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A B S T R A C T   

A significant issue for fault classification in power distribution systems is limited fault data for training classifiers 
to identify power failure types for remediation. Measurement data from power systems are mostly unlabeled 
without specified fault types, and labeled data with confirmed fault types are very limited, posing challenges to 
training classifiers with sufficient accuracy. Existing fault classification methods to deal with small labeled 
samples explore latent structures between labeled and unlabeled data. However, this line of methods has inac
curate assumptions on the relationship between unlabeled and labeled data and suffers from accuracy loss when 
dealing with very limited data that are labeled. This paper proposes a novel latent structure learning under a 
multi-task learning framework to supplement information and deal with the challenges in limited labeled data 
for fault classification. The proposed method not only takes advantage of the latent structure in unlabeled data 
that are not effectively utilized but also overcomes the limitations of latent structure learning by preventing 
classifiers from being overfitted to unlabeled data. The method was validated by an experimental study from 
distribution-level phasor devices in a hardware-in-the-loop testbed compared with state-of-the-art fault classi
fication algorithms. The method is also demonstrated for the robustness against measurement noise.   

1. Introduction 

1.1. Background and related work 

Fault classification or diagnosis in power distribution systems is 
essential to ensure faster fault isolation while reducing customer outage 
time. In recent years, new monitoring devices such as distribution-level 
phasor measurement units (D-PMU or micro-PMU), which provide 
phasor measurements for three-phase voltage and current, improve the 
situational awareness in power distribution systems. The faulty data 
available through these devices, along with state-of-the-art machine 
learning algorithms, provide the utility companies with more accurate 
fault classification or diagnosis for better remediation actions (Zhu et al., 
2019). 

Various fault diagnosis methods have been implemented for power 
distribution systems, which are mostly categorized under two major 
categories: impedance-based (e.g., El-Naily et al., 2020; Mora-Flarez 
et al., 2008) and traveling wave (e.g., Borghetti et al., 2010; Xiong 

et al., 2020) methods. The shortcoming of the impedance-based methods 
lies under their dependency on prior knowledge of network component 
characteristics such as physical specifications of conductors and trans
former ratings, which may not be available or updated all the time 
(Gilanifar et al., 2020). On the other hand, traveling wave fault di
agnostics methods are facing practical challenges due to mostly radial 
topology in power distribution systems with many short length 
branches. Moreover, traveling wave methods need high-frequency 
measurements that are costly and are not available all the time (Gila
nifar, 2019). These methods are dependent on the topology of power 
distribution systems and the physical specifications of the system, such 
as transformer ratings that may not be available all time. 

Aside from the aforementioned approaches, the development of 
advanced monitoring devices such as D-PMU and machine learning al
gorithms have brought more attention to data-driven fault diagnosis 
methods (Talaat et al., 2020). Machine learning utilizes the data from 
different types of faults that are collected by monitoring devices at a 
location to train a fault classifier. The advantage of this methodology is 
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that it is independent of the system topology and specifications and can 
provide more accurate and timely decisions that can be used for faster 
and better remediation actions. In the literature, Artificial Neural Net
works (ANN) (Rahman et al., 2020; Sapountzoglou et al., 2020), and 
Support Vector Machines (SVM) (Borrás et al., 2016) are major machine 
learning-based anomaly detection technique in power systems. Re
searchers in Fan et al. (2018) investigated various autoencoder-based 
types and training schemes for anomaly detection. Moreover, Hu 
et al. (2019) developed a machine learning approach to automatically 
build a data-driven fault detection method by selecting an optimal set of 
sensors. A review on machine learning methods and their real-time 
applications in power systems can be found in Ahmad and Chen 
(2020). This line of methods usually requires a sufficient amount of data 
for the training. 

1.2. Knowledge gap and proposed work 

The knowledge gap in dealing with fault classification based on 
limited labeled data can be summarized as follows:  

• There is a lack of effective fault classification methods to deal with 
very limited labeled data. Many machine learning-based fault 
diagnosis methods, including those research reviewed above, need 
data that are statistically sufficient for the training of classifiers 
(Gilanifar et al., 2019). However, electrical faults have a small 
sample size or are even rare events in the real-world power system, 
and the fault data types are insufficiently recorded and labeled 
(Gilanifar, 2019). The faulty events with limited records from a 
faulty location pose a significant challenge to most data-driven 
methods. The relevant research in the detection of faulty events 
with limited labeled data in power distribution systems is insuffi
cient. Researchers in Gilanifar et al. (2020) proposed a multi-task 
learning (MTL) method to identify fault types in power distribution 
systems when all the measurement data are labeled in the supervised 
learning framework. However, when the labels in the training data 
are very limited, the learning accuracy can still suffer from a high 
classification error. 

• Existing methods for classifying small labeled data impose inac
curate assumptions on the structure between the labeled and un
labeled data. Semi-supervised learning, a latent structure learning 
(LSL) algorithm, emerges recently to classify small-sample faulty 
data in power distribution systems (Zhou et al., 2018; 2019) using 
both labeled and unlabeled measurement data. This line of methods 
can generate the boundary of the classifiers passing through the data 
area with the least data density. However, such a classification 
strategy does not necessarily reflect true classes of data in reality 
(Chapelle et al., 2006). In addition, the LSL solely relies on the latent 
structure in the unlabeled data and labeled data from one 
single-source training data (e.g., one neighborhood or one node), 
potentially causing the trained classifier to be overfitted to the spe
cific dataset that lacks generalization. 

This paper proposes a novel fault classification method, named 
Multi-Task Latent Structure learning of Logistic Regression (MTLS-LR), 
to address the challenges in fault classification where very limited 
labeled data are available with confirmed types of electrical faults while 
a majority of data are unlabeled. The idea is to leverage multiple data 
measurements deployed at different parts of a power distribution system 
to supplement the information to the limited or even rare-event records 
of labeled data. The faulty events that occur at various locations 
captured by multiple measurement devices may exhibit different char
acteristics in the data. As such, we cannot implement traditional clas
sification algorithms based on the merged data collected from multiple 
data sources. The information from different data sources may mislead 
the learning and jeopardize the fault classification accuracy. 

The proposed MTLS-LR implements two main frameworks 

simultaneously: (1) a semi-supervised learning framework for the pos
terior class distributions when there are both labeled and unlabeled 
data, and (2) a multi-task learning framework that extracts common 
information and relatedness from multi-location data to improve 
learning. Under (2), the proposed method will find the similarity pattern 
or relatedness among similar-but-non-identical data sources as 
measured from different locations in a power distribution system. The 
relatedness will be utilized to guide the semi-supervised learning of the 
fault classifier under (1). The contributions of this research can be 
summarized below:  

• Application contribution: One of the major bottlenecks for data-driven 
fault detection in power distribution systems is the lack of enough 
labeled fault event data to create training data sets for machine 
learning algorithms. This is due to the nature of faults which are rare 
events and also the historic inadequacy of monitoring devices at 
distribution sides in comparison to power transmission networks. 
This research develops an effective fault detection methodology for 
power distribution systems when dealing with limited labeled data 
or rare fault events.  

• Methodology contribution: The method addresses the limitations in 
existing LSL methods that deal with small labeled data by leveraging 
multi-source historical information to prevent the classifier from 
being overfitted to unlabeled data.  

• Future significance: The method and case studies demonstrate the 
values of unlabeled data scattered in the power distribution system 
that can be shared in improving fault classification. As such, the 
research motivates data sharing and exchange to support smart grid 
applications. 

The remainder of this paper is organized as follows. Section 2 pre
sents the schematic of the proposed MTLS-LR method and explains the 
two main parts of the proposed MTLS-LR, i.e., LSL and multi-task latent 
structure learning. A case study based on a hardware-in-the-loop (HIL) 
testbed consisting of multiple commercial distribution level phasor 
measurement units (D-PMUs) is explained in Section 3. The results are 
presented in Section 4, where Sections 4.1 and 4.2 discuss the potential 
of the algorithm in dealing with very limited labeled samples. The 
robustness of the proposed MTLS-LR against noisy fault measurements is 
studied in Section 4.3. Section 5 concludes the paper. 

2. Multi-task latent structure learning for limited training data 
labeled 

The schematic of the proposed MTLS-LR method is illustrated in 

Fig. 1. Schematic of the proposed MTLS-LR. For each task, the majority of data 
are unlabeled (circles), whereas the labeled data (squares and triangles) are 
very limited. Each task focuses on the learning of fault classifiers by exploring 
latent structures between labeled and unlabeled data. The joint learning by 
multiple tasks can mitigate the limitation of LSL in each task. 
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Fig. 1. Historical data from multiple measurement devices, such as D- 
PMU, are collected from different nodes or neighborhood areas in a 
power distribution system. By integrating these data, multiple learning 
tasks are implemented simultaneously. Each task refers to the faulty 
event classification and diagnosis at a node or neighborhood area. The 
training datasets for each task include both the labeled and unlabeled 
samples, and labeled samples may include various types of short-circuit 
electrical faults measured. The majority of the training data are unla
beled, and labeled data can be very limited. For each learning task, a 
classification model is constructed to explore the latent structure be
tween the labeled and unlabeled samples, aiming to encourage “closely- 
located” samples to be assigned with the same class label. The models 
from different tasks will be jointly learned by exploring the relatedness 
or similarity to mitigate the impact of limitations in LSL, as will be 
discussed in Section 1.2. 

2.1. LSL for electrical fault classification 

The LSL explores the structure between the labeled and unlabeled 
data to improve the classification of unlabeled data. The logic is that 
“similar” features, as reflected in the unlabeled data, belong to the same 
class. The training is achieved by modifying the boundaries of the 
classifier among the classes to pass through the data zones with the least 
density (Chapelle et al., 2006). As shown in Fig. 2, considering the 
features in unlabeled data can help modify the linear classification 
boundary (dash line) between classes 1 and 2 by forcing the boundary to 
pass through the data zones with a relatively lower density of unlabeled 
and labeled data. 

Under the LSL framework, the estimation of a classifier is dependent 
on limited labeled data DL = { (y1, x1), ⋯, (yL, xL) } and unlabeled data 
XU = { (xL+1, ⋯, xL+U) }, where xi is the data point, the yi is the associ
ated label, and L is the number of labeled data points. The LSL aims to 
train a classification function with the assistant of labeled data (DL) and 
unlabeled data (XU). 

Different classifier models can be chosen for fault diagnosis. Without 
losing generality, this paper adopts a multinomial logistic regression 
(MLR) model to demonstrate the method since it is relatively convenient 
to obtain the posterior distribution of a fault class via a Bayesian 
framework (Li et al., 2010). The MLR can be represented as: 

p(yi = k|xi, W) =
exp

(
W(k)xi

)

∑K
k=1exp

(
W(k)xi

), (1)  

where xi = [xi1, ⋯, xil]
T is a vector of l features. The term W(k) is the 

coefficients for class k and W(k) is the kth column of the W for k = 1, ⋯, K 
−1 such that W = [W(1)T

, ⋯, W(K−1)T
]
T . The k in this paper represents 

the class and K shows the number of classes. Also, we can set W(K) = 0 
knowing that the MLR is not dependent on translation transformation on 

the W(k), which means that translation of W(k) will not affect the 
resulting probabilities. The posterior density can be: 

p(W|YL, XL, XU)∝p(YL|XL, XU , W)p(W|XL, XU) = p(YL|XL, W)p(W|XL+U),

where YL and XL are the labels and feature vectors in DL respectively, 
and XL+U represents the { XL, XU }. Thus, the maximum a posteriori 
(MAP) of W can be estimated as: 

Ŵ = argmaxW = { l(W) + logp(W|XL+U) }, (2)  

where l(W) = logp(YL|XL,W) = log
∏L

i=1p(yi
⃒
⃒xi,W). In (2), the first term 

l(W) denotes the log-likelihood function where all the labeled data DL is 
considered. The second term p(W|XL+U) considers the unlabeled data in 
the proposed LSL classifier. The term p(W|XL+U) works as a prior on W 
that enforces the classifier to pass through the area with a smaller data 
density. Thus, this prior encourages “closely-located” data points for X 
to be assigned with the same class label. The math mechanism on how 
this prior works is briefly reviewed below. 

This closeness between variables can be defined as a weighted graph 
G = (V ,E ,B ). In this graph, V is the set of vertices of all the labeled 
and unlabeled data, E represents edges of the graph defined on V × V , 
and B denotes weights of the graph defined on E 

(B ≡
{

βij ≥ 0, (i, j) ∈ E
}
). The Gaussian prior is adopted as: 

p(W|Γ)∝exp
{

−
1
2

WT ΓW
}

, (3)  

where Γ is the precision matrix that is defined as Γ = diag(λ1(XΔXT +

τI), ⋯, λ(k−1)(XΔXT + τI)), where λk k = 1, ⋯, (K − 1) are some scale 
factors and τ > 0 is a regularization parameter. Δ is a Laplacian matrix 
representing the graph G . It can be shown that the WTΓW can be 
expanded as: 

WT ΓW∝
∑K−1

k=1
λk

(
∑

(i,j)∈E

βi,j

[

W(k)T (
Xi − Xj

) ]2
)

. (4) 

According to (3), the estimator of W can be obtained by the smallest 
value of WTΓW. Also, similar to Li et al. (2010), βi,j (weights of the 
graph) in this paper can be selected as exp( − ‖ Xi − Xj‖

2). Based on (4), 

the value of 
[

W(k)T
(Xi − Xj)

]2 
should be smaller when the βi,j is large to 

reduce the WTΓW. Thus, by minimizing 
[

W(k)T
(Xi − Xj)

]2
, the classifier 

can make those data that are connected with larger values of βi,j to have 

the same type of label that generates a smaller 
[

W(k)T
(Xi − Xj)

]2
. 

. 
To obtain the MAP estimate of W in (2), an expectation- 

maximization (EM) algorithm is used. The EM algorithm is an itera
tive procedure with two steps in each iteration: E-step that computes the 
expectation value and M-step that maximizes the E-step. These steps at 
iteration t can be written as: 

E-Step: P(W|Wt) ≡ E[logp(W|D)|Wt], (5)  

M-Step: Wt+1 ∈ argmaxW P(W|Wt), (6)  

where in Eq. (5), D ≡ { DL, XU } denotes the set of labeled and unlabeled 
data. The main property of the above EM algorithm is that the p(Wt |D) is 
non-decreasing for t = 1,2,⋯, and it converges to the local optima of the 
p(W|D). For more details about the EM algorithm, please see Li et al. 
(2010). 

Limitations with the LSL:As mentioned in the Introduction, the 
assumption that the classifiers’ boundaries pass through data zones with 
low data density may not always be consistent with the reality (Gold
berg et al., 2011). Fig. 3 illustrates an example where the latent structure 
learning (LSL) boundary (gray dash line) does not reflect the true 

Fig. 2. The impact of unlabeled data on the classifier by LSL. (a) shows a linear 
classification boundary obtained from only labeled data. The existent of unla
beled data in (b) help construct a nonlinear classifier for classes 1 and 2 (red 
and blue dots) 
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boundary (solid red line) when the LSL boundary goes through the 
low-density data area. The LSL may overfit the trained classifier to the 
data. The next section will propose a multi-task LSL to address this 
limitation. 

2.2. Multi-Task LSL 

The training of LSL classifiers given limited labeled data can be 
improved under an MTL framework by leveraging the relatedness in
formation among faulty events at different locations in a distribution 
system (Fig. 3). Such relatedness is reflected as the similar correlation 
patterns between the variables/features (xi) and the response variable 
(yi). Therefore, the logistic regressors (W) in the LSL associated with 
different parts of a system can be “similarly related”. 

Assume that faulty events occurred in Z different parts/locations 
within an electric grid. For each location, there are k possible types of 
faults (e.g., a line to ground, line to line, line to line to ground, etc.) 
where very limited data are labeled, whereas the majority are unlabeled 
in the training data. The objective is to identify the type of new faults in 
the testing data with the help of limited labeled data and an abundance 
of unlabeled data from not only the fault location of interest but also 
other locations in power distribution systems (i.e., multiple related-but- 
non-identical data sources). The input data is the voltage or current 
phasor measurements obtained from different locations of a network. In 
addition, for each location, a classifier represented by (1) will be 
learned. 

The logistic regressors in the classifiers { W1, ⋯, WZ } are assumed to 
be similarly related, where each of the Wi, i = 1, ⋯, Z is for data source i. 
As summarized in (7), the proposed multi-task LSL aims to estimate the 
{ W1, ⋯, WZ } simultaneously given all data sources leveraging the 
relatedness between { W1, ⋯, WZ }. A hat symbol on top of the letters 
shows the estimated values. 

Objective: To Estimate Ŵ 1, ⋯, Ŵ Z |(D1, ⋯, DZ), (7)  

where Di ≡ { DLi, XUi }, i = 1, ⋯, Z, contains both the labeled (DLi) and 
unlabeled data (XUi). A regularization term is added to relate the 
learning of all the { W1, ⋯, WZ } as follows: 

min
W

ℓ(W) + λ(norm(W)), (8)  

where ℓ(W) in Eqn 8 denotes a loss function of the latent structure 
learning classifier explained in Section 2.1 and W = [W1,⋯,WZ], and λ is 
the coefficient. 

By using the regularization term, one method to extract the relat
edness among different tasks is the “shared low-rank structures”. A norm 

is developed for regularization, which determines the rank of matrix W. 
This norm extracts the similarity via a “shared low-rank structure” by 
letting the matrix W’s rank be minimized. The minimization of matrix 
W’s rank is an NP-Hard problem. Therefore, to estimate the rank func
tion, a trace-norm (l∗) is implemented (Fazel et al., 2001), i.e., 
norm(W) = ‖ W ‖∗. The trace-norm is defined as a function of singular 
values of matrix W as follows: 

‖ W ‖∗ =
∑rank(W)

i=1
σi(W), (9)  

where σi’s are singular values calculated by a singular value decompo
sition (SVD) of the matrix W. The proposed MTLS-LR includes multiple 
semi-supervised multinomial logistic regressions, i.e., semi-supervised 
softmax regressions for different tasks, which can obtain both the 
labeled and unlabeled input data. Moreover, a shared low-rank structure 
is implemented using a trace-norm (Eq. (9)) that shares the information 
amongst different tasks. The modeling structure the proposed MTLS-LR 
is shown in Fig. 4. The proposed MTLS-LR is a centralized method, 
where data from all tasks are available on a single machine and the 
parameters are computed using a standard single-thread algorithm. 
Furthermore, the proposed method processes all the signals from all the 
D-PMUs in the network. 

2.3. Learning of the proposed MTLS-LR model 

This section presents the learning procedures of the proposed MTLS- 
LR method. By adopting the “shared low-rank structures” method, the 
objective function of the proposed MTLS-LR can be derived as: 

min
W

ℓ(W) + λ ‖ W ‖∗, (10)  

where the coefficient W is postulated by a basis vector (B) multiplied 

with a coefficient matrix (C) as W = BCT where B =
[

b1
→

, ⋯, bν
→

]
∈ Rp×ν 

and C =
[
cij

]
, i = 1, ⋯,L, j = 1, ⋯, ν, and ν is the rank of W. 

The matrix B is a subspace of matrix W that has smaller dimensions 
and plays a role in obtaining the relatedness among different faulty 
events recorded at various locations (i.e., different data sources). The 
matrix C may differ according to the data sources or fault locations. The 
aforementioned trace-norm extracts the relatedness from multiple faulty 
events at different locations of a system (Gilanifar and Parvania, 2021). 

The problem defined in (10) is an unconstrained convex optimization 
problem with a non-smooth term, which is the l∗ norm, presenting a 
significant challenge to solving the problem. One popular method (10) is 
the Accelerated Proximal Method (APM) (Gilanifar et al., 2019). 
Recently, the APM attracted more attention because of its capability of 
dealing with non-smooth optimization problems and its optimal 
convergence (Gilanifar et al., 2019; Nesterov, 1998). For more infor
mation about the APM procedures, please refer to Nesterov (1998). 

The key procedures of the MTLS-LR method are summarized in 
Fig. 5. The parameters and hyperparameters are first initialized. In the 
training phase, the values of the hyperparameters should be determined 
by 10-fold cross-validation as outlined in Algorithm 1. Afterward, the 
MTLS-LR classifier is trained by using both limited labeled data and 
unlabeled data. The trained model will be applied to the testing dataset 
to estimate the likelihood of each fault type and determine the most 
probable type. 

The performance is evaluated by calculating a confusion matrix 
based on the comparison between the predicted classes from the pro
posed MTLS-LR vs. the true classes. The classification error is used as an 
index to measure the percentage of faults detected mistakenly over all 
the faults available in the target fault location of interest. 

Task Selection for the MTLS-LR:Great care should be exercised to 
include data sources (fault records from different locations) in the MTL. 
It is essential to identify the related tasks at multiple locations that can 

Fig. 3. Limitations with state-of-the-art latent structures learning (LSL), and 
multi-task learning can mitigate the problem that data are overfitted to unla
beled data by the traditional LSL methods. 
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mostly contribute to the fault diagnosis in the target location while 
excluding those dissimilar tasks. A data-driven iterative procedure can 
be developed to explore the contributions from different combinations 
of learning tasks to the learning accuracy. Those tasks leading to the 
minimum classification errors will be considered as ”related data” and 
selected for the training data (Gilanifar et al., 2019). 

3. Case study 

The proposed MTLS-LR method is validated by a case study on a D- 
PMU testbed. The results are compared with state-of-the-art machine 
learning algorithms on fault classification, given limited labeled data 
available for training. 

3.1. D-PMU hardware-in-the-loop testbed 

A realistic hardware-in-the-loop (HIL) testbed has been developed 
consisting of multiple commercial distribution level phasor measure
ment units (D-PMUs) from various vendors synchronized by a GPS clock. 
In this paper, the IEEE 123-node test feeder (as shown in Fig. 6) was used 
as an example since it is a common test feeder for fault diagnosis studies 

(Farajollahi et al., 2018; Gilanifar et al., 2020). It has overhead and 
underground lines, unbalanced loading, and multiple switching con
figurations (Farajollahi et al., 2018). The IEEE 123-node model was 
implemented in a multicore Opal-RT® real-time simulator with a rated 
voltage of 4.16 KV @ 60 Hz. Future research will also explore the po
tential of the proposed methodology generalizable for other applications 
in power systems. 

This case study used actual data from commercial D-PMUs that are 
installed into the Opal-RT® target’s Field-Programmable Gate Array 
(FPGA) output consoles via an amplifier. The D-PMUs computes and 
records the phasor values twice per cycle per nominal 60 Hz cycle that 
makes the output of 120 frames per second(von Meier et al., 2017). The 
D-PMU measurements are streamed to the open-source phasor data 
concentrator (OpenPDC) according to the IEEE C37.118 and IEC 61850 
standards with their respective GPS-synchronized timestamp. Fig. 7 il
lustrates the physical testbed configuration. For more details regarding 
the HIL setup and the D-PMU specifications, please refer to Stifter et al. 
(2018). 

The HIL generated different fault scenarios, including seven fault 
types in 7 locations over different power line segments. For each fault 
event, three-phase voltage and current magnitude and phase angle were 
recorded using multiple D-PMUs. These seven fault types include phase/ 
line A to ground (AG), phase/line B to ground (BG), phase/line C to 
ground (CG), phases/lines A and B to the ground (ABG), phases/lines B 
and C to ground (BCG), phases/lines A and C to ground (ACG), and 
three-phase/line-to-ground (ABCG). Fig. 6 illustrates the location of 
faults by yellow arc symbols and the positions of the D-PMUs by blue 
stars. 

This study created around 5000 fault events/samples with various 
fault impedance, type, location and then recorded the actual measure
ments from D-PMUs (Stifter et al., 2018). In our experimental setup, the 
fault impedance to ground is selected as follows: 0.01 Ω, 5 Ω, 10 Ω, 25 Ω, 
and 50 Ω. The minimum value of 0.01 Ohms was chosen to emulate the 
conditions of a bolted fault while the 50 Ohms was chosen as the high 
resistance scenario in our setup. Each fault case consists of pre-event and 
post-event conditions within a transient window (between no-fault and 
fault state) that is 0.2 s or 12 cycles. The transient window (the mea
surements between no-fault and fault state), as the input to the MTLS-LR 
method, is much more reduced and can also be employed to identify the 
fault occurring time. In this paper, 700 samples are generated for each 
fault location. The generated dataset of faulty events was used for 
training and testing in the proposed MTLS-LR method. It is worth 
mentioning that the proposed MTLS-LR is a data-driven machine 

Fig. 4. Modeling structure of the proposed MTLS-LR.  

Fig. 5. A flowchart for the proposed MTLS-LR.  
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learning method that works with voltage and current phasor measure
ment data from multiple D-PMU in different locations of a network. The 
major factor that would impact the fault classification accuracy is the 
similarity patterns in the signals measured at different locations and 
latent structures between labeled and unlabeled data no matter whether 
faults are on nodes or on lines. 

For visualization, Fig. 8a shows an example of three-phase voltage 
magnitude measurements through a sequence of different fault types on 
Node 149 of the IEEE 123. Fig. 8b illustrates the magnitude for one of the 
voltage phases, as measured by different D-PMUs on Nodes 149, 95, and 
197. 

3.2. Experimental data description 

The specifications of the training and testing datasets are presented 
in Table 1. The data is normalized by dividing each sample of a feature 
(such as the current or voltage column in the dataset) over vector-wise l1 
norm of that feature (columni = columni ./vecnorm(columni)). The 
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Fig. 6. An example IEEE 123-node test feeder that also shows locations of D- 
PMU and faults. 

Fig. 7. Experimental Setup: (a) Opal-RT Target with D-PMU; (b) D-PMU GPS 
and its antenna. 
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vecnorm is a MATLAB command for a vector-wise l1 norm. It is worth 
noting that most data are unlabeled and only 10 data at each location are 
labeled with confirmed fault types for classification training. 

Fig. 6 illustrates two sections of the network black and red colors that 
are corresponding to two learning tasks of fault classification. There are 
faults in node 47 in the red section. For the black section, there are faults 
in nodes 100, 149, 94, 60, 97, and 80. The fault types in task 1 are 
classified by using the data from both tasks 1 and 2 and the same with 
the classification for task 2. As such, the learning in each task utilized the 
measurements from all D-PMUs. 

The training data consists of 80% of the total samples of faulty 
events, including both labeled and unlabeled data that account for the 
majority of the data. The remaining 20% were used for testing. 

4. Results and discussions 

This section presents the validation results of the proposed MTLS-LR 
based on the fault scenarios generated by the HIL testbed and the data in 
Table 1. The performance of MTLS-LR is compared with state-of-the-art 
machine learning methods for fault classification. This section further 
investigates the trade-off between labeled and unlabeled fault mea
surement data for different scenarios of lacking labeled data. In addition, 
the impact of noise in D-PMU measurement data on the performance of 
MTLS-LR is discussed by considering the deterioration of measurement 
data quality in real-world applications. 

4.1. Classification error of MTLS-LR 

The proposed MTLS-LR method was tested for limited labeled data, i. 
e., 10 labeled samples per location and type using voltage and current 
phasor signals. The confusion matrix of the proposed MTLS-LR is pre
sented in Fig. 9. The overall classification errors of the MTLS-LR is 
1.43%. It is noticeable that even with a very limited labeled data sce
nario, the proposed method could achieve a good accuracy of more than 
98%. 

The MTLS-LR method was also compared with classification 

performance by using state-of-the-art supervised learning by using 
limited labeled data, i.e., 10 samples per location and type. These 
methods include support vector machine (SVM), and logistic regression 
(LR), and an LSL (semi-supervised learning) logistic regression method 
(Li et al., 2010). The comparison results are shown in Fig. 10. In this 
comparison, all the methods were tuned to improve the performance 
based on the same set of datasets. For instance, the radial basis function 
kernel for SVM was used, and the best parameters along with hyper
parameters were obtained after parameter tuning with 10-fold 
cross-validation. LR and SVM can only utilize the labeled data, while 
LSL and MTLS-LR use both the labeled and unlabeled data for the 
training step. Fig. 10 indicates that the MTLS-LR outperforms the LR and 
SVM by 66% and 50% in relative error reduction, respectively. The 
MTLS-LR also outperforms the LSL by 33%. It should be noted that other 

Fig. 8. Voltage measurement simulation based on the IEEE 123-node test feeder: (a) Three-phase measurements from node 149; (b) Phase A measurements from 
nodes 149, 95 & 197. Note that only degrading signals are included in the training and test dataset. 

Table 1 
Training and Testing Dataset that Used for Validation. Only 10 labeled data are 
available per location.  

Test Feeders IEEE 123-node 

Tasks 2 
Types of the Faults 7 
Fault Impedance 0 to 50 ohm 
Fault Locations Considered in Task 1 47 
Fault Locations Considered in Task 2 100, 149, 94, 60, 97, 80 
# of Training Samples (Percent) 3920 (80%) 
# of Testing Samples (Percent) 980 (20%)  

Fig. 9. Confusion Matrix of the proposed MTLS-LR method for the IEEE 123- 
nodes test feeder using both voltage and current phasor values. It should be 
noted that limited labeled data, e.g., 10 labeled data per location and type 
is used. 

Fig. 10. Comparison of fault classification error between MTLS-LR and other 
machine learning algorithms considering both current and voltage as input 
data. The method demonstrated a clear advantage of MTLS-LR. 
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learning philosophies such as reinforcement learning which is a 
sequential learning strategy that determines the decision at the next 
time given historical data, differs from our problem formulation that 
focuses on the small-sample learning of faults at one single time. 

It is worth highlighting that (1) using unlabeled data (LSR method vs. 
LR and SVM methods) and shared information from different data re
sources (MTLS-LR vs. LSL) has advantages in improving fault classifi
cation/diagnosis trained by a small number of labeled data; and (2) the 
data measured from other related-but-non-identical faults at different 
locations can be leveraged to improve the learning accuracy under the 
MTL framework. As such, the results demonstrate the significant 
advantage of using the MTLS-LR when dealing with limited labeled data. 

Comparison with a feedforward deep neural network (DNN): 
This section further compares the results obtained from the proposed 
MTLS-LR with a feedforward DNN. The same input data with the same 
features and the same function for normalization is implemented. The 
hyperparameters of DNN are selected through 5-fold cross-validation. 
For the cross-validation, a fully connected (FC) layer with ReLU acti
vation function and dropout regularization in the hidden layers, along 
with the output layer fully connected with softmax activation is used. 
For selecting the best hyperparameters, 100 neurons were initially 
chosen for one FC layer. Then, different activation functions such as 
ReLU, leakyReLU, tanh, elu, as well as several optimizers such as Adam, 
RMSprop, SGD were tested for different learning rates to find the best 
activation function and optimizer. The results obtained from the cross- 
validation for the initial structure with the ReLU activation function 
and Adam optimizer, show a 98.97% validation accuracy. Moreover, 
various learning rates 1 and 2 were tested for finding the hyper- 
parameters of the Adam optimizer. The results showed 99.02% valida
tion accuracy, i.e, the accuracy over the validation set, i.e., a part of the 
training dataset, when the learning rate 1 and 2 are respectively selected 
as 3e−3, 0.96, and 0.95. 

The above selected hyper-parameters are used to find the other 
hyper-parameters of the DNN such as numbers of layers, neurons, and 
dropout probability for scenarios. According to the results, the best 
number of neurons for each hidden layer is selected as 200, the number 
of layers is 3, and the dropout rate is 0.1. After the DNN model is trained 
with the selected hyperparameters, it is tested on the same testing data 
that we used for our proposed MTLS-LR. The accuracy that is obtained 
from the DNN method is 96.43% (please see Figure 11) which is higher 
than LR and lower than SVM, LSL, and the proposed MTLS-LR method. 
The DNN is trained on only labeled data which is 10 samples per location 
and type. It even does not demonstrate superiority over traditional 
machine learning methods due to limited labeled data. 

We record the computational time for the proposed method. It 
should be noted that all the calculations are conducted on a computer 
with an Intel Core i7-7500U and 2.70 GHz CPU. For the IEEE 123-nodes 
test feeder, the computational time for the offline training of the algo
rithm including the 10-fold cross-validation is around 365 seconds. The 
implementation of the obtained classification tool on testing data is 

much faster, i.e., less than 1 second and suitable for quasi-real-time 
implementation. To improve the algorithm, one can use better 
computing devices such as GPUs. Our future work is toward improving 
the performance of the algorithm for shorter computing times. 

4.2. Ratio between labeled vs. unlabeled data 

This subsection discusses the impact of changing the ratios between 
labeled and unlabeled samples on the classification performance. 
Table 2 shows the classification error in percentage when considering a 
different number of labeled and unlabeled data. There are 80 samples 
per location and type of fault in the training data. Thus, some entries in 
Table 2 do not have any results and are presented as dash (-) since the 
total number of labeled and unlabeled samples exceeds 80. The results 
imply that adding more labeled or unlabeled samples can help reduce 
the MTLS-LR classification error. For instance, adding 70 more labeled 
samples when there are only 6 labeled samples, would reduce the clas
sification error by 86.9%. On the other hand, by introducing 70 unla
beled samples, the classification error is reduced by 23.5% when only six 
labeled samples are available.Rare-event scenario with extremely 
limited labeled data: The results in the first two columns in Table 2 
reflect the rare-event scenarios with extremely limited labeled data, i.e., 
only 1 and up to 6 labeled data. It is observed that the proposed MTLS-LR 
method effectively reduced the classification error as more unlabeled 
data are included. For instance, by introducing 70 unlabeled samples, 
the classification error is reduced by 23.5% when only six labeled 
samples are available. The results showed the superiority of the MTLS- 
LR method in dealing with such extreme data-limited scenarios from 
the target fault location of interest. 

The results in Table 2 also indicated that incorporating more labeled 
data in training would limit the improvement of adding more unlabeled 
data. In other words, the MTLS-LR becomes less advantageous compared 
to state-of-the-art classification methods when more labeled data from 
the same fault location and fault type are included. To show that the 
proposed MTLS-LR is more effective in dealing with the rare-event 
scenarios given with extremely limited labeled data, a new compara
tive study was conducted. In this study, the LSL and the proposed MTLS- 
LR were compared when the labeled data decreased to 1 sample per 
location and type. 

As shown in Table 3, if the number of labeled samples is 1, the 
classification errors in both methods would increase (5.7% MLTS-LR vs. 
21.43% LSL); however, the proposed MTLS-LR is affected much less than 
the LSL since it can leverage the information from other similar-but-non- 
identical data sources via multi-task learning. 

4.3. Robustness of MTLS-LR against noise 

This subsection investigates the robustness of the proposed MTLS-LR 
when the training data are affected by variation in fault events voltage 
or current phasor measurement data in real-world applications. Such 
variation (we can call it “noise” from the data science point of view) in 
fault measurement can be due to the load levels or fault impedance. The 
fault event measurement variation (aka noise) can potentially mislead 
the machine learning algorithm results. 

In this analysis, the traditional LSL using logistic regression and the 
proposed MTLS-LR were implemented on the unlabeled data mixed with 
noises. First, the methods were applied to only four labeled data (L=4) 
and thirty unlabeled data (U=30) per location and type of fault. In 
addition, forty noisy unlabeled samples from the real-field simulation 
were added to the data, and the algorithm was tested for fault classifi
cation. The standard deviation of these forty noisy samples has a 2.81% 
difference with noiseless samples. It is observed that 26 out of 279 
samples in the noisy data are out of the 1.5 interquartile ranges above 
the upper quartile or below the lower quartile. However, none of the 
normal samples is out of this range. 

The classification errors of LSL and MTLS-LR in normal data and 

Fig. 11. Confusion Matrix of the feedforward deep neural network for the IEEE 
123-nodes test feeder using both voltage and current phasor measurements. 
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noisy data scenarios are summarized in Fig. 12. It can be seen that 
adding these noisy unlabeled data increased the classification errors for 
both LSL and MTLS-LR based on very limited labeled data. However, the 
relative increase error in the proposed MTLS-LR is smaller than the LSL 
method. Specifically, the classification errors of the proposed MTLS-LR 
and LSL are increased by 21.40% and 36.84%, respectively. The result 
indicates that the proposed MTLS-LR method can effectively overcome 
the limitations of the traditional LSL methods by guiding the learning of 
latent structure in the existent of misleading information in the noisy 
data. As such, the proposed MTLS-LR is less sensitive to the noise in the 
measurement data. 

5. Conclusion 

Fault classification and diagnosis can help develop fault detection, 
location, isolation, and service restoration (FLISR) solutions in power 
distribution systems. Nevertheless, electrical faults are much less 
recorded, whereas most data recorded by monitoring devices are unla
beled, presenting a grand challenge to train an accurate classifier. 
Traditional methods utilize latent structure between labeled and unla
beled data to improve the learning accuracy. However, this methodol
ogy has significant limitations in its inaccurate assumption on the 
relationship between labeled and unlabeled data. This paper develops a 
fault classification method, named MTLS-LR, based on very limited data 
that are labeled with fault types. The idea is to extract similar infor
mation from historical data in different sources/locations in the power 
distribution system to guide the exploration of the latent structure be
tween labeled and unlabeled data while preventing the classifier from 
being overfitted to unlabeled data. As such, the contribution of this 
paper is to overcome the limitation in traditional LSL in dealing with 
fault diagnosis based on small records of labeled fault types while 
effectively utilizing an abundance of unlabeled data scattered in power 
distribution systems that have not been utilized in the prior research. 
The findings of this paper’s case study can be highlighted as:  

• The results show that the MTLS-LR method performs better than 
traditional fault classification methods, especially when labeled data 
are limited. 

• The proposed MTLS-LR method is less vulnerable to noisy mea
surements in real-world applications.  

• The proposed MTLS-LR method can improve traditional transfer 
learning methodology by (1) integrating it with latent structure 
learning and (2) modeling the between-data relatedness as the 
similar correlation patterns between measurement data and the 
likelihood of fault types.  

• The study also discusses the ratio between labeled and unlabeled 
data to explore the applicable conditions of the proposed MTLS-LR. 
More unlabeled data can significantly reduce the classification 
error when the labels are very limited.  

• This work can motivate data sharing in power distribution systems 
for smart grid applications.  

• The proposed MTLS-LR method was validated using actual fault 
measurements obtained from multiple commercial D-PMUs in a 
hardware-in-the-loop testbed. 

Future research direction can focus on cost-effectively finding elec
trical fault locations given limited labeled data. 
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