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ABSTRACT. We study the elliptic equation with a line Dirac delta function as the source term
subject to the Dirichlet boundary condition in a two-dimensional domain. Such a line Dirac mea-
sure causes different types of solution singularities in the neighborhood of the line fracture. We
establish new regularity results for the solution in a class of weighted Sobolev spaces and propose
finite element algorithms that approximate the singular solution at the optimal convergence rate.

Numerical tests are presented to justify the theoretical findings.

1. INTRODUCTION

Let Q C R? be a polygonal domain and let y be a line segment strictly contained in 2. Consider
the elliptic boundary value problem

(1.1)

—Au =94, in {2,
u=0 on 0,

where the source term 9, is the line Dirac measure on vy, namely,

(04,v) = /U(s)ds, Vv e L)

Such equations occur in many mathematical models including monophasic flows in porous media,
tissue perfusion or drug delivery by a network of blood vessels [9] and elliptic optimal control
problems with controls acting on a lower dimensional manifold [14]. Note that the line Dirac
measure d, is not an L? function. Although the solution tends to be smooth in a large part of the
domain, it can become singular in the region close to the one-dimensional (1D) fracture v and in
the region close to the vertices of the domain, where the corner singularities are expected to rise.
Since the corner singularity associated to equation (1.1) is understood fairly well in the literature,
we shall address the concerns on the regularity of the solution near v and on the efficacy of the
numerical approximation.

Finite element approximations for second order elliptic equations with singular source terms
have attracted considerable attention and many studies have focused on point singular measures.
Babuska [5], Scott [24, 25], and Casas [8] studied the convergence in the L? (or H¢ with small ¢)
norm for Dirac measures centered at some points in 2D; and a review of the convergence rates can
be found in [19], in which the authors considered the Dirac measures centered at some points in
both 2D and 3D and showed that for P; finite elements quasi-optimal order and for higher order
finite elements optimal order a priori estimates on a family of quasi-uniform meshes in L?-norm
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on a subdomain excludes the locations of the delta source terms. For a Dirac measure centered
at a point in a N-dimensional domain with N > 2, locally refined meshes around the singular
point were used in [12] to improve the convergence rate. Graded meshes were used in [4] to study
the convergence rate of the finite element approximation for a point Dirac measure in 2D and
L? error estimate of order h?|In h|% was obtained for approximations based on P; polynomials.
More recently, 1D singular source terms have also attracted some attention. In [15, 16], finite
element immersed interface methods were studied for interfaces problems, which can be written as
(1.1) with v being a closed loop. By assuming the regularity of an elliptic equation in 3D with a
Dirac measure concentrated on a 1D fracture in a weighted Sobolev space, optimal finite element
convergence rates were obtained in [10, 9] by using graded meshes. Then the authors in [2] derived
the 3D regularity for the simplified equation in [10, 9] when the Dirac measure concentrated on a
line or segment fracture.

In this paper, we derive regularity estimates and propose optimal finite element algorithms for
equation (1.1). In particular, we investigate the solution regularity in a class of Kondratiev-type
weighted spaces. Note that the smoothness of the solution vary in different parts of the domain: the
region close to the vertices, the neighborhood of the fracture 7, and the rest of the domain (Remark
3.1). By studying the local problem that inherits the line Dirac measure from equation (1.1), we
obtain a “full-regularity” estimate in these weighted spaces in the neighborhood of ~. The key
idea is to exploit the connection between the line Dirac measure and proper elliptic transmission
problems in these weighted spaces. Based on the new regularity results and the existing regularity
estimates on corner singularities, we in turn propose graded mesh refinement algorithms, such
that the associated finite element methods of any order recover the optimal convergence rate in
the energy norm even when the solution is singular. We study the model problem (1.1) with a
simple line fracture to simplify the exposition and avoid nonessential complications in analysis.
These results can be extended to more general cases, including the case where the single line
fracture is replaced by multiple line fractures, whether intersecting or non-intersecting. With
proper modifications, we also expect these analytical tools will be useful in the case when ~ is a
smooth curve and when the source term 4, is replace by ¢, for ¢ € L*(v).

The rest of the paper is organized as follows. In Section 2, we discuss the well-posedness and
global regularity of equation (1.1) in Sobolev spaces. In Section 3, we introduce the weighted spaces
and derive the regularity estimates for the solution in the neighborhood of . The main regularity
results, summarized in Theorem 3.8, imply that in addition to the lack of regularity in the direction
across 7, the solution also possesses isotropic singularities at the endpoints of the line fracture. In
Section 4, we propose the finite element approximation of equation (1.1) based on a simple and
explicit construction of graded meshes (Algorithm 4.1 and Remark 4.2). We further show that
the proposed numerical methods achieve the optimal convergence rate by local interpolation error
analysis in weighted spaces. We present various numerical test results in Section 5 to validate the
theory.

Throughout the text below, we denote by ab the line segment with endpoints a and b. The
generic constant C' > 0 in our estimates may be different at different occurrences. It will depend
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on the computational domain, but not on the functions involved or the mesh level in the finite
element algorithms.

2. WELL-POSEDNESS AND REGULARITY IN SOBOLEV SPACES

2.1. Well-posedness of the solution. Denote by H™(£2), m > 0, the Sobolev space that consists
of functions whose ith (0 < i < m) derivatives are square integrable. Let L?(2) := H°(Q). Denote
by H}(Q) € H'(Q) the subspace consisting of functions with zero trace on the boundary 9. The

variational formulation for equation (1.1) is
a(u,v) == / Vu - Voudr = (5,,v), Y ve H(Q). (2.1)
Q

According to the trace estimate [22], v|, is well defined in L?*(v) for v € H'(Q). Therefore, it is
clear that there exists a unique solution u € Hg () defined by (2.1). However, the solution has
limited regularity because the singular source term &, ¢ L*(Q2). In the rest of this section, we
present the global regularity estimates for the solution in the domain.

2.2. Regularity in Sobolev spaces. We begin with the regularity estimates of problem (1.1) in
Sobolev spaces H™. We first have the following result regarding the line Dirac measure 9,.

Lemma 2.1. Let Q C R? be a bounded domain. Then 4, € H~27(Q) for any ¢ > 0.

Proof. The proof is based on the duality pairing (cf. [22]). Given ¢ > 0 and v € H2T(2), by
Holder’s inequality and the trace estimate [17, 22|, we have

(6,000 = [ o(5)ds < Clollize) < Clvl v

.
Therefore, by the standard definition, we have

which completes the proof. 0

Consequently, we have the following global regularity estimate for the solution.
Lemma 2.2. Given ¢ > 0, the solution of equation (1.1) satisfies v € H2¢(Q) N H} Q).

Proof. From Lemma 2.1, it follows d, € H *%*E(Q). Then the standard elliptic regularity theory
[3] leads to the conclusion. O

Thus, by Lemma 2.2 and the Sobolev embedding theorem [7], we obtain

Corollary 2.1. The solution u of equation (1.1) is Holder continuous u € C%Y/27¢(Q) for any small
¢ > 0. In particular, we have u € C°(Q).

Based on Lemma 2.2 and Corollary 2.1, the solution is merely in H2~¢(Q2) for ¢ > 0. The lack
of regularity is largely due to the singular line Dirac measure J, in the source term. However,
regularity is a local property. Such solution singularity shall occur only in the neighborhood of

~v. In a large part of the domain, the solution is reasonably smooth. Hence, we shall study the
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FI1GURE 1. Domain 2 containing a line fracture ~.

regularity of equation (1.1) in some weighted Sobolev spaces that can accurately characterize the
local behavior of the solution.

3. REGULARITY ESTIMATES IN WEIGHTED SPACES

Recall the domain € and the line segment 7 in equation (1.1). Without loss of generality, we
assume v = {(z,0), 0 < x < 1} with the endpoints Q1 = (0,0) and @ = (1,0) as shown in Figure
1. Let V be the singular set, which is the collection of )1, )2, and all the vertices of €2. In this
section, we first study an auxiliary transmission problem in Subsections 3.1 and 3.2. Then, we

obtain the regularity estimates for equation (1.1) in Subsection 3.3.

3.1. The transmission problem. Consider the equation

([ —Aw=0 inQ\~,

wi=w; —1 on~,
v (3.1)
wh =w~  on Y,
w=0 on 0N,

\

+

where w, = 0,w. Here, for a function v, v* := lim._,ov(z,y £ €). It is clear that equation (3.1)

has a unique weak solution
w € H'(Q\7) N{wloq = 0}.

Remark 3.1. We define different regions of the domain as follows for further local regularity esti-
mates. Denote by H' and H~ the upper and lower half planes, respectively. Define vy = {(x,0) :
d <z <1-—d} C~ for some small d > 0. Then we choose two open subsets QT C Q NH*' and
Q- C QNH", each of whom has a smooth boundary and is away from 02, such that v, = Q+NQ-.
Let B(zg,r) be the ball centered at xy with radius r. Denote by B; = B(Q;,2d), ¢ = 1,2, the
neighborhoods around the endpoints of 7. See Figure 2. We assume d is sufficiently small such
that By N By = 0 and (B; U By) N9 = (. Therefore, the domain € is divided into three regions:
(i) the interior region Ry = Q1 U Q™ away from the set V, (ii) the region Ry = By U By consisting
of the neighborhoods of the endpoints of v, and (iii) Rs = Q\ (B; U Ry) is the region close to the
boundary 0f).
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FIGURE 2. Decomposition around the singular line: Q*, Q™ B; and Bs.

Remark 3.2. In region Rj3, the solution regularity in (3.1) is determined by the geometry of the
domain. In particular, the solution can possess singularities near the non-smooth points (vertices)
of the boundary. The regularity estimates in this region are well understood in the literature.
See for example [1, 11, 13, 18, 20] and references therein. Therefore, we shall concentrate on the

regularity analysis in regions R; and R for equation (3.1).
We now introduce a class of Kondratiev-type weighted spaces for the analysis of equation (3.1).

Definition 3.1. (Weighted Sobolev spaces) Recall the set V that consists of the endpoints of v and
all the vertices of the domain Q. Let r;(z, Q;) be the distance from x to Q; € V and let

p(x) = Hg,evri(z, Q). (32)
For a € R, m > 0, and G C €2, we define the weighted Sobolev space
K (@) o= {v, p*I70%0 € L*(G),V |a| < m},

where the multi-index o = (o, ag) € Z2, || = a1 + a, and 9% = 9219;>. The K'(G) norm for

v is defined by
1
v]lkm (@) = ( Z //G |p|a‘*“8av|2d:cdy)2.

laj<m

Remark 3.3. According to Definition 3.1, in the region that is away from the set V), the weighted
space K" is equivalent to the Sobolev space H™. In the region R3 (see Remark 3.1) that is close
to the vertices of the domain, the space K" is the same Kondratiev space for analyzing corner
singularities [11, 13, 18]. In contrast to the Kondratiev space where the weight is the distance
function to the vertex set, the weight in the space K" also consists of the distance function to the
endpoints of . In particular, for i = 1,2, in the neighborhood B; (Figure 2) of an endpoint @); of
v, the weighted space can be written as

K™ (B;) = {v,r*™0%v € L*(B)),¥ |a| < m}.

In each B;, we further define x; € C§°(B;) that satisfies

1 n B(QZ,CD,
Xi= 0 on 0B;.
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Note that supp(x1)Nsupp(xz) = 0. In addition, we denote by

W =span{x;}, =12, (3.3)
the linear span of these two functions.

3.2. Regularity estimates for equation (3.1). We now proceed to carry out the regularity
analysis for the transmission problem (3.1). Recall the interior region Ry = Q7 U Q™ in Remark

3.1. We start with the regularity analysis for the solution in R;.

Lemma 3.4. The solution of equation (3.1) is smooth in either Q@ or in Q~. Namely, for any
m>1,we  H" Q) and w € H™(Q7).

Proof. Recall that Qt and Q~ are regions with a smooth boundary. Therefore, by the trace
estimate, for m > 1, we can find two functions wy € H™(Q") and wp € H™(27) such that

wy = wp and 222 = 2D _ ] on ~p = QFUQ- C .

oy dy
Define
wy in QF, (3.4)
Wy = 3.4
wp 1n Q.
Then w — wy satisfies the standard transmission problem with a smooth interface

—A(w — wo) = A’U)O in (Q+ U Qi),

(w —wo)y = (w—wp), onn, (3.5)
(w—wp)" = (w—wp)”™ on .

Therefore, by the regularity results in [23, 20], we have w — wy € H™(Q") and w — wy €
H™1(Q7), which leads to the desired result. O

We now concentrate on the solution behavior in the neighborhood B;, i = 1,2, of an endpoint of
v (see Remark 3.1). We first consider the following problem with a simpler transmission condition

on 7,

(—Az=f in B;\ ",

zr =2z onvyNBhB,,
7L (3.6)
2T =2z" on~vyNBhB,,
z=0 on 0B;.

We recall a regularity result in [20] regarding z in the neighborhood of @;.

Lemma 3.5. For equation (3.6), there exists by, > 0 such that the following statement holds. Let
0 < a< by, andm > 1. Assume f € K" '(B;\ 7). Recall the finite dimensional space W in (3.3).
Then, there exists a unique decomposition z = 2,¢, + 25, such that z,., € KW (B(Q;,d) \ v) and

zs € W. Moreover, it follows

[[2req] KM (BQud\y) T |25/ zoe(B) < CHfHICZ":f(BAry)? (3.7)

a+1

where the constant C' > 0 is independent of f.
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Remark 3.6. Based on the calculation in [20], the constant by, is determined by the smallest
positive eigenvalue of the operator —d3 in (0, 27) with the periodic boundary condition. Note that
k*, k € Zso, are these eigenvalues. Thus, it follows bg, = 1.

Recall the solution w of the transmission problem (3.1). Recall the space W in (3.3). Then, in
the neighborhood B; of );, © = 1,2, we have the following regularity result.

Theorem 3.7. Let By; = B(Q;,d) C B;, i = 1,2. Then, in By, the solution w of equation (3.1)

admits a decomposition
W = Wregqg + ws,

where wy, € W and wyey € K1 (Bgi \ v) for 0 < a < 1 and m > 1. Moreover, we have

[wregllicmst (5,0 + Ws]l ooy < C. (3.8)

Proof. We shall derive the theorem in Bj;;. The proof in Bgs can be carried out in a similar
manner. Let (r,0) be the local polar coordinates in B; for which @ is at the origin and § = 0
corresponds to the positive z-axis. We shall use a localization argument to obtain the estimate.
In the rest of the proof, we simplify the notation for By, by letting By = Bg1.

Step 1. Let n € C5°(By) be a cutoff function such that n = 1 in By, n = 0 for r > 3d/2, and
ng := 0pn = 0. Define ¢ := nw. Note that on v (6 = 0,27), we have

cos )t 1
( ) Gy = ;q;

g = (sin®)7q’ +

1 0)*
= g =) (<Sin9>+wi + (COST ) wy ) = 1wy,

where for a function v(r, #), v* := lim._,o v(r, # £ ¢). With a similar calculation, we have q, = nw,

on 7. Then, according to the transmission condition in equation (3.1), we have

g =nw, =n(w, —1)=gq, —n,  on7.

Consequently, ¢ satisfies the following equation

(—Ag=—A(wn) in B\,

+ _
qy = qy - 77 on ’77
! L (3.9)
qa =dq on 7,

q=0 on 0B;.

\

Note that based on the definition of 1, in By \ v, —A(wn) = —2Vw - V — wAn and in By \ 7,
—A(wn) = 0.
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Step 2. Define p(r,6) = —nrsin & for 0 < 6 < 2w, where ) is defined in Step 1. Then p € H'(B;)

satisfies
.

0
—Ap=A <777’ sin 5) in By \ v,
, cos )™ 1
py = (sin®)"p; + (0o O) —gn onf=0, (3.10)
B 1
P, = (sin®) " p,. + (c0s6) Py = 57] on 0 = 2m,
\ p=0 on JdB.

It is worth noting that p & H?(B;). However, by a straightforward calculation, it is clear that
p € K (B1\ ) and A(nrsing) € K'7/'(By \ ) for any m >1and 0 < a < 1.
Step 3. Let z = p — ¢q. Then, based on equations (3.1), (3.9), and (3.10), z satisfies

(—Az=f in B \~,
zF =27 on v,
o (3.11)
2t =27 on v,
z=0 on 0By,

where f = A(wn) + A(nrsin). Note that by the fact A(wn) = 0 in By \ v and by Lemma 3.4,
f e K" B\ ~) forany m > 1and 0 < a < 1. Applying Lemma 3.5 to equation (3.11), we
conclude that there exists a unique decomposition z = 2,4 + 25, With 2., € ICZfll(Bd \ 7) and
zs € W, satisfying

||Zreg||K;”++ll(Bd\»y) + ||ZS||LOO(B1) < CHfHK;"_*ll(Bl\y)' (3.12)
Since nw = ¢ = p — z, by the estimate (3.12) and by the definition of p in Step 2, we obtain the
decomposition of w in By \ 7:

W = Wyeg + W,

where Wy = p — 24 and w, = —2z,, such that for any m > 1 and 0 < a < 1,

||wreg||zcm+1(3d\7) + lwsll ooy < C||f||zcg:1(31\7) + ||P||zcm+1(Bd\7) <C,

a+1 a+1
which completes the proof.
OJ

3.3. Regularity estimates for equation (1.1). Recall that V consists of the endpoints of
and all the vertices of Q. Recall By; := B(Q;,d) in Theorem 3.7, and the regions QF, Q~, R3 in
Remark 3.1. We are now ready to derive the regularity estimate for the solution of equation (1.1)
with the line Dirac measure.

Theorem 3.8. The solution u of equation (1.1) is smooth in the region away from the set V, namely,
form > 1, u € H™(Q") and v € H™™(Q7). In the neighborhood of each endpoint of v, u
admits a decompostion

U = Upeg + Us, us € W,
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F1GURE 3. A small neighborhood R, of the line fracture ~.

such that for any m > 1 and 0 < a < 1,
[tregllicm i, 00 + 1Uslloe ) < C.

In the region Rz away from  and close to the boundary, u € K'i' (Rs) for m > 1and 0 < a < I,
where w is the largest interior angle among all the vertices of the domain 2.

Proof. Recall the solution w of the transmission problem (3.1). We shall show v = w. We first

w in Q\7,
w = 3.13
{w+(— w”) on . (3.13)

For € > 0 small, define R, := {(—¢,1 + €) X (—¢,€)} to be a small neighborhood of . Let n. be
the unit outward normal vector to OR,. See Figure 3. Let & = u — w. Then for any ¢ € C§°(2),

extend w to ) by defining

it follows

_ / /Q Atgpdxdy = — / /Q Aupdrdy + / /Q Awpdrdy
_ / /Q 5. ddudy + / /Q ey + / / Ay (3.14)

:/gbds +/ Awodxdy — // Vuw - Vodxdy —i—/ Vw - n.pds.
i ON\R. € OR.

For each term on the right hand side of (3.14), we have the following estimates. In particular,
1+e€

€

Vw - n.pds = / (wy(z, €) — wy(z, —€))pdx + / (we (14 €,y) — we(—¢€,y))ody.

OR. —€ —€

By (3.1) we have
/ / Awodxdy = 0.
O\R.

As € — 0, due to the boundedness of |Vw| in R,, it follows
/ Vw - Vodzdy — 0;
RE

and by the transmission condition in (3.1), we futher have

/aRE Vw - n.pds — /Ol(wy(x, 0+) — wy(z,0—))pdr = —A¢d$-
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p r q p r q

FIGURE 4. The new node of the an edge pg (left — right): no singular vertices
(midpoint); p is a singular point (|pr| = k,|pq|, x, < 0.5).

Incorporating the above estimates into equation (3.14), we have

—//QAﬂqﬁdxdy:O, V¢ € C5o ().

We then conclude that
—At=0 1in Q.

Note that & = u — w = 0 on 0, then it follows @ = 0 in €2, namely, © = w in €.

Therefore, the regularity estimates for w in Q*, Q~, and in By, i = 1,2 can be derived from the
corresponding estimates for w in Lemma 3.4 and in Theorem 3.7. The regularity estimates for u
in R follow from the results in [18, 13] for elliptic Dirichlet problems in polygonal domains. [

4. OPTIMAL FINITE ELEMENT METHODS

According to Lemma 2.2, the solution of equation (1.1) is merely in H2~¢(Q) for any ¢ > 0.
The singularities in the solution can severely slow down the convergence of the usual finite element
method associated with a quasi-uniform mesh. In this section, we propose new finite element

algorithms to approximate the solution of equation (1.1) that shall converge at the optimal rate.

4.1. The finite element method. Let 7 = {T;} be a triangulation of Q with triangles. For
m > 1, we denote the Lagrange finite element space by

S(T,m)={veC’Q)NH Q) :v|r € Pp(T), VT € T}, (4.1)

where P,,(T') is the space of polynomials with degree no more than m on T. Following the

variational form (2.1), we define the finite element solution u;, € S(7T,m) of equation (1.1) by

/ Vuy, - Vopdr = /vhdx, Voo, € S(T,m). (4.2)
Q

2l
Suppose that the mesh T consists of quasi-uniform triangles with size h. Because of the lack of
regularity in the solution (u € H27(Q)), the standard error estimate [7] yields only a sup-optimal

convergence rate
|u — up|| 1) < Chz~, for e > 0. (4.3)
This is highly ineffective since the optimal convergence rate using the mth-degree polynomials
when the solution is smooth is
lu = unl| 1) < CR™.
We now propose new finite element methods to solve equation (1.1) based on the special re-

finement of the triangles. Recall that the singular set V' includes the endpoints of v and all the

vertices of 2. We call the points in V the singular points.
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Zo Zo
Zo1 L02
x T2 x Z12 X2
Zo Zo
Zo1 L02 To1 L02
g T12 T2 X1 Z12 T2

FIGURE 5. Refinement of a triangle Axgzixe. First row: (left — right): the initial
triangle and the midpoint refinement; second row: two consecutive graded refine-
ments toward xg = @, (k < 0.5).

Algorithm 4.1. (Graded refinements) Suppose each singular point is a vertex in the triangulation
T and each triangle in 7 contains at most one singular point. We also suppose 7 conforms to 7.
Namely, v is the union of some edges in 7 and does not cross triangles in 7. Let pg be an edge
in the triangulation 7 with p and ¢ as the endpoints. Then, in a graded refinement, a new node
r on pq is produced according to the following conditions:

1. (Neither p or ¢ is a singular point.) We choose r as the midpoint (|pr| = |gr]).
2. (p is a singular point.) We choose r such that |pr| = kp|pg|, where x, € (0,0.5) is a
parameter that will be specified later. See Figure 4 for example.

Then, the graded refinement, denoted by x(7), proceeds as follows. For each triangle in 7, a new
node is generated on each edge as described above. Then, T" is decomposed into four small triangles
by connecting these new nodes (Figure 5). Given an initial mesh 7y satisfying the condition above,
the associated family of graded meshes {7, n > 0} is defined recursively 7,41 = k(T,).

Remark 4.2. In Algorithm 4.1, we choose the parameter &, for each p € V as follows. Recall m is
the degree of polynomials in the finite element space S(7,, m). Then, if p is an endpoint of v, we
choose K, = 2-% for any 0 < a < 1, and if p is an vertex of the domain ©, we choose Kp < 2=,
where w is the largest interior angle of the domain.

Let S, := S(7,, m) be the finite element space of degree m associated with the graded meshes
defined in Algorithm 4.1 and Remark 4.2. Then, we define the finite element solution u, € S, as

a(ty,v,) = / Vu, - Vu,dx = /vndx, Vo, €5, (4.4)
Q

v
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Note that the bilinear form a(-,-) is coercive and continuous on S,,. Thus, by Céa’s Theorem, we
have

1w — || 1) < C’Uiensf |l — v|| (- (4.5)

In the rest of this section, we shall show that the proposed numerical solution u,, converges to the

solution w of (1.1) in the optimal rate.

4.2. Interpolation error estimates. Recall the three regions R;, Ry and R3 of the domain {2
in Remark 3.1. R; is the region that is away from the singular set V. R, is the region close to
the endpoints of v and Rj3 is the region close to the boundary of the domain. According to the
regularity analysis in Section 3, the solution of equation (1.1) behaves differently in these three
regions. We therefore focus on the local interpolation error analysis in different regions.

4.2.1. Interpolation error estimates in Ry and Rs.

Lemma 4.3. Recall the triangulation 7, in Algorithm 4.1 and Remark 4.2. Let Tipy € Ty be an
initial triangle and let u; be the nodal interpolation of u associated with 7,. If T(O) does not
contain the endpoint of v, then

lw = urllm(ry)) < CR™,

where h ;= 27".

Proof. Note that if T, does not contain the endpoint of ~y, then T(O) NY =0 or T(o) contains a vertex
of the domain Q. If Ty NV = 0, we have u € H™"(T|g)) (Theorem 3.8) and the mesh on T is
quasi-uniform (Algorithm 4.1) with size O(27"). Therefore, based on the standard interpolation

error estimate, we have
HU — uIHHl(T(o)) S ChmHU”HmH(T(O)) S ch™. (46)

In the case that Tj contains a vertex of the domain, the solution may be singular in the neigh-
borhood of a corner. Based on the results in [6], the solution u € K"} (T(p)) for a < T and
m > 1, where w is the largest interior angle of the domain. Note that the graded mesh on T(gy with
the parameter in Remark 4.2 is the same mesh defined in [6, 20], which can recover the optimal

convergence rate in the finite element method even when the solution has corner singularities:
HU—U]HHl(T(O)) S Ch™. (47)
The proof is hence completed by (4.6) and (4.7). O

4.2.2. Interpolation error estimates in Ry. We now study the interpolation error in the neighbor-
hood of the endpoint @ of 7. In the rest of this subsection, we assume T{g) € 7Ty is an initial
triangle such that @) is a vertex of T. According to Remark 4.2, the mesh on T is graded toward
Q) with kg = 2=% for any 0 < a < 1. We first define mesh layers on T} which are collections of
triangles in 7,.

Definition 4.1. (Mesh layers) Let T(;) C T(g) be the triangle in 7;, 0 < i < n, that is attached to
the singular vertex () of T{p). For 0 < i < n, we define the 7th mesh layer of 7, on T(p) to be the
region L; := T3 \ T{i+1); and for ¢ = n, the nth layer is L, := T(;,). See Figure 6 for example.
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Ly

FIGURE 6. Mesh layers (left — right): the initial triangle T() with a vertex @; two
layers after one refinement; three layers after two refinements.

Remark 4.4. The triangles in 7,, constitute n mesh layers on T(gy. According to Algorithm 4.1 and
the choice of grading parameters in Remark 4.2, the mesh size in the ¢th layer L; is
O(kp2'™"). (4.8)
Meanwhile, the weight function p in (3.2) satisfies
p=0(kg) inL; (0<i<n) and  p < Ckg in L. (4.9)

Although the mesh size varies in different layers, the triangles in 7, are shape regular. In
addition, using the local Cartesian coordinates such that @) is the origin, the mapping

OKDQ

is a bijection between L; and Lo for 0 < 7 < n and a bijection between L,, and T(p). We call Ly
(resp. T(p)) the reference region associated to L; for 0 <i < n (resp. L,,).

With the mapping (4.10), we have that for any point (z,y) € L;, 0 < i < n, the image point
(Z,79) := B;(x,y) is in its reference region. Moreover, we have the following dilation result.

Lemma 4.5. For 0 < i < n, given a function v(z,y) € K'(L;), the function o(z,7) := v(x,vy)
belongs to Ké(ﬁ), where (z,7) := B;(z,y), L=1ILyfor0<i<mn,and L = T(0)- Moreover, it
follows

Al A A i(a—1

10 D)lly iy = 5" e, ) ey (4.11)

Proof. Let r be the distance from (z,y) to @, then the distance from (z,9) to Q is 7 = méir. By
definition, we have

19 Dl zy = D /Mk “Hokv[2didy

J+E<l
/ | —i(j+k—a T]+k a Z(]-Hf 8;857)|2/{5221dl'dy
J+E<l
2a 2) +k— i(2a—2) 2
> [ wrnoiagoltasdy = k5ol
J+k<l
which completes the proof. U

We then derive the interpolation error estimate in each layer.
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Lemma 4.6. Recall kg = 2=% for the graded mesh on Ty, m > 1and 0 < a < 1. Let uy be the
nodal interpolation of u in the ith layer L; on T(g), 0 <4 < n. Then, for h := 27", we have

|U — UIlHl(Li) S Ch™.

Proof. Based on Theorem 3.8, the solution can be decomposed into two parts on Tig), & = ey + s,
where for m > 1 and 0 < a < 1,

Ftregllcm iy + sl =) < C:
Since ug € W is smooth and belongs to a finite dimensional space, the norms of u, are equivalent.
Thus, we have
ltregllm gy + sl ) < C: (4.12)
Note that in each L;, i < n, the space K™} Y1 is equivalent to H m+1 Therefore, both ., and

u, are continuous functions in L;. Let u,.,; and us; be the nodal interpolations of u,., and us,
respectively. Then, it is clear that u; = u,¢q 1 + us ;. Thus, we have

[ — wr| () < |Ureg = Ureg,r| 1 (L;) + |Us — Us 1|1 (L) (4.13)

We shall obtain the estimate for each term on the right hand side of (4.13).

Recall the mapping B; in (4.10). For any point (z,y) € L;, let (Z,9) = Bi(z,y) € Lo. Then,
for a function v(z,y) in L;, define v(%,9) := v(x,y) in Ly. Using the standard interpolation error
estimate, the scaling argument, the estimate in (4.8), and the mapping in (4.10), we have

|treg = Wregt|mr(ry = |lreg — Upeq, ila(ry) < C2(iin)mmreg’Hm+l(Lo)

< CQZ n)m mzlureg|Hm+1 Chm(QH ) i‘uTeg‘HmH(Li)'

Recall kg < 27« for any 0 < a < 1 and recall the estimate in (4.9). Then, continuing the estimate
above, we obtain

2 2m —1—a m+1 qa 2
|Ureg — ureg,I|H1(Li) < Ch § P p" 0 UT69|L2(L2~)
|ae]=m+1

2m 2
< Ch HuTegHICZfll(Lz‘)’ (414)
where the last step is based on definition of the weighted space.
For |us — Us 1|1 (L), by the fact that kg < 0.5, we similarly have
s — ety = s =yl () < C20 ™l s (1)
S 02(1 n)m mZ|U,3|Hm+1(L) =Ch™ |us|Hm+1(L) (415)
Then, the proof is completed by combining (4.13), (4.14), (4.15), and (4.12). O

We now derive the interpolation error estimate in the last layer L,, on T{g).

Lemma 4.7. Recall kg = 27« for the graded mesh on T, m > 1and 0 < a < 1. Let ur be the
nodal interpolation of w in the nth layer L, on T{g) for n sufficiently large. Then, for h := 27",
have

lu — UI|H1(Ln) < Ch™.
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Proof. Recall from Theorem 3.8 that on T(g), U = Uy + us € Kith' + W (see also (4.12)). Let
Ureg,r and ug 7 be the nodal interpolations of u,., and us, respectively. Recall ug is a constant in
the nth layer L,, when n is sufficiently large, and therefore (us — us )|, = 0. Thus, it is sufficient
to estimate |tpeg — Ureg,r|m1(L,)-

Recall the mapping B,, in (4.10). For any point (z,y) € L,, let (2,9) = B,(x,y) € T(p). Then,
for a function v(z,y) in L, define 9(Z,7) = v(z,y) in Tjg). Let ¢ : Tigy — [0,1] be a smooth
function that is equal to 0 in a neighborhood of @), but is equal to 1 at all the other nodal points
in 7y. Then, we let w = 9., in T(g). Consequently, we have for [ > 0

2 ~ 2 ~ 2
1012 1 = 1l ) < Clins B (4.16)

where C' depends on [ and the smooth function ¢. Moreover, the condition .., € KI5 (T(0))
with @ > 0 and m > 1 implies G,.,(Q) = 0 (see, e.g., [21, Lemma 4.7]). Let w; be the nodal

interpolation of w associated with the mesh 7y on T{p). Therefore, by the definition of w, we have
wf = ﬁ’reg,f = @ in T(O) (417>

Note that the K} norm and the H' norm are equivalent for w on T{g), since w = 0 in the
neighborhood of the vertex (). Let r be the distance to ). Then, by the definition of the weighted
space, the scaling argument, (4.16), (4.17), and (4.9), we have

[treg = Uregtlin,y < Clltreg = treqillzyz,y < C D Ir(@,9)' 0% (trey = tregr) 122z,

laf<1
= O |r(@ ) 0 (ttreg — tireg)|I7 < Olttyeg — W + W — Uyeg 1 |)?
Y reg reg,l LQ(T(O>) =~ reg reg,l ]C%(T(o))
o<1

< C(Hareg - w”12q(T(0)) + [|w = @HIQQ(T@))

. 2 2
= C(H“reg - w”;c}(T(O)) + flw — wi”/c}(T(O)))

~ 2 2 ~ 2 ~ 2
< OllneglZymy ) + 10mir ) < Clieglleygny + o))
= ey + Nl ) < O Nl
S 02_2nm||ureg||2lcam+ﬁ1(Ln) S Ch2m7

where the ninth relationship is based on Lemma 4.5. This completes the proof. ([l

Therefore, for the finite element method solving equation (1.1) defined in Algorithm 4.1 and

Remark 4.2, we obtain the optimal convergence rate.

Theorem 4.8. Let S,, be the finite element space associated with the graded triangulation 7,, defined
in Algorithm 4.1 and Remark 4.2. Let u, € S, be the finite element solution of equation (1.1)
defined in (4.4). Then,

m
2

1w — up || g1 (o) < Cdim(S,)™ 2,

where dim(.S,,) is the dimension of S,,.
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Proof. By Céa’s Theorem (see (4.5)),

Ju— un“%—ll(ﬂ) < COllu— uIH%Il(Q) =C Z |u— uI”%Il(T(O))’
Based on the Poincaré inequality and Lemmas 4.6 and 4.7, if the initial triangle T{p) has an endpoint

of v as a vertex, we have
2 —
Hu — UIHHl(T(O)) S Ch™=027™".

Summing up this estimate and the estimates in Lemma 4.3, and noting that based on Algorithm
4.1 dimS,, = O(4"™), we obtain

m
2

which completes the proof. 0

Remark 4.9. The solution of equation (1.1) may possess singularities across the line segment 7,
near the vertices of the domain, and near the endpoints of 7. We have derived regularity results in
weighted Sobolev spaces and proposed numerical methods that solve equation (1.1) in the optimal
convergence rate. These results can be extended to more general cases, for example, the case where
the line fracture is replaced by multiple line fractures, whether intersecting or non-intersecting.
With proper modifications, we also expect the analytical tools will be useful when v is a smooth
curve and when the source term 4, is replaced by ¢d, for ¢ € L*(7).

5. NUMERICAL EXAMPLES

In this section, we present numerical test results to validate our theoretical predictions for the
proposed finite element method solving equation (1.1). Since the solution u is unknown, we use

the following numerical convergence rate

|u; — wj—1|m1(q)

e = log, (5.1)

w1 — uj‘Hl(Q)7
where u; is the finite element solution on the mesh 7; obtained after j refinements of the initial
triangulation 7. According to Theorem 4.8, when the optimal convergence rate is obtained, the
value of e shall be close to m, where m is the degree of the polynomial used in the numerical method.
This desired rate can be achieved especially when the grading parameter near the endpoint () of
7y satisfies kg = 2=% for any 0 < a < 1 and the grading parameter near a vertex p of domain
satisfies k) < 27", where w is the largest interior angle among all the vertices of Q.

For Example 5.1 and 5.2, we consider the finite element method based on P; polynomials for
problem (1.1) in a square domain Q = (0, 1)2.

Example 5.1. (Union-Jack meshes and graded meshes) In this example, the line fracture v = Q1Q-
has two vertices @)1 = (0.25,0.5) and Q3 = (0.75,0.5). We use finite element methods on two types
of triangular meshes: the Union-Jack mesh with elements across the line fracture +; and the graded
meshes conforming to v defined in Algorithm 4.1 with different values of the grading parameter.

The initial triangulations are given in (a) and (c) of Figure 7, respectively, where the Union-Jack
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(a) (b) () (d)

FIGURE 7. Graded mesh and Union-Jack mesh. (a) and (b): the initial Union-Jack
mesh and the mesh after one refinement. (c) and (d): the initial graded mesh and

the mesh after one refinement, kK = kg, = kg, = 0.2.

mesh has 128 elements and the graded mesh has 64 elements. To refine the Union-Jack mesh, each
triangle is divided into four equal triangles.

Note that in the square domain, the vertices of the domain do not lead to corner singularities
in H?. Therefore, we use quasi-uniform meshes near the corners, which shall not affect the global
convergence rate. However, in the region across 7, the solution merely belongs to H 3¢ for any
e > 0. Union-Jack mesh does not resolve the singularity across the fracture . Thus, on the Union-
Jack mesh, the convergence rate (5.1) of the numerical solution shall be about 0.5. The graded
mesh conforms to v and therefore resolves the solution singularity across v. Based on Theorem
4.8, when the grading parameter for the endpoints of v satisfies k 1= kg, = kg, = 274 < 0.5, the
singular solution near (J; and ()5 shall be well approximated, which yields the optimal convergence
rate in the numerical approximation.

The convergence rates (5.1) associated with these two types of meshes are reported in Table 1.
The first five rows are the rates on graded meshes, and the last row contains data on the Union-
Jack mesh. Here j is the number of refinements from the initial mesh. It is clear that the rate on
a sequence of Union-Jack meshes is suboptimal with e = 0.5. For graded meshes, when x < 0.5,
the convergence rate is optimal with rate e = 1; and the convergence is not optimal when x = 0.5.

These results are closely aligned with our aforementioned theoretical predication.

TABLE 1. Convergence history of the numerical solution in Example 5.1 with mesh refinements.

w\J j=2j=3j=4j=5
k=0.1 0.99 0.94 0.97 0.99
k=0.2 0.97 0.99 0.99 1.00
k=0.3 0.87 0.96 0.99 1.00
k=04 0.86 0.91 0.94 0.98
k=0.5 0.84 0.87 0.89 0.91
Union-Jack|0.46 0.47 0.49 0.49
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01,05} Q,15,0.5)

(a) (b) ()

FIGURE 8. Graded meshes with line fracture v = Q1Q2, @1 = (0.1,0.5), Qs =
(0.9,0.5). (a) the initial mesh; (b) the mesh after four refinements, k = kg, = kg, =
0.2; (c¢) the numerical solution.

Example 5.2. (Graded meshes for different fractures) This example is to test the convergence rate
on a sequence of graded meshes for problem (1.1) with the line fracture(s) at different locations.
We shall use the linear finite element method and the same square domain as in Example 5.1 for
all the numerical tests in this example.

Test 1. Suppose we have a longer line fracture v = Q@2 with two vertices @)1 = (0.1,0.5),
Q2 = (0.9,0.5). See Figure 8 for the initial mesh and the graded mesh with x = 0.2 after four
refinements. The convergence rates associated with different values of kK = kg, = K¢, are reported
in the second column of Table 2. Similar to the numerical tests in Example 5.1, these results show
that the convergence rate is suboptimal with e = 0.93 on the quasi-uniform mesh (k = 0.5), but

becomes optimal (e = 1) on graded meshes for k < 0.5.

TABLE 2. Convergence history in Tests 1 & 2 of Example 5.2 on graded meshes.

R\ J=4j=5j=06j=T7j=4j=5j=06j=7
£ =0.1{0.97 0.98 0.99 1.00 [0.97 0.99 0.99 1.00
£ =102[0.98 099 1.00 1.00 [0.97 0.99 1.00 1.00
£ =0.3[0.99 1.00 1.00 1.00 |1.00 1.00 1.00 1.00
k=0.4[0.95 0.97 0.98 0.99 [0.96 0.98 0.99 0.99
£ =0.5[091 092 0.93 0.93 [0.93 0.93 0.94 0.94

Test 2. We consider a line fracture v = Q1Q with the two vertices 1 = (0.2,0.2), Q2 = (0.8,0.8).
Here we solve the problem (1.1) on graded meshes with the initial triangulation given in Figure
9. The convergence rate is reported in the third column of Table 2. We observe that convergence
rate is suboptimal with e = 0.94 on quasi-uniform mesh (x = 0.5), but it is optimal (e = 1) on
graded meshes for k£ < 0.5. The results in Table 2, both from Test 1 and Test 2, are well predicted
by the theory as discussed above.

Test 3. In this test, we consider two line fractures with v; = Q1Q2,72 = Q3@ in equation
(1.1). Here the vertices are ¢); = (0.3,0.1), Q2 = (0.3,0.9), Q3 = (0.6,0.1) and Q4 = (0.9,0.9).
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FIGURE 9. Graded meshes with line fracture v = Q1Q2, Q1 = (0.2,0.2), Qs
(0.8,0.8). (a) the initial mesh; (b) the mesh after four refinements, k = kg, = kg, =

0.2; (c) the numerical solution.
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FIGURE 10. Graded meshes with two line fractures 71 = Q1Q2 and 2 = Q3Q4. (a)
the initial mesh; (b) the mesh after four refinements, kK = kg, = kg, = kg, = kg, =

0.2; (c¢) the numerical solution.
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The initial mesh is given in Figure 10. Although two line fractures are imposed, we observe

similar convergence rates: the suboptimal convergence rate with e = 0.94 on quasi-uniform meshes

(k = 0.5), and optimal (e = 1) on graded meshes as k := kg, = kg,

= KQ; = RQ, < 0.5.

TABLE 3. Convergence history in Test 3 of Example 5.2 on graded meshes.

j=4j=5j=6j=1

0.98 0.99 1.00 1.00

1.00 1.00 1.00 1.00

0.99 1.00 1.00 1.00

0.96 1.00 1.00 1.00

K\J

k=0.1
k=0.2
k=0.3
k=04
k=0.5

0.92 0.93 0.93 0.94
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FIGURE 11. Quadratic finite element methods on graded meshes with the line frac-
ture 7 = Q1Q2, @1 = (0.3,0.25), Q2 = (0.7,0.25). (a) the initial mesh; (b) the mesh
after four refinements, k = kg, = kg, = 0.2; (¢) the numerical solution.

In Test 1 and Test 2, we have implemented linear finite element methods proposed in Algorithm
4.1. These numerical test results are in strong support of the estimate in Theorem 4.8. We
chose the square domain to avoid the possible corner singularity due to the non-smoothness of
the domain, so that we can concentrate on the singular solution in the neighborhood of the line
fracture. For general polygonal domains, the corner singularities should be taken into account. A

proper refinement algorithm near these corners are also given in Remark 4.2 and Theorem 4.8.

Example 5.3. (P, finite element methods) In this example, we consider the finite element method
based on P, polynomials for equation (1.1). To minimize the effect of potential corner singularities,
we solve the equation in the triangle domain Q = AABC with A = (0,0),B = (1,0) and C =
(0.5,1) and the line fracture v = Q1@ with the two vertices @)1 = (0.3,0.25), Q2 = (0.7,0.25).
Since all the interior angles of € are less then 7, the solution is in H 3 except for the region
that contains 7. See Figure 11 for the initial triangulation that conforms to the fracture. Based
on Theorem 4.8, to achieve the optimal convergence rate in the numerical approximation, it is
sufficient to use quasi-uniform meshes near the vertices of the domain and use graded meshes with
the grading parameter k 1= kg, = Kg, = 274 < 0.25 due to the fact 0 < a < 1.

TABLE 4. Convergence history of the P, elements in Example 5.3 on graded meshes.

R\ |J=4j=5j=06j=T
k=01[174 1.86 1.94 1.97
k=02[181 1.88 1.93 1.97
k=0.3[1.65 1.68 1.70 1.71
k=04[1.32 1.32 1.32 1.32
k=10.5[1.00 1.00 1.00 1.00

The convergence rate (5.1) of the numerical solution in this example is reported in Table 4. We
observe that the convergence rate is suboptimal on graded meshes with x > 0.25. In particular,

e = 1 on quasi-uniform meshes (k = 0.5) and 1 < e < 2 on graded meshes with x = 0.3,0.4. It is
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clear that the optimal convergence rate e = 2 is obtained on graded meshes when x < 0.25. These

numerical results are clearly consistent with the theory developed in this paper.
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