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A significant issue for fault classification in power distribution systems is limited fault data for training classifiers
to identify power failure types for remediation. Measurement data from power systems are mostly unlabeled
without specified fault types, and labeled data with confirmed fault types are very limited, posing challenges to
training classifiers with sufficient accuracy. Existing fault classification methods to deal with small labeled
samples explore latent structures between labeled and unlabeled data. However, this line of methods has inac-
curate assumptions on the relationship between unlabeled and labeled data and suffers from accuracy loss when
dealing with very limited data that are labeled. This paper proposes a novel latent structure learning under a
multi-task learning framework to supplement information and deal with the challenges in limited labeled data
for fault classification. The proposed method not only takes advantage of the latent structure in unlabeled data
that are not effectively utilized but also overcomes the limitations of latent structure learning by preventing
classifiers from being overfitted to unlabeled data. The method was validated by an experimental study from
distribution-level phasor devices in a hardware-in-the-loop testbed compared with state-of-the-art fault classi-
fication algorithms. The method is also demonstrated for the robustness against measurement noise.

1. Introduction etal., 2020) methods. The shortcoming of the impedance-based methods

lies under their dependency on prior knowledge of network component

1.1. Background and related work

Fault classification or diagnosis in power distribution systems is
essential to ensure faster fault isolation while reducing customer outage
time. In recent years, new monitoring devices such as distribution-level
phasor measurement units (D-PMU or micro-PMU), which provide
phasor measurements for three-phase voltage and current, improve the
situational awareness in power distribution systems. The faulty data
available through these devices, along with state-of-the-art machine
learning algorithms, provide the utility companies with more accurate
fault classification or diagnosis for better remediation actions (Zhu et al.,
2019).

Various fault diagnosis methods have been implemented for power
distribution systems, which are mostly categorized under two major
categories: impedance-based (e.g., El-Naily et al., 2020; Mora-Flarez
et al., 2008) and traveling wave (e.g., Borghetti et al., 2010; Xiong
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characteristics such as physical specifications of conductors and trans-
former ratings, which may not be available or updated all the time
(Gilanifar et al., 2020). On the other hand, traveling wave fault di-
agnostics methods are facing practical challenges due to mostly radial
topology in power distribution systems with many short length
branches. Moreover, traveling wave methods need high-frequency
measurements that are costly and are not available all the time (Gila-
nifar, 2019). These methods are dependent on the topology of power
distribution systems and the physical specifications of the system, such
as transformer ratings that may not be available all time.

Aside from the aforementioned approaches, the development of
advanced monitoring devices such as D-PMU and machine learning al-
gorithms have brought more attention to data-driven fault diagnosis
methods (Talaat et al., 2020). Machine learning utilizes the data from
different types of faults that are collected by monitoring devices at a
location to train a fault classifier. The advantage of this methodology is
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that it is independent of the system topology and specifications and can
provide more accurate and timely decisions that can be used for faster
and better remediation actions. In the literature, Artificial Neural Net-
works (ANN) (Rahman et al., 2020; Sapountzoglou et al., 2020), and
Support Vector Machines (SVM) (Borras et al., 2016) are major machine
learning-based anomaly detection technique in power systems. Re-
searchers in Fan et al. (2018) investigated various autoencoder-based
types and training schemes for anomaly detection. Moreover, Hu
et al. (2019) developed a machine learning approach to automatically
build a data-driven fault detection method by selecting an optimal set of
sensors. A review on machine learning methods and their real-time
applications in power systems can be found in Ahmad and Chen
(2020). This line of methods usually requires a sufficient amount of data
for the training.

1.2. Knowledge gap and proposed work

The knowledge gap in dealing with fault classification based on
limited labeled data can be summarized as follows:

o There is a lack of effective fault classification methods to deal with
very limited labeled data. Many machine learning-based fault
diagnosis methods, including those research reviewed above, need
data that are statistically sufficient for the training of classifiers
(Gilanifar et al., 2019). However, electrical faults have a small
sample size or are even rare events in the real-world power system,
and the fault data types are insufficiently recorded and labeled
(Gilanifar, 2019). The faulty events with limited records from a
faulty location pose a significant challenge to most data-driven
methods. The relevant research in the detection of faulty events
with limited labeled data in power distribution systems is insuffi-
cient. Researchers in Gilanifar et al. (2020) proposed a multi-task
learning (MTL) method to identify fault types in power distribution
systems when all the measurement data are labeled in the supervised
learning framework. However, when the labels in the training data
are very limited, the learning accuracy can still suffer from a high
classification error.

Existing methods for classifying small labeled data impose inac-
curate assumptions on the structure between the labeled and un-
labeled data. Semi-supervised learning, a latent structure learning
(LSL) algorithm, emerges recently to classify small-sample faulty
data in power distribution systems (Zhou et al., 2018; 2019) using
both labeled and unlabeled measurement data. This line of methods
can generate the boundary of the classifiers passing through the data
area with the least data density. However, such a classification
strategy does not necessarily reflect true classes of data in reality
(Chapelle et al., 2006). In addition, the LSL solely relies on the latent
structure in the unlabeled data and labeled data from one
single-source training data (e.g., one neighborhood or one node),
potentially causing the trained classifier to be overfitted to the spe-
cific dataset that lacks generalization.

This paper proposes a novel fault classification method, named
Multi-Task Latent Structure learning of Logistic Regression (MTLS-LR),
to address the challenges in fault classification where very limited
labeled data are available with confirmed types of electrical faults while
a majority of data are unlabeled. The idea is to leverage multiple data
measurements deployed at different parts of a power distribution system
to supplement the information to the limited or even rare-event records
of labeled data. The faulty events that occur at various locations
captured by multiple measurement devices may exhibit different char-
acteristics in the data. As such, we cannot implement traditional clas-
sification algorithms based on the merged data collected from multiple
data sources. The information from different data sources may mislead
the learning and jeopardize the fault classification accuracy.

The proposed MTLS-LR implements two main frameworks
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simultaneously: (1) a semi-supervised learning framework for the pos-
terior class distributions when there are both labeled and unlabeled
data, and (2) a multi-task learning framework that extracts common
information and relatedness from multi-location data to improve
learning. Under (2), the proposed method will find the similarity pattern
or relatedness among similar-but-non-identical data sources as
measured from different locations in a power distribution system. The
relatedness will be utilized to guide the semi-supervised learning of the
fault classifier under (1). The contributions of this research can be
summarized below:

e Application contribution: One of the major bottlenecks for data-driven
fault detection in power distribution systems is the lack of enough
labeled fault event data to create training data sets for machine
learning algorithms. This is due to the nature of faults which are rare
events and also the historic inadequacy of monitoring devices at
distribution sides in comparison to power transmission networks.
This research develops an effective fault detection methodology for
power distribution systems when dealing with limited labeled data
or rare fault events.

Methodology contribution: The method addresses the limitations in
existing LSL methods that deal with small labeled data by leveraging
multi-source historical information to prevent the classifier from
being overfitted to unlabeled data.

Future significance: The method and case studies demonstrate the
values of unlabeled data scattered in the power distribution system
that can be shared in improving fault classification. As such, the
research motivates data sharing and exchange to support smart grid
applications.

The remainder of this paper is organized as follows. Section 2 pre-
sents the schematic of the proposed MTLS-LR method and explains the
two main parts of the proposed MTLS-LR, i.e., LSL and multi-task latent
structure learning. A case study based on a hardware-in-the-loop (HIL)
testbed consisting of multiple commercial distribution level phasor
measurement units (D-PMUs) is explained in Section 3. The results are
presented in Section 4, where Sections 4.1 and 4.2 discuss the potential
of the algorithm in dealing with very limited labeled samples. The
robustness of the proposed MTLS-LR against noisy fault measurements is
studied in Section 4.3. Section 5 concludes the paper.

2. Multi-task latent structure learning for limited training data
labeled

The schematic of the proposed MTLS-LR method is illustrated in
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Fig. 1. Schematic of the proposed MTLS-LR. For each task, the majority of data
are unlabeled (circles), whereas the labeled data (squares and triangles) are
very limited. Each task focuses on the learning of fault classifiers by exploring
latent structures between labeled and unlabeled data. The joint learning by
multiple tasks can mitigate the limitation of LSL in each task.
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Fig. 1. Historical data from multiple measurement devices, such as D-
PMU, are collected from different nodes or neighborhood areas in a
power distribution system. By integrating these data, multiple learning
tasks are implemented simultaneously. Each task refers to the faulty
event classification and diagnosis at a node or neighborhood area. The
training datasets for each task include both the labeled and unlabeled
samples, and labeled samples may include various types of short-circuit
electrical faults measured. The majority of the training data are unla-
beled, and labeled data can be very limited. For each learning task, a
classification model is constructed to explore the latent structure be-
tween the labeled and unlabeled samples, aiming to encourage “closely-
located” samples to be assigned with the same class label. The models
from different tasks will be jointly learned by exploring the relatedness
or similarity to mitigate the impact of limitations in LSL, as will be
discussed in Section 1.2.

2.1. LSL for electrical fault classification

The LSL explores the structure between the labeled and unlabeled
data to improve the classification of unlabeled data. The logic is that
“similar” features, as reflected in the unlabeled data, belong to the same
class. The training is achieved by modifying the boundaries of the
classifier among the classes to pass through the data zones with the least
density (Chapelle et al., 2006). As shown in Fig. 2, considering the
features in unlabeled data can help modify the linear classification
boundary (dash line) between classes 1 and 2 by forcing the boundary to
pass through the data zones with a relatively lower density of unlabeled
and labeled data.

Under the LSL framework, the estimation of a classifier is dependent
on limited labeled data D, = { (y1,x1), -, ¥z, x¢) } and unlabeled data
Xy = { (xz41, -+, Xr+v) }, where x; is the data point, the y; is the associ-
ated label, and L is the number of labeled data points. The LSL aims to
train a classification function with the assistant of labeled data (D;) and
unlabeled data (Xy).

Different classifier models can be chosen for fault diagnosis. Without
losing generality, this paper adopts a multinomial logistic regression
(MLR) model to demonstrate the method since it is relatively convenient
to obtain the posterior distribution of a fault class via a Bayesian
framework (Li et al., 2010). The MLR can be represented as:

exp(WWx;)

_op\x) 1
Yo (W)’ @

pyi=klx;, W) =

where x; = [x;1, -, xy]" is a vector of I features. The term W® is the
coefficients for class k and W® is the k™ column of the W fork =1, ---.K
~1 such that W = [W)" ... wE-DT)T_ The k in this paper represents
the class and K shows the number of classes. Also, we can set W& =0
knowing that the MLR is not dependent on translation transformation on
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Fig. 2. The impact of unlabeled data on the classifier by LSL. (a) shows a linear
classification boundary obtained from only labeled data. The existent of unla-
beled data in (b) help construct a nonlinear classifier for classes 1 and 2 (red
and blue dots)
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the W®), which means that translation of W*) will not affect the
resulting probabilities. The posterior density can be:

p(W|Y, X, Xy)op(YL| X, Xy, W)p(W|X,, Xy) = p(YLXe, W)p(W|XL10),

where Y7 and X} are the labels and feature vectors in D; respectively,
and Xi.y represents the {X;,Xy }. Thus, the maximum a posteriori
(MAP) of W can be estimated as:

W = argmax,, = { (W) + logp(W|X,,0) }, @

where (W) = logp(Y.|XL, W) = log]—lf:lp(yi|xi7 W). In (2), the first term
[(W) denotes the log-likelihood function where all the labeled data Dy is
considered. The second term p(W|X.y) considers the unlabeled data in
the proposed LSL classifier. The term p(W|X;y) works as a prior on W
that enforces the classifier to pass through the area with a smaller data
density. Thus, this prior encourages “closely-located” data points for X
to be assigned with the same class label. The math mechanism on how
this prior works is briefly reviewed below.

This closeness between variables can be defined as a weighted graph
o =(7,#,%).In this graph, 7" is the set of vertices of all the labeled
and unlabeled data, & represents edges of the graph definedon 7" x 7,
and % denotes weights of the graph defined on &
(2= {B;>0,(i,j) € }). The Gaussian prior is adopted as:

p(W\F)ocexp{ 7%WTFW }, 3

where T is the precision matrix that is defined as ' = diag(4; (XAXT +
l), -, A(k,l)(XAXT + 1)), where 4 k=1,--,(K—1) are some scale
factors and 7 > 0 is a regularization parameter. A is a Laplacian matrix
representing the graph 2. It can be shown that the W'T'W can be
expanded as:

K-1 2
WTFchZﬂk<Zﬂi_j[w(k)T(Xi_Xj” ) 4
=1 (ifee

According to (3), the estimator of W can be obtained by the smallest
value of W'TW. Also, similar to Li et al. (2010), g; j (weights of the
graph) in this paper can be selected as exp( — || X; — X;||?). Based on (4),

2
the value of [W“‘)T( X; — Xj)] should be smaller when the f;; is large to

2
reduce the W'TW. Thus, by minimizing [WG‘)T(Xi -X;) ] , the classifier

can make those data that are connected with larger values of f;; to have

2
the same type of label that generates a smaller [W“‘)T(Xi _ X,)] .

To obtain the MAP estimate of W in (2), an expectation-
maximization (EM) algorithm is used. The EM algorithm is an itera-
tive procedure with two steps in each iteration: E-step that computes the
expectation value and M-step that maximizes the E-step. These steps at
iteration t can be written as:

E-Step: P(W|W,) = Ellogp(W|D)| W, ®)
M-Step: W, € argmax,, P(W|W,), (6)

where in Eq. (5), D = { D, Xy } denotes the set of labeled and unlabeled
data. The main property of the above EM algorithm is that the p(W;|D) is
non-decreasing for t =1,2,---, and it converges to the local optima of the
p(W|D). For more details about the EM algorithm, please see Li et al.
(2010).

Limitations with the LSL:As mentioned in the Introduction, the
assumption that the classifiers’ boundaries pass through data zones with
low data density may not always be consistent with the reality (Gold-
bergetal., 2011). Fig. 3 illustrates an example where the latent structure
learning (LSL) boundary (gray dash line) does not reflect the true
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Fig. 3. Limitations with state-of-the-art latent structures learning (LSL), and
multi-task learning can mitigate the problem that data are overfitted to unla-
beled data by the traditional LSL methods.

boundary (solid red line) when the LSL boundary goes through the
low-density data area. The LSL may overfit the trained classifier to the
data. The next section will propose a multi-task LSL to address this
limitation.

2.2. Multi-Task LSL

The training of LSL classifiers given limited labeled data can be
improved under an MTL framework by leveraging the relatedness in-
formation among faulty events at different locations in a distribution
system (Fig. 3). Such relatedness is reflected as the similar correlation
patterns between the variables/features (x;) and the response variable
(y:). Therefore, the logistic regressors (W) in the LSL associated with
different parts of a system can be “similarly related”.

Assume that faulty events occurred in Z different parts/locations
within an electric grid. For each location, there are k possible types of
faults (e.g., a line to ground, line to line, line to line to ground, etc.)
where very limited data are labeled, whereas the majority are unlabeled
in the training data. The objective is to identify the type of new faults in
the testing data with the help of limited labeled data and an abundance
of unlabeled data from not only the fault location of interest but also
other locations in power distribution systems (i.e., multiple related-but-
non-identical data sources). The input data is the voltage or current
phasor measurements obtained from different locations of a network. In
addition, for each location, a classifier represented by (1) will be
learned.

The logistic regressors in the classifiers { Wy, ---, Wy } are assumed to
be similarly related, where each of the W;,i = 1, ---, Z is for data source i.
As summarized in (7), the proposed multi-task LSL aims to estimate the
{Ws,--,Wz} simultaneously given all data sources leveraging the
relatedness between { Wy, -, Wz }. A hat symbol on top of the letters
shows the estimated values.

Objective: To Estimate Wl, . WZ\(DI, -+, Dz), )

where D; = {Dy;,Xyi }, i = 1,--,Z, contains both the labeled (Dy;) and
unlabeled data (Xy;). A regularization term is added to relate the
learning of all the { Wy, ---, W } as follows:

m“i/nf(W) + A(norm(W)), (€)]

where (W) in Eqn 8 denotes a loss function of the latent structure
learning classifier explained in Section 2.1 and W = [Wy,---,Wg|, and 1 is
the coefficient.

By using the regularization term, one method to extract the relat-
edness among different tasks is the “shared low-rank structures”. A norm
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is developed for regularization, which determines the rank of matrix W.
This norm extracts the similarity via a “shared low-rank structure” by
letting the matrix W’s rank be minimized. The minimization of matrix
W’s rank is an NP-Hard problem. Therefore, to estimate the rank func-
tion, a trace-norm (l.) is implemented (Fazel et al., 2001), i.e.,
norm(W) = || W ||.. The trace-norm is defined as a function of singular
values of matrix W as follows:

rank(W)

W= > a(w), ©)

where o;’s are singular values calculated by a singular value decompo-
sition (SVD) of the matrix W. The proposed MTLS-LR includes multiple
semi-supervised multinomial logistic regressions, i.e., semi-supervised
softmax regressions for different tasks, which can obtain both the
labeled and unlabeled input data. Moreover, a shared low-rank structure
is implemented using a trace-norm (Eq. (9)) that shares the information
amongst different tasks. The modeling structure the proposed MTLS-LR
is shown in Fig. 4. The proposed MTLS-LR is a centralized method,
where data from all tasks are available on a single machine and the
parameters are computed using a standard single-thread algorithm.
Furthermore, the proposed method processes all the signals from all the
D-PMUs in the network.

2.3. Learning of the proposed MTLS-LR model

This section presents the learning procedures of the proposed MTLS-
LR method. By adopting the “shared low-rank structures” method, the
objective function of the proposed MTLS-LR can be derived as:

m“i/nf(W) +A W, 10)

where the coefficient W is postulated by a basis vector (B) multiplied
with a coefficient matrix (C) as W = BCT where B = [171 bT] € RPv

and C = [¢;],i =1,-,L,j =1,-+,u, and v is the rank of W.

The matrix B is a subspace of matrix W that has smaller dimensions
and plays a role in obtaining the relatedness among different faulty
events recorded at various locations (i.e., different data sources). The
matrix C may differ according to the data sources or fault locations. The
aforementioned trace-norm extracts the relatedness from multiple faulty
events at different locations of a system (Gilanifar and Parvania, 2021).

The problem defined in (10) is an unconstrained convex optimization
problem with a non-smooth term, which is the I, norm, presenting a
significant challenge to solving the problem. One popular method (10) is
the Accelerated Proximal Method (APM) (Gilanifar et al., 2019).
Recently, the APM attracted more attention because of its capability of
dealing with non-smooth optimization problems and its optimal
convergence (Gilanifar et al., 2019; Nesterov, 1998). For more infor-
mation about the APM procedures, please refer to Nesterov (1998).

The key procedures of the MTLS-LR method are summarized in
Fig. 5. The parameters and hyperparameters are first initialized. In the
training phase, the values of the hyperparameters should be determined
by 10-fold cross-validation as outlined in Algorithm 1. Afterward, the
MTLS-LR classifier is trained by using both limited labeled data and
unlabeled data. The trained model will be applied to the testing dataset
to estimate the likelihood of each fault type and determine the most
probable type.

The performance is evaluated by calculating a confusion matrix
based on the comparison between the predicted classes from the pro-
posed MTLS-LR vs. the true classes. The classification error is used as an
index to measure the percentage of faults detected mistakenly over all
the faults available in the target fault location of interest.

Task Selection for the MTLS-LR:Great care should be exercised to
include data sources (fault records from different locations) in the MTL.
It is essential to identify the related tasks at multiple locations that can
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Fig. 5. A flowchart for the proposed MTLS-LR.

mostly contribute to the fault diagnosis in the target location while
excluding those dissimilar tasks. A data-driven iterative procedure can
be developed to explore the contributions from different combinations
of learning tasks to the learning accuracy. Those tasks leading to the
minimum classification errors will be considered as “related data” and
selected for the training data (Gilanifar et al., 2019).

3. Case study

The proposed MTLS-LR method is validated by a case study on a D-
PMU testbed. The results are compared with state-of-the-art machine
learning algorithms on fault classification, given limited labeled data
available for training.

3.1. D-PMU hardware-in-the-loop testbed

A realistic hardware-in-the-loop (HIL) testbed has been developed
consisting of multiple commercial distribution level phasor measure-
ment units (D-PMUs) from various vendors synchronized by a GPS clock.
In this paper, the [EEE 123-node test feeder (as shown in Fig. 6) was used
as an example since it is a common test feeder for fault diagnosis studies

underground lines, unbalanced loading, and multiple switching con-
figurations (Farajollahi et al., 2018). The IEEE 123-node model was
implemented in a multicore Opal-RT® real-time simulator with a rated
voltage of 4.16 KV @ 60 Hz. Future research will also explore the po-
tential of the proposed methodology generalizable for other applications
in power systems.

This case study used actual data from commercial D-PMUs that are
installed into the Opal-RT® target’s Field-Programmable Gate Array
(FPGA) output consoles via an amplifier. The D-PMUs computes and
records the phasor values twice per cycle per nominal 60 Hz cycle that
makes the output of 120 frames per second(von Meier et al., 2017). The
D-PMU measurements are streamed to the open-source phasor data
concentrator (OpenPDC) according to the IEEE C37.118 and IEC 61850
standards with their respective GPS-synchronized timestamp. Fig. 7 il-
lustrates the physical testbed configuration. For more details regarding
the HIL setup and the D-PMU specifications, please refer to Stifter et al.
(2018).

The HIL generated different fault scenarios, including seven fault
types in 7 locations over different power line segments. For each fault
event, three-phase voltage and current magnitude and phase angle were
recorded using multiple D-PMUs. These seven fault types include phase/
line A to ground (AG), phase/line B to ground (BG), phase/line C to
ground (CG), phases/lines A and B to the ground (ABG), phases/lines B
and C to ground (BCG), phases/lines A and C to ground (ACG), and
three-phase/line-to-ground (ABCG). Fig. 6 illustrates the location of
faults by yellow arc symbols and the positions of the D-PMUs by blue
stars.

This study created around 5000 fault events/samples with various
fault impedance, type, location and then recorded the actual measure-
ments from D-PMUs (Stifter et al., 2018). In our experimental setup, the
fault impedance to ground is selected as follows: 0.01 Q,5Q, 10 Q, 25 Q,
and 50 Q. The minimum value of 0.01 Ohms was chosen to emulate the
conditions of a bolted fault while the 50 Ohms was chosen as the high
resistance scenario in our setup. Each fault case consists of pre-event and
post-event conditions within a transient window (between no-fault and
fault state) that is 0.2 s or 12 cycles. The transient window (the mea-
surements between no-fault and fault state), as the input to the MTLS-LR
method, is much more reduced and can also be employed to identify the
fault occurring time. In this paper, 700 samples are generated for each
fault location. The generated dataset of faulty events was used for
training and testing in the proposed MTLS-LR method. It is worth
mentioning that the proposed MTLS-LR is a data-driven machine
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 Obtain S where S is the training data for ith source that py is excluded from it, (S = D; \ pi), Vi.

(a) Forke{l,-~

,n) of source i are obtained by predicting the trained classifier

o The predicted class (él?‘) for the observationu (u=1,---

~

« W;is obtained by fitting the MTLS-LR classifier on S with 4;, Vi.

on pi, Yi.
L] Erk

l

1

3.3, I(CH # C*) x 100%, where I is the indicator function and C* is the true class for observation u in ith

1

1
nxZ
source data.

(b) End For

k

(c) Calculate Er = mean(Ery),

4. End For

Aj = argmin {Er},

5. Compute A*

Algorithm 1. 10-fold Cross Validation steps used in the proposed MTLS-LR.
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Fig. 6. An example IEEE 123-node test feeder that also shows locations of D-
PMU and faults.
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Fig. 7. Experimental Setup: (a) Opal-RT Target with D-PMU; (b) D-PMU GPS
and its antenna.

learning method that works with voltage and current phasor measure-
ment data from multiple D-PMU in different locations of a network. The
major factor that would impact the fault classification accuracy is the
similarity patterns in the signals measured at different locations and
latent structures between labeled and unlabeled data no matter whether
faults are on nodes or on lines.

For visualization, Fig. 8a shows an example of three-phase voltage
magnitude measurements through a sequence of different fault types on
Node 149 of the IEEE 123. Fig. 8b illustrates the magnitude for one of the
voltage phases, as measured by different D-PMUs on Nodes 149, 95, and
197.

3.2. Experimental data description

The specifications of the training and testing datasets are presented
in Table 1. The data is normalized by dividing each sample of a feature
(such as the current or voltage column in the dataset) over vector-wise [
norm of that feature (column; = column; ./vecnorm(column;)). The
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Fig. 8. Voltage measurement simulation based on the IEEE 123-node test feeder: (a) Three-phase measurements from node 149; (b) Phase A measurements from
nodes 149, 95 & 197. Note that only degrading signals are included in the training and test dataset.

Table 1
Training and Testing Dataset that Used for Validation. Only 10 labeled data are
available per location.

Test Feeders IEEE 123-node

Tasks 2

Types of the Faults 7

Fault Impedance 0 to 50 ohm
Fault Locations Considered in Task 1 47

Fault Locations Considered in Task 2
# of Training Samples (Percent)
# of Testing Samples (Percent)

100, 149, 94, 60, 97, 80
3920 (80%)
980 (20%)

vecnorm is a MATLAB command for a vector-wise [; norm. It is worth
noting that most data are unlabeled and only 10 data at each location are
labeled with confirmed fault types for classification training.

Fig. 6 illustrates two sections of the network black and red colors that
are corresponding to two learning tasks of fault classification. There are
faults in node 47 in the red section. For the black section, there are faults
in nodes 100, 149, 94, 60, 97, and 80. The fault types in task 1 are
classified by using the data from both tasks 1 and 2 and the same with
the classification for task 2. As such, the learning in each task utilized the
measurements from all D-PMUs.

The training data consists of 80% of the total samples of faulty
events, including both labeled and unlabeled data that account for the
majority of the data. The remaining 20% were used for testing.

4. Results and discussions

This section presents the validation results of the proposed MTLS-LR
based on the fault scenarios generated by the HIL testbed and the data in
Table 1. The performance of MTLS-LR is compared with state-of-the-art
machine learning methods for fault classification. This section further
investigates the trade-off between labeled and unlabeled fault mea-
surement data for different scenarios of lacking labeled data. In addition,
the impact of noise in D-PMU measurement data on the performance of
MTLS-LR is discussed by considering the deterioration of measurement
data quality in real-world applications.

4.1. Classification error of MTLS-LR

The proposed MTLS-LR method was tested for limited labeled data, i.
e., 10 labeled samples per location and type using voltage and current
phasor signals. The confusion matrix of the proposed MTLS-LR is pre-
sented in Fig. 9. The overall classification errors of the MTLS-LR is
1.43%. It is noticeable that even with a very limited labeled data sce-
nario, the proposed method could achieve a good accuracy of more than
98%.

The MTLS-LR method was also compared with -classification

ABCG
ABG
ACG

AG
BCG
BG
CG

True Class

ABCG ABG ACG AG
Predicted Class

BCG BG CG

Fig. 9. Confusion Matrix of the proposed MTLS-LR method for the IEEE 123-
nodes test feeder using both voltage and current phasor values. It should be
noted that limited labeled data, e.g., 10 labeled data per location and type
is used.

performance by using state-of-the-art supervised learning by using
limited labeled data, i.e., 10 samples per location and type. These
methods include support vector machine (SVM), and logistic regression
(LR), and an LSL (semi-supervised learning) logistic regression method
(Li et al., 2010). The comparison results are shown in Fig. 10. In this
comparison, all the methods were tuned to improve the performance
based on the same set of datasets. For instance, the radial basis function
kernel for SVM was used, and the best parameters along with hyper-
parameters were obtained after parameter tuning with 10-fold
cross-validation. LR and SVM can only utilize the labeled data, while
LSL and MTLS-LR use both the labeled and unlabeled data for the
training step. Fig. 10 indicates that the MTLS-LR outperforms the LR and
SVM by 66% and 50% in relative error reduction, respectively. The
MTLS-LR also outperforms the LSL by 33%. It should be noted that other

~ 4.29 %
Sar 1
S
M3 2.86 % |
=
2 2.14 %
< 2 L |
Q
g= 1.43 %
&1
Q
0 L |
LR SVM LSL MTLS-LR

Fig. 10. Comparison of fault classification error between MTLS-LR and other
machine learning algorithms considering both current and voltage as input
data. The method demonstrated a clear advantage of MTLS-LR.
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Fig. 11. Confusion Matrix of the feedforward deep neural network for the IEEE
123-nodes test feeder using both voltage and current phasor measurements.

learning philosophies such as reinforcement learning which is a
sequential learning strategy that determines the decision at the next
time given historical data, differs from our problem formulation that
focuses on the small-sample learning of faults at one single time.

It is worth highlighting that (1) using unlabeled data (LSR method vs.
LR and SVM methods) and shared information from different data re-
sources (MTLS-LR vs. LSL) has advantages in improving fault classifi-
cation/diagnosis trained by a small number of labeled data; and (2) the
data measured from other related-but-non-identical faults at different
locations can be leveraged to improve the learning accuracy under the
MTL framework. As such, the results demonstrate the significant
advantage of using the MTLS-LR when dealing with limited labeled data.

Comparison with a feedforward deep neural network (DNN):
This section further compares the results obtained from the proposed
MTLS-LR with a feedforward DNN. The same input data with the same
features and the same function for normalization is implemented. The
hyperparameters of DNN are selected through 5-fold cross-validation.
For the cross-validation, a fully connected (FC) layer with ReLU acti-
vation function and dropout regularization in the hidden layers, along
with the output layer fully connected with softmax activation is used.
For selecting the best hyperparameters, 100 neurons were initially
chosen for one FC layer. Then, different activation functions such as
ReLU, leakyReLU, tanh, elu, as well as several optimizers such as Adam,
RMSprop, SGD were tested for different learning rates to find the best
activation function and optimizer. The results obtained from the cross-
validation for the initial structure with the ReLU activation function
and Adam optimizer, show a 98.97% validation accuracy. Moreover,
various learning rates 1 and 2 were tested for finding the hyper-
parameters of the Adam optimizer. The results showed 99.02% valida-
tion accuracy, i.e, the accuracy over the validation set, i.e., a part of the
training dataset, when the learning rate 1 and 2 are respectively selected
as 3e3, 0.96, and 0.95.

The above selected hyper-parameters are used to find the other
hyper-parameters of the DNN such as numbers of layers, neurons, and
dropout probability for scenarios. According to the results, the best
number of neurons for each hidden layer is selected as 200, the number
of layers is 3, and the dropout rate is 0.1. After the DNN model is trained
with the selected hyperparameters, it is tested on the same testing data
that we used for our proposed MTLS-LR. The accuracy that is obtained
from the DNN method is 96.43% (please see Figure 11) which is higher
than LR and lower than SVM, LSL, and the proposed MTLS-LR method.
The DNN is trained on only labeled data which is 10 samples per location
and type. It even does not demonstrate superiority over traditional
machine learning methods due to limited labeled data.

We record the computational time for the proposed method. It
should be noted that all the calculations are conducted on a computer
with an Intel Core i7-7500U and 2.70 GHz CPU. For the IEEE 123-nodes
test feeder, the computational time for the offline training of the algo-
rithm including the 10-fold cross-validation is around 365 seconds. The
implementation of the obtained classification tool on testing data is
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much faster, i.e., less than 1 second and suitable for quasi-real-time
implementation. To improve the algorithm, one can use better
computing devices such as GPUs. Our future work is toward improving
the performance of the algorithm for shorter computing times.

4.2. Ratio between labeled vs. unlabeled data

This subsection discusses the impact of changing the ratios between
labeled and unlabeled samples on the classification performance.
Table 2 shows the classification error in percentage when considering a
different number of labeled and unlabeled data. There are 80 samples
per location and type of fault in the training data. Thus, some entries in
Table 2 do not have any results and are presented as dash (-) since the
total number of labeled and unlabeled samples exceeds 80. The results
imply that adding more labeled or unlabeled samples can help reduce
the MTLS-LR classification error. For instance, adding 70 more labeled
samples when there are only 6 labeled samples, would reduce the clas-
sification error by 86.9%. On the other hand, by introducing 70 unla-
beled samples, the classification error is reduced by 23.5% when only six
labeled samples are available.Rare-event scenario with extremely
limited labeled data: The results in the first two columns in Table 2
reflect the rare-event scenarios with extremely limited labeled data, i.e.,
only 1 and up to 6 labeled data. It is observed that the proposed MTLS-LR
method effectively reduced the classification error as more unlabeled
data are included. For instance, by introducing 70 unlabeled samples,
the classification error is reduced by 23.5% when only six labeled
samples are available. The results showed the superiority of the MTLS-
LR method in dealing with such extreme data-limited scenarios from
the target fault location of interest.

The results in Table 2 also indicated that incorporating more labeled
data in training would limit the improvement of adding more unlabeled
data. In other words, the MTLS-LR becomes less advantageous compared
to state-of-the-art classification methods when more labeled data from
the same fault location and fault type are included. To show that the
proposed MTLS-LR is more effective in dealing with the rare-event
scenarios given with extremely limited labeled data, a new compara-
tive study was conducted. In this study, the LSL and the proposed MTLS-
LR were compared when the labeled data decreased to 1 sample per
location and type.

As shown in Table 3, if the number of labeled samples is 1, the
classification errors in both methods would increase (5.7% MLTS-LR vs.
21.43% LSL); however, the proposed MTLS-LR is affected much less than
the LSL since it can leverage the information from other similar-but-non-
identical data sources via multi-task learning.

4.3. Robustness of MTLS-LR against noise

This subsection investigates the robustness of the proposed MTLS-LR
when the training data are affected by variation in fault events voltage
or current phasor measurement data in real-world applications. Such
variation (we can call it “noise” from the data science point of view) in
fault measurement can be due to the load levels or fault impedance. The
fault event measurement variation (aka noise) can potentially mislead
the machine learning algorithm results.

In this analysis, the traditional LSL using logistic regression and the
proposed MTLS-LR were implemented on the unlabeled data mixed with
noises. First, the methods were applied to only four labeled data (L=4)
and thirty unlabeled data (U=30) per location and type of fault. In
addition, forty noisy unlabeled samples from the real-field simulation
were added to the data, and the algorithm was tested for fault classifi-
cation. The standard deviation of these forty noisy samples has a 2.81%
difference with noiseless samples. It is observed that 26 out of 279
samples in the noisy data are out of the 1.5 interquartile ranges above
the upper quartile or below the lower quartile. However, none of the
normal samples is out of this range.

The classification errors of LSL and MTLS-LR in normal data and
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Table 2
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Classification error in percentage in the existence of various labeled (L) and unlabeled (U) samples (%) using only voltage phasor measurements. The first two columns

show the rare-event scenarios when extremely limited data were labeled.

L
1 6 10 20 30 40 50 60 70 80
1) 0 36.428 10.9286 7.7142 5.7142 4.2857 3.5714 3.5714 3.5714 1.428 1.428
5 34.285 10.2857 7.7142 5.7142 4.2857 3.5714 3.5714 3.5714 1.428 -
10 34.285 10.2857 7.1428 5.7142 4.2857 3.5714 3.5714 3.5714 1.428 -
20 33.571 10.2857 7.1428 4.2857 3.5714 2.8571 2.8571 2.1428 - -
30 33.571 9.6429 6.4285 3.5714 3.5714 3.5714 2.8571 - - -
40 32.142 10.2857 6.4285 3.5714 3.5714 3.5714 - - - -
50 32.142 10.2857 6.4285 3.5714 2.8571 - - - - -
60 32.142 8.3571 6.4285 2.8571 - - - - - -
70 32.142 8.3571 5.7142 - - - - - - -
79 31.428 - - - - - - - - -
Note: There are 80 samples per location and fault type in the training data
Table 3 15

Impact of rare-event scenario on the proposed MTLS-LR and LSL methods using
both voltage and current phasor measurements.

Methods 10 labeled samples/type/location 1 labeled samples/type/location
LSL 2.14% 21.43%
MTLS-LR 1.43% 5.7%

noisy data scenarios are summarized in Fig. 12. It can be seen that
adding these noisy unlabeled data increased the classification errors for
both LSL and MTLS-LR based on very limited labeled data. However, the
relative increase error in the proposed MTLS-LR is smaller than the LSL
method. Specifically, the classification errors of the proposed MTLS-LR
and LSL are increased by 21.40% and 36.84%, respectively. The result
indicates that the proposed MTLS-LR method can effectively overcome
the limitations of the traditional LSL methods by guiding the learning of
latent structure in the existent of misleading information in the noisy
data. As such, the proposed MTLS-LR is less sensitive to the noise in the
measurement data.

5. Conclusion

Fault classification and diagnosis can help develop fault detection,
location, isolation, and service restoration (FLISR) solutions in power
distribution systems. Nevertheless, electrical faults are much less
recorded, whereas most data recorded by monitoring devices are unla-
beled, presenting a grand challenge to train an accurate classifier.
Traditional methods utilize latent structure between labeled and unla-
beled data to improve the learning accuracy. However, this methodol-
ogy has significant limitations in its inaccurate assumption on the
relationship between labeled and unlabeled data. This paper develops a
fault classification method, named MTLS-LR, based on very limited data
that are labeled with fault types. The idea is to extract similar infor-
mation from historical data in different sources/locations in the power
distribution system to guide the exploration of the latent structure be-
tween labeled and unlabeled data while preventing the classifier from
being overfitted to unlabeled data. As such, the contribution of this
paper is to overcome the limitation in traditional LSL in dealing with
fault diagnosis based on small records of labeled fault types while
effectively utilizing an abundance of unlabeled data scattered in power
distribution systems that have not been utilized in the prior research.
The findings of this paper’s case study can be highlighted as:

e The results show that the MTLS-LR method performs better than
traditional fault classification methods, especially when labeled data
are limited.

e The proposed MTLS-LR method is less vulnerable to noisy mea-
surements in real-world applications.

36.84%
relative
10 increase in

21.40 % relative
increase

Classification Error (%)
o [$]

L=4, U=30- (Normal Data) L=4, U=70- (Normal+Noisy Data)

Fig. 12. Classification error of LSL using logistic regression and MTLS-LR based
on the unlabeled data mixed with noisy patterns (%). The comparisons between
the corresponding black bars or orange bars show the robustness of the pro-
posed MTLS-LR over traditional latent stucture learning.

e The proposed MTLS-LR method can improve traditional transfer

learning methodology by (1) integrating it with latent structure

learning and (2) modeling the between-data relatedness as the

similar correlation patterns between measurement data and the

likelihood of fault types.

The study also discusses the ratio between labeled and unlabeled

data to explore the applicable conditions of the proposed MTLS-LR.

More unlabeled data can significantly reduce the classification

error when the labels are very limited.

This work can motivate data sharing in power distribution systems

for smart grid applications.

e The proposed MTLS-LR method was validated using actual fault
measurements obtained from multiple commercial D-PMUs in a
hardware-in-the-loop testbed.

Future research direction can focus on cost-effectively finding elec-
trical fault locations given limited labeled data.
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