. See Definition 4.2 in [30] for the proof when d = 3. The 2D case is also a direct consequence of
Algorithms 2.2 and 2.4. �

Proposition 2.13. (Affine Mappings on Initial e-elements) Let T(0) ∈ T0 be an e-element in the initial
triangulation and let κe be the grading parameter associated with the singular edge. Let T ′(i+1) ∈ Ti+1 be an
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element, such that T ′(i+1) ⊂ Le,i ⊂ T(0), 0 ≤ i < n; and T ′(n) ⊂ Le,n ⊂ T(0) if i = n. Then, we have two

cases to consider. (I) T ′(i+1) is a child element of an e-element T(i) ∈ Ti for i < n or T ′(n) is an e-element

for i = n. Then, we can choose a proper local coordinate system (where the singular edge is on the y-axis

(2D) or on the z-axis (3D)) and a reference element T̂ whose geometry only depends on the initial element
T(0), such that

B
(3)
e,i =

 κ−ie 0 0
0 κ−ie 0

b1κ
−i
e b2κ

−i
e 2i

 , d = 3 and B
(2)
e,i =

(
κ−ie 0
b3κ
−i
e 2i

)
, d = 2(13)

are bijections from T ′(i+1) to T̂ in 3D and 2D, respectively. (II) T ′(i+1) is a child element of a ve-element

T(i) ∈ Ti for i < n or T ′(n) is a ve-element for i = n. Let T(k) ∈ Tk, 1 ≤ k ≤ i, be the ve-element, such that

T(i) ⊂ T(k) for i < n or T ′(n) ⊂ T(k) for i = n, and T(k)’s parent element T(k−1) ∈ Tk−1 is an e-element. Then,

we can choose a proper local coordinate system and a reference element T̂ whose geometry only depends on
the initial element T(0), such that the transformations

B
(3)
i,k =

 κ1−i
e 0 0
0 κ1−i

e 0
b1κ

1−i
e b2κ

1−i
e 2k−1κk−ie

 , d = 3 and B
(2)
i,k =

(
κ1−i
e 0

b3κ
1−i
e 2k−1κk−ie

)
, d = 2(14)

map T ′(i+1) to T̂ for i < n and map T ′(n) to T̂ for i = n in 3D and 2D, respectively. In both cases (I) and

(II), |b1|, |b2|, |b3| ≤ C0, for C0 > 0 depending on T(0) but not on i or k.

Proof. When d = 3, the statements for B
(3)
e,i and B

(3)
i,k follow from Lemma 4.15 in [30]. As revealed in

Lemmas 4.13 and 4.14 of [30], the parameters b1 and b2 can be different for different tetrahedra, but they are
uniformly bounded by a constant that depends on the initial tetrahedron T(0). When d = 2, the statements

for B
(2)
e,i and B

(2)
i,k hold since the triangles involved can be regarded as triangles on the faces of the tetrahedra

T ′(i+1) and T̂ in 3D. The mappings B
(2)
e,i and B

(2)
i,k are the restrictions of B

(3)
e,i and B

(3)
i,k on these faces. �

3. The conditioning on NoMAC meshes

In this section, we study the condition numbers (9) of the finite element method on the NoMAC mesh. Let
Tn be the NoMAC mesh obtained after n consecutive refinements (Algorithm 2.4) from an initial triangulation
T0. Throughout this section, we adopt the following notation. Let w ∈ Sn and w be the function in the
finite element space and its vector representation (7), respectively. For each element T , we shall specify a

reference element T̂ and an affine mapping K : T → T̂ , such that for any (x, y) ∈ T (d = 2) or (x, y, z) ∈ T
(d = 3), (x̂, ŷ) := K(x, y) ∈ T̂ (d = 2) or (x̂, ŷ, ẑ) := K(x, y, z) ∈ T̂ (d = 3). In addition, for any function v

on T , we define the function v̂(x̂, ŷ) := v(x, y) (d = 2) or v̂(x̂, ŷ, ẑ) := v(x, y, z) (d = 3) on T̂ .
Recall the types of elements in Definition 2.3. Denote by Do ⊂ Ω the region covered by initial o-elements

in T0. Similarly, we define Dv, Dve , De, and Dev to be the regions covered by the corresponding initial
elements in T0 whose type is indicated via the index of the region.

3.1. The 2D case. For the triangular mesh Tn, we first have the following estimates on sub-regions of Ω
excluding the singular edges.

Lemma 3.1. Let T ∈ Tn be a triangle. Let Io be the set of indices of the nodes in Tn that belong to D̄o.
Similarly, let Iv and Ive be the sets of indices of the nodes in Tn that belong to D̄v and D̄ve , respectively.
Then, we have ∑

T⊂Do∪Dv∪Dve

‖∇w‖2L2(T ) ≤ C
∑

`∈Io∪Iv∪Ive

w2
` ,(15)

∑
`∈Io

w2
` ≤ C22n

∑
T⊂Do

‖w‖2L2(T ).(16)

In addition, for T ⊂ Dv ∪Dve , suppose T is in the ith mesh layer Lv,i (Definition 2.6) on an initial element,
with κp as the grading parameter for the singular vertex. Let IT be the set of indices of the nodes in T̄ .
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Then, we have ∑
`∈IT

w2
` ≤ C22(n−i)κ−2i

p ‖w‖2L2(T ).(17)

In (15) – (17), the constant C does not depend on i or n.

Proof. We consider different cases based on the location of the triangle involved.
Note that from Algorithms 2.2 and 2.4, the mesh on Do is quasi-uniform with mesh size O(2−n), since the

refinement is based on the usual midpoint decomposition of a triangle. For Tn 3 T ⊂ Do, let T̂ = T(0) be the

reference triangle, where T(0) ∈ T0 is the initial triangle containing T . Let K : T → T̂ be the standard affine

mapping [15, 16]. Note that the finite element space defined on the reference element T̂ is finite dimensional
and therefore any two norms are equivalent. We shall use this property multiple times in the paper and will
refer to it as the norm equivalence in finite-dimensional spaces. Then, by the scaling argument and the norm
equivalence in finite-dimensional spaces, we obtain∑

T⊂Do

‖∇w‖2L2(T ) =
∑
T⊂Do

∫
T

(∂xw)2 + (∂yw)2dxdy

≤ C
∑
T⊂Do

∫
T̂

(∂x̂ŵ)2 + (∂ŷŵ)2dx̂dŷ ≤ C
∑
T⊂Do

‖ŵ‖2
L∞(T̂ )

≤ C
∑
`∈Io

w2
` .(18)

Similarly, by the scaling argument and the norm equivalence in finite-dimensional spaces, we have∑
T⊂Do

‖w‖2L2(T ) =
∑
T⊂Do

∫
T

w2dxdy = 2−2n
∑
T⊂Do

∫
T̂

ŵ2dx̂dŷ

≥ C2−2n
∑
T⊂Do

‖ŵ‖2
L∞(T̂ )

≥ C2−2n
∑
`∈Io

w2
` .(19)

For a triangle T ∈ Tn in Dv or in Dve , suppose T is in the ith layer of an initial triangle T(0). As in
Definition 2.6, let T(i) ⊂ T(0) be the element in Ti (0 ≤ i ≤ n) that touches the singular vertex of T(0).
Then, if i = n, we have T = T(n); if i < n, we have T ⊂ T ′(i+1) ⊂ T(i), where T ′(i+1) ∈ Ti+1 is an o-element.

Based on Algorithm 2.4, if i < n, T is generated after n− i− 1 midpoint refinements of T ′(i+1). Recall from

Proposition 2.12 that B
(2)
v,i maps T(i) to T̂ := T(0). Then, the mapping K : T → T̂ satisfies for (x, y) ∈ T

and (x̂, ŷ) = K(x, y) ∈ T̂ ,

(∂xw)2 + (∂yw)2 ≤ C22(n−i)κ−2i
p

(
(∂x̂ŵ)2 + (∂ŷŵ)2

)
and dxdy ' 22(i−n)κ2i

p dx̂dŷ.(20)

Therefore, by (20) and the norm equivalence in finite-dimensional spaces, we have∑
T⊂Dv∪Dve

‖∇w‖2L2(T ) =
∑

T⊂Dv∪Dve

∫
T

(∂xw)2 + (∂yw)2dxdy

≤ C
∑

T⊂Dv∪Dve

∫
T̂

(∂x̂ŵ)2 + (∂ŷŵ)2dx̂dŷ ≤ C
∑

T⊂Dv∪Dve

‖ŵ‖2
L∞(T̂ )

≤ C
∑

`∈Iv∪Iev

w2
` .(21)

Meanwhile, using (20) and the norm equivalence in finite-dimensional spaces, we have

‖w‖2L2(T ) =

∫
T

w2dxdy ' 22(i−n)κ2i
p

∫
T̂

ŵ2dx̂dŷ

≥ C22(i−n)κ2i
p ‖ŵ‖2L∞(T̂ )

≥ C22(i−n)κ2i
p

∑
`∈IT

w2
` .(22)

Hence, we have proved the estimate (15) by combining (18) and (21). The estimates (16) and (17) are
due to (19) and (22), respectively. �

Now, we derive useful estimates in regions close to singular edges.
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Lemma 3.2. Let T ∈ Tn be an triangle in De. Suppose T is in the ith mesh layer Le,i (Definition 2.8) of
an initial e-element T(0) ∈ T0, with κe as the grading parameter for the singular edge. Let IT be the set of

indices of the nodes in T̄ . Then, we have

‖∇w‖2L2(T ) ≤ C(2κe)
−n
∑
`∈IT

w2
` ,(23)

∑
`∈IT

w2
` ≤ C22(n−i)κ−2i

e ‖w‖2L2(T ),(24)

where C depends on T(0) but not on i or n.

Proof. Let T(i) ∈ Ti be the triangle such that T ⊂ T(i). Then, according to Definition 2.8, T(i) is either
an e-element or a ve-element. Based on Algorithm 2.4, if i = n, we have T = T(n). If i < n, we have
T ⊂ T ′(i+1) ⊂ T(i), where T ′(i+1) ∈ Ti+1 is an o-element, and T is generated after n − i − 1 midpoint

refinements of T ′(i+1).

Case I. T(i) is an e-element in Ti (0 ≤ i ≤ n). According to the arguments above and Proposition 2.13,

B
(2)
e,i maps T ′(i+1) (i < n) or T(n) (i = n) to a reference triangle T̂ whose geometry only depends on T(0).

Then, the mapping K : T → T̂ satisfies for (x, y) ∈ T and (x̂, ŷ) ∈ T̂ ,

(∂xw)2 + (∂yw)2 ≤ C22(n−i)κ−2i
e

(
(∂x̂ŵ)2 + (∂ŷŵ)2

)
and dxdy ' (2κe)

i2−2ndx̂dŷ.

Then, by the norm equivalence in finite-dimensional spaces, we have

‖∇w‖2L2(T ) ≤ C

∫
T̂

22n(2κe)
−2i
(
(∂x̂ŵ)2 + (∂ŷŵ)2

)
2i−2nκiedx̂dŷ

≤ C(2κe)
−i‖ŵ‖2

L∞(T̂ )
≤ C(2κe)

−i
∑
`∈IT

w2
` .(25)

Similarly, we have

‖w‖2L2(T ) =

∫
T

w2dxdy ' 2−2n(2κe)
i

∫
T̂

ŵ2dx̂dŷ

≥ C2−2n(2κe)
i‖ŵ‖2

L∞(T̂ )
≥ C2−2n(2κe)

i
∑
`∈IT

w2
` .(26)

Case II. T(i) is a ve-element in Ti (0 ≤ i ≤ n). Let T(k) ∈ Tk, 1 ≤ k ≤ i, be the ve-element, such that
T(i) ⊂ T(k) and T(k)’s parent element T(k−1) ∈ Tk−1 is an e-element. Then, according to Proposition 2.13,

B
(2)
i,k maps T ′(i+1) (i < n) or T(n) (i = n) to a reference triangle T̂ whose geometry only depends on T(0).

Then, the mapping K : T → T̂ satisfies for (x, y) ∈ T and (x̂, ŷ) ∈ T̂ ,

(∂xw)2 + (∂yw)2 ≤ C22(n−i)κ−2i
e

(
(∂x̂ŵ)2 + (∂ŷŵ)2

)
and dxdy ' (2κe)

2i−k2−2ndx̂dŷ.

Then, by the norm equivalence in finite-dimensional spaces, we obtain

‖∇w‖2L2(T ) ≤ C

∫
T̂

22n−2iκ−2i
e

(
(∂x̂ŵ)2 + (∂ŷŵ)2

)
2−2n(2κe)

2i−kdx̂dŷ

≤ C(2κe)
−k‖ŵ‖2

L∞(T̂ )
≤ C(2κe)

−k
∑
`∈IT

w2
` .(27)

Similarly, we have

‖w‖2L2(T ) =

∫
T

w2dxdy ' (2κe)
2i−k2−2n

∫
T̂

ŵ2dx̂dŷ

≥ C(2κe)
2i−k2−2n‖ŵ‖2

L∞(T̂ )
≥ C(2κe)

2i−k2−2n
∑
`∈IT

w2
` .(28)

Recall k ≤ i ≤ n and κe < 0.5. Then, we obtain (23) by summing up the estimates (25) and (27) over all
T ⊂ De. The estimate (24) is due to (26) and (28). �

Then, we give some useful estimates on regions close to both singular vertices and singular edges.
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Lemma 3.3. Let T ∈ Tn be a triangle in Dev. Let Iev be the set of indices of the nodes in Tn that belong
to D̄ev. Suppose T is in the ith mesh layer (Definition 2.10) of an initial ev-element, with κp and κe as the
grading parameter for the singular vertex and for the singular edge, respectively. Then, we have∑

T⊂Dev

‖∇w‖2L2(T ) ≤ C(2κe)
−n

∑
`∈Iev

w2
` .(29)

In addition, let IT be the set of indices of the nodes in T̄ . For i < n, let T ′(i+1) ∈ Ti+1 be the triangle that

contains T . Note that T ′(i+1) can be either an o-, ve-, or e-element. If T ′(i+1) is an o-element or if i = n, we

have ∑
`∈IT

w2
` ≤ C22(n−i)κ−2i

p ‖w‖2L2(T ).(30)

If T ′(i+1) (i < n) is a ve- or e-element, suppose T is in the kth (k < n− i) layer (Definitions 2.6 and 2.8) of

the graded triangulation on T ′(i+1) toward the singular vertex or toward the singular edge. Then, we have∑
`∈IT

w2
` ≤ C22(n−i−k)κ−2i

p κ−2k
e ‖w‖2L2(T ).(31)

Proof. For a triangle T in Dev, suppose T ⊂ T(0), where T(0) is an initial ev-element in T0. Therefore, T is
either in the ith mesh layer Lev,i if i < n and T ⊂ T ′(i+1) for some T ′(i+1) ∈ Ti+1; or T = T(n) ⊂ Lev,n.

We first consider the case when i = n, namely T = T(n). Then, the dilation B
(2)
v,n in (12) maps T to

T̂ = T(0). Using the same scaling argument (20) as in Lemma 3.1, we obtain

‖∇w‖2L2(T ) ≤ C
∑
`∈IT

w2
` .(32)

In addition, by the scaling argument (20) and the norm equivalence in finite-dimensional spaces, we have

‖w‖2L2(T ) =

∫
T

w2dxdy ≥ Cκ2n
p

∫
T̂

ŵ2dx̂dŷ

≥ Cκ2n
p ‖ŵ‖2L∞(T̂ )

≥ Cκ2n
p

∑
`∈IT

w2
` .(33)

We now consider the case when i < n (T is in the ith mesh layer Lev,i and suppose T ⊂ T ′(i+1) ∈ Ti+1).

Note that the mapping B
(2)
v,i in (12) translates Lev,i to Lev,0 on T(0), and therefore translates T ′(i+1) to a

triangle T̂(i+1) ∈ T1 in Lev,0. Our estimates are based on T ′(i+1)’s element type. (I) T ′(i+1) is an o-element.

Based on Algorithm 2.4, T is generated after n − i − 1 midpoint refinements of T ′(i+1). Thus, the mapping

K : T → T̂ = T̂(i+1) satisfies for (x, y) ∈ T and (x̂, ŷ) ∈ T̂ the same condition as in (20). Following similar
calculations as in (21) and (22), we therefore have

‖∇w‖2L2(T ) ≤ C
∑
`∈IT

w2
`(34)

and

‖w‖2L2(T ) =

∫
T

w2dxdy ≥ C22(i−n)κ2i
p

∫
T̂

ŵ2dx̂dŷ

≥ C22(i−n)κ2i
p ‖ŵ‖2L∞(T̂ )

≥ C22(i−n)κ2i
p

∑
`∈IT

w2
` .(35)

(II) T ′(i+1) is a ve-element. Let T ′ = B
(2)
v,iT ⊂ T̂ = T̂(i+1) := B

(2)
v,iT

′
(i+1) ∈ T1. For (x, y) ∈ T , define

(x′, y′) = B
(2)
v,i (x, y) and w′(x′, y′) = w(x, y). Therefore, T ′ is generated after n− i− 1 graded refinements of

T̂(i+1) toward the singular vertex with the grading parameter κe. Suppose that T ′ is in the kth (k < n− i)
layer of the triangulation on the ve-element T̂(i+1) that is translated from Tn on T(i+1). Then, by the
calculation involved in (21) and (15), we have

‖∇w‖2L2(T ) ≤ C‖∇w
′‖2L2(T ′) ≤ C

∑
`∈IT

w2
` .(36)
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Meanwhile, following the scaling argument and by the estimate (17), we have

‖w‖2L2(T ) =

∫
T

w2dxdy ≥ Cκ2i
p

∫
T ′
w′2dx′dy′ ≥ Cκ2i

p κ
2k
e 22(k−n+i)

∑
`∈IT

w2
` .(37)

(III) T ′(i+1) is an e-element. We set up the notation similar to that above. Let T ′ = B
(2)
v,iT ⊂ T̂ = T̂(i+1) :=

B
(2)
v,iT

′
(i+1) ∈ T1. For (x, y) ∈ T , define (x′, y′) = B

(2)
v,i (x, y) and w′(x′, y′) = w(x, y). Therefore, T ′ is

generated after n− i− 1 graded refinements of T̂(i+1) toward the singular edge with the grading parameter

κe. Suppose that T ′ is in the kth (k < n − i) layer of the triangulation on the e-element T̂(i+1) that is
translated from Tn on T(i+1). Then, by the calculation involved in (21) and by the estimate (23), we have

‖∇w‖2L2(T ) ≤ C‖∇w
′‖2L2(T ′) ≤ C(2κe)

i−n
∑
`∈IT

w2
` ≤ C(2κe)

−n
∑
`∈IT

w2
` .(38)

Meanwhile, following the scaling argument and by the estimate (24), we have

‖w‖2L2(T ) =

∫
T

w2dxdy = κ2i
p

∫
T ′
w′2dx′dy′ ≥ Cκ2i

p 22(k−n+i)κ2k
e

∑
`∈IT

w2
` .(39)

Then, we obtain (29) by summing up the estimates (32), (34), (36), and (38) over all T ⊂ Dev. The
estimates (30) and (31) are due to (33), (35), (37), and (39). �

Consequently, we have the estimate on the condition number of the finite element matrix from 2D NoMAC
meshes.

Theorem 3.4. Let A be the stiffness matrix in (6) associated with the 2D NoMAC mesh Tn (Algorithm
2.4). Then, for any w ∈ Sn, we have

wTw ≤ C22n‖∇w‖2L2(Ω),(40)

where w is the coefficient vector of w defined in (7). In addition, the condition number of A satisfies

cond(A) ≤ C(2κ−1)n,(41)

where κ = mine(κe, 0.5) and the minimum is taken over all the singular edges.

Proof. Recall the regions (Do, Dv, Dve , De, Dev) and the index sets (Io, Iv, Ive , Ie, Iev) from Lemmas
3.1 – 3.3. We shall need the following weighted Poincaré inequality (42). Let ρ(x, y) be the distance from
(x, y) ∈ Ω to the boundary ∂Ω. Then, by Theorem 8.4 in [27], for any σ ∈ [0, 1], we have

‖∇w‖2L2(Ω) ≥ C‖ρ−σw‖2L2(Ω)

≥ C
( ∑
T⊂Do

‖w‖2L2(T ) +
∑
T⊂Dv

‖ρ−σw‖2L2(T ) +
∑

T⊂Dve

‖ρ−σw‖2L2(T )

+
∑
T⊂De

‖ρ−σw‖2L2(T ) +
∑

T⊂Dev

‖ρ−σw‖2L2(T )

)
.(42)

We estimate these terms as follows.
Let T ∈ Tn be a triangle in Dv or Dve . Suppose T is in the ith layer Lv,i of an initial triangle with κp as the

grading parameter toward the singular vertex. Let ρp(x, y) be the distance function to the singular vertex.
In addition to ρ ≤ ρp, note that ρp ' κip on Lv,i for i < n and ρp ≤ Cκnp on Lv,n. Define σp := 1 + logκp

2.

It is clear that for 0 < κp < 0.5, σp ∈ (0, 1). Then, we can pick any σp ≤ σ ≤ 1, and by (17), we have

‖ρ−σw‖2L2(T ) ≥ ‖ρ
−σ
p w‖2L2(T ) ≥ C22(i−n)κ2i

p

∑
`∈IT

κ−2iσ
p w2

` ≥ C2−2n
∑
`∈IT

w2
` .

Combining these estimates over all the mesh layers on Dv ∪Dve , we have∑
T⊂Dv∪DDve

‖ρ−σw‖2L2(T ) ≥ C2−2n
∑

`∈Iv∪Ive

w2
` .(43)

Then, we consider a triangle T ∈ Tn in De and suppose T is in the ith layer Le,i of an initial triangle with
κe as the grading parameter toward the singular edge. By Definition 2.8 for the mesh layers, it can be seen



14 H. LI AND X. LU

that ρ ' κie on Le,i for i < n and ρ ≤ Cκne on Le,n. Define σe := 1 + logκe
2. Then, we have σe ∈ (0, 1). We

can pick any σe ≤ σ ≤ 1, and by (24), we have

‖ρ−σw‖2L2(T ) ≥ C22(i−n)κ2i
e

∑
`∈IT

κ−2iσ
e w2

` ≥ C2−2n
∑
`∈IT

w2
` .

Combining these estimates over all the mesh layers on De, we have∑
T⊂De

‖ρ−σw‖2L2(T ) ≥ C2−2n
∑
`∈Ie

w2
` .(44)

Now let T ∈ Tn be a triangle in Dev. Suppose T is in the ith layer Lev,i of an initial triangle with κp and
κe as the grading parameters toward the singular vertex and toward the singular edge, respectively. Suppose
T ⊂ T ′(i+1) ∈ Ti+1 for i < n. Recall the distance function to the singular vertex ρp. Then, we have two cases

to consider. (I) T is in Lev,n or T ′(i+1) is an o-element. Note that ρp ' κip on Lev,i for i < n and ρp ≤ Cκnp
on Lev,n. Define σev := 1 + logκp

2. Picking any σev ≤ σ ≤ 1, by (30), we have

‖ρ−σw‖2L2(T ) ≥ ‖ρ
−σ
p w‖2L2(T ) ≥ C22(i−n)κ2i

p

∑
`∈IT

κ−2iσ
p w2

` ≥ C2−2n
∑
`∈IT

w2
` .

(II) T ′(i+1) (i < n) is a ve- or e-element. Suppose T is in the kth (k < n − i) mesh layer of the graded

triangulation on T ′(i+1). Then, based on Algorithm 2.4, on this kth layer, ρ ≤ Cκipκke . Recall σev = 1+logκp
2

and the fact κp ≤ κe. Then, for any σev ≤ σ ≤ 1, by (31), we have

‖ρ−σw‖2L2(T ) ≥ C22(i+k−n)κ2i
p κ

2k
e

∑
`∈IT

κ−2iσ
p κ−2kσ

e w2
` ≥ C2−2n

∑
`∈IT

w2
` .

Combining these estimates over all the mesh layers on Dev, we have∑
T⊂Dev

‖ρ−σw‖2L2(T ) ≥ C2−2n
∑
`∈Iev

w2
` .(45)

Recall that for all the singular vertices and singular edges, the grading parameters κp, κe ∈ (0, 0.5). Thus,
we can always choose σ ∈ [0, 1] such that σ ≥ maxv,e(σv, σe, σev), where the maximum is taken over all the
singular vertices and edges. Therefore, by the estimates in (42) – (45) and by (16), we obtain the estimate
(40).

Meanwhile, let κ = mine(κe, 0.5), where the minimum is taken over all the singular edges. Following (15),
(23), and (29), we have

‖∇w‖2L2(Ω) ≤ C(2κ)−nwTw.

Then, by (40) and the estimate above, we derive

C2−2nwTw ≤ wTAw = ‖∇w‖2L2(Ω) ≤ C(2κ)−nwTw.

Thus, by (8) and (9), we obtain

cond(A) ≤ C(2κ−1)n,

which completes the proof. �

Remark 3.5. It is interesting to compare Theorem 3.4 with the classical estimate on condition numbers.
According to [12], on a 2D shape regular mesh, the condition number of the finite element stiffness matrix
As of equation (1) satisfies

cond(As) ≤ CN(1 + | log(Nh2
min)|),(46)

where N is the dimension of the finite element space and hmin is the smallest element size. Note that for the
finite element method on the 2D NoMAC mesh Tn (Algorithms 2.2 and 2.4), we have N ' 4n. Therefore,
the result in Theorem 3.4 implies the following. 1. If Tn is shape regular (namely, no singular edge is
present), we have cond(A) ≤ CN . This is consistent with the estimate (46). Note that the isotropic 2D
NoMAC mesh is a special case of the rather general “nondegenerate” mesh considered in [12]. It seems
that through our analysis the particular geometric structure of the 2D NoMAC can be exploited to obtain
a sharper estimate (without the log term) than that in (46), while the estimate (46) should still be valid for
general nondegenerate meshes. 2. If Tn is anisotropic (with special refinements toward the edge), the upper
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bound of the condition number involves the edge grading parameter and is larger than the dimension N of
the discrete space.

3.2. The 3D case. The estimates of the condition numbers in the 3D case follow a similar path as in the
2D case. For the tetrahedral mesh Tn, we shall first derive estimates on different local sub-regions depending
on its relation with the singular vertices and singular edges. Recall that the regions Do, Dv, Dve , De, and
Dev are unions of initial elements in T0 whose type is indicated via the index of the region.

Lemma 3.6. Let T ∈ Tn be a tetrahedron. Let Io be the set of indices of the nodes in Tn that lie in D̄o.
Similarly, let Iv and Ive be the sets of indices of the nodes in Tn that lie in D̄v and D̄ve , respectively. Then,
for T ⊂ Do, we have ∑

T⊂Do

‖∇w‖2L2(T ) ≤ C2−n
∑
`∈Io

w2
` ,(47)

∑
`∈Io

w2
` ≤ C23n

∑
T⊂Do

‖w‖2L2(T ).(48)

For T ⊂ Dv ∪Dve , suppose T is in the ith mesh layer (Definition 2.6) on an initial element with κp as the
grading parameter toward the singular vertex. Let IT be the set of indices of the nodes in T̄ . Then, we have

‖∇w‖2L2(T ) ≤ C2−n(2κp)
i
∑
`∈IT

w2
` ,(49)

∑
`∈IT

w2
` ≤ C23(n−i)κ−3i

p ‖w‖2L2(T ).(50)

Proof. Note that the mesh on Do is quasi-uniform with mesh size O(2−n). For each initial tetrahedron in
Do, such midpoint decompositions produce tetrahedra that belong to at most three similarity classes [13].

Let T̂ be the reference tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1). Let T ∈ Tn be a

tetrahedron in Do and let K : T → T̂ be the standard affine mapping. Then, by the scaling argument and
the norm equivalence in finite-dimensional spaces, we obtain∑

T⊂Do

‖∇w‖2L2(T ) =
∑
T⊂Do

∫
T

(∂xw)2 + (∂yw)2 + (∂zw)2dxdydz

≤ C2−n
∑
T⊂Do

∫
T̂

(∂x̂ŵ)2 + (∂ŷŵ)2 + (∂ẑŵ)2dx̂dŷdẑ

≤ C2−n
∑
T⊂Do

‖ŵ‖2
L∞(T̂ )

≤ C2−n
∑
`∈Io

w2
` .(51)

Meanwhile, by the scaling argument and the norm equivalence in finite-dimensional spaces, we have∑
T⊂Do

‖w‖2L2(T ) =
∑
T⊂Do

∫
T

w2dxdydz ≥ C2−3n
∑
T⊂Do

∫
T̂

ŵ2dx̂dŷdẑ

≥ C2−3n
∑
T⊂Do

‖ŵ‖2
L∞(T̂ )

≥ C2−3n
∑
`∈Io

w2
` .(52)

For a tetrahedron T in Dv or in Dve , suppose T is in the ith layer of an initial tetrahedron T(0). As
in Definition 2.6, let T(i) ⊂ T(0) be the element in Ti (0 ≤ i ≤ n) that touches the singular vertex of T(0).
Then, if i = n, we have T = T(n); if i < n, we have T ⊂ T ′(i+1) ⊂ T(i), where T ′(i+1) ∈ Ti+1 is an o-element.

Based on Algorithm 2.4, if i < n, T is generated after n− i− 1 midpoint refinements of T ′(i+1). Recall from

Proposition 2.12 that B
(3)
v,i maps T(i) to T̂ := T(0). Then, the mapping K : T → T̂ satisfies for (x, y, z) ∈ T

and (x̂, ŷ, ẑ) = K(x, y, z) ∈ T̂ ,{
(∂xw)2 + (∂yw)2 + (∂zw)2 ≤ C22(n−i)κ−2i

p

(
(∂x̂ŵ)2 + (∂ŷŵ)2 + (∂ẑŵ)2

)
,

dxdydz ' 23(i−n)κ3i
p dx̂dŷdẑ.

(53)
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Therefore, by (53) and the norm equivalence in finite-dimensional spaces, we derive

‖∇w‖2L2(T ) =

∫
T

(∂xw)2 + (∂yw)2 + (∂zw)2dxdydz

≤ C2−n(2κp)
i

∫
T̂

(∂x̂ŵ)2 + (∂ŷŵ)2 + (∂ẑŵ)2dx̂dŷdẑ ≤ C2−n(2κp)
i‖ŵ‖2

L∞(T̂ )

≤ C2−n(2κp)
i
∑
`∈IT

w2
` .(54)

Meanwhile, using the scaling argument as in (53) and the norm equivalence in finite-dimensional spaces, we
have

‖w‖2L2(T ) =

∫
T

w2dxdydz ≥ 23(i−n)κ3i
p

∫
T̂

ŵ2dx̂dŷdẑ

≥ C23(i−n)κ3i
p ‖ŵ‖2L∞(T̂ )

≥ C23(i−n)κ3i
p

∑
`∈IT

w2
` .(55)

Then, we have proved the estimate (47) by (51). The estimates (48) and (50) are due to (52) and (55),
respectively. The estimate (49) is due to (54). �

The estimates in the region close to the singular edge read as follows.

Lemma 3.7. Let T ∈ Tn be an tetrahedron in De. Let Ie be the set of indices of the nodes in Tn that lie in
D̄e. In addition, suppose T is in the ith mesh layer (Definition 2.8) on an initial e-element with κe as the
grading parameter toward the singular edge. Let IT be the set of indices of the nodes in T̄ . Then, we have∑

T⊂De

‖∇w‖2L2(T ) ≤ C2−n
∑
`∈Ie

w2
` ,(56)

∑
`∈IT

w2
` ≤ C23(n−i)κ−3i

e ‖w‖2L2(T ).(57)

Proof. Let T ⊂ De be in the ith layer of an initial e-element T(0). Let T(i) ∈ Ti be the tetrahedron such that
T ⊂ T(i). Then, according to Definition 2.8, T(i) is either an e-element or a ve-element. Based on Algorithm
2.4, if i = n, we have T = T(n). If i < n, we have T ⊂ T ′(i+1) ⊂ T(i), where T ′(i+1) ∈ Ti+1 is an o-element,

and T is generated after n− i− 1 midpoint refinements of T ′(i+1). We proceed as in the proof of Lemma 3.2

by considering the following two cases.

Case I. T(i) is an e-element in Ti. According to Proposition 2.13, B
(3)
e,i maps T ′(i+1) (i < n) or T(n) (i = n)

to a reference triangle T̂ whose geometry only depends on T(0). Then, the mapping K : T → T̂ satisfies for

(x, y, z) ∈ T and (x̂, ŷ, ẑ) ∈ T̂ ,{
(∂xw)2 + (∂yw)2 + (∂zw)2 ≤ C22(n−i)κ−2i

e

(
(∂x̂ŵ)2 + (∂ŷŵ)2 + (∂ẑŵ)2

)
,

dxdydz ' 2−3n(2κe)
2idx̂dŷdẑ.

Let IT be the set of indices of the nodes in T̄ . Then, by the scaling argument and the norm equivalence in
finite-dimensional spaces, we have

‖∇w‖2L2(T ) ≤ C

∫
T̂

22n(2κe)
−2i
(
(∂x̂ŵ)2 + (∂ŷŵ)2 + (∂ẑŵ)2

)
2−3n(2κe)

2idx̂dŷdẑ

≤ C2−n‖ŵ‖2
L∞(T̂ )

≤ C2−n
∑
`∈IT

w2
` .(58)

Meanwhile, using the scaling argument and the norm equivalence in finite dimensional spaces, we have

‖w‖2L2(T ) =

∫
T

w2dxdydz ≥ C2−3n(2κe)
2i

∫
T̂

ŵ2dx̂dŷdẑ

≥ C2−3n(2κe)
2i‖ŵ‖2

L∞(T̂ )
≥ C2−3n(2κe)

2i
∑
`∈IT

w2
` .(59)

Case II. T(i) is a ve-element in Ti. Let T(k) ∈ Tk, 1 ≤ k ≤ i, be the ve-element, such that T(i) ⊂ T(k)

and T(k)’s parent element T(k−1) ∈ Tk−1 is an e-element. According to Proposition 2.13, B
(3)
i,k maps T ′(i+1)
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(i < n) or T(n) (i = n) to a reference triangle T̂ whose geometry only depends on T(0). Then, the mapping

K : T → T̂ satisfies for (x, y, z) ∈ T and (x̂, ŷ, ẑ) ∈ T̂ ,{
(∂xw)2 + (∂yw)2 + (∂zw)2 ≤ C22(n−i)κ−2i

e

(
(∂x̂ŵ)2 + (∂ŷŵ)2 + (∂ẑŵ)2

)
,

dxdydz ' 2−3n(2κe)
3i−kdx̂dŷdẑ.

Let IT be the set of indices of the nodes in T̄ . Then, we have

‖∇w‖2L2(T ) ≤ C

∫
T̂

22n−2iκ−2i
e

(
(∂x̂ŵ)2 + (∂ŷŵ)2 + (∂ẑŵ)2

)
2−3n(2κe)

3i−kdx̂dŷdẑ

≤ C2−n(2κe)
i−k‖ŵ‖2

L∞(T̂ )
≤ C2−n(2κe)

i−k
∑
`∈IT

w2
` .(60)

Meanwhile, using the scaling argument and the norm equivalence in finite-dimensional spaces, we have

‖w‖2L2(T ) =

∫
T

w2dxdydz ≥ C2−3n(2κe)
3i−k

∫
T̂

ŵ2dx̂dŷdẑ

≥ C2−3n(2κe)
3i−k‖ŵ‖2

L∞(T̂ )
≥ C2−3n(2κe)

3i−k
∑
`∈IT

w2
` .(61)

Recall k ≤ i ≤ n and κe < 0.5. Then, we obtain (56) by summing up the estimates (58) and (60) over all
T ⊂ De. The estimate (57) is due to (59) and (61). �

Then, we present the estimates in the region that close to the singular vertex and single edge in 3D.

Lemma 3.8. Let T ∈ Tn be a tetrahedron in Dev. Let Iev be the set of indices of the nodes in Tn that lie in
D̄ev. Let IT be the set of indices of the nodes in T̄ . Then, we have∑

T⊂Dev

‖∇w‖2L2(T ) ≤ C2−n
∑
`∈Iev

w2
` .(62)

In addition, suppose T is in the ith mesh layer (Definition 2.10) of an initial ev-element, with κp and κe
as the grading parameter for the singular vertex and for the singular edge, respectively. For i < n, let
T ′(i+1) ∈ Ti+1 be the tetrahedron that contains T . Then, if T ′(i+1) is an o-element or if i = n, we have∑

`∈IT

w2
` ≤ C23(n−i)κ−3i

p ‖w‖2L2(T ).(63)

If T ′(i+1) (i < n) is a ve- or e-element, suppose T is in the kth (k < n− i) layer (Definitions 2.6 and 2.8) of

the graded triangulation on T ′(i+1) toward the singular vertex or toward the singular edge. Then, we have∑
`∈IT

w2
` ≤ C23(n−i−k)κ−3i

p κ−3k
e ‖w‖2L2(T ).(64)

Proof. For a tetrahedron T in Dev, suppose T ⊂ T(0), where T(0) is an initial ev-element in T0 with singular
vertex v and e. Therefore, T is either in the ith mesh layer Lev,i if i < n and T ⊂ T ′(i+1) for some

T ′(i+1) ∈ Ti+1; or T = T(n) ⊂ Lev,n.

We first consider the case when i = n, namely T = T(n). Then, the dilation B
(3)
v,n in (12) maps T to

T̂ = T(0). Therefore, using the same arguments as in Lemma 3.6 (see also (49) and (50)), we have

‖∇w‖2L2(T ) ≤ Cκ
n
p

∑
`∈IT

w2
` ,(65)

∑
`∈IT

w2
` ≤ Cκ−3n

p ‖w‖2L2(T ).(66)

We now consider the case when i < n (T is in the ith mesh layer Lev,i and suppose T ⊂ T ′(i+1) ∈ Ti+1).

Then, the mapping B
(3)
v,i in (12) translates Lv,i to Lv,0 on T(0), and therefore translates T ′(i+1) to a tetrahedron

T̂ ′(i+1) ∈ T1 in Lv,0. We formulate the estimate based on T ′(i+1)’s element type. (I) T ′(i+1) is an o-element.

Based on Algorithm 2.4, T is generated after n − i − 1 midpoint refinements of T ′(i+1). Thus, the mapping



18 H. LI AND X. LU

K : T → T̂ = T̂ ′(i+1) satisfies for (x, y, z) ∈ T and (x̂, ŷ, ẑ) ∈ T̂ the same condition as in (53). Following

similar calculations as in (54) and (55), we therefore have

‖∇w‖2L2(T ) ≤ C2−n(2κp)
i
∑
`∈IT

w2
` ,(67)

‖w‖2L2(T ) ≥ C23(i−n)κ3i
p

∑
`∈IT

w2
` .(68)

(II) T ′(i+1) is a ve-element. Let T ′ = B
(3)
v,iT ⊂ T̂ = T̂ ′(i+1) ∈ T1. For (x, y, z) ∈ T , define (x′, y′, z′) =

B
(3)
v,i (x, y, z) and w′(x′, y′, z′) = w(x, y, z). Therefore, T ′ is generated after n − i − 1 graded refinements of

T̂ ′(i+1) toward the singular vertex with the grading parameter κe. Suppose that T ′ is in the kth (k < n− i)
layer of the triangulation on the ve-element T̂ ′(i+1) that is translated from Tn on T ′(i+1). Then, by the

calculation involved in (54) and (49), we have

‖∇w‖2L2(T ) ≤ C2−n(2κp)
i‖∇w′‖2L2(T ′) ≤ C2−n(2κp)

i2i−n(2κe)
k
∑
`∈IT

w2
` .(69)

Meanwhile, following the scaling argument, the estimate (50), we have

‖w‖2L2(T ) =

∫
T

w2dxdydz = κ3i
p

∫
T ′
w′2dx′dy′dz′ ≥ Cκ3i

p 23(k−n+i)κ3k
e

∑
`∈IT

w2
` .(70)

(III) T ′(i+1) is an e-element. Let T ′ = B
(3)
v,iT ⊂ T̂ = T̂ ′(i+1) ∈ T1. For (x, y, z) ∈ T , define (x′, y′, z′) =

B
(3)
v,i (x, y, z) and w′(x′, y′, z′) = w(x, y, z). Therefore, T ′ is generated after n − i − 1 graded refinements of

T̂ ′(i+1) toward the singular edge with the grading parameter κe. Suppose that T ′ is in the kth (k < n−i) layer

of the triangulation on the e-element T̂ ′(i+1) that is translated from Tn on T ′(i+1). Then, by the calculation

involved in (54) and the estimates (58) and (60), we have

‖∇w‖2L2(T ) ≤ C2−n(2κp)
i‖∇w′‖2L2(T ′) ≤ C22(i−n)κip

∑
`∈IT

w2
` .(71)

Meanwhile, following the scaling argument, the estimate (50), and the estimate (57), we have

‖w‖2L2(T ) =

∫
T

w2dxdydz = κ3i
p

∫
T ′
w′2dx′dy′dz′ ≥ Cκ3i

p 23(k−n+i)κ3k
e

∑
`∈IT

w2
` .(72)

Then, we obtain (62) by summing up the estimates (65), (67), (69), and (71) over all T ⊂ Dev. The
estimates (63) and (64) are due to (66), (68), (70), and (72). �

We now have the estimates on the condition number of the finite element method on Tn.

Theorem 3.9. Let A be the stiffness matrix in (6) associated with the 3D NoMAC mesh Tn (Algorithm
2.4). Let κ = minv,e(κv, κe, 0.5), where the minimum is taken over all the singular vertices and singular
edges. Then, for any w ∈ Sn, we have

wTw ≤ C‖∇w‖2L2(Ω)

({ 23n for κ ≥ 0.125
κ−n for 0 < κ < 0.125

)
,(73)

where w is the coefficient vector of w defined in (7). In addition, the condition number of A satisfies

cond(A) ≤
{
C22n for κ ≥ 0.125
C(2κ)−n for 0 < κ < 0.125.

(74)

Proof. Recall the regions (Do, Dv, Dve , De, Dev) and the index sets (Io, Iv, Ive , Ie, Iev) from Lemmas 3.6
– 3.8. Let ρ(x, y, z) be the distance from (x, y, z) ∈ Ω to the boundary ∂Ω. Then, by Theorem 8.4 in [27],
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we have the weighted Poincaré inequality

‖∇w‖2L2(Ω) ≥ C‖ρ−1w‖2L2(Ω)

≥ C
( ∑
T⊂Do

‖w‖2L2(T ) +
∑
T⊂Dv

‖ρ−1w‖2L2(T ) +
∑

T⊂Dve

‖ρ−1w‖2L2(T )

+
∑
T⊂De

‖ρ−1w‖2L2(T ) +
∑

T⊂Dev

‖ρ−1w‖2L2(T )

)
.(75)

We shall estimate these terms in the corresponding regions.
Let T ∈ Tn be a tetrahedron in Dv or in Dve . Suppose T is in the ith layer Lv,i of an initial tetrahedron

with κp as the grading parameter to the singular vertex. Note that ρ ' κip on Lv,i for i < n and ρ ≤ Cκnp
on Lv,n. Then, by (50), we have

‖ρ−1w‖2L2(T ) ≥ C2−3n23iκ(3−2)i
p

∑
`∈IT

w2
` ≥ C2−3n23iκip

∑
`∈IT

w2
` .(76)

Consider a tetrahedron T ∈ Tn in De and suppose T is in the ith layer Le,i of an initial tetrahedron with
κe as the grading parameter to the singular edge. Note that ρ ' κie on Le,i for i < n and ρ ≤ Cκne on Le,n.
Then by (57), we have

‖ρ−1w‖2L2(T ) ≥ C2−3n23iκ(3−2)i
e

∑
`∈IT

w2
` ≥ C2−3n23iκie

∑
`∈IT

w2
` .(77)

Now let T ∈ Tn be a tetrahedron in Dev. Suppose T is in the ith layer Lev,i of an initial tetrahedron
with κp and κe as the parameters to the singular vertex and the singular edge. Suppose T ⊂ T ′(i+1) ∈ Ti+1

if i < n. Let ρp be the distance function to the singular vertex. It is clear that ρ ≤ ρp. Then, we have
two cases to consider. (I) T is in Lev,n or T ′(i+1) is an o-element. Note that ρp ' κip on Lev,i for i < n and

ρp ≤ Cκnp on Lev,n. Then, by (63), we have

‖ρ−1w‖2L2(T ) ≥ ‖ρ
−1
p w‖2L2(T ) ≥ C2−3n23iκ(3−2)i

p

∑
`∈IT

w2
` ≥ C2−3n23iκip

∑
`∈IT

w2
` .(78)

(II) T ′(i+1) (i < n) is a ve- or e-element. Suppose T is in the kth (k < n − i) mesh layer of the graded

triangulation on T ′(i+1). Then, on this kth layer, ρ ≤ Cκipκke . Recall κp ≤ κe. Then, by (64), we have

‖ρ−1w‖2L2(T ) ≥ C2−3n23(i+k)κ(3−2)i
p κ(3−2)k

e

∑
`∈IT

w2
` ≥ C2−3n23(i+k)κipκ

k
e

∑
`∈IT

w2
` .(79)

Recall the definition of κp in (11). Let N be the dimension of the finite element space. Then, for κ =
minv,e(κv, κe, 0.5), where the minimum is taken over all the singular vertices and singular edges, according
to the estimates (48) and (75) – (79), we obtain

‖∇w‖2L2(Ω) ≥ C
∑
T∈Tn

‖ρ−1w‖2L2(T ) ≥ C
∑

1≤`≤N

w2
`

({ 2−3n for κ ≥ 0.125
κn for 0 < κ < 0.125

)
≥ CwTw

({
2−3n for κ ≥ 0.125
κn for 0 < κ < 0.125

)
.

Therefore, we have proved the desired estimate in (73). In addition, by (47), (49), (56), and (62), we have

‖∇w‖2L2(Ω) ≤ C2−n
∑

1≤`≤N

w2
` ≤ C2−nwTw.(80)

Then, The estimate (74) on the condition number is an immediate consequence of (8) – (10), (80), and
(73). �

Remark 3.10. It is clear that the estimate on the condition number from the 3D NoMAC mesh (Theorem
3.9) is different than the 2D counterpart (Theorem 3.4). In the 3D estimate, the grading parameters to the
singular vertex and to the singular edge play a similar role in the bounds while only the edge parameter was
involved in the 2D case. Note that the dimension of the finite element space satisfies N ' 8n on the 3D
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NoMAC mesh Tn. Recall from [12] the following result for a preconditioned stiffness matrix As on 3D shape
regular meshes,

cond(As) ≤ CN2/3.

Therefore, for mild grading NoMAC meshes in 3D (κ ≥ 0.125), the estimate (74) resembles that for the
preconditioned stiffness matrix on shape regular meshes. The threshold κ = 0.125 is the by-product of the
estimates in (78) and (79), where an additional factor 23i or 23(i+k) helps balance the effect from κ until
κ < 0.125. The estimates in Theorems 3.4 and 3.9 recover the classical estimates on condition numbers when
the usual midpoint decomposition is used in the mesh refinement. It can be seen by letting h be the mesh
size of Tn after n refinements. Then h ' 2−n. For both the 2D and 3D cases, since κ = 0.5 for the midpoint
decomposition, the estimates in Theorems 3.4 and 3.9 become cond(A) ≤ Ch−2.

4. Numerical illustrations

In this section, we report numerical test results to verify the estimates on condition numbers (Theorem 3.4
and Theorem 3.9). In particular, these are the condition numbers of the stiffness matrix (6) from equation (1)
on 2D and 3D NoMAC meshes. We focus on the growth rate of the condition numbers between consecutive
refinements in relation to different types of grading parameters. For a given domain Ω, we use the same
notation: denoting by T0 and Tn the initial triangulation and the triangulation after n graded refinements
(Algorithm 2.4), respectively. Recall the finite element space Sn in (4) associated with the mesh Tn and its
dimension N = dim(Sn). Note that N ' 4n (2D) and N ' 8n (3D).

The first set of tests is for meshes on 2D domains: the L-shaped domain and the square domain. On
the L-shaped domain (Figure 5), graded meshes are generated toward the re-entrant vertex. These meshes
are isotropic and effectively approximating the corner singularity in the solution. In Table 1, we list the
condition numbers of the stiffness matrices from different values of the grading parameter κv. The growth
rate rn is the ratio of the condition numbers from two consecutive mesh levels. Namely, let An−1 and An

(n ≥ 1) be the stiffness matrices on Tn−1 and Tn, respectively. Then,

rn :=
cond(An)

cond(An−1)
.

Recall that κv = 0.5 corresponds to the midpoint decomposition. It is clear from the table that for different
values of κv, although the actual condition numbers are different, the growth rate is the same, converging
to 4. This is consistent with the result in Theorem 3.4 and in [12]. Namely, the condition numbers grow by
a factor of 4 on such graded meshes for each refinement.

On the square domain (Figure 6), we test the NoMAC mesh with special refinements toward an edge
with the grading parameter κe. The test results are listed in Table 2. For κe < 0.5, the triangles close to
the edge e can be very thin with the maximum angle approaching π as n → ∞. Therefore, the meshes
are highly anisotropic and lack of the maximum angle condition. According to Theorem 3.4, the condition
numbers grow by a factor of 2κ−1

e for each refinement of these meshes. We see a strong agreement between
the numerical growth rates in Table 2 and this theoretical prediction.

The second set of tests is for meshes on three typical 3D domains: the tetrahedral domain, the prism
domain, and the Fichera corner domain. The NoMAC mesh has shown its effectiveness in approximating
3D singular solutions [30, 32]. We here use these domains to test the condition numbers corresponding to
different types of refinements.

On the tetrahedral domain (Figure 7), we implement the graded meshes toward a vertex with the grading
parameter κv. These meshes are isotropic and become smaller in size near the vertex v to improve the
approximation to the possible vertex singularity. On the prism domain (Figure 8), we implement the graded
meshes toward the singular edge e with the grading parameter κe. These meshes are anisotropic when
κe < 0.5 and do not maintain the maximum angle condition. Such anisotropic property in the mesh is
consistent with the anisotropic behavior of the possible singular solution near the edge. Based on Theorem
3.9, in both cases, the condition numbers grow for each refinement by a factor that is determined by the
estimate (74). Namely, when the grading parameter is greater than or equal to 0.125, the growth rate should
be 4, which is the same rate as for the midpoint refinement. When the grading parameter is less than 0.125,
the condition numbers are expected to grow by a factor of (2κ)−1, where κ = κv for the tetrahedral domain
and κ = κe for the prism domain. In Table 3 and Table 4, we list the condition numbers for these two
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n κv = 0.5 κv = 0.4 κv = 0.3 κv = 0.2 κv = 0.1
cond rn cond rn cond rn cond rn cond rn

3 5.18E1 4.22 4.87E1 4.57 4.73E1 4.73 4.73E1 4.70 8.97E1 5.75
4 2.11E2 4.06 2.06E2 4.22 2.01E2 4.24 2.03E2 4.28 4.01E2 4.47
5 8.47E2 4.02 8.36E2 4.07 8.15E2 4.07 8.29E2 4.09 1.65E3 4.12
6 3.40E3 4.01 3.36E3 4.02 3.28E3 4.02 3.34E3 4.03 6.66E3 4.03

Table 1. Condition numbers on NoMAC meshes: 2D vertex refinements in the L-shaped
domain (Figure 5).

n κe = 0.5 κe = 0.4 κe = 0.3 κe = 0.2 κe = 0.1
cond rn cond rn cond rn cond rn cond rn

3 5.15E1 4.07 5.49E1 4.51 8.61E1 6.09 2.11E2 9.18 1.30E3 18.3
4 2.07E2 4.02 2.69E2 4.90 5.65E2 6.57 2.08E3 9.84 2.56E4 19.7
5 8.30E2 4.00 1.34E3 4.98 3.77E3 6.67 2.07E4 9.97 5.10E5 19.9
6 3.32E3 4.00 6.69E3 5.00 2.52E4 6.69 2.07E5 9.99 1.02E7 20.0

Table 2. Condition numbers on NoMAC meshes: 2D edge refinements in the square domain
(Figure 6).

n κv = 0.5 κv = 0.4 κv = 0.3 κv = 0.2
cond rn cond rn cond rn cond rn

3 5.69E0 5.69 5.27E0 5.27 5.53E0 5.53 6.77E0 6.77
4 2.48E1 4.37 2.41E1 4.57 2.60E1 4.70 3.12E1 4.61
5 1.02E2 4.09 1.05E2 4.37 1.15E2 4.41 1.32E2 4.24
6 4.09E2 4.02 4.32E2 4.11 4.73E2 4.12 5.41E2 4.08
7 1.64E3 4.01 1.74E3 4.03 1.91E3 4.03 2.18E3 4.02

n κv = 0.1 κv = 0.08 κv = 0.05
cond rn cond rn cond rn

3 1.16E1 11.6 1.48E1 14.8 2.66E1 26.6
4 7.79E1 6.73 1.17E2 7.96 3.40E2 12.8
5 4.20E2 5.39 7.90E2 6.72 3.61E3 10.6
6 2.15E3 5.12 5.05E3 6.39 3.68E4 10.2
7 1.08E4 5.03 3.17E4 6.29 3.70E5 10.1

Table 3. Condition numbers on NoMAC meshes: 3D vertex refinements in the tetrahedral
domain (Figure 7).

n κe = 0.5 κe = 0.4 κe = 0.3 κe = 0.2
cond rn cond rn cond rn cond rn

3 2.75E1 4.49 3.28E1 4.82 4.27E1 5.05 6.39E1 5.71
4 1.15E2 4.18 1.44E2 4.37 1.90E2 4.44 2.98E2 4.66
5 4.66E2 4.05 5.95E2 4.15 7.96E2 4.20 1.26E3 4.25
6 1.87E3 4.02 2.41E3 4.06 3.25E3 4.08 5.17E3 4.09
7 7.50E3 4.01 9.69E3 4.02 1.31E4 4.02 2.08E4 4.03

n κe = 0.1 κe = 0.08 κe = 0.05
cond rn cond rn cond rn

3 1.39E2 7.36 1.91E2 8.37 4.38E2 12.3
4 7.30E2 5.28 1.10E3 5.78 4.40E3 10.1
5 3.37E3 4.61 6.75E3 6.11 4.51E4 10.3
6 1.46E4 4.33 4.25E4 6.30 4.57E5 10.1
7 6.90E4 4.73 2.66E5 6.27 4.58E6 10.0

Table 4. Condition numbers on NoMAC meshes: 3D edge refinements in the prism domain
(Figure 8).
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n κ = 0.5 κ = 0.4 κ = 0.3 κ = 0.2 κ = 0.1
cond rn cond rn cond rn cond rn cond rn

3 6.20E1 4.38 8.75E1 4.73 1.45E2 5.42 2.85E2 6.55 1.58E3 11.4
4 2.57E2 4.14 3.83E2 4.38 6.76E2 4.67 1.73E3 6.05 1.49E4 9.43
5 1.04E3 4.05 1.60E3 4.18 2.88E3 4.26 8.61E3 4.99 9.68E4 6.51
6 4.18E3 4.02 6.50E3 4.07 1.17E4 4.07 3.79E4 4.41 5.29E5 5.46
7 1.67E4 4.00 2.62E4 4.02 4.73E4 4.02 1.57E5 4.13 2.72E6 5.14

Table 5. Condition numbers on NoMAC meshes: 3D vertex and edge refinements (κ =
κv = κei , 1 ≤ i ≤ 3) in the domain with the Fichera corner (Figure 9).

n κv = 0.5 κv = 0.4 κv = 0.3 κv = 0.2
cond rn cond rn cond rn cond rn

3 5.19E0 5.19 5.07E0 5.07 5.54E0 5.54 7.30E0 7.30
4 2.26E1 4.36 2.21E1 4.38 2.47E1 4.46 3.45E1 4.72
5 9.26E1 4.09 9.14E1 4.12 1.03E2 4.15 1.46E2 4.24
6 3.72E2 4.02 3.69E2 4.04 4.15E2 4.05 5.97E2 4.07
7 1.49E3 4.00 1.48E3 4.02 1.67E3 4.01 2.40E3 4.02

n κv = 0.1 κv = 0.08 κv = 0.05
cond rn cond rn cond rn

3 1.54E1 15.4 2.02E1 20.2 3.61E1 36.1
4 7.98E1 5.20 1.06E2 5.25 1.94E2 5.37
5 3.43E2 4.30 4.55E2 4.29 8.24E2 4.26
6 1.40E3 4.09 1.86E3 4.09 3.36E3 4.08
7 5.65E3 4.02 7.47E3 4.02 1.35E4 4.02

Table 6. Condition numbers of the scaled stiffness matrix on NoMAC meshes: 3D vertex
refinements in the tetrahedral domain (Figure 7).

domains. These test results verify our theory: for κ ≥ 0.125, the growth rates are 4, while for κ = 0.1, 0.08
and 0.05, the growth rates follow another theoretical estimate (2κ)−1.

On the domain with the Fichera corner (Figure 9), the graded elements are concentrating toward the
three singular edges e1, e2, and e3, and also toward the singular vertex v. According to Algorithm 2.4, we
choose the same grading parameter κ := κv = κei (1 ≤ i ≤ 3) for the singular vertex and edges to simplify
the implementation. Note that we need many tetrahedra in the initial mesh due to the complex geometry
of the domain. Therefore, with the same number of refinements, the size of the stiffness matrix in this test
is much larger than those in the other two tests on 3D domains. The test results are displayed in Table 5,
which also validate the estimate in Theorem 3.9: for κ ≥ 0.125, the growth rate is 4 and for κ < 0.125, the
growth rate is bounded by (2κ)−1.

In the tests above, the stiffness matrices are defined as in (6) on NoMAC meshes. According to Algorithm
2.4, if the grading refinement is only for the vertex of the domain (see Figure 7 for a 3D example), the
resulting meshes are isotropic and shape regular [30]. In this case, a simple diagonal preconditioner [12]
will result in a scaled stiffness matrix whose condition number is bounded by the estimate in (2). In 3D,
this means the condition numbers of the scaled stiffness matrix grow by a factor of 4 for consecutive graded
refinements regardless of the grading parameter. We display the condition numbers in this case in Table 6
for the readers’ reference. Comparing the results in Table 6 and in Table 3, it is clear that the diagonal
preconditioner can improve the conditioning of the FEMs. We point out, however, that this preconditioning
technique is not well defined for anisotropic meshes toward singular edges. Further investigation is needed
to develop good preconditioners for the finite element equations on anisotropic NoMAC meshes.
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