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Abstract: Inspired by the numerical evidence of a potential 3DEuler singularity byLuo-
Hou [30,31] and the recent breakthrough by Elgindi [11] on the singularity formation of
the 3D Euler equation without swirl with C1,α initial data for the velocity, we prove the
finite time singularity for the 2D Boussinesq and the 3D axisymmetric Euler equations
in the presence of boundary withC1,α initial data for the velocity (and density in the case
of Boussinesq equations). Our finite time blowup solution for the 3D Euler equations
and the singular solution considered in [30,31] share many essential features, including
the symmetry properties of the solution, the flow structure, and the sign of the solution
in each quadrant, except that we use C1,α initial data for the velocity field. We use a
dynamic rescaling formulation and follow the general framework of analysis developed
by Elgindi in [11]. We also use some strategy proposed in our recent joint work with
Huang in [7] and adopt several methods of analysis in [11] to establish the linear and
nonlinear stability of an approximate self-similar profile. The nonlinear stability enables
us to prove that the solution of the 3D Euler equations or the 2D Boussinesq equations
with C1,α initial data will develop a finite time singularity. Moreover, the velocity field
has finite energy before the singularity time.

1. Introduction

The three-dimensional (3D) incompressible Euler equations in fluid dynamics describe
the motion of ideal incompressible flows. It has been used to model ocean currents,
weather patterns, andother fluids related phenomena.Despite theirwide rangeof applica-
tions, the question regarding the global regularity of the 3DEuler equations has remained
open. The interested readers may consult the excellent surveys [1,10,16,19,26,32] and
the references therein. The main difficulty associated with the regularity properties of
the 3D Euler equations is due to the presence of vortex stretching, which is absent in
the 2D Euler equations. To better illustrate this difficulty, we consider the so-called
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vorticity-stream function formulation:

ωt + u · ∇ω = ω · ∇u, (1.1)

where ω = ∇ × u is the vorticity vector of the fluid, and u is related to ω via the Biot–
Savart law. Under some decay conditions in the far field, one can show that ω satisfies
the property

∥ω∥L p ≤ ∥∇u∥L p ≤ Cp∥ω∥L p , 1 < p < ∞. (1.2)

Thus, the vortex stretching term ω ·∇u formally scales like ω2. If such nonlinear align-
ment persists in time, the 3D Euler equations may develop a finite-time singularity.
However, due to the nonlocal nature of the vortex stretching term, such nonlinear align-
mentmay deplete itself dynamically (see e.g. [22]).Despite considerable efforts,whether
the 3D Euler equations with smooth initial data of finite energy can develop a finite time
singularity has been one of the most outstanding open questions in nonlinear partial
differential equations.

In [30,31], Luo and Hou presented some convincing numerical evidence that the
3D axisymmetric Euler equations with a solid boundary develop a potential finite time
singularity for a class of smooth initial data with finite energy. The presence of the
boundary and the odd-even symmetry of the solution along the axial direction play
an important role in generating a stable and sustainable finite time singularity. The
singularity scenario reported in [30,31] has generated great interests and has inspired a
number of subsequent developments, see e.g. [8,24,25] and the excellent survey article
[26].

Despite all the previous efforts, there is still lack of theoretical justification of the
finite time singularity for the 3D axisymmetric Euler equations reported in [30,31].
Very recently, Elgindi made a breakthrough on the 3D Euler equation singularity [11]
by constructing the self-similar blowup solutions to the 3D axisymmetric Euler equations
with C1,α velocity and without swirl.

1.1. Main results. In this paper, inspired by the computation of Hou-Luo [30,31] and
Elgindi’s work [11], we study the singularity formation of 3D axisymmetric Euler equa-
tions and the 2D Boussinesq equations with boundary. Since the singularity of the 3D
axisymmetric Euler equations reported in [30,31] occurs at the boundary, away from the
symmetry axis, it is well known that the 3D axisymmetric Euler equations are similar
to the 2D Boussinesq equations [32]. Thus, it makes sense to investigate the finite time
singularity of the 2D Boussinesq equations.

The main results of this paper are summarized by the following two theorems. In
our first main result, we prove finite time blowup of the Boussinesq equations with C1,α

initial data for the velocity field and the density.

Theorem 1.1. Let ω be the vorticity and θ be the density in the 2D Boussinesq equa-
tions described by (2.1)–(2.3). There exists α0 > 0 such that for 0 < α < α0, the
unique local solution of the 2D Boussinesq equations in the upper half plane devel-
ops a focusing asymptotically self-similar singularity in finite time for some initial data
ω ∈ Cα

c (R2
+), θ ∈ C1,α

c (R2
+). In particular, the velocity field is C1,α with finite energy.

Moreover, the self-similar profile (ω∞, θ∞) satisfies ω∞,∇θ∞ ∈ C
α
40 .



Finite Time Blowup of 2D Boussinesq Equations

By asymptotically self-similar, we mean that the solution in the dynamic rescaling
equations (see Definition in Sect. 4.1) converges to the self-similar profile in a suitable
norm. We will specify the norm in the convergence in Sect. 8.6.3.

In our second result, we prove the finite time singularity formation for the 3D axisym-
metric Euler equations with large swirl in a cylinder D = {(r, z) : r ≤ 1, z ∈ T}
that is periodic in z (axial direction) with period 2, where r is the radial variable and
T = R/(2Z).
Theorem 1.2. Consider the 3D axisymmetric Euler equations in the cylinder r, z ∈
[0, 1] × T. Let ωθ be the angular vorticity and uθ be the angular velocity. There exists
α0 > 0 such that for 0 < α < α0, the unique local solution of the 3D axisymmetric
Euler equations given by (9.2)–(9.4) develops a singularity in finite time for some initial
data ωθ ∈ Cα(D), (uθ )2 ∈ C1,α(D) supported away from the axis r = 0 with uθ ≥ 0.
In particular, the velocity field in each period has finite energy.

Our analysis shows that the singular solution in Theorem 1.2 in the dynamic rescaling
formulation remains very close to an approximate blowup profile in some norm (see
Sect. 9) for all time (or up to the blowup time in the original formulation). It is conceivable
that it converges to a self-similar blowup profile of 2D Boussinesq at the blowup time so
that the blowup solution is asymptotically self-similar. However, we cannot prove this
result using the current analysis since the domain D is not invariant under dilation. We
leave it to our future work.

1.2. Main ingredients in our analysis. Our analysis follows the general framework
developed by Elgindi in [11]. We use the Boussinesq equations to illustrate the main
ideas in our analysis.

As in our previous work [7], we reformulate the equations using an equivalent
dynamic rescaling formulation (see e.g. [28,34]). We follow [11] to derive the lead-
ing order system. In the derivation, we have used the argument in [11] to obtain the
leading order approximation of the stream function for small α. Moreover, as observed
by Elgindi and Jeong in [14] (see also [11]), the advection terms are relatively small
compared with the nonlinear vortex stretching term when we work with Cα solution
with small α for vorticity or ∇θ , which vanishes weakly near the origin, e.g. |x |α . In
the 2D Boussinesq equations (2.1)–(2.2), the vortex stretching term for the ω equation
is given by θx . Within the above Cα class of solution, the transport term u · ∇ω may
not be smaller than θx . For example, one can choose ω, θ so that u · ∇ω = O(1) and
θx = O(1). We further look for solutions of the 2D Boussinesq equation (2.1)–(2.2)
by letting ω = αω̃, θ = αθ̃ with ω̃ = O(1) and θ̃ = O(1) as α → 0. Formally, the
nonlinear transport term u · ∇ω becomes relatively small compared with θx due to the
weakening effect of advection for Cα data and the weak nonlinear effect due to the fact
that ω = O(α) and θx = O(α) for small α at a given time. Thus, we can ignore the
contributions from the advection terms for smallα whenweworkwith this class ofω and
θ . See more discussion in Sect. 2.4. In addition, inspired by our own computation of the
Hou-Luo singularity scenario [30,31], we look for θ that is anisotropic in the sense that
θy is small compared with θx . We will justify that this property is preserved dynamically
for our singular solution. As a result, we can decouple the θy equation from the leading
order equations forω and θx . This gives rise to a leading order coupled system of Riccati
type for ω and θx , which is similar to the scalar leading order equation obtained in [11].
Inspired by the solution structure of the leading order system in [11], we are able to find
a class of closed form solutions of this leading order system.
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Themost essential part of our analysis is to establish linear stability of the approximate
steady state using the dynamic rescaling equations. As in [11] and our previous work
with Huang [7], we design some singular weights to extract the damping effect from the
linearized operator around the approximate steady state. In order for the perturbation
from the approximate steady state to be well defined in the weighted norm with a more
singular weight, we impose some vanishing conditions on the perturbation at the origin
by choosing some normalization conditions. This leads to some nonlocal terms related
to the scaling parameter cω in the linearized equations, which are not present in [11].

Compared with the scalar linearized equation considered in [11], the linearized equa-
tions for the 2D Boussinesq equations lead to a more complicated coupled system and
we need to deal with a few more nonlocal terms that are of O(1) as α → 0. Thus we
cannot apply the coercivity estimate of the linearized operator in [11], which is one of
the key steps in constructing the self-similar solution in [11]. One of the main difficul-
ties in our linear stability analysis is to control the nonlocal terms. If we use a standard
energy estimate to handle these nonlocal terms, we will over-estimate their contributions
to the linearized equations and would not be able to obtain the desired linear stability
result. Since the damping term has a relatively small coefficient, we need to exploit the
coupling structure in the system and take into account the cancellation among different
nonlocal interaction terms in order to obtain linear stability. For this purpose, we design
our singular weights that are adapted to the approximate self-similar profile and contain
different powers of R−k to account the interaction in the near field, the intermediate field
and the far field. To control the nonlocal scaling parameter cω, we will derive a separate
ODE for cω, which captures the damping effect of cω.

We have used the elliptic estimate and several nonlinear estimates from [11] in our
nonlinear stability analysis. The presence of swirl (the angular velocity uθ ) or density
(θ ) introduces additional technical difficulties. Since the approximate steady state for
∇θ does not decay in certain direction, we need to design different weighted Sobolev
spaces carefully for different derivatives and further develop several nonlinear estimates.
To obtain the L∞ estimate of a directional derivative of θ , which is necessary to close the
nonlinear stability analysis,wemake use of the hyperbolic flow structure.Onceweobtain
nonlinear stability, as in [7], we establish finite time blowup from a class of compactly
supported initial data ω0 and θ0 with finite energy by truncating the approximate steady
state and using a rescaling argument. We further establish convergence of the solution
of the dynamic rescaling equations to the self-similar profile using a time-differentiation
argument. This argument has also been used in our recent joint work with Huang in [7]
and developed independently in [11].

1.3. From the 2D Boussinesq to the 3D Euler equations. For the 3D Euler equations, we
consider the domain within one period, i.e. D1 = {(r, z) : r ∈ [0, 1], |z| ≤ 1}. We will
construct a singular solution that is supported near r = 1, z = 0 up to blowup time and
blows up at r = 1, z = 0. Since the support is away from the symmetry axis, we show
that the 3D Euler equations are essentially the same as the 2D Boussinesq equations
up to some lower order terms. This connection is well known; see e.g. [32]. Then we
generalize the proof of Theorem 1.1 to prove Theorem 1.2. To justify this connection
rigorously, we need two steps. The first step is to establish the elliptic estimates in the
new domain. The second step is to control the support of the solution and show that it
remains close to r = 1, z = 0 up to the blowup time.
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1.3.1. Control of the support The reason that the support of the singular solution remains
close to (r, z) = (1, 0) is due to the following properties of the singular solution. Firstly,
the singular solution is focusing, which is characterized by the rescaling parameters
cl(τ ) > 1

2α for all τ > 0. See the definition of cl in Sect. 4.1. Secondly, the velocity in
the dynamic rescaling formulation has sublinear growth in the support of the solution.
These properties hold for the singular solution of the 2DBoussinesq equations.We prove
that they remain true for the 3D Euler in Sect. 9. Using these properties, we derive an
ODE to control the size of the support and show that it remains small up to the blowup
time. See more discussion in Sect. 9.3.5. Similar ideas and estimates to control the
support have been used in [7] to generalize the singularity formation of the De Gregorio
type model from the real line to a circle.

1.3.2. The elliptic estimates The elliptic equation for the stream function ψ̃(r, z) in D1
reads

Lψ̃ ! −(∂rr +
1
r
∂r + ∂zz)ψ̃ +

1
r2

ψ̃ = ωθ , (1.3)

where ωθ is the angular vorticity. We impose the periodic boundary condition in z and a
no-flow boundary condition on r = 1 : ψ̃(1, z) = 0. See [31,32]. Since the solution is
supported near r = 1, z = 0,wewill only use ψ̃(r, z) for (r, z) near (1, 0) in our analysis.
In this case, r−1 ≈ 1 and the term − 1

r ∂r ψ̃ + 1
r2 ψ̃ in Lψ̃ is of lower order compared

with ∂rr ψ̃ + ∂zzψ̃ . In the dynamic rescaling equations, we obtain a small factor Cl(τ )

for the term − 1
r ∂r ψ̃ + 1

r2 ψ̃ and treat it as a perturbation in Lψ̃ . Moreover, if we relabel
the variables (r, z) as (y, x) in R2, we formally have Lψ̃ ≈ −'2Dψ̃ . In Sect. 9.2, we
will justify this connection rigorously and then generalize the elliptic estimates that we
obtain for the 2D Boussinesq to the 3D Euler equations.

1.4. Connections to the Hou–Luo scenario. Many settings of our problem are similar to
those considered in [30,31]. See more discussions after Lemma 3.1. The driving mecha-
nism for the finite time singularity that we consider in this paper is essentially the same as
that for the 3D axisymmetric Euler equations with solid boundary considered in [30,31].
In both cases, the swirl (the angular velocity uθ ) and the boundary play an essential
role in generating a sustainable finite time singularity. It is the strong compression of the
angular velocity uθ toward the symmetry plane z = 0 along the axial (z) direction on
the boundary r = 1 that creates a large gradient in uθ . Then the nonlinear forcing term
∂z(uθ )2 induces a rapid growth in the angular vorticity ωθ , ultimately leading to a finite
time blowup. Moreover, the singularities that we consider occur at the solid boundary,
which are the same as the one reported in [30,31].

We would like to emphasize that the presence of boundary plays a crucial role in the
singularity formation even with C1,α initial data for the velocity and θ . If we remove the
boundary, a promising potential blowup scenario for the 2D Boussinesq equation is to
have a hyperbolic flow structure near the originwith 4-fold symmetry for θ , i.e. θ is odd in
y and even in x . Similar scenario has been used in [38]. Since θ(x, y) is odd with respect
to y and θ ∈ C1,α , a typical θ is of the form: θ(x, y) ≈ c1αx1+α y+l.o.t., c1 ̸= 0 near the
origin. From our derivation and analysis of the leading order system, it is the nonlinear
coupling between ω and θx that generates the blow-up mechanism. However, without
the boundary, θx ≈ c1α(1 + α)xα y + l.o.t. and it does not vanish to the order O(|y|κ)
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near y = 0 with a small exponent κ > 0. The advection of θx along the y direction is not
small compared with the vortex stretching term −uxθx in the θx equation (2.6). Thus,
we can no longer neglect the contribution from the y advection term and we cannot
derive our leading order system in this case. In fact, the transport of θx along the y
direction provides a strong destabilizing effect to the singularity formation and would
likely destroy the self-similar focusing blowup mechanism [20,21].

If we approximate the velocity field (u, v) by (xux (0, 0, t), yvy(0, 0, t)) (note that
ux (0, 0, t) + vy(0, 0, t) = 0) as was done in a toy model introduced in [11], we have
the following result. For any ω0,∇θ0 ∈ Cα

c (R2), which is in the local well-posedness
class for the 2D Boussinesq equations [3], under the 4-fold symmetry assumption, the
solution of the toy model exists globally. The key point is that due to the odd symmetry
of θ0 with respect to y and the assumption that θ0 ∈ C1,α , θ0 must vanish linearly in y,
i.e. |θ(x, y)| " |y|. The proof follows an estimate similar to that presented in [11] and
we defer it to Appendix A.8.

In the presence of the boundary (y = 0), θ can be nonzero on y = 0, which removes
the above constraint |θ(x, y)| " |y|. Then we can further weaken the transport terms
in the 2D Boussinesq as discussed in Sect. 1.2. Although the leading order system for
the 2D Boussinesq equations and the 3D Euler equations with C1,α initial velocity and
the boundary looks qualitatively similar to that for the 3D Euler equations without swirl
and without boundary obtained in [11], the physical driving mechanisms of the finite
time singularity behind these two blowup scenarios are quite different. In our case, the
swirl and the boundary play a crucial role. Our numerical study suggests that even for
smooth initial data, θx is an order of magnitude larger than θy and the effect of advection
is relatively weak compared with the vortex stretching term. More importantly, our
computation reveals that the real parts of the eigenvalues of the discretized linear operator
are all negative and bounded away from zero by a finite spectral gap. See also Section
3.4 in [29] for an illustration of the eigenvalue distribution of the discretized linearized
operator. This is a strong evidence that the linearized operator should be stable even for
smooth initial data. The essential step in proving this rigorously is the linear stability
analysis, which requires us to estimate the Biot–Savart law without the availability of
the leading order structure for C1,α velocity and control a few more nonlocal terms that
we can neglect using the C1,α initial data. In some sense, our blowup analysis for C1,α

initial data captures certain essential features of the Hou-Luo scenario [30,31] and some
essential difficulties in the analysis of such scenario.

1.5. Review of other related works. In the recent works [13,15], Elgindi and Jeong
proved finite time singularity formation for the 2D Boussinesq and 3D axisymmetric
equations in a physical domain with a corner and C̊0,α data. The domain we study in
this paper does not have a corner. In the case of the 3D Euler equations, our physical
domain includes the symmetry axis. In comparison, the domain studied in [13] does not
include the symmetry axis.

In [18,27], the authors studied a modified 2D Boussinesq equations with θx in (2.1)
replaced by θ/x and using a simplified Biot–Savart law. In these works, the simplified
Biot–Savart law has a positive kernel and the authors have been able to prove finite time
blowup for smooth initial data using a functional argument.

After we completed our work, we learned from Dr. Elgindi that the stability of the
self-similar blowup solutions in [11] and the construction of finite-energyC1,α solutions
that become singular in finite time have been established recently in [12].



Finite Time Blowup of 2D Boussinesq Equations

Organization of the paper In Sects. 2–4, we provide some basic set-up for our analysis,
including the derivation of the leading order system, the dynamic rescaling formula-
tion, the reformulation using the polar coordinates (R,β), and the construction of the
approximate self-similar solution. Section 5 is devoted to the linear stability analysis of
the leading order system. In Sect. 6, we perform higher order estimates of the leading
order system as part of the nonlinear stability analysis. Sections 7 and 8 are devoted to
the nonlinear stability analysis of the original system. In Sect. 9, we extend our analysis
for the 2D Boussinesq equations to the 3D axisymmetric Euler equations. Some con-
cluding remarks are provided in Sect. 10 and some technical estimates are deferred to
the Appendix.

Notations We use ⟨·, ·⟩, || · ||L2 to denote the inner product in (R,β) and its L2 norm

⟨ f, g⟩ =
∫ ∞

0

∫ π/2

0
f (R,β)g(R,β)dRdβ, || f ||L2 =

√
⟨ f, f ⟩. (1.4)

We also simplify || · ||L2 as || · ||2. We remark that we use dRdβ in the definition of the
inner product rather than RdRdβ.

We use the notation A " B if there is some absolute constant C > 0 with A ≤ CB,
and denote A ≍ B if A " B and B " A. The notation ·̄ is reserved for the approximate
steady states, e.g. +̄ denotes the approximate steady state for +. We will use C,C1,C2
for some absolute constant, which may vary from line to line. We use K1, K2, .. and
µ1, µ2, ... to denote some absolute constant which does not vary.

2. Derivation of the Leading Order System

In this section, we will derive the leading order system that will be used for our analysis
later in the paper. We first recall that the 2D Boussinesq equations on the upper half
space are given by the following system:

ωt + u · ∇ω = θx , (2.1)
θt + u · ∇θ = 0, (2.2)

where the velocity field u = (u, v)T : R2
+ × [0, T ) → R2

+ is determined via the Biot–
Savart law

− 'ψ = ω, u = −ψy, v = ψx , (2.3)

with no flow boundary condition

ψ(x, 0) = 0 x ∈ R

and ψ is the stream function. The reader should not confuse the vector field u with its
first component u.

The 2D Boussinesq equations have the following scaling-invariant property. If (ω, θ)
is a solution pair to (2.1)–(2.3), then

ωλ,τ (x, t) =
1
τ

ω

(
x
λ
,
t
τ

)
, θλ,τ (x, t) =

λ

τ 2
θ

(
x
λ
,
t
τ

)
(2.4)

is also a solution pair to (2.1)–(2.3) for any λ, τ > 0.
Next, we follow the ideas in Sect. 1.2 to derive the leading order system for the

solutions ω,∇θ ∈ Cα with small α.
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2.1. The setup. We look for a solution of (2.1)–(2.3) with the following symmetry

ω(x, y) = −ω(x,−y), θ(x, y) = θ(−x, y)

for all x, y ≥ 0. Accordingly, the stream function ψ (2.3) is odd with respect to x

ψ(x, y) = −ψ(−x, y).

It is easy to see that the equations (2.1)–(2.3) preserve these symmetries during time
evolution. With these symmetries, it suffices to solve (2.1)–(2.3) on (x, y) ∈ [0,∞) ×
[0,∞) with the following boundary conditions

ψ(x, 0) = ψ(0, y) = 0

for the elliptic equation (2.3).
Taking x, y derivative on (2.2), respectively, we obtain

ωt + u · ∇ω = θx , (2.5)
θxt + u · ∇θx = −uxθx − vxθy, (2.6)
θyt + u · ∇θy = −uyθx − vyθy . (2.7)

Under the odd symmetry assumption,we have u(0, y) = 0. If the initial data θ(0, y) = 0,
this property is preserved. Therefore, we can recover θ from θx by integration. We will
perform a-prior estimate of the above system, which is formally a closed system for
(ω, θx , θy).

2.2. Reformulation using polar coordinates. Next, we reformulate (2.5)–(2.7) using the
polar coordinates introduced byElgindi in [11].We assume thatα < 1/10.We introduce

r =
√
x2 + y2, β = arctan(y/x), R = rα,

Notice that r∂r = αR∂R . We denote

+(R,β, t) = ω(x, y, t), - = 1
r2

ψ, η(R,β, t) = (θx )(x, y, t),

ξ(R,β, t) = (θy)(x, y, t). (2.8)

We have

∂x = cos(β)∂r − sin(β)
r

∂β = cos(β)
r

αR∂R − sin(β)
r

∂β ,

∂y = sin(β)∂r +
cos(β)

r
∂β = sin(β)

r
αR∂R +

cos(β)
r

∂β .

(2.9)

Then using (2.3), we derive

u = −(r2-)y = −2r sin β- − αr R sin β∂R- − r cosβ∂β-,

v = (r2-)x = 2r cosβ- + αr R cosβ∂R- − r sin β∂β-.
(2.10)

Using the new variables R,β, we can reformulate the Biot–Savart law (2.3) as

− α2R2∂RR- − α(4 + α)R∂R- − ∂ββ- − 4- = + (2.11)
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with boundary condition

-(R, 0) = -(R,
π

2
) = 0.

For the transport term in (2.5)–(2.7), we use (2.9) to derive

u∂x + v∂y → −(αR∂β-)∂R + (2- + αR∂R-)∂β . (2.12)

Recall the notations +, η, ξ in (2.8) for ω, θx , θy in the (R,β) coordinates. Using
(2.12), we can rewrite (2.5)–(2.7) in (R,β) coordinates as follows

+t +
(

− (αR∂β-)∂R + (2- + αR∂R-)∂β

)
+ = η, (2.13)

ηt +
(

− (αR∂β-)∂R + (2- + αR∂R-)∂β

)
η = −uxη − vxξ, (2.14)

ξt +
(

− (αR∂β-)∂R + (2- + αR∂R-)∂β

)
ξ = −uyη − vyξ . (2.15)

The formulas of ∇u in (R,β) coordinates are rather lengthy and presented in (8.6).

2.3. Leading order approximations of the Biot–Savart law and the velocity. Next, we
use an important result of Elgindi in [11] to obtain a leading order approximation of
the modified stream function. Using this approximation, we can simplify the transport
terms and ∇u, and further derive the the leading order system of (2.13)–(2.15).

Following [11], we decompose the modified stream function - as follows

- = 1
πα

sin(2β)L12(+) + lower order terms,

L12(+) =
∫ ∞

R

∫ π/2

0

sin(2β)+(s,β)
s

dsdβ.
(2.16)

For ω ∈ Cα with sufficiently small α > 0, the leading order term in - is given by
the first term on the right hand side. The lower order terms (l.o.t.) are relatively small
compared to the first term and we will control them later using the elliptic estimates. We
will perform the L2 estimate for the solution of (2.11) and one can see that the a-priori
estimate blows up as α → 0. For α = 0, (2.11) becomes

L0(-) = −∂ββ- − 4-,

with boundary conditions -(R, 0) = -(R,π/2) = 0, which is self-adjoint and has
kernel sin(2β). In this case, to solve L0(-) = +, a necessary and sufficient condition
is that + is orthogonal to sin 2β. Imposing this constraint when we perform the elliptic
estimate leads to the leading order term in - (2.16).

Following the same procedure as in [11], we drop the O(α) terms in (2.9), (2.10) and
the lower order terms in (2.16) to extract the leading order term of the velocity u, v

u = −2r cosβ

πα
L12(+) + l.o.t., v = 2r sin β

πα
L12(+) + l.o.t.,

ux = −vy = − 2
πα

L12(+) + l.o.t., uy = l.o.t., vx = l.o.t..
(2.17)
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The complete calculation and the formulas of the lower order terms are given in (8.6)–
(8.8).

Similarly, the leading order term in the transport terms (2.12) is

−(αR∂β-)∂R + (2- + αR∂R-)∂β

= − 2
π
cos(2β)L12(+)R∂R +

2
πα

sin(2β)L12(+)∂β + l.o.t.. (2.18)

Later on, we will prove that the self-similar blowup is non-linearly stable and we
will control the above lower order terms using the elliptic estimates. These terms will
be treated as small perturbations and are harmless to the self-similar blowup.

2.4. Decoupling and simplifying the system. We will look for solution θ of (2.5)–(2.7)
(or equivalently (2.13)–(2.15)) such that θx ∈ Cα , θx is odd, and θy is relatively small
compared to θx , i.e. θ is not isotropic. The anisotropic property of θ will enable us
to further simplify (2.13)–(2.15). The reason that we have this property is due to the
following key observation. For the purpose of illustration, we construct a function θ
that has the same qualitative feature as our solution θ . We first construct θx of the form:
θx = xα

1+(x2+y2)α/2 for x, y ≥ 0. Then for x, y close to 0, we have

θ ≈ 1
1 + α

· x1+α

1 + (x2 + y2)α/2
, |θy | ≈

∣∣∣
α

1 + α
· xy
x2 + y2

· xα(x2 + y2)α/2

(1 + (x2 + y2)α/2)2

∣∣∣ " αθx .

(2.19)

Compared to θx , θy is relatively small. Equivalently, ξ is small relative to η. Moreover,
ξ is weakly coupled with +, η in (2.13)–(2.14) since vx = l.o.t. according to (2.17).
Hence, we can decouple ξ from the η equation in (2.14) as follows

ηt +
(

− (αR∂β-)∂R + (2- + αR∂R-)∂β

)
η = −uxη + l.o.t.,

These key observations motivate us to focus on the system (2.13)–(2.14) about +, η.
Using the calculations of ∇u (2.17), the transport terms (2.18) and treating ξ (θy) as

a lower order term, we can simplify (2.13)–(2.15) as follows

+t − 2
π
cos(2β)L12(+)R∂R+ +

2
πα

sin(2β)L12(+)∂β+ = η + l.o.t., (2.20)

ηt − 2
π
cos(2β)L12(+)R∂Rη +

2
πα

sin(2β)L12(+)∂βη = 2
πα

L12(+)η + l.o.t.,

(2.21)

where the equations are evaluated at (R,β) with R = (x2 + y2)α/2,β = arctan(y/x).
Notice that in (2.21), the first transport term looks much smaller than the other transport
term and the nonlinear term which contains a 1/α factor. Thus we can ignore it in
our leading order approximation. For the angular transport term, we use an argument
introduced in [11] and look for approximate solutions (+, η) of the form

+(R,β, t) = α0(β)+∗(R, t), η(R,β, t) = α0(β)η∗(R, t), 0(β) = (cos(β))α.
(2.22)
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We have added the factor α in the above form, which is slightly different from [11]. For
β ∈ [0,π/2], we gain a small factor α from the angular derivative:

| sin(2β)∂β0(β)| = |2α sin2(β)(cos(β))α| ≤ 2α0(β).

Hence, the angular transport term in (2.21) becomes smaller compared to the nonlinear
term.

Using (2.22) and the above estimate, formally, we obtain that the transport terms in
(2.20) is of order α2 and η in (2.20) is of order α. Therefore, we drop the transport terms
in (2.20). This additional consideration is not required in [11] for 3D asymmetric Euler
without swirl.

We remark that in our dynamic rescaling formulation, η is comparable to the nonlinear
term α−1L12(+)η. Therefore, we drop the transport terms and the lower order terms in
(2.20),(2.21) to derive a leading order system for (+, η)

+t = η, ηt =
2

πα
L12(+)η, L12(+) =

∫ ∞

R

∫ π/2

0

+(s,β) sin(2β)
s

dsdβ.

(2.23)

It is not difficult to see that if the initial data +, η are non-negative and are odd with
respect to x , the solutions preserve these properties dynamically. In the first equation,
+ tends to align with η during the evolution. Then the nonlinear term in the second
equation is of order η2, which is the driving force of finite time singularity of the leading
order system.

3. Self-similar Solution of the Leading Order System

The leading order system (2.23) is crucial in our analysis and it captures the leading
behavior of the blowup solution of the Boussinesq equations (2.1)–(2.3). In this section,
we construct the self-similar solution of the leading order system (2.23) for (+, η).
Notice that L12(+) does not depend on the angular componentβ. Inspired by the solution
structure of the leading order system in [11], we look for a self-similar solution in the
form

+(R,β, t) = (T − t)cω+∗

(
R

(T − t)α·cl

)
0(β),

η(R,β, t) = (T − t)cθ−clη∗

(
R

(T − t)α·cl

)
0(β),

where cω, cl , cθ are the scaling parameters. The reason that we use the scaling factor

(T − t)α·cl in the space variable R is that R = rα and R
(T−t)α·cl =

(
r

(T−t)cl

)α
, where

r =
√
x2 + y2. Factor (T − t)cl corresponds to the scaling of the original variables x, y

and (T − t)cθ is the scaling of θ in (2.5)–(2.7). See (2.4) for the scaling invariance of
the Boussinesq equations.

Plugging the self-similar solutions ansatz into (2.23), we obtain

− (T − t)cω−1cω+∗(z)0(β) + (T − t)cω−1αcl z∂z+∗(z)0(β) = (T − t)cθ −clη∗(z)0(β),

− (T − t)cθ −cl−1(cθ − cl)η∗(z)0(β) + (T − t)cθ −cl−1αcl z∂zη∗(z)0(β)

= (T − t)cθ −cl+cωη∗(z)0(β)
2

πα

∫ ∞

z

+∗(s)
s

ds ·
∫ π/2

0
0(β) sin(2β)dβ,

(3.1)
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where z = R · (T − t)−αcl ≥ 0. From the above equations, we obtain that the scaling
parameters (cω, cl , cθ ) satisfies

cω − 1 = cθ − cl , cθ − cl − 1 = cω + cθ − cl ,

which implies

cω = −1, cθ = cl + 2.

Denote

c = 2
π

∫ π

0
0(β) sin(2β)dβ.

Plugging the relations among the scaling parameters into (3.1) and factorizing the tem-
poral variable, we derive

αcl z∂z+∗0(β) = −+∗0(β) + η∗0(β),

αcl z∂zη∗0(β) = −2η∗0(β) +
c
α

η∗0(β)
∫ ∞

z

+∗(s)
s

ds.
(3.2)

We can factorize the angular part 0(β) to further simplify the above equations. Surpris-
ingly, the above equations have explicit solutions of the form

+∗(z) =
az

(b + z)2
, cl =

1
α

(recall that z ≥ 0). We determine η∗ from the first equation in (3.2)

η∗(z) = αcl z∂z+∗ + +∗ = z∂z+∗ + +∗ = 2abz
(b + z)3

.

Then (η∗,+∗) solves (3.2) exactly if and only if

z∂zη∗ + 2η∗ − c
α

η∗
∫ ∞

z

+∗(s)
s

ds = 0

which is equivalent to

0 = z
(

− 6abz
(b + z)4

+
2ab

(b + z)3

)
+

4abz
(b + z)3

− c
α

2abz
(b + z)3

a
b + z

= −2ab(−3αb + ac)z
α(b + z)4

.

Hence, we obtain

a = 3αb
c

.

Using the above formula, we can derive the solutions (+∗, η∗) of (2.23). We remark that
there is a free parameter b in the solutions (+∗, η∗). After we impose a normalization
condition, e.g. the derivative of +∗ at z = 0, we can determine b. For simplicity, we
choose b = 1 and then a becomes a = 3α/c. Consequently, we obtain the following
result.
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Lemma 3.1. The leading order system (2.23) admits a family of self-similar solutions

+(R,β, t) = α

c
1

T − t
0(β)+∗

(
R

T − t

)
, η(R,β, t) = α

c
1

(T − t)2
0(β)η∗

(
R

T − t

)
,

for some T > 0, where

+∗(z) =
3z

(1 + z)2
, η∗ = 6z

(1 + z)3
, c = 2

π

∫ π/2

0
0(β) sin(2β)dβ ̸= 0.

We will choose 0(β) = (cos(β))α in the later discussion.
Properties of θx ,ω The self-similar profile (+, η) of the leading order system (2.23) in
Lemma 3.1 is indeed anisotropic in x, y direction. Moreover, θx andω are positive in the
first quadrant. For 0(β) = (cos(β))α , the self-similar profile of θx in the first quadrant
is

θx = Cα0(β)
R

(1 + R)3
= Cα

|x |α
(1 + (x2 + y2)α/2)3

,

for some constant C . If x2 + y2 is small, the formal argument (2.19) shows that θy
is relatively small compared to θx . We will estimate it precisely in Lemma A.8 in the
Appendix.

Hyperbolic flow field The leading order of the flow structure corresponding to the
self-similar solution of the leading order system can be obtained using (2.17)

L12(+)(R,β, t) = πα

2
1

T − t
3

1 + R/(T − t)
= πα

2
3

(T − t) + R
,

u(x, y, t) = − 3r cosβ

(T − t) + R
+ l.o.t., v(x, y, t) = 3r sin(β)

(T − t) + R
+ l.o.t..

In the first quadrant, the flow is clockwise since u < 0, v > 0. Moreover, the odd
symmetry of ω implies that the flow is hyperbolic near the origin. These properties of
the solutions are similar to those considered in [30,31].

4. The Dynamic Rescaling Formulation and the Approximate Steady State

In this section, we reformulate the problem using the dynamic rescaling equation and
construct an approximate steady state based on the self-similar solution of the leading
order system.

4.1. Dynamic rescaling formulation. Let ω(x, t), θ(x, t),u(x, t) be the solutions of
(2.1)–(2.3). Then it is easy to show that

ω̃(x, τ ) = Cω(τ )ω(Cl(τ )x, t (τ )), θ̃(x, τ ) = Cθ (τ )θ(Cl(τ )x, t (τ )),

ũ(x, τ ) = Cω(τ )Cl(τ )
−1u(Cl(τ )x, t (τ )),

(4.1)

are the solutions to the dynamic rescaling equations
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ω̃τ (x, τ ) + (cl(τ )x + ũ) · ∇ω̃ = cω(τ )ω̃ + θ̃x , θ̃τ (x, τ ) + (cl(τ )x + ũ) · ∇ θ̃ = 0,
(4.2)

where u = (u, v)T = ∇⊥(−')−1ω̃, x = (x, y)T ,

Cω(τ ) = exp
(∫ τ

0
cω(s)dτ

)
, Cl(τ ) = exp

(∫ τ

0
−cl(s)ds

)
,

Cθ = exp
(∫ τ

0
cθ (s)dτ

)
, (4.3)

t (τ ) =
∫ τ
0 Cω(τ )dτ and the rescaling parameter cl(τ ), cθ (τ ), cω(τ ) satisfies

cθ (τ ) = cl(τ ) + 2cω(τ ). (4.4)

Let us explain the above relation. Using this relationship and (4.1), we have ũ ·∇ω̃ =
Cω(τ )

2u ·∇ω and θ̃x = Cθ (τ )Cl(τ )θx . To obtain (4.2) from (2.1)–(2.3), we require that
the scaling factors of ũ ·∇ω̃ and θ̃x are the same, which implies Cω(τ )

2 = Cθ (τ )Cl(τ ).
Using this relationship and (4.3), we obtain (4.4).

Recall that the Boussinesq equations have scaling-invariant property (2.4) with two
parameters. We have the freedom to choose the time-dependent scaling parameters cl(τ )
and cω(τ ) according to some normalization conditions. After we determine the normal-
ization conditions for cl(τ ) and cω(τ ), the dynamic rescaling equation is completely
determined and the solution of the dynamic rescaling equation is equivalent to that of
the original equation using the scaling relationship described in (4.1)–(4.3), as long as
cl(τ ) and cω(τ ) remain finite.

We remark that the dynamic rescaling formulation was introduced in [28,34] to study
the self-similar blowup of the nonlinear Schrödinger equations. This formulation is also
called the modulation technique in the literature and has been developed by Merle,
Raphael, Martel, Zaag and others. It has been a very effective tool to analyze the forma-
tion of singularities for many problems like the nonlinear Schrödinger equation [23,35],
the nonlinear wave equation [37], the nonlinear heat equation [36], the generalized KdV
equation [33], and other dispersive problems. Recently, this method has been applied to
study singularity formation in the De Gregorio model and the generalized Constantin-
Lax-Majda model for the 3D Euler equations from smooth initial data [4,5,7]. It has
also been applied to prove singularity formation in other equations in fluid dynamics,
see e.g. [9,11].

If there exists C > 0 such that for any τ > 0, cω(τ ) ≤ −C < 0 and the solution ω̃
is nontrivial, e.g. ||ω̃(τ, ·)||L∞ ≥ c > 0 for all τ > 0, we then have

Cω(τ ) ≤ e−Cτ , t (∞) ≤
∫ ∞

0
e−Cτdτ = C−1 < +∞ ,

and that |ω(Cl(τ )x, t (τ ))| = Cω(τ )
−1|ω̃(x, τ )| ≥ eCτ |ω̃(x, τ )| blows up at finite

time T = t (∞). If (ω̃(τ ), θ̃(τ ), cl(τ ), cω(τ ), cθ (τ )) converges to a steady state
(ω∞, θ∞, cl,∞, cω,∞, cθ,∞) of (4.2) as τ → ∞, one can verify that

ω(x, t) = 1
1 − t

ω∞

(
x

(1 − t)−cl,∞/cω,∞

)
,

θ(x, t) = 1
(1 − t)cθ,∞/cω,∞

θ∞

(
x

(1 − t)−cl,∞/cω,∞

)

is a self-similar solution of (2.1)–(2.3). To simplify our presentation, we still use t to
denote the rescaled time in the rest of the paper and drop ·̃ in (4.2).
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4.2. Reformulation using the (R,β) coordinates. Taking x, y derivative on the θ equa-
tion in (4.2), we obtain a system similar to (2.5)–(2.7).

ωt + (clx + u) · ∇θx = cωω + θx ,

θxt + (clx + u) · ∇θx = (cθ − cl − ux )θx − vxθy,

θyt + (clx + u) · ∇θy = (cθ − cl − vy)θy − uyθx ,

(4.5)

where we have dropped ·̃ to simplify the notations. We make a change of variable
R = rα,β = arctan(y/x) and introduce

+(R,β, t) = ω(x, y, t), η(R,β, t) = (θx )(x, y, t), ξ(R,β, t) = (θy)(x, y, t)

in (4.5) as we did in Sect. 2. Notice that the stretching term and the damping term satisfy

clx · ∇ω(x, y, t) = clr∂rω(r,β, t) = αcl R∂R+(R,β, t),
cωω(x, y, t) = cω+(R,β, t),

and similar relations hold for θx , θy . The reformulated system (4.5) under (R,β) coor-
dinates reads

+t + αcl R∂R+ + (u · ∇)+ = cω+ + η

ηt + αcl R∂Rη + (u · ∇)η = (2cω − ux )η − vxξ

ξt + αcl R∂Rξ + (u · ∇)ξ = (2cω − vy)ξ − uyη,

(4.6)

with the Biot–Savart law in the (R,β) coordinates (2.10) and (2.11), where we have
used cθ −cl = 2cω (4.4). For now, we do not expand u ·∇ using (2.12) and ux , uy, vx , vy
due to their complicated expressions. Using the same argument as that in Sect. 2.4, the
leading terms in (4.6) are given by

+t + αcl R∂R+ = cω+ + η + l.o.t.,

ηt + αcl R∂Rη = (2cω +
2

πα
L12(+))η + l.o.t.,

ξt + αcl R∂Rξ = (2cω − 2
πα

L12(+))ξ + l.o.t.,

(4.7)

where we have dropped the transport terms and simplified ux , uy, vx , vy, u/x, v/y using
(2.17). We remark that the first two equations in (4.7) are exactly the dynamic rescaling
formulation of the leading order system (2.23).

4.3. Constructing an approximate steady state. Notice that the system (4.7) captures
the leading order terms in the system (4.6) and that the self-similar profile of (2.23)
corresponds to the steady state of the first two equations in (4.7) after neglecting the lower
order terms. It motivates us to use the self-similar solutions of (2.23) in Lemma 3.1 as the
building block to construct the approximate steady state of (4.6). Firstly, we construct

+̄(R,β) = α

c
0(β)

3R
(1 + R)2

, η̄(R,β) = α

c
0(β)

6R
(1 + R)3

, c̄l =
1
α
+ 3, c̄ω = −1,

0(β) = (cos(β))α, c = 2
π

∫ π/2

0
0(β) sin(2β)dβ.

(4.8)
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Notice that (+̄, η̄) is a solution of (3.2)with cl = 1
α .Wemodify c̄l so that the approximate

error vanishes quadratically near R = 0, which will be discussed later. The correspond-
ing θ̄ can be obtained by integrating θ̄x with condition θ̄(0, y) = 0, which is discussed
in Appendix A.5, and ū, v̄ are obtained from the Biot–Savart law (2.10), (2.11). We can
derive the leading order terms using (2.16) and (2.17)

L12(+̄) =
∫ ∞

R

∫ π/2

0

+̄(s,β) sin(2β)
s

ds = π

2
3α

1 + R
, -̄ = sin(2β)

2
3

1 + R
+ l.o.t.,

ūx = −v̄y = − 2
πα

L12(+) + l.o.t. = 3
1 + R

+ l.o.t., ū y, v̄x = l.o.t..

(4.9)

We will explain later why we choose the above 0(β). Lemma A.1 in the Appendix
shows that 0(β) is essentially equal to the constant 1 in some weighted norm.

We define the error of the approximate steady state below

F̄ω ! c̄ω+̄ + η̄ − αc̄l R∂R+̄ − (ū · ∇)+̄,

F̄η ! (2c̄ω − ūx )η̄ − v̄x ξ̄ − αc̄l R∂R η̄ − (ū · ∇)η̄,

F̄ξ ! (2c̄ω − v̄y)ξ̄ − ū y η̄ − αc̄l R∂R ξ̄ − (ū · ∇)ξ̄ .

(4.10)

The criteria to choose 0 in (4.8) is that Fω, Fη, Fξ vanish quadratically near R = 0
since wewill perform energy estimates with a singular weight in the later sections. Using
the formula (2.12) for ū · ∇ and (4.8), one can obtain the following expansion of F̄ω

near R = 0

F̄ω = −3αR∂R+̄ − (ū · ∇)+̄ = 9αR
c

(α0 cos(2β) − sin(2β)∂β0 − α0) + O(R2),

where we have used the explicit formula (4.8) in the first equality and the factor 3 comes
from c̄l = 1

α + 3 in (4.8). In order for F̄ω to vanish quadratically near R = 0, we have
no choice but to set the coefficient in the O(R) term to be zero, which gives

α0 cos(2β) − sin(2β)∂β0 − α0 = 0.

To solve the above first order ODE for0, we choose the boundary condition0(π/2) = 0
and requires0(β) > 0 for β ∈ (0,π/2]. The solution of this ODE is exactly given by the
formula of 0(β) in (4.8). As we can see, such choice of0 is unique and is a consequence
of the condition that F̄ω = O(R2) near R = 0. This condition plays an essential role in
our stability analysis for the approximate self-similar profile. With this 0(β), we also
have F̄η, F̄ξ = O(R2) near R = 0. We justify these rigorously in Sect. 8.

4.4. Normalization conditions. For initial data +̄ + +, η̄ + η, ξ̄ + ξ of (4.6), we treat
+, η, ξ as perturbation and choose time-dependent scaling parameters cl + c̄l , cω + c̄ω

as follows

cω(t) = − 2
πα

L12(+(t))(0), cl(t) = −1 − α

α

2
πα

L12(+(t))(0) = 1 − α

α
cω(t).

(4.11)

Here, cl(t), cω(t) are treated as the perturbation of the scaling parameters c̄l , c̄ω. Suppose
that F+(t), Fη(t), Fξ (t) are the time-dependent update in (4.6) ,i.e.

F+(t) = (cω + c̄ω)(+ + +̄) + (η + η̄) − α(cl + c̄l)R∂R(+ + +̄) + ((u + ū) · ∇)(+ + +̄),



Finite Time Blowup of 2D Boussinesq Equations

and so on. The reason we choose (4.11) is that we want F+(t), Fη(t), Fξ (t) vanishes
quadratically near R = 0 for anyperturbation+(t), η(t), ξ(t) that vanishes quadratically
near R = 0, so that we can choose a singular weight to analyze the stability of the
approximate steady state. Similar consideration has been used in our previous work
with D. Huang on the asymptotically self-similar blowup of the Hou-Luo model from
smooth initial data. We will provide rigorous estimates for these terms in Sect. 8.

5. Linear Stability

We present our linear stability analysis in this section. In Sect. 5.1, we linearize the
dynamic rescaling formulation in the (R,β) coordinates (4.6) around the approximate
steady state (+̄, η̄, ξ̄ , c̄l , c̄ω). In Sect. 5.2, we outline the steps in the linear stability
analysis. In the rest of the section, we establish the linear stability of the leading terms
in the linearized system. Throughout this section, we use +, η, ξ, cl , cω to denote the
perturbations around the approximate profile (4.8) and assume that + ∈ L2(ϕ), η ∈
L2(ϕ), ξ ∈ L2(ψ) for some singular weights ϕ,ψ to be determined later.

5.1. Linearized system. We linearize (4.6) around (+̄, η̄, ξ̄ , c̄l , c̄ω) (4.8) and derive the
equations for the perturbation +, η, ξ as follows

+t + (1 + 3α)R∂R+ + (ū · ∇)+ = −+ + η + cω(+̄ − R∂R+̄) + (αcωR∂R

− (u · ∇))+̄ + F̄+ + Nω,

ηt + (1 + 3α)R∂Rη + (ū · ∇)η = (−2 − ūx )η − ux η̄ + cω(2η̄ − R∂R η̄)

+ (αcωR∂R − (u · ∇))η̄ − vx ξ̄ − v̄xξ + F̄η + Nη,

ξt + (1 + 3α)R∂Rξ + (ū · ∇)ξ = (−2 − v̄y)ξ − vy ξ̄ + cω(2ξ̄ − R∂R ξ̄)

+ (αcωR∂R − (u · ∇))ξ̄ − uy η̄ − ū yη + F̄ξ + Nξ ,

(5.1)

where we have used c̄l = 1/α + 3, c̄ω = −1 (4.8), αcl(t) = cω(t) − αcω(t) (4.11) and
−αcl R∂R ḡ = −cωR∂R ḡ +αcωR∂R ḡ for g = +̄, η̄, ξ̄ . The error F̄+, F̄η, F̄ξ are defined
in (4.10) and the nonlinear terms are defined below

N+ = cω+ + η − αcl R∂R+ − (u · ∇)+,

Nη = (2cω − ux )η − vxξ − αcl R∂Rη − (u · ∇)η,

Nξ = (2cω − vy)ξ − uyη − αcl R∂Rξ − (u · ∇)ξ .

(5.2)

We focus on the linearized equation of (5.1). From (2.18) and (4.9), we have

3αR∂R + ū · ∇ = 2-̄∂β +
{
−αR∂β-̄∂R + αR∂R-̄∂β

}
= 3 sin(2β)

1 + R
∂β + l.o.t..

(5.3)

We will justify the above decomposition using integration by parts to avoid loss of
derivatives. We will also show that

(αcωR∂R − (u · ∇))+̄, (αcωR∂R − (u · ∇))η̄, (αcωR∂R − (u · ∇))ξ̄ (5.4)
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in (5.1) are lower order terms. Moreover, we will justify that ξ̄ is small and is of order
α2 in Lemma A.8 so that we can treat vx ξ̄ as a lower order term in the η equation.

Using (2.17), (4.9), (5.3), (5.4) and then collecting the lower order terms with a small
factor α, the error terms F̄ and the nonlinear terms N in the remaining termR, we derive
the leading order terms in the linearized equations

+t + R∂R+ +
3 sin(2β)
1 + R

∂β+ = −+ + η + cω(+̄ − R∂R+̄) +R+, (5.5)

ηt + R∂Rη +
3 sin(2β)
1 + R

∂βη = (−2 +
3

1 + R
)η +

2
πα

L12(+)η̄ + cω(2η̄ − R∂R η̄) +Rη,

(5.6)

ξt + R∂Rξ +
3 sin(2β)
1 + R

∂βξ = (−2 − 3
1 + R

)ξ − 2
πα

L12(+)ξ̄ + cω(2ξ̄ − R∂R ξ̄) +Rξ ,

(5.7)

where the full expansion of R is given in (8.10) and their estimates are deferred to
Sect. 8. In the following subsections, we establish the linear stability for (5.5)–(5.7).
The contribution ofR is small.

Using this property, we can further establish the nonlinear stability of the approximate
profile (4.8) using a bootstrap argument.

We introduce the following notation

L̃12(+)(R) ! L12(+)(R) − L12(+)(0) = −
∫ R

0

∫ π/2

0

+(s,β) sin(2β)
s

dβdx .

(5.8)

According to the normalization condition of cω (4.11), we can simplify

cω +
2

πα
L12(+)(R) = 2

πα
L̃12(+)(R). (5.9)

Definition 5.1. We define the differential operators

DR = R∂R, Dβ = sin(2β)∂β

and the linear operators Li

L1(+, η) ! −DR+ − 3
1 + R

Dβ+ − + + η + cω(+̄ − DR+̄),

L2(+, η) ! −DRη − 3
1 + R

Dβη + (−2 +
3

1 + R
)η +

2
πα

L̃12(+)η̄ + cω(η̄ − DR η̄),

L3(+, ξ) ! −DRξ − 3
1 + R

Dβξ + (−2 − 3
1 + R

)ξ − 2
πα

L̃12(+)ξ̄ + cω(3ξ̄ − DR ξ̄),

(5.10)

where L̃12(+) is defined in (5.8) and +̄, η̄ are defined in (4.8). Define the local part of
Li by eliminating cω, L̃12(+)

L10(+, η) ! −DR+ − 3
1 + R

Dβ+ − + + η, L20(η) ! −DRη − 3
1 + R

Dβη

+ (−2 +
3

1 + R
)η,

L30(ξ) ! −DRξ − 3
1 + R

Dβξ + (−2 − 3
1 + R

)ξ .

(5.11)
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With the above notations, (5.5)–(5.7) can be reformulated as

+t = L1(+, η) +R+, ηt = L2(+, η) +Rη, ξt = L3(ξ) +Rξ , (5.12)

where we have used the following identities to rewrite the L12(+), cω terms in (5.6)–
(5.7)

2L12(+)

πα
η̄ + cω(2η̄ − DR η̄) = 2L̃12(+)

πα
η̄ + cω(η̄ − DR η̄),

−2L12(+)

πα
ξ̄ + cω(2ξ̄ − DR ξ̄) = −2L̃12(+)

πα
η̄ + cω(3ξ̄ − DR ξ̄).

5.1.1. Key observations There are several key observations that play a crucial role in
our analysis. Firstly, the leading order terms in the +, η equations (5.5)–(5.6) do not
couple the ξ term, which is consistent with our derivation for the leading order system
(2.23).

Secondly, in the ξ equation, the coupling between+ and ξ through the nonlocal term
L12(+) and cω (4.11) is weak due to the fact that ξ̄ is much smaller than +̄, η̄. After
removing these nonlocal terms, (5.7) only involves local terms about ξ . By choosing a
suitable singular weight, we will show that ξ is linearly stable up to the weak nonlocal
term.

Thirdly, all the nonlocal terms in (5.5)–(5.6), e.g. cω, L12(+), have coefficients with
small angular derivative. For example, using (4.8), we have

cω(+̄ − R∂R+̄) = cω · α

c
0(β)

6R2

(1 + R)3
. (5.13)

We can apply the weighted angular derivative to gain a small factor α

| sin(2β)∂β0(β)| = |2α sin2(β)0(β)| ≤ 2α0(β).

A similar observation and estimate have been obtained in [11] for a different 0.

5.1.2. The angular transport term To understand the effect of the angular transport term
in (5.5)–(5.7), we choose a weight ϕ(R,β) = A(R)(sin(β))−γ1(cos(β))−γ2 and then
perform the L2 estimate and use integration by parts to obtain

1
2
d
dt

⟨+2,ϕ⟩ = −
〈3 sin(2β)

1 + R
∂β+,+ϕ(R,β)

〉
+ other terms (o.t.)

=
〈3(sin(2β)ϕ)β

2(1 + R)ϕ
,+2ϕ

〉
+ o.t..

It is not difficult to show that

3(sin(2β)ϕ)β
2(1 + R)ϕ

∣∣∣
R=0

= 3(1 − γ1) cos2(β) − 3(1 − γ2) sin2(β).

Suppose that γ1, γ2 ≤ 1. If β is small, the angular transport term contributes a growing
factor 3(1 − γ1) > 0 to the energy norm.

To establish the linear stability, it is natural to first establish the (weighted) L2 esti-
mate of (5.5)–(5.7). However, the above argument shows that for small β > 0 the angu-
lar transport term destabilizes the profile of the singularity using the singular weights
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A(R)(sin(β))−γ1(cos(β))−γ2 with γ1 ≤ 1. A possible approach to address this issue
in the estimate is to choose γ1 close to or larger than 1, i.e. a very singular weight in
the β direction is desired. In [11], γ1 is chosen to be close to 1 so that such grow-
ing factor is minimized. For (5.5)–(5.7), due to the presence of the nonlocal term, e.g.
cω(+̄ − R∂R+̄), which only vanishes of order sin(2β)α/2 near β = 0,π/2, if we use
a very singular weight for the angular component β, such nonlocal term will be very
difficult to control.

To handle the angular transport term in the L2 estimate, we observe that sin(2β)∂β+̄

is small since +̄ varies slowly in β. We expect that a similar smallness result holds for
the perturbation term sin(2β)∂β+ and we will justify it in Sect. 5.4. This observation
motivates us not to perform integration by parts for the angular transport term in the
weighted L2 estimate.

5.2. Outline of the linear stability analysis. We decompose the linear stability analysis
of (5.5)–(5.7), or equivalently (5.12) into several steps. Based on the first observation in
Sect. 5.1.1, we separate the estimates of the system of +, η (5.5)–(5.6) and the equation
of ξ (5.7).

In Sect. 5.3, we estimate the local part of the linearized operators Li (5.10), i.e. Li0
(5.11). The argument is mainly based on integration by parts.

Instead of first performing the weighted L2 estimate of the system, we perform the
weighted L2 estimate of the angular derivative in Sect. 5.4. The motivation is that using
the third observation in Sect. 5.1.1, we gain a small factor α1/2 for the nonlocal terms
in the equations of Dβ+, Dβη. Therefore, we can treat the nonlocal terms as small
perturbations and use the estimates of Li0 in Sect. 5.3 to establish the estimates of
Dβ+, Dβη. See also the motivation in Sect. 5.1.2. Once we obtain the estimates of
Dβ+, Dβη, we can treat the angular transport terms in the weighted L2 estimates of the
equations of +, η (5.5)–(5.6) as perturbations. This overcomes the difficulty discussed
in Sect. 5.1.2.

In Sect. 5.5, we use two models to illustrate the cancellations in (5.5),(5.6), which
are crucial for the estimates of L̃12(+), cω. This motivates several technical estimates
in Sect. 5.6.

In Sect. 5.6,we establish theweighted L2 estimates of+, ηwith less singularweights,
and obtain the damping terms for cω, L̃12(+). We design the less singular weights
carefully to fully exploit the cancellations discussed in Sect. 5.5. This is themost difficult
part in the whole analysis.

After we obtain the damping terms for cω, L̃12(+), we can treat the nonlocal terms in
(5.5)–(5.6) as perturbations. Using the estimates of the local operators Li0 in Sect. 5.3,
we further establish weighted L2 estimates of +, η with more singular weights that are
introduced in [11] in Sect. 5.7. This enables us to apply several key estimates in [11] in
our nonlinear estimates and simplify the whole estimates.

From the second observation in Sect. 5.1.1, we treat the nonlocal terms in the ξ
equation (5.7) as small perturbations. We estimate Dβξ, ξ in Sect. 5.8 using the estimate
of L30 in Sect. 5.3.

5.3. Estimates of L10,L20,L30. We first introduce several singular weights that will be
used throughout the paper.
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Definition 5.2. Define ϕi ,ψi by

ϕ1 ! (1 + R)4

R4 sin(2β)−σ , ϕ2 ! (1 + R)4

R4 sin(2β)−γ ,

ψ1 ! (1 + R)4

R4 (sin(β) cos(β))−σ , ψ2 ! (1 + R)4

R4 sin(β)−σ cos(β)−γ ,

(5.14)

where σ = 99
100 , γ = 1 + α

10 .

The weights ϕ1,ϕ2 have been introduced in [11] for stability analysis.
The weights ϕ1 and ψ1 are essentially the same. We introduce ψ1 for consistency

and the following reasons. Firstly, we will apply the weights ϕi to +, η and the weights
ψi to ξ . In particular, we will construct weighted H3 norm H3(ϕ) for +, η and H3(ψ)
for ξ in (6.17). Secondly, ϕ1 and ϕ2 have similar forms, and ψ1 and ψ2 also have similar
forms. It is easy to see that ϕ1 " ϕ2,ψ1 " ψ2. We choose ψ2 less singular than ϕ2 for
β close to 0 since ξ̄ does not decay in R when R sin(β)α is fixed and β is small. See
Lemma A.8 regarding the estimate of ξ̄ .

Recall L10,L20,L30 (5.11) in Definition 5.1. The following Lemmas will be used
repeatedly.

Lemma 5.3. For some δ, δ1, δ2 > 0, consider the weights

ϕ(R,β) = (1 + R)4

R4 (sin(2β))−δ, ψ(R,β) = (1 + R)4

R4 (sin(β))−δ1(cos(β))−δ2 .

(5.15)

Assume ϕ1/2+,ϕ1/2η ∈ L2. We have

⟨L10(+, η),+ϕ⟩ + ⟨L20(η), ηϕ⟩ ≤ (−1
4
+ 3|1 − δ|)(||+ϕ1/2||22 + ||ηϕ1/2||22).

(5.16)

Assume that ψ1/2ξ ∈ L2. Denote a ∨ b ! max(a, b). Then it holds true that

⟨L30(ξ), ξψ⟩ ≤
(

− 1
2
+ 3(|1 − δ1| ∨ |1 − δ2|)

)
||ξψ1/2||22. (5.17)

We will apply Lemma 5.3 to the singular weights in Definition 5.2, i.e. ϕ = ϕ1
or ϕ2 and ψ = ψ1 or ψ2. Hence, the exponents we will use are δ = σ = 99

100 or
δ = γ = 1 + α

10 , δ1 = σ , δ2 = σ or δ2 = γ . Since these exponents are very close to 1,
we have the order |1− δ| ≈ 0, |1− δ1|∨ |1− δ2| ≈ 0. The reader can regard the terms
|1 − δ|, |1 − δ1| ∨ |1 − δ2| ≈ 0.

Remark 5.4. The constant − 1
4 in (5.16) can be improved to − 1

2 + ε for any ε > 0 by
considering λε⟨L10(+, η),+ϕ⟩ + ⟨L20(η), ηϕ⟩ for some λε > 0, and − 1

2 in (5.17) can
be improved to − 3

2 . Yet, we do not need these sharper estimates.
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Proof of Lemma 5.3. By definition of ϕ,ψ , we have

(3 sin(2β)ϕ)β
2(1 + R)ϕ

= 3
2(1 + R)

(sin(2β)1−δ)β

sin(2β)−δ
= 3 cos(2β) · (1 − δ)

1 + R
≤ 3|1 − δ|,

(3 sin(2β)ψ)β

2(1 + R)ψ
= 3

(1 + R)
(sin(β)1−δ1 cos(β)1−δ2 )β

sin(β)−δ1 cos(β)−δ2

= 3
1 + R

((1 − δ1) cos2(β) − (1 − δ2) sin2(β)) ≤ 3max(|1 − δ1|, |1 − δ2|),

(Rϕ)R

2ϕ
= (Rψ)R

2ψ
=

(
(1 + R)4

R3

)

R

R4

2(1 + R)4
= 2R

1 + R
− 3

2
= 1

2
− 2

1 + R
.

(5.18)

Using integration by parts for the transport terms in L10 (5.11), we yield

⟨−DR+,+ϕ⟩ =
〈
− Rϕ,

1
2
∂R+2

〉
=

〈1
2
(Rϕ)R,+

2
〉
=

〈 (Rϕ)R

2ϕ
,+2ϕ

〉
.

Similar calculation applies to − 3
1+R Dβ+ in L10. Using the above calculations, we get

⟨L10(+, η),+ϕ⟩ =
〈 (Rϕ)R

2ϕ
+
(3 sin(2β)ϕ)β
2(1 + R)ϕ

,+2ϕ
〉
− ⟨+,+ϕ⟩ + ⟨+, ηϕ⟩

≤
〈1
2

− 2
1 + R

+ 3|1 − δ| − 1, +2ϕ
〉
+ ⟨+, ηϕ⟩

=
〈
− 1

2
− 2

1 + R
+ 3|1 − δ|, +2ϕ

〉
+ ⟨+, ηϕ⟩.

Similarly, using integration by parts for the transport terms in L20 (5.11) and (5.18), we
get

⟨L20(η), ηϕ⟩ =
〈 (Rϕ)R

2ϕ
+
(3 sin(2β)ϕ)β
2(1 + R)ϕ

, η2ϕ
〉
+

〈
(−2 +

3
1 + R

), η2ϕ
〉

≤
〈 2R
1 + R

− 3
2
+ 3|1 − δ| + (−2 +

3
1 + R

), η2ϕ
〉
=

〈
− 1

2
− R

1 + R
+ 3|1 − δ|, η2ϕ

〉
.

(5.19)

We estimate the interaction term between +, η. Note that

4(
1
4
+

2
1 + R

)(
1
4
+

R
1 + R

) >
2

1 + R
+

R
1 + R

≥ 1.

Using the Cauchy–Schwarz inequality implies

⟨+, ηϕ⟩ ≤
〈1
4
+

2
1 + R

,+2ϕ
〉
+

〈1
4
+

R
1 + R

, η2ϕ
〉
.

Combining the above estimates, we prove

⟨L10(+, η),+ϕ⟩ + ⟨L20(+, η), ηϕ⟩ ≤
〈
− 1

2
− 2

1 + R
+ 3|1 − δ|, +2ϕ

〉

+
〈
− 1

2
− R

1 + R
+ 3|1 − δ|, η2ϕ

〉

+
〈1
4
+

2
1 + R

,+2ϕ
〉
+

〈1
4
+

R
1 + R

, η2ψ
〉
≤

(
−1
4
+ 3|1 − δ|

)
(||+ϕ1/2||22 + ||ηϕ1/2||22).
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RecallL30 in Definition 5.1. For (5.17), we use the computations (5.18)–(5.19) to obtain

⟨L30(ξ), ξψ⟩ =
〈 (Rψ)R

2ψ
+
(3 sin(2β)ψ)β

2(1 + R)ψ
, ξ2ψ

〉
+

〈
(−2 − 3

1 + R
), ξ2ψ

〉

≤
〈 2R
1 + R

− 3
2
+ 3(|1 − δ1| ∨ |1 − δ2|) + (−2 − 3

1 + R
), ξ2ψ

〉

≤
(

− 1
2
+ 3(|1 − δ1| ∨ |1 − δ2|)

)
||ξψ1/2||22.

⊓3

5.4. Weighted L2 estimate of the angular derivative Dβ+, Dβη.

Definition 5.5. Define an energy E(β, 1) ≥ 0 and a remaining termR(β, 1) by

E(β, 1)(+, η) !
(
||Dβ+ϕ

1/2
2 ||22 + ||Dβηϕ

1/2
2 ||22

)1/2
,

R(β, 1) ! ⟨DβR+, Dβ+ϕ2⟩ + ⟨DβRη, Dβηϕ2⟩. (5.20)

To simplify the notations, we drop+, η in E(β, 1). The main result in this subsection
is the following. This proposition enables us to treat the angular transport terms in (5.5)–
(5.7) as perturbations. A similar estimate has been established in [11].

Proposition 5.6. Assume that ϕ1/2
2 Dβ+, ϕ

1/2
2 Dβη ∈ L2. We have

⟨DβL1(+, η), (Dβ+)ϕ2⟩ + ⟨DβL2(+, η), (Dβη)ϕ2⟩

≤ −(
1
5

− α)(E(β, 1))2 + Cα(L2
12(+)(0) + ||L̃12(+)R−1||2L2(R)),

(5.21)

where L1,L2 are defined in Definition 5.1.

We will use the following basic property of Dβ = sin(2β)∂β , 0(β) = cos(β)α

repeatedly

Dβ0(β) = −2α sin2(β) cosα(β) = −2α sin2(β)0(β), |Dβ0(β)| ≤ 2α sin(β)0(β).
(5.22)

Proof. Notice that the angular transport term in (5.5)–(5.6) can be written as 3
1+R Dβ

and that Dβ commutes with the derivatives in (5.5)–(5.6) and L10,L20 (5.11). We have

DβL1(+, η) = Dβ(L10(+, η) + cωDβ(+̄ − R∂R+̄)) = L10(Dβ+, Dβη)

+ cωDβ(+̄ − R∂R+̄),

DβL2(+, η) = Dβ(L20(+, η) +
2

πα
L̃12(+)η̄ + cω(+̄ − R∂R+̄))

= L10(Dβ+, Dβη) +
2

πα
L̃12(+)Dβη̄ + cωDβ(η̄ − R∂R η̄),

(5.23)
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where we have used (5.9). Applying Lemma 5.3 with ϕ = ϕ2 and δ = γ = 1 + α
10 , we

derive

⟨L10(Dβ+, Dβη), (Dβ+)ϕ2⟩ + ⟨L20(Dβ+, Dβη), (Dβη)ϕ2⟩

≤ (−1
4
+ 3|1 − γ |)

(
||Dβ+ϕ

1/2
2 ||22 + ||Dβηϕ

1/2
2 ||22

)

≤ (−1
4
+ α)

(
||Dβ+ϕ

1/2
2 ||22 + ||Dβηϕ

1/2
2 ||22

)
.

(5.24)

Recall cω = − 2
πα L12(+)(0). Using (A.16) in Lemma A.6 and the Cauchy–Schwarz

inequality, we obtain

|⟨cωDβ(+̄ − R∂R+̄), (Dβ+)ϕ2⟩| + |⟨cωDβ(η̄ − R∂R η̄), (Dβη)ϕ2⟩|
" α1/2|L12(+)(0)|(||Dβ+ϕ

1/2
2 ||22 + ||Dβηϕ

1/2
2 ||22)1/2.

(5.25)

Recall the notation L̃12(+) (5.8). Applying Lemma A.3 and (A.15) in Lemma A.6,
we derive

∣∣∣
∣∣∣
2

πα
L̃12(+)Dβη̄ϕ

1/2
2

∣∣∣
∣∣∣
2

" α||L̃12(+)R−1||2L2(R).

Therefore, using the Cauchy–Schwarz inequality, we yield

⟨ 2
πα

L̃12(+)Dβη̄, Dβ(η)ϕ2⟩ " α1/2||L̃12(+)R−1||L2(R)||Dβηϕ
1/2
2 ||2. (5.26)

Combining (5.24), (5.25), (5.26) and adding the inner product about two terms in
(5.23), we prove

⟨DβL1(+, η), (Dβ+)ϕ2⟩ + ⟨DβL2(+, η), (Dβη)ϕ2⟩

≤ −(
1
4

− α)(||Dβ+ϕ
1/2
2 ||22 + ||Dβηϕ

1/2
2 ||22)

+ Cα1/2|L12(+)(0)|
(
||Dβ+ϕ

1/2
2 ||22 + ||Dβηϕ

1/2
2 ||22

)1/2

+ Cα1/2
∣∣∣
∣∣∣L̃12(+)R−1

∣∣∣
∣∣∣
L2(R)

||Dβηϕ
1/2
2 ||2,

where C is some absolute constant. Using the notation E(β, 1) (5.20), the Cauchy–
Schwarz inequality concludes the proof of Proposition 5.6 (notice that −1/4 < −1/5).

⊓3

5.5. Ideas in the estimates of the nonlocal terms. Recall cω, L̃12(+) from (4.11), (5.8)

cω = − 2
πα

L12(+)(0) = − 2
πα

∫ ∞

0

∫ π/2

0

+ sin(2β)
R

dRdβ,

L̃12(+)(R) = −
∫ R

0

∫ π/2

0

+ sin(2β)
R

dRdβ. (5.27)

The most difficult part in the linear stability analysis of (5.12),(5.10) (or equivalently
(5.5)–(5.7)) lies in the nonlocal terms L̃12(+), cω. Note that the constant in the coercivity
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estimates of the local part of the linear operators Li , i.e. Li0, is small. For example, this
constant is about − 1

4 in Lemma 5.3. We cannot estimate the nonlocal terms in some
weighted Sobolev norm and treat them as small perturbations since these nonlocal terms
are O(1) for small α. It is crucial for us to exploit the cancellation among various terms
so that we can obtain sharp estimates of these nonlocal terms.

We use two models to study L̃12(+) and the cω term. Similar models have been used
in our previous work with D. Huang on the asymptotically self-similar blowup of the
Hou-Luo model.

5.5.1. Model 1 for nonlocal interaction We consider the following coupled system

∂t+ = η, ηt =
2

πα
L̃12(+)η̄ (5.28)

to study the cancellation between the nonlocal term 2
πα L̃12(+)η̄ in the η equation and

η in the + equation in (5.12). The above model is derived by dropping other terms in
(5.12). The profile η̄ satisfies η̄(0,β) = 0 and η̄ > 0 for R > 0.

The motivation to exploit nonlocal cancellation is inspired by our previous joint
works with Huang on the De Gregorio model [7] and the Hou-Luo model for smooth
initial data. In these works, the nonlocal cancellations between H f and f , where H is
the Hilbert transform, play an important role.

From Lemma A.2, we have a similar cancellation between L̃12(+) and +. Roughly
speaking, L̃12(+) behaves like −+. We perform L2(ρ1) estimate on + and L2(ρ2)
estimate on η for some singular weights ρ1, ρ2 to be determined and combine both
estimates

1
2
d
dt

(⟨+,+ρ1⟩ + ⟨η, ηρ2⟩) = ⟨+, ηρ1⟩ + ⟨ 2
πα

L̃12(+)η̄, ηρ2⟩ ! I. (5.29)

Formally, I is the sum of the projections of η onto two opposite directions. To exploit
this cancellation using LemmaA.2, we choose ρ1 = sin(2β)ρ0, ρ2 = λαπ

2η̄ ρ0 with some
λ > 0 and singular weight ρ0, such as ρ0 = R−3, R−2, to obtain

I = ⟨+ sin(2β), ηρ0⟩ + ⟨λL̃12(+), ηρ0⟩ = ⟨+ sin(2β) + λL̃12(+), ηρ0⟩.
For k ∈ [ 32 , 4], applying Young’s inequality ab ≤ sa2 + 1

4s b
2 for some s > 0, we yield

I ≤ s||(+ sin(2β) + λL̃12(+))R−k/2||22 + (4s)−1||ηρ0Rk/2||22 ! A + B.

If k − 1 > π
2 λ, using Lemma A.2, we obtain

A = s||+ sin(2β)1/2R−k/2||22 − s((k − 1)λ − π

2
λ2)

∣∣∣
∣∣∣L̃12(+)R−k/2

∣∣∣
∣∣∣
2

L2(R)

≤ s||+ sin(2β)1/2R−k/2||22.
We remark that even estimating the first term in I , which is ⟨+ sin(2β), ηρ0⟩ and

does not involve the nonlocal term, we get an upper bound s||+ sin(2β)1/2R−k/2||22 + B.
The above calculation shows that by designing the weights ρ1, ρ2 carefully, we can
exploit the nonlocal cancellation and obtain an even better estimate. Moreover, we gain
a damping term for L̃12(+) from A.

We will use similar ideas to estimate the L̃12(+) term in the linearized equation
(5.5)–(5.7).
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5.5.2. Model 2 for the cω term We consider the following coupled system

∂t+ = η + cω ḡ, ∂tη = cω f̄ , (5.30)

where f̄ (0,β) = 0, ḡ(0,β) = 0, f̄ , ḡ > 0 for R > 0 with f̄ R−1, ḡR−1 ∈ L1. Note
that the profiles η̄ − R∂R η̄, +̄ − R∂R+̄ satisfy similar properties. This system models
the cω terms in the +, η equations in (5.12) by dropping other terms.

Denote W = sin(2β)R−1. Recall cω in (5.27). We have

cω = − 2
πα

⟨+, sin(2β)R−1⟩ = − 2
πα

⟨+,W ⟩.

Denote B = 2
πα ⟨ḡ,W ⟩. By definition, B > 0. We derive an ODE for cω using the +

equation

∂t ⟨+,W ⟩ = cω⟨ḡ,W ⟩ + ⟨η,W ⟩ = − 2
πα

⟨+,W ⟩⟨ḡ,W ⟩ + ⟨η,W ⟩ = −B⟨+,W ⟩ + ⟨η,W ⟩.

Multiplying both sides by ( 2
πα )

2⟨+,W ⟩ = − 2
πα cω, we get

1
2
d
dt

c2ω = −Bc2ω − 2
πα

cω⟨η,W ⟩ ! I1 + I2. (5.31)

We see that the cω ḡ term in the + equation in (5.30) provides a damping term for cω

in this ODE. In the L2(ρ2) estimates of η in (5.30), we have

∂t ⟨η, ηρ2⟩ = cω⟨η, f̄ ρ2⟩ ! I3.

Since f̄ ρ2,W > 0, we can exploit the cancellation between the integral I2 in (5.31)
and I3. By combining the estimates of both terms, we can obtain better estimates of I2
and I3.

In the estimates of (5.5)–(5.7), we will derive a similar ODE for cω, which provides
a damping term for c2ω. This damping term is crucial for us to control the nonlocal cω

terms in (5.5)–(5.7). There is a coupling term −cω⟨η,W ⟩ in this ODE similar to I2 in
(5.31). Using an idea similar to the one stated above, we will combine the estimates of
such term and the cω term in the η equation in (5.6).

5.6. Weighted L2 estimate of +, η with a less singular weight. In this subsection, we
prove Proposition 5.8 to be introduced on the weighted L2 estimate of +, η with less
singular weights.

The proof consists of several steps and we sketch it below. Firstly, we introduce
the weights in our weighted estimates and motivate the choices of these weights. In
Sect. 5.6.2, we estimate the local part of L1,L2 using mainly integration by parts argu-
ment, which is similar to that in Sect. 5.3. In Sect. 5.6.3, we use some ideas and esti-
mates similar to those in Model 1 to estimate the interaction among +, η and L̃12(+).
In Sect. 5.6.4, we use a direct calculation to estimate the cω term in the + equation in
(5.12). Due to the special form of the weight ϕ0 in (5.32), the main term in this estimate
is a damping term for L2

12(+)(0). In Sect. 5.6.5, we use some ideas and estimates similar
to those inModel 2 in Sect. 5.5.2 to estimate the cω term in the η equation. In Sect. 5.6.6,
we estimate the angular transport term in the +, η equations in (5.12) and treat it as
perturbations. In Sects. 5.6.7, 5.6.8, we summarize these estimates, and establish some
inequalities to conclude the proof of Proposition 5.8.
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Since the amount of damping in the energy estimate is small, we cannot overestimate
several terms and need to track the coefficients in the estimates. Thus the estimates
involve several explicit calculations, which will be presented in Appendix A.2. These
calculations,(5.37) and (5.46) can also be verified with the aid ofMathematica. 1 In view
of Lemma A.1, in the following estimates, the reader can regard 0(β) ≈ 1, c ≈ 2

π .

Definition 5.7. Toexploit the cancellationof the system,wedefine the followingweights

ψ0 ! 9
8

α

cη̄

(
R−3 +

3
2
1 + R
R2

)
= 3

16

(
(1 + R)3

R4 +
3
2
(1 + R)4

R3

)
0(β)−1,

ϕ0 ! (1 + R)3

R3 sin(2β), ρ ! R−3 + R−2,

(5.32)

where η̄, 0(β) = cosα(β) are given in (4.8).

Compared to ϕ2 in (5.14), the above weights are less singular in the R,β components.

5.6.1. The forms of the singular weights There are several considerations to choose the
above weightsψ0,ϕ0. Firstly, to obtain the damping terms in the energy estimate similar
to that in Lemma 5.3, the weights in the R direction can be a linear combinations of
R−k with various k [7,11]. See also Lemma 5.3. For R near 0, we need the weight to
be singular, e.g. R−k1 for a large k1. For very large R, we need the weight with slow
decay, e.g. R−k2 with small k2. However, using only these two powers R−k1 and R−k2

are not sufficient. Suppose that we use a weight ϕ0 = R−k2 + cR−k1 with well chosen
k1, k2, c. Applying a calculation similar to that in (5.19) in Lemma 5.3 to ⟨L20η, ηϕ0⟩,
we can obtain ⟨D, η2ϕ0⟩ for some coefficient D(R,β). However, D may not be negative
in the whole domain as the one that we obtain in (5.19) or |D(R,β)| with R = O(1)
may become much smaller than |D(0,β)| and |D(∞,β)|. In either case, we cannot
establish linear stability since the nonlocal terms are not small. Therefore, we need to
add several powers R−k in ϕ0,ψ0. The first formula of ψ0 in (5.32) is more important
than the second, and it contains three different powers.

Secondly, we add η̄ in the denominator in ψ0 to cancel the variable coefficient in our
energy estimates, and design ϕ0 with the factor sin(2β). These forms are similar to that
in Model 1 in Sect. 5.5.1, where we choose ρ1 = sin(2β)ρ0, ρ2 = c

η̄ ρ0 for some weight
ρ0. These special forms are important and enable us to combine the estimates among
L12(+),+ and η. This is the most important motivation in designing ψ0,ϕ0 in (5.32).
See Model 1 in Sect. 5.5.1 and estimate (5.36).

Thirdly, we choose ϕ0 with the factor
(1+R)3

R3 to derive a damping term for L12(+)(0)
from the nonlocal term cω(+̄ − DR+̄). See (5.39).

The main result in this section is the following

Proposition 5.8. Define an energy E(R, 0) and a remaining termR(R, 0)

E(R, 0) = (||+ϕ
1/2
0 ||22 + ||ηψ

1/2
0 ||22 + µ0L2

12(+)(0))1/2,

R(R, 0) = ⟨R+,+ϕ0⟩ + ⟨Rη, ηψ0⟩ + µ0L12(+)(0)⟨R+, sin(2β)R−1⟩, µ0 =
81
4πc

.

(5.33)

1 The Mathematica code for these calculations can be found via the link https://www.dropbox.com/s/
y6vfhxi3pa8okvr/Calpha_calculations.nb?dl=0.



J. Chen, T. Y. Hou

Assume that +, η satisfies that E(R, 0), E(β) < +∞. For some absolute constant µ1,
we have

1
2
d
dt

((E(R, 0)2 + µ1E(β, 1)2)) ≤ −(
1
9

− Cα)((E(R, 0)2 + µ1E(β, 1)2))

− (4 − Cα)L2
12(+)(0) − (

1
4

− Cα)
∣∣∣
∣∣∣L̃2

12ρ
1/2

∣∣∣
∣∣∣
2

L2(R)
+R(R, 0) + µ1R(β, 1),

where the energy E(β, 1) and the remaining term R(β, 1) are defined in (5.20).

Recall L1,L2 in Definition 5.1. A direct calculation with weights ϕ0,ψ0 implies

⟨L1(+, η),+ϕ0⟩ = −⟨R∂R+,+ϕ0⟩ − ⟨+,+ϕ0⟩ + ⟨η,+ϕ0⟩

+ cω⟨+̄ − R∂R+̄,+ϕ0⟩ −
〈 3
1 + R

Dβ+,+ϕ0

〉
,

⟨L2(+, η), ηψ0⟩ = −⟨R∂Rη, ηψ0⟩ +
〈
(−2 +

3
1 + R

)η, ηψ0

〉
+

〈 2
πα

L̃12(+)η̄, ηψ0

〉

+ cω⟨η̄ − R∂R η̄, ηψ0⟩ −
〈 3
1 + R

Dβη, ηψ0

〉
,

(5.34)

where we have used the notation Dβ = sin(2β)∂β to simplify the formula. We treat the
sum of the first two terms on the right hand side as the damping terms.

5.6.2. The damping terms We first handle the first two terms on the right hand side of
the L1 equation in (5.34). Using integration by parts for ∂R , we derive

− ⟨R∂R+,+ϕ0⟩ − ⟨+,+ϕ0⟩ = −⟨Rϕ0,
1
2
∂R+2⟩ − ⟨+,+ϕ0⟩ =

〈1
2
(Rϕ0)R − ϕ0,+

2
〉
,

− ⟨R∂Rη, ηψ0⟩ +
〈
(−2 +

3
1 + R

)η, ηψ0

〉
=

〈1
2
(Rψ0)R + (−2 +

3
1 + R

)ψ0, η
2
〉
.

Using the formulas of ψ0,ϕ0 (5.32), we compute the coefficients in the inner products
in Appendix A.2.1 and obtain

− ⟨R∂R+,+ϕ0⟩ − ⟨+,+ϕ0⟩ = −
〈
(2R−3 +

9
2
R−2 + 3R−1 +

1
2
) sin(2β),+2

〉
,

− ⟨R∂Rη, ηψ0⟩ +
〈
(−2 +

3
1 + R

)η, ηψ0

〉
= −

〈3(1 + R)2

32R4 (1 + 4R + 3R2 + 3R3)0(β)−1, η2
〉
.

(5.35)

5.6.3. Estimate of interaction between + and η We use ideas in Model 1 in Sect. 5.5.1
to combine the estimates of ⟨+, ηψ⟩ and ⟨ 2

πα L̃12(+)η̄, ηψ0⟩. Using (4.8) and (5.32),
we can compute

I !
〈 2
πα

L̃12(+)η̄, ηψ0

〉
=

〈 9
4πc

L̃12(+), η
( 1
R3 +

3
2
1 + R
R2

)〉
,

I I ! ⟨+, ηϕ0⟩ =
〈
+ sin(2β), η

( 1
R3 + 3

1 + R
R2 + 1

)〉
,
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where c is defined in (4.8) and satisfies c = 2
π + O(α) (see Lemma A.1). We design ψ0

(5.32) so that the denominator in ψ0 and the coefficient η̄ in I cancel.
Applying the Cauchy–Schwarz inequality, we yield

I + I I =
〈
+ sin(2β) +

9
4πc

L̃12(+), ηR−3
〉
+

〈
+ sin(2β) +

9
8πc

L̃12(+), 3η
1 + R
R2

〉

+ ⟨+ sin(2β), η⟩

≤ 4
3

〈
(+ sin(2β) +

9
4πc

L̃12(+))2, R−3
〉
+

1
4 · 4/3 ⟨η2, R−3⟩

+ 6
〈
(+ sin(2β) +

9
8πc

L̃12(+))2, R−2
〉
+

32

4 · 6
〈
η2,

(1 + R)2

R2

〉

+
1
3

〈
+2,

1 + R
R

sin(2β)2
〉
+
3
4

〈
η2,

R
1 + R

〉
=

6∑

i=1

Ji .

(5.36)

We design the special forms ψ0,ϕ0 in (5.32) to obtain the good form + sin(2β) +
C L̃12(+) for some C > 0 in I + I I . Next, we exploit the cancellation between +

and L̃12(+) using Lemma A.2. We apply Lemma A.2 with k = 2, 3 to simplify J1, J3
defined above:

J1 + J3 =
〈 (

4
3
R−3 + 6R−2

)
sin(2β)2,+2

〉
− 4

3

(
2 · 9

4πc
− π

2
92

(4πc)2

)
||L̃12(+)R−3/2||2L2(R)

− 6(
9

8πc
− π

2
92

(8πc)2
) ||L̃12(+), R−1||2L2(R) ! M1 + M2 + M3.

We further simplify M2,M3 defined above. Using Lemma A.1, we have |πc − 2| " α
and

−4
3
· 9
4πc

(2 − π

2
9

4πc
) ≤ −4

3
· 9
8
(2 − π

2
· 9
8
) + Cα < −1

4
+ Cα,

−6 · 9
8πc

(1 − π

2
9

8πc
) ≤ −6 · 9

16
(1 − π

2
· 9
16

) + Cα < −1
4
+ Cα,

(5.37)

for some absolute constant C . It follows that

M2 + M3 ≤ (−1
4
+ Cα)(||L̃12(+), R−3/2||2L2(R) + ||L̃12(+), R−1||2L2(R))

= (−1
4
+ Cα)||L̃12(+)ρ1/2||2L2 ,

where we have used the notation ρ defined in (5.32). Therefore, we yield the damping
for L̃12(+).

Remark 5.9. The above computations of J1, J2, J3, J4 are exactly the same as those in
Model 1 in Sect. 5.5.1. We choose the constants in the weights (5.32) carefully so that
when we apply Lemma A.2, the constant −((k − 1)λ − π

2 λ2) in (A.7) is negative, i.e.
(5.37).
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Using (5.36), the above estimate of M2 + M3 in J1 + J3 and sin(2β)2 ≤ sin(2β), we
prove
〈 2
πα

L̃12(+)η̄, ηψ0

〉
+ ⟨+, ηϕ0⟩ = I + I I ≤

〈(4
3
R−3 + 6R−2 +

1 + R
3R

)
sin(2β),+2

〉

+
〈 3
16

R−3 +
3
8
(1 + R)2

R2 +
3
4

R
1 + R

, η2
〉
− (

1
4

− Cα)||L̃12(+)ρ1/2||2L2(R).

(5.38)

5.6.4. Estimate of the projection cω in the + equation We estimate the terms involving
cω in (5.34) in this subsection. Notice that cω defined in (4.11) is the projection of +
onto some function. Using (4.8) and (5.32), we can calculate

⟨+̄ − R∂R+̄,+ϕ0⟩ =
〈α
c
0(β)

6R2

(1 + R)3
,+

(1 + R)3

R3 sin(2β)
〉
= 6α

c

〈 sin(2β)0(β)
R

,+
〉
.

We show that the above projection is almost equal to L12(+)(0). Notice that

1
c

〈 sin(2β)0(β)
R

,+
〉
− π

2

〈 sin(2β)
R

,+
〉
= 1

c

〈 sin(2β)(0(β) − 1)
R

, +
〉

+ (
1
c

− π

2
)⟨ sin(2β)

R
,+⟩ ! I + I I.

Using Lemma A.1, (5.32) and the Cauchy–Schwarz inequality, we have

|I | " α⟨ 1
R
sin(2β)1/2, |+|⟩ " α

∣∣∣
∣∣∣+

(1 + R)3/2

R3/2 sin(2β)1/2
∣∣∣
∣∣∣
2

∣∣∣
∣∣∣
1
R

· R3/2

(1 + R)3/2

∣∣∣
∣∣∣
2

" α||+ϕ
1/2
0 ||2,

|I I | " α⟨ 1
R
sin(2β), |+|⟩ " α

∣∣∣
∣∣∣+

(1 + R)3/2

R3/2 sin(2β)
∣∣∣
∣∣∣
2

∣∣∣
∣∣∣
1
R

· R3/2

(1 + R)3/2
sin(2β)

∣∣∣
∣∣∣
2

" α||+ϕ
1/2
0 ||2.

It follows that
∣∣∣
1
α

⟨+̄ − R∂R+̄,+ϕ0⟩ − 6 · π

2

〈 sin(2β)
R

,+
〉∣∣∣ ≤ 6|I + I I | " α||+ϕ

1/2
0 ||2.

Recall the definition of cω in (4.11). Using the above estimate and then the formula of
L12(+)(0) (2.16), we have

cω⟨+̄ − R∂R+̄,+ϕ0⟩ = − 2
π
L12(+)(0) · 1

α
⟨+̄ − R∂R+̄,+ϕ0⟩

≤ − 2
π
L12(+)(0) · 6 · π

2

〈 sin(2β)
R

,+
〉

+ Cα|L12(+)(0)| · ||+ϕ
1/2
0 ||2

= −6(L12(+)(0))2 + Cα|L12(+)(0)| · ||+ϕ
1/2
0 ||2

≤ −(6 − Cα)(L12(+)(0))2 + Cα||+ϕ
1/2
0 ||2.

(5.39)

By choosing ϕ0 in (5.32) carefully, we obtain a damping term for L12(+)(0)2 from
cω(+̄ − R∂R+̄). This is one of the motivations to choose the special form of ϕ0.
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5.6.5. Estimate of the projection cω in the η equation We use some ideas and estimates
similar to those in Model 2 in Sect. 5.5.2 to estimate the cω term in the η equation (5.34).

Using cω = − 2
πα L12(+)(0) (4.11) and expanding the coefficient (η̄ − R∂R η̄)ψ0

using the formulas (4.8) and (5.32), which is presented in Appendix A.2.2, we derive

cω⟨η̄ − R∂R η̄, ηψ0⟩ = − 27
4πc

L12(+)(0)
〈
η,

1
(1 + R)R2

〉
− 81

8πc
L12(+)(0)

〈
η,

1
R

〉
! A1 + A2.

(5.40)

An ODE for L12(+)(0) Using the + equation in (5.12) and derivation similar to that in
Model 2 in Sect. 5.5.2, we derive the following ODE for L12(+)(0) in Appendix A.2.3

1
2
d
dt

81
4πc

L2
12(+)(0) = 81

4πc

(
− 4L2

12(+)(0) + L12(+)(0)
〈
η,

sin(2β)
R

〉

− L12(+)(0)
〈3 sin(2β)
(1 + R)R

, Dβ+
〉
+ L12(+)(0)

〈
R+,

sin(2β)
R

〉)
.

(5.41)

Note that we have multiplied both sides of the ODE for L2
12(+)(0) by the constant

81
4πc and will include 81

4πc L
2
12(+)(0) in the energy E(R, 0) (5.33). The first term on the

right hand side provides damping for L2
12(+)(0), which is similar to that in (5.31). It

enables us to control the term A1, A2 in (5.40). Based on the idea inModel 2 in Sect. 5.5.2
and the fact that the integrands in A2 and L12(+)(0)

〈
η, sin(2β)

R

〉
in (5.41) have different

signs, we combine the estimate of A2 in (5.40) and the η term in (5.41) as follows to
exploit cancellation

A3 ! A2 +
81
4πc

L12(+)(0)
〈
η,

sin(2β)
R

〉
= 81

8πc
L12(+)(0)

〈
η,

1
R
(−1 + 2 sin(2β))

〉
.

(5.42)

Next, we estimate A1 in (5.40) and A3 by treating them as perturbation. Applying
the Cauchy–Schwarz inequality yields

A3 ≤ 81
8πc

|L12(+)(0)| ·
∣∣∣
∣∣∣η
(1 + R)2

R3/2

∣∣∣
∣∣∣
2

∣∣∣
∣∣∣

R3/2

(1 + R)2
1
R
(1 − 2 sin(2β))

∣∣∣
∣∣∣
2
,

A1 ≤ 27
4πc

|L12(+)(0)| ·
∣∣∣
∣∣∣η
(1 + R)3/2

R2

∣∣∣
∣∣∣
2

∣∣∣
∣∣∣

R2

(1 + R)3/2
· 1
(1 + R)R2

∣∣∣
∣∣∣
2
.

(5.43)

The integrals on R,β in (5.43) equal to
√

1
6 (

3π
2 − 4),

√
π
8 , respectively, which are com-

puted in Appendix A.2.4. Then we reduce (5.43) to

A3 ≤ b1|L12(+)(0)|
∣∣∣
∣∣∣η
(1 + R)2

R3/2

∣∣∣
∣∣∣
2
, A1 ≤ b2|L12(+)(0)|

∣∣∣
∣∣∣η
(1 + R)3/2

R2

∣∣∣
∣∣∣
2
. (5.44)

where b1, b2 are given by

b1 ! 81
8πc

√
1
6
(
3π
2

− 4), b2 ! 27
4πc

√
π

8
.



J. Chen, T. Y. Hou

Using the Young’s inequality ab ≤ sa2 + 1
4s b

2 for any s > 0, we get

A1 + A3 ≤ 1
32

∣∣∣
∣∣∣η
(1 + R)2

R3/2

∣∣∣
∣∣∣
2

2
+

9
128

∣∣∣
∣∣∣η
(1 + R)3/2

R2

∣∣∣
∣∣∣
2

2

+L2
12(+)(0)

( b21
4 × 1/32

+
b22

4 × 9/128

)
. (5.45)

Using Lemma A.1 for the estimate of c and a direct calculation yield

b21
1/8

+
b22

9/32
− 81

4πc
· 4 = 8

(
81
8πc

)2 1
6
(
3π
2

− 4) +
32
9

(
27
4πc

)2 π

8
− 81

πc

≤ 4
3

(
81
16

)2

(
3π
2

− 4) +
4π
9

(
27
8

)2

− 81
2

+ Cα < Cα.

(5.46)

Combining the identities (5.40), (5.42), the damping term of L2
12(+)(0) in (5.41) and

the estimate (5.45), we prove

cω⟨η̄ − R∂R η̄, ηψ0⟩ +
81
4πc

L12(+)(0)
〈
η,

sin(2β)
R

〉
− 81

4πc
· 4L2

12(+)(0)

= A1 + A2 +
81
4πc

L12(+)(0)
〈
η,

sin(2β)
R

〉
− 81

4πc
· 4L2

12(+)(0) = A1 + A3

− 81
4πc

· 4L2
12(+)(0)

= ⟨η2, 1
32

(1 + R)4

R3 +
9
128

(1 + R)3

R4 ⟩ + L2
12(+)(0)

(
b21
1/8

+
b22

9/32
− 81

πc

)

≤ 3
16

〈
η2,

1
6
(1 + R)4

R3 +
3
8
(1 + R)3

R4

〉
+ CαL2

12(+)(0),

(5.47)

where we have used (5.46) to derive the last inequality.

5.6.6. Estimate of the angular transport term From the definition of the weights (5.14),
(5.32), we have

ϕ0 " ϕ2, (1 + R)−1ψ0 " ψ2,
∣∣∣
∣∣∣
3 sin(2β)
(1 + R)R

ϕ
−1/2
2

∣∣∣
∣∣∣
2

" 1.

Therefore, we can estimate the angular transport terms in (5.34), (5.41) as follows

− ⟨3Dβ+

1 + R
,+ϕ0⟩ " ||Dβ+ϕ

1/2
2 ||2||+ϕ

1/2
0 ||2, −⟨3Dβη

1 + R
, ηψ0⟩ " ||Dβηψ

1/2
2 ||2||ηψ

1/2
0 ||2,

− 81
4πc

L12(+)(0)
〈3 sin(2β)
(1 + R)R

, Dβ+
〉
" |L12(+)(0)|

∣∣∣
∣∣∣Dβ+ϕ

1/2
2 ||2,

where we have used c−1 " 1 (see Lemma A.1). Using the energy notations E(β, 1)
(5.20) and E(R, 0) (5.33), we further derive

− ⟨3Dβ+

1 + R
,+ϕ0⟩ − ⟨3Dβη

1 + R
, ηψ0⟩ − 81

4πc
L12(+)(0)

〈3 sin(2β)
(1 + R)R

, Dβ+
〉

≤ K1E(R, 0)E(β, 1),
(5.48)

for some absolute constant K1. We remark that the absolute constants K1, K2, .. do not
change from line to line.
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5.6.7. Completing the estimates with a less singular weight Combining the estimates
(5.34)–(5.38), (5.39), (5.41), (5.47), (5.48) and using the notations E(R, 0),R(R, 0)
(5.33), we obtain

1
2
d
dt

E(R, 0)2 = 1
2
d
dt

(
||+ϕ

1/2
0 ||22 + ||ηψ

1/2
0 ||22 +

81
4πc

L2
12(+)(0)

)

≤ ⟨+2, sin(2β)D(+)⟩ + ⟨η2, D(η)⟩ + (−1
4
+ Cα)||L̃12(+)ρ1/2||2L2(R)

+ L2
12(+)(0) (−6 + Cα) + Cα⟨+2,ϕ0⟩ + K1E(R, 0)E(β, 1) +R(R, 0),

(5.49)

where D(+), D(η) are given by

D(+) ! −2R−3 − 9
2
R−2 − 3R−1 − 1

2
+
4
3
R−3 + 6R−2 +

1 + R
3R

,

D(η) ! −3(1 + R)2

32R4 (1 + 4R + 3R2 + 3R3)0(β)−1

+
(

3
16

R−3 +
3
8
(1 + R)2

R2 +
3R

4(1 + R)

)
+

3
16

(1
6
(1 + R)4

R3 +
3
8
(1 + R)3

R4

)
.

(5.50)

Recall the weights ϕ0,ψ0 in (5.32). In Appendix A.2.5, we estimate D(+), D(η)
and prove

sin(2β)D(+) ≤ −1
6
ϕ0, D(η) ≤ −1

8
ψ0, (5.51)

which only involves elementary estimates.
For L2

12(+)(0) in (5.49), we use Lemma A.1 about c (cπ = 2 + O(α)) to get

−6 + Cα ≤ −1
8

× 81
8

− 4 + Cα ≤ −1
8

× 81
4πc

− 4 + Cα,

which implies

(−6 + Cα)L2
12(+)(0) ≤ −1

8
· 81
4πc

L2
12(+)(0) − (4 − Cα)L2

12(+)(0), (5.52)

where C is some absolute constant and may vary from line to line. Observe that

K1E(R, 0)E(β, 1) ≤ 1
100

E(R, 0)2 + 100K 2
1 E

2(β, 1). (5.53)

Recall E(R, 0) in (5.33). Finally, substituting the estimates (5.51)–(5.53) in (5.49),
we prove

1
2
d
dt

E(R, 0)2 ≤ −(
1
6

− Cα)||+ϕ
1/2
0 ||22 − 1

8
||ηψ

1/2
0 ||22 − 1

8
· 81
4πc

L2
12(+)(0)

− (4 − Cα)L2
12(+)(0) − (

1
4

− Cα)||L̃12(+)ρ1/2||L2(R)

+
1

100
E(R, 0)2 + 100K 2

1 E
2(β, 1) +R(R, 0)

≤ (−1
9
+ Cα)E2(R, 0) − (4 − Cα)L2

12(+)(0)

− (
1
4

− Cα)||L̃12(+)ρ1/2||L2(R) + 100K 2
1 E

2(β, 1) +R(R, 0),

(5.54)

where we have used − 1
6 +Cα + 1

100 ,− 1
8 +

1
100 < − 1

9 +Cα to derive the last inequality.
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5.6.8. Linear stability with a less singular weight Using the reformulation (5.12), and
the notations E(β, 1) and R(β, 1) defined in (5.20), we have

1
2
d
dt

(E(β, 1))2 = ⟨DβL1(+, η), (Dβ+)ϕ2⟩ + ⟨DβL2(+, η), (Dβη)ϕ2⟩ +R(β, 1).

(5.55)

Now we combine (5.21) and (5.54) to establish the linear stability of (5.5)–(5.6) with
the less singular weight (5.32). Firstly, we choose an absolute constant µ1 such that

100K 2
1 <

1
20

µ1,

where the absolute constant K1 is determined in (5.48). From (5.32), we have R−2 ≤ ρ.
Hence,

||L̃12(+)R−1||2L2(R) ≤ ||L̃12(+)ρ1/2||2L2(R).

Combining Proposition 5.6, (5.54), the formulation (5.55), and the above estimates, we
establish the estimate for E(R, 0)2 + µ1E(β, 1)2

1
2
d
dt

((E(R, 0)2 + µ1E(β, 1)2)) ≤ −(
1
9

− Cα)((E(R, 0)2 + µ1E(β, 1)2))

− (4 − Cα)L2
12(+)(0) − (

1
4

− Cα)||L̃2
12ρ

1/2||2L2(R) +R(R, 0) + µ1R(β, 1).

(5.56)

The proof of Proposition 5.8 is now complete.

5.7. Weighted L2 estimate of+, η with a more singular weight. With the linear stability
(5.56) with a less singular weight, we can proceed to perform the weighted L2 estimate
with a more singular weight.

Definition 5.10. Define an energy E(R, 1) and a remaining termR(R, 1) by

E(R, 1) !
(
||+ϕ

1/2
1 ||22 + ||ηϕ

1/2
1 ||22

)1/2
, R(R, 1) ! ⟨R+,+ϕ1⟩ + ⟨Rη, ηϕ1⟩,

(5.57)

where ϕ1,ψ1 are given in Definition 5.2.

The main result in this section is the following.

Proposition 5.11. Assume that +ϕ
1/2
1 , ηϕ

1/2
1 ∈ L2. We have that

⟨L1(+, η),+ϕ1⟩ + ⟨L2(+, η), ηϕ1⟩

≤ −1
6
(E(R, 1))2 + K3

(
L2
12(+)(0) +

∣∣∣
∣∣∣L̃12(+)R−1

∣∣∣
∣∣∣
2

L2(R)

)
,

where L1,L2 are defined in Definition 5.1, K3 > 0 is some fixed absolute constant.
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Proof of Proposition 5.11. A direct calculation yields

⟨L1(+, η),+ϕ1⟩ = ⟨L10(+, η),+ϕ1⟩ + cω⟨+̄ − R∂R+̄,+ϕ1⟩,

⟨L2(+, η), ηϕ1⟩ = ⟨L20(η), ηϕ1⟩ +
2

πα
⟨L̃12(+)η̄, ηϕ1⟩ + cω⟨η̄ − R∂R η̄, ηϕ1⟩.

(5.58)

Applying Lemma 5.3 with ϕ = ϕ1 and δ = σ = 99
100 , we yield

⟨L10(+, η),+ϕ1⟩ + ⟨L20(η), ηϕ1⟩
≤ (−1

4
+ 3|1 − σ |)(||+ϕ

1/2
1 ||22 + ||ηϕ

1/2
1 ||22) < −1

5
(||+ϕ

1/2
1 ||22 + ||ηϕ

1/2
1 ||22).

Recall cω = − 2
πα L12(+)(0) (4.11). Using (A.16) in Lemma A.6 and the Cauchy–

Schwarz inequality, we obtain

|cω⟨(+̄ − R∂R+̄),+ϕ1⟩| + |cω⟨(η̄ − R∂R η̄), ηϕ1⟩| " |L12(+)(0)|(||+ϕ
1/2
1 ||22 + ||ηϕ

1/2
1 ||22)1/2.

For L̃12(+) in (5.58), using the Cauchy–Schwarz inequality, we derive
〈 2
πα

L̃12(+)η̄, ηϕ1

〉
" α−1||L̃12(+)η̄ϕ

1/2
1 ||2||ηϕ

1/2
1 ||2 "

∣∣∣
∣∣∣L̃12(+)R−1

∣∣∣
∣∣∣
L2(R)

||ηϕ
1/2
1 ||2,

where we have applied Lemma A.3 and (A.15) in Lemma A.6 in the second inequality.
Using the Cauchy–Schwarz inequality and the energy notation E(R, 1) (5.57), we

complete the proof of Proposition 5.11. ⊓3

5.8. Weighted L2 estimate of Dβξ and ξ . The estimates of ξ are simpler since the main
terms in the equation of ξ (5.7) do not couple with +, η directly. We use the weights
ψ1,ψ2 in Definition 5.2.

Proposition 5.12. Suppose that ψ1/2
1 ξ, ψ

1/2
2 Dβξ ∈ L2. We have

⟨L3(+, ξ), ξψ1⟩ ≤ (−1
3
+ Cα)||ξψ

1/2
1 ||22

+ Cα
(
L2
12(+)(0) + ||L̃12(+)R−1||2L2(R)

)
, (5.59)

⟨DβL3(+, ξ), (Dβξ)ψ2⟩ ≤ (−1
3
+ Cα)||Dβξψ

1/2
2 ||22

+ Cα
(
L2
12(+)(0) + ||L̃12(+)R−1||2L2(R)

)
. (5.60)

Proof of Proposition 5.12. Since Dβ commuteswithL3 (seeDefinition 5.1) and L̃12(R)
does not depend on β, a direct calculation implies

⟨L3(+, ξ), ξψ1⟩ = ⟨L30(ξ), ξψ1⟩ − 2
πα

⟨L̃12(+)ξ̄ , ξψ1⟩ + cω⟨3ξ̄ − DR ξ̄ , ξψ1⟩

⟨DβL3(+, ξ), (Dβξ)ψ2⟩ = ⟨L30(Dβξ), (Dβξ)ψ2⟩ − 2
πα

⟨L̃12(+)Dβ ξ̄ , (Dβξ)ψ2⟩

+ cω⟨Dβ(3ξ̄ − DR ξ̄), ξψ2⟩.

(5.61)
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Applying (5.17) in Lemma 5.3 with ψ = ψ1 (a constant multiple of ψ does not change
the estimate in (5.17)) and with ψ = ψ2 (see Definition 5.2), respectively, we derive

⟨L30(ξ), ξψ1⟩ ≤ (−1
2
+ 3|1 − σ |)||ξψ

1/2
1 ||22 < −3

8
||ξψ

1/2
1 ||22,

⟨L30(Dβξ), (Dβξ)ψ2⟩ ≤ (−1
2
+ 3(|1 − γ | ∨ |1 − σ |))||Dβξψ

1/2
2 ||22

≤ (−3
8
+ α)||Dβξψ

1/2
2 ||22,

(5.62)

where γ = 1 + α
10 , σ = 99

100 . Using the Cauchy–Schwarz inequality, we yield

∣∣∣ − 2
πα

⟨L̃12(+)ξ̄ , ξψ1⟩
∣∣∣ " α−1||L̃12(+)ξ̄ψ

1/2
1 ||2||ξψ

1/2
1 ||2

" α||L̃12(+)R−1||2||ξψ
1/2
1 ||2, (5.63)

where we have applied Lemma A.3 and (A.25) in Lemma A.8 to derive the second
inequality.

Using the Cauchy–Schwarz inequality, (4.11) and Lemma A.8, we obtain

cω⟨3ξ̄ − DR ξ̄ , ξψ1⟩ " α−1|L12(+)(0)| · ||(3ξ̄ − DR ξ̄)ψ
1/2
1 ||2||ξψ

1/2
1 ||2

" α|L12(+)(0)| · ||ξψ
1/2
1 ||2.

(5.64)

Plugging (5.62)–(5.64) in (5.61) and using the Cauchy–Schwarz inequality, we prove
(5.59).

The proof of (5.60) is completely similar. We apply estimates similar to those in
(5.63)–(5.64) and Lemmas A.3, A.8 to control the cω and L̃12(+) terms. Combining
these estimates, using the second inequality in (5.62) and then the Cauchy–Schwarz
inequality prove (5.60). ⊓3

5.8.1. The weighted L2 energy Using the reformulation (5.12), we have

1
2
d
dt

(||+ϕ
1/2
1 ||22 + ||ηϕ

1/2
1 ||22) = ⟨L1(+, η),+ϕ1⟩ + ⟨L2(+, η), ηϕ1⟩ + ⟨R+,+ϕ1⟩ + ⟨Rη, ηϕ1⟩,

1
2
d
dt

||ξψ
1/2
1 ||22 = ⟨L3(ξ), ξψ1⟩ + ⟨Rξ , ξψ1⟩,

1
2
d
dt

||Dβξψ
1/2
2 ||22 = ⟨DβL3(ξ), (Dβξ)ψ2⟩ + ⟨DβRξ , Dβξψ2⟩.

Recall the energy E(R, 1) and the remaining termR(R, 1) in Definition 5.10.

E(R, 1) = (||+ϕ
1/2
1 ||22 + ||ηϕ

1/2
1 ||22)1/2, R(R, 1) = ⟨R+,+ϕ1⟩ + ⟨Rη, ηϕ1⟩.

Combining the above reformulation, Propositions 5.8, 5.11, 5.12 and R−2 ≤ ρ (5.32),we
know that there is some absolute constant µ2, which is small enough, e.g. µ2K3 <

1
100 ,

such that the following estimate holds
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1
2
d
dt

(
E(R, 0)2 + µ1E(β, 1)

2 + µ2E(R, 1)
2 + ||ξψ

1/2
1 ||22 + ||Dβξψ

1/2
2 ||22

)

≤ −(
1
9

− Cα)
(
E(R, 0)2 + µ1E(β, 1)

2 + µ2E(R, 1)
2 + ||ξψ

1/2
1 ||22 + ||Dβξψ

1/2
2 ||22

)

− (3 − Cα)L212(+)(0) − (
1
5

− Cα)
∣∣∣
∣∣∣L̃212ρ

1/2
∣∣∣
∣∣∣
2

L2(R)
+R0(+, η, ξ),

(5.65)

whereR0 is defined below.We define the following weighted L2 energy and the remain-
ing term R0

2

E0(+, η, ξ) !
(
E(R, 0)2 + µ1E(β, 1)

2 + µ2E(R, 1)
2 + ||ξψ

1/2
1 ||22 + ||Dβξψ

1/2
2 ||22

)1/2
,

R0(+, η, ξ) ! R(R, 0) + µ1R(β, 1) + µ2R(R, 1) + ⟨Rξ , ξψ1⟩ + ⟨DβRξ , (Dβξ)ψ2⟩,
(5.66)

where (E(R, 0),R(R, 0)), (E(β, 1),R(β, 1)), (E(R, 1),R(R, 1)) are defined in (5.33),
(5.20) and (5.57), respectively, and µi are some fixed absolute constants.

We do not need the extra damping for L̃12(+)ρ1/2 and L12(+)(0) in (5.65) due to
Lemma A.4 and the fact that E0 is stronger than ||+ (1+R)2

R2 ||L2 . Using (A.9), we know
that Cα||L̃12(+)ρ1/2||2L2(R), Cα|L12(+)(0)|2 can be bounded by CαE2

0 . Hence, using
the notation E0,R0, we derive the following result from (5.65).

Corollary 5.13. Let E0(+, η, ξ),R0(+, η, ξ) be the energy and the remaining term
defined in (5.66). Under the assumptions of Propositions 5.6, 5.11 and 5.12, we have

1
2
d
dt

E2
0 ≤ −(

1
9

− Cα)E2
0 +R0.

6. Higher Order Estimates and the Energy Functional

In this section, based on the weighted L2 estimates established in Corollary 5.13, we
proceed to perform the higher order estimates in the spirit of Propositions 5.11, 5.12
so that we can complete the nonlinear analysis. In Sect. 6.1, we perform the weighted
H1 estimates of Li and illustrate how to apply several lemmas to control different terms
in DRLi . In Sect. 6.2, we use a similar argument to establish weighted H2 and H3

estimates. In these estimates, we treat the nonlocal terms as perturbations and apply
Lemma 5.3 recursively.

Since ξ̄(x, y) does not decay in the x direction when y is fixed (see the estimates of
ξ̄ in Lemma A.8), we cannot obtain the decay estimate for its perturbation ξ . Hence,
in order to obtain the L∞ control of ξ and its derivatives, which will be used later to
estimate the nonlinear terms, we cannot apply a Hk ↪→ L∞ type Sobolev embedding.
We perform the L∞ estimates of ξ and its derivative directly in Sect. 6.3. This difficulty
is not present in [11] by removing the swirl. The coefficient of the damping term in
(5.7) is given by I1 = −2 − 3

1+R ≤ −2. This simple inequality is actually related to
the flow structure. In fact, I1 is the leading order term of −2 − v̄y (see (5.1) and (4.9)),
and the positive sign of v̄y is related to the hyperbolic flow structure ū < 0, v̄ > 0
and v̄(x, 0) = 0. See more discussions after Lemma 3.1. The fact that I1 is bounded
uniformly away from 0 enables us to establish the L∞ estimate of ξ .

2 In fact, E0 contains a L2 norm of the angular derivative Dβ+, Dβη, Dβξ .
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6.1. Weighted H1 estimates. We remark that the weighted H1 estimate with angular
derivatives is already established in Sect. 5.4 about Dβ+, Dβη and Sect. 5.8 about Dβξ .
Recall the weighted differential operator DR = R∂R in Definition 5.1. We define an
energy and a remaining term

E(R, 2)(+, η, ξ) !
(
||DR+ϕ

1/2
1 ||22 + ||DRηϕ

1/2
1 ||2 + ||DRξψ

1/2
1 ||22

)1/2
,

R(R, 2)(+, η, ξ) ! ⟨DRR+, DR+ϕ1⟩ + ⟨DRRη, DRηϕ1⟩ + ⟨DRRξ , DRξψ1⟩,
(6.1)

where ϕ1,ψ1 are defined in (5.14).

Proposition 6.1. Under the assumption of Corollary 5.13 and thatϕ1/2
1 DR+,ϕ

1/2
1 DRη,

ψ
1/2
1 DRξ ∈ L2, we have

⟨DRL1(+, η), (DR+)ϕ1⟩ + ⟨DRL2(+, η), (DRη)ϕ1⟩ + ⟨DRL3(ξ), (DRξ)ψ1⟩
≤ −1

6
E2(R, 2) + K4E2

0 ,

where K4 is some fixed absolute constant and E0, E(R, 2) are defined in (5.66) and
(6.1).

Proof. Since DR commutes with DR, Dβ in Li ,Li0 (see Definition 5.1), we have

DRL1(+, η) = L10(DR+, DRη) − DR
3

1 + R
· Dβ+ + cωDR(+̄ − R∂R+̄)

= L10(DR+, DRη) +
2∑

i=1

Ii ,

DRL2(+, η) = L20(DRη) − DR
3

1 + R
· Dβη + DR(−2 +

3
1 + R

) · η +
2

πα
L̃12(+) · DR η̄

+
2

πα
DR L̃12(+) · η̄ + cωDR(η̄ − R∂R η̄) = L20(DRη) +

5∑

i=1

I Ii ,

DRL3(+, ξ) = L30(DRξ) − DR
3

1 + R
· Dβξ + DR(−2 − 3

1 + R
) · ξ − 2

πα
L̃12(+) · DR ξ̄

− 2
πα

DR L̃12(+) · ξ̄ + cωDR(3ξ̄ − R∂R ξ̄) = L30(DRξ) +
5∑

i=1

I I Ii .

Applying (5.16) with ϕ = ϕ1 (see (5.14)), and (5.17) with ψ = ψ1 (see (5.14)) in
Lemma 5.3, and 3|1 − σ | < 1

30 , we yield

⟨L10(DR+, DRη), (DR+)ϕ1⟩ + ⟨L20(DRη), (DRη)ϕ1⟩

≤ −1
5

(
||DR+ϕ

1/2
1 ||22 + ||DRηϕ

1/2
1 ||22

)

⟨L20(DRξ), (DRξ)ψ1⟩ ≤ −3
8
||DRξψ

1/2
1 ||22.

Notice that ϕ2, ψ2 (5.14) satisfy ϕ1 ≤ ϕ2, ψ1 ≤ ψ2. For the terms not involving
L̃12(+), cω, we use E0 defined in (5.66) to control the weighted L2 norm of Dβ+, Dβη.
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It is easy to see that

||I1ϕ1/2
1 ||L2 " ||Dβ+ϕ

1/2
2 ||L2 " E0, ||I I1ϕ1/2

1 ||L2 " ||Dβηϕ
1/2
2 ||L2 " E0,

||I I2ϕ1/2
1 ||L2 " ||ηϕ

1/2
1 ||L2 " E0, ||I I I1ψ1/2

1 ||L2 " ||Dβξψ
1/2
2 ||L2 " E0,

||I I I2ψ1/2
1 ||L2 " ||ξψ

1/2
1 ||L2 " E0.

Recall cω = − 2
πα L12(+)(0). Applying (A.16) in Lemma A.14 to I2, I I5 and (A.26) in

Lemma A.8 to I I I5, we obtain

||I2ϕ1/2
1 ||L2 " |L12(+)(0)| " E0, ||I I5ϕ1/2

1 ||L2 " |L12(+)(0)| " E0,

||I I I5ψ1/2
1 ||L2 " α|L12(+)(0)| " αE0.

Finally, for the L̃12(+) terms, we apply Lemma A.3. To apply Lemma A.3, we need the
L∞ norm of some angular integrals, whose estimates are given in (A.15) in Lemma A.6
about +̄, η̄ and (A.25) in Lemma A.8 about ξ̄ . Using these estimates, we obtain

||I I3ϕ1/2
1 ||L2 " ||L̃12(+)R−1||L2(R) " E0, ||I I4ϕ1/2

1 ||L2 " ||R−1+||L2 " E0,

||I I I3ψ1/2
1 ||L2 " α||L̃12(+)R−1||L2(R) " αE0, ||I I I4ψ1/2

1 ||L2 " α||R−1+||L2 " αE0.

The result now follows using the Cauchy–Schwarz inequality (notice that − 1
5 <

− 1
6 , α < 1) and applying the energy notation (6.1). ⊓3
Using the reformulation (5.12), we have

1
2
d
dt

E2(R, 2) = 1
2
d
dt

(
||DR+ϕ

1/2
1 ||22 + ||DRηϕ

1/2
1 ||22 + ||DRξψ

1/2
1 ||22

)1/2

= ⟨DRL1(+, η), (DR+)ϕ1⟩ + ⟨DRL2(+, η), (DRη)ϕ1⟩ + ⟨DRL3(ξ), (DRξ)ψ1⟩ +R(R, 2).

Therefore, it is not difficult to combine the above reformulation, Corollary 5.13 and
Proposition 6.1 to prove the following results.

Corollary 6.2. Suppose that +, η, ξ satisfy that E0(+, η, ξ), E(R, 2)(+, η, ξ) < +∞,
where E0, E(R, 2) are defined in (5.66) and (6.1), respectively. Then there exists an
absolute constant µ3, such that, the following statement holds true. The weighted H1

energy E1 and its associated remaining termR1 defined by

E1(+, η, ξ) !
(
E2
0(+, η, ξ) + µ3E

2(R, 2)(+, η, ξ)
)1/2

, R1(+, η, ξ) ! R0 + µ3R(R, 2),

(6.2)

where R0,R(R, 2) are defined in (5.66) and (6.1), satisfy

1
2
d
dt

E2
1 ≤ (− 1

10
+ Cα)E2

1 +R1.



J. Chen, T. Y. Hou

6.2. Weighted H2 and H3 estimates. Recall the weights ϕi ,ψi in Definition 5.2. For
Dk

R+, Dk
Rη, k = 2, 3, we use weight ϕ1; for other second or third derivative terms

Di
RD

j
β+, Di

RD
j
βη, j ≥ 1 we use weight ϕ2. For Dk

Rξ, k = 2, 3, we use weight ψ1; for

other second or third derivative terms Di
RD

j
βξ , j ≥ 1, we use weight ψ3.

In the same spirit of the weighted H1 estimates established in Sects. 5.4 and 6.1, we
perform the weighted H2 and H3 estimates. We estimate the second and third derivative
terms in the order of D2

β , DβDR, D2
R, D

3
β , D

2
βDR, DβD2

R, D
3
R . The motivation to first

estimate the angular derivative terms is the same as that in Sects. 5.1.2 and 5.4. This
order of energy estimates has been used in [11]. In these estimates, we treat the nonlocal
terms as perturbations and apply Lemma 5.3 recursively.

Similar to the weighted H1 energy function E1 and Corollary 6.2, there exist
some absolute constants µ j,k , which can be determined in the order ( j, k) =
(2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2), (3, 3), such that the weighted H3 energy func-
tional E3 ≥ 0 and its associated remaining termR3 defined below satisfy the estimates
stated in Corollary 6.3.

E2
3(+, η, ξ) ! E2

1 +
∑

l=2,3

∑

0≤k≤l

µl,k

(
||Dk

RD
l−k
β +ϕ

1/2
i ||22 + ||Dk

RD
l−k
β ηϕ

1/2
i ||22

+ ||Dk
RD

l−k
β ξψ

1/2
i ||22

)
,

R3(+, η, ξ) ! R1 +
∑

l=2,3

∑

0≤k≤l

µl,k

(
⟨Dk

RD
l−k
β R+, (Dk

RD
l−k
β +)ϕi ⟩

+⟨Dk
RD

l−k
β Rη, (Dk

RD
l−k
β η)ϕi ⟩ + ⟨Dk

RD
l−k
β Rξ , (Dk

RD
l−k
β ξ)ψi ⟩

)
,

(6.3)

where E1,R1 are defined in (6.2), (ϕi ,ψi ) = (ϕ3,ψ3) for k = 0, 1, 2 and (ϕ1,ψ1)
otherwise.

Corollary 6.3. Suppose that E3(+, η, ξ) < +∞. Then the energy E3 satisfies

1
2
d
dt

E2
3(+, η, ξ) ≤ (− 1

12
+ Cα)E2

3 +R3.

We refer the details of the weighted H2 estimates to the arXiv version of this paper
[6]. The weighted H3 estimates can be generalized in a straightforward manner.

6.3. C1 estimates. We introduce the following weights for the weighted C1 estimates

φ1 =
1 + R
R

, φ2 = 1 + (R sin(2β)α)−
1
40 , (6.4)

and the following C1 norm

|| f ||C1 ! || f ||∞ + ||φ1DR f ||∞ + ||φ2Dβ f ||∞
= || f ||∞ + ||1 + R

R
DR f ||∞ + ||(1 + (R sin(2β)α)−

1
40 )Dβ f ||∞.

(6.5)
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To close the nonlinear estimates, we need to control the L∞ norm of+, η, ξ and their
derivatives. For +, η, the weighted H3 estimates that we have obtained guarantee that
+, η ∈ C1, which will be established precisely in later sections. For ξ , however, since
the weight ψ2 (see Definition 5.2) is less singular in β for β close to 0, the weighted H3

space associated to ξ is not embedded continuously into C1. Alternatively, we perform
C1 estimates on ξ directly. This difficulty is absent in [11] by removing the swirl.

Firstly, the transport term in the ξ equation in (5.1), including the nonlinear part in
Nξ , is given by

A(ξ) ! (1 + 3α)DRξ + αcl DRξ + (ū · ∇)ξ + (u · ∇)ξ . (6.6)

The main damping term in the ξ equation is (−2 − v̄y)ξ . (4.9) shows that −v̄y =
− 3

1+R + l.o.t.. Therefore, we consider

(−2 − v̄y)ξ = (−2 − 3
1 + R

)ξ + 91, 91 ! (
3

1 + R
− v̄y)ξ . (6.7)

We further introduce 92 to denote the lower order terms in the ξ equation (5.1)

92 = −vy ξ̄ + cω(2ξ̄ − R∂R ξ̄) + (αcωR∂R − (u · ∇))ξ̄ − (uy η̄ + ū yη). (6.8)

Then the ξ equation in (5.1) can be simplified as

∂tξ + A(ξ) = (−2 − 3
1 + R

)ξ + 91 + 92 + F̄ξ + No, (6.9)

where we have moved part of the nonlinear term Nξ defined in (5.2) to the transport
term A(ξ) and No is given by

No = (2cω − vy)ξ − uyη. (6.10)

Notice that− 3
1+R ≤ 0.Multiplying ξ on both sides and then performing L∞ estimate

yield

1
2
d
dt

||ξ ||2∞ ≤ −2||ξ ||2∞ + ||ξ ||(||91||L∞ + ||92||∞ + ||F̄ξ ||∞ + ||Nξ ||∞), (6.11)

where the transport term A(ξ) vanishes.
Beforewe performweightedC1 estimates,we rewriteA(ξ) defined in (6.6) as follows

A(ξ) = ((1 + 3α + αcl )DRξ +
3

1 + R
Dβξ) + (((u + ū) · ∇ − 3

1 + R
Dβ )ξ) ! A1(ξ) +A2(ξ).

(6.12)

Recall the weights φ1,φ2 in (6.4). Observe that Dβ commutes withA1 and DR com-
mutes with DR, Dβ . Denote by [P, Q] the commutator PQ− QP . A direct calculation
shows that
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φ1DRAξ − A(φ1DRξ) = φ1DR
3

1 + R
· Dβξ − (1 + 3α + αcl )DRφ1 · DRξ + [φ1DR,A2]ξ,

= − 3
1 + R

Dβξ + (1 + 3α + αcl )
1

1 + R
φ1DRξ + [φ1DR,A2]ξ,

φ2DβAξ − A(φ2Dβξ) = −A1(φ2 − 1) · Dβξ + [φ2Dβ ,A2]ξ,
(6.13)

where we have used A1(1) = 0 in the last equality. Hence, using (6.9) and the above
calculation, we obtain the equation of φ1DRξ

∂t (φ1DRξ) +A(φ1DRξ) = 3
1 + R

Dβξ − (1 + 3α + αcl)
1

1 + R
φ1DRξ − [φ1DR,A1ξ ]

+ φ1DR((−2 − 3
1 + R

)ξ) + φ1DR(91 + 92 + F̄ξ + No).

We remark that −(1 + 3α) 1
1+Rφ1DRξ is a damping term, though we will not use it.

Performing L∞ estimate for φ1Dβξ , we obtain the following estimate, which is similar
to (6.11)

1
2
d
dt

||φ1DRξ ||2∞ ≤ −(2 − |αcl |)||φ1DRξ ||2∞ + 3||φ1DRξ ||∞||ξ ||∞
+ ||φ1DRξ ||L∞(3||Dβξ ||∞ + ||[φ1DR,A2]ξ ||∞ + ||φ1DR(91 + 92 + F̄ξ + No)||L∞),

(6.14)

where we have used | 3
1+R | ≤ 3 and

φ1DRξ · φ1DR(−2 − 3
1 + R

)ξ = φ1DRξ · ((−2 − 3
1 + R

)φ1DRξ

+φ1
3Rξ

(1 + R)2
) ≤ −2(φ1DRξ)2 + 3||φ1DRξ ||∞||ξ ||∞.

Similarly, using (6.9), (6.13) and then performing L∞ estimate on φ2Dβξ , we obtain

1
2
d
dt

||φ2Dβξ ||2∞ ≤ −2||φ2Dβξ ||2∞ + ||φ2Dβξ ||∞||A1(φ2 − 1) · Dβξ ||L∞

+ ||φ2Dβξ ||∞(||[φ2Dβ ,A2]ξ ||∞ + ||φ2Dβ (91 + 92 + F̄ξ + No)||L∞),

(6.15)

where we have used

φ2Dβξ · φ2Dβ(−2 − 3
1 + R

)ξ ≤ −2(φ2Dβξ)2.

We defer the estimates of the remaining terms in (6.11),(6.14),(6.15) which are small,
to Sect. 8.
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6.4. The energy functional and the Hm norm. Using all the energy notations (5.20),
(5.33), (5.57), (5.66), (6.1),(6.2) and (6.3), we obtain the full expression of E3 (6.3)

E2
3 =||+ϕ

1/2
0 ||22 + ||ηψ

1/2
0 ||22 +

81
4πc

L212(+)(0) + µ1

(
||Dβ+ϕ

1/2
2 ||22 + ||Dβηψ

1/2
2 ||22

)

+ ||Dβξψ
1/2
2 ||22 + µ2

(
||+ϕ

1/2
1 ||22 + ||ηψ

1/2
1 ||22

)
+ ||ξψ

1/2
1 ||22

+ µ3

(
||DR+ϕ

1/2
1 ||22 + ||DRηψ

1/2
1 ||22 + ||DRξψ

1/2
1 ||22

)

+
∑

l=2,3

∑

0≤k≤l

µl,k

(
⟨||Dk

RD
l−k
β +ϕ

1/2
i ||22 + ||Dk

RD
l−k
β ηϕ

1/2
i ||22 + ||Dk

RD
l−k
β ξψ

1/2
i ||22

)
,

(6.16)

where (ϕi ,ψi ) = (ϕ1,ψ1) for k = l, (ϕi ,ψi ) = (ϕ2,ψ2) for k ̸= l and l = 2, 3.
Recall ϕi ,ψi in Definition 5.2. We define the Hm(ρ) norm with m ≥ 0 as follows

|| f ||Hm(ρ) !
∑

0≤k≤m

||Dk
R fρ1/2

1 ||L2 +
∑

i+ j≤m−1

||Di
RD

j+1
β fρ1/2

2 ||L2 . (6.17)

The H0(ϕ) norm is the same as L2(ϕ1) norm. For the H3(ϕ) norm, we use (6.17) with
ρi = ϕi ; for theH3(ψ) norm, we use (6.17) with ρi = ψi , i = 1, 2. We simplifyH3(ϕ)
asH3. We apply theH3 norm for +, η and theH3(ψ) norm for ξ . We use theHm norm
to establish the elliptic estimate in the next section. We will only use theH2,H2(ψ) and
H3,H3(ψ) norms. Remark that the Hm norm is different from the canonical Sobolev
Hm norm.

From the Definition 5.2 of ϕi ,ψi , we have a simple relationship between Hm and
Hm(ψ).

Lemma 6.4. For γ−σ
2 ≤ λ ≤ 1

2 and m ≤ 3, we have

|| f ||Hm(ψ) " || f ||Hm , || sin(β)λ f ||Hm " || f ||Hm(ψ). (6.18)

The proof follows from several simple inequalities ψi " ϕi , sin(β)λϕi " ψi ,
Di

β sin(β)λ · ϕ2 = 2λ cos2(β) sin(β)λϕ2 " ψ1 for i ≤ 3, and expanding the norm.
We also define the corresponding inner products onH3 andH3(ψ), which are equiv-

alent toH3,H3(ψ)

⟨ f, g⟩H3 ! µ1⟨Dβ f, Dβgϕ2⟩ + µ2⟨ f, gϕ1⟩ + µ3⟨DR f, DRgϕ1⟩
+

∑

k=2,3

µk,k ||Dk
R f ϕ1/2

1 ||L2 +
∑

j≥1, 2≤i+ j≤3

µi+ j,i ⟨Di
RD

j
β f, Di

RD
j
βgϕ2⟩,

⟨ f, g⟩H3(ψ) ! ⟨Dβ f, Dβgψ2⟩ + ⟨ f, gψ1⟩ + µ3⟨DR f, DRgψ1⟩
+

∑

k=2,3

µk,k ||Dk
R f ψ1/2

1 ||L2 +
∑

j≥1, 2≤i+ j≤3

µi+ j,i ⟨Di
RD

j
β f, Di

RD
j
βgψ2⟩.

(6.19)

Clearly, using these notations and (5.66), (6.1), (6.2), (6.3), we have

E2
3 = 81

4πc
L2
12(+)(0) + ⟨+2,ϕ0⟩ + ⟨η2,ψ0⟩ + ⟨+,+⟩H3 + ⟨η, η⟩H3 + ⟨ξ, ξ ⟩H3(ψ),

R3 = ⟨R+,+ϕ0⟩ + ⟨Rη, ηψ0⟩ +
81
4πc

L12(+)(0)⟨R+, sin(2β)R−1⟩
+ ⟨R+,+⟩H3 + ⟨Rη, η⟩H3 + ⟨Rξ , ξ ⟩H3(ψ).

(6.20)
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We also have the following simple inequality

||+||2H3 + ||η||2H3 + ||ξ ||2H3(ψ)
" E2

3(+, η, ξ). (6.21)

7. Elliptic Regularity Estimates and Estimate of Nonlinear Terms

In this section, we first follow the argument in [11] to establish theH3 estimates for the
elliptic operator and justify that the leading order term of the (modified) stream function
can be written as (2.16) in Sect. 7.1. Then to simplify our nonlinear estimates, we will
generalize several estimates derived in [11] in Sect. 7.2.

The fact that ξ̄ (see Lemma A.8) and ξ do not decay in certain direction makes
the estimates of nonlinear terms complicated since we cannot apply the same weighted
Sobolev norm to +, η, ξ . More precisely, the Hk(ψ) norm for ξ is weaker than the Hk

norm for +, η (see (6.18)). To compensate this, we use a combination of C1 norm and
Hk(ψ) norm for ξ . We will establish several estimates for ξ in Sect. 7.2. Moreover,
estimating theHk norm of vxξ in the η equation (5.1) will be more difficult since ξ is in
a weaker Sobolev space. In Sect. 7.3, we will estimate the nonlinear term vxξ in the η
equation (5.1). We will also perform a new estimate of the transport term with weighted
H3 data.

Recall that the Biot–Savart law in R2
+ is given by (2.3), which can be reformulated

using the polar coordinates as

−∂rrψ − 1
r
∂rψ − 1

r2
∂ββψ = ω,

where r =
√
x2 + y2,β = arctan(y/x). We introduce R = rα and -(R,β) =

1
r2 ψ(r,β),+(R,β) = ω(r,β). It is easy to verify that the above elliptic equation is
equivalent to

Lα(-) ! −α2R2∂RR- − α(4 + α)R∂R- − ∂ββ- − 4- = +. (7.1)

The boundary condition of - is given by

-(R, 0) = -(R,π/2) = 0, lim
R→∞

-(R,β) = 0. (7.2)

7.1. H3 estimates. Recall that theHm,m ≥ 0 norm defined in Sect. 6.4 is given by

|| f ||Hm !
∑

0≤k≤m

||Dk
R f

(1 + R)2

R2 sin(2β)σ/2
||L2 +

∑

i+ j≤m−1

||Di
RD

j+1
β f

(1 + R)2

R2 sin(2β)γ /2
||L2 ,

(7.3)

where σ = 99/100, γ = 1+α/10 andwe have used the definition of ϕi in Definition 5.2.
The H0 norm is the same as L2(ϕ1) norm.

Proposition 7.1. Assume that 0 < α ≤ 1
4 , 1 < γ ≤ 5

4 , and + satisfies ||+||H3 < +∞
with

∫ π/2

0
+(R,β) sin(2β)dβ = 0 (7.4)
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for every R. The solution of (7.1) satisfies

α2||R2∂RR-||H3 + α||R∂Rβ-||H3 + ||∂ββ-||H3 ≤ C ||+||H3

for some absolute constant C independent of α and γ .

Remark 7.2. We need the orthogonality assumption (7.4) since sin(2β) is in the null
space of the self-adjoint operator L0(-) = −∂ββ- − 4- with boundary condition
-(0) = -(π/2) = 0, which is the limiting operator in (7.1) as α → 0. See more
discussion on the connection between this orthogonality assumption and the elliptic
estimate in the arXiv version of this paper [6].

Since the H2 norm is the same as that in [11] and the H2 estimates can be easily
extended to the H3 estimates, the complete proof follows from the same argument in
[11]. Here, the proof is even simpler since there is no first order angular derivative term
in (7.1), i.e. ∂β(tan(β)-), which is one of the major difficulties in obtaining the elliptic
estimate in [11].

The singular term In general the vorticity + does not satisfy the assumption (7.4) in
Proposition 7.1. Suppose that - is the solution of (7.1). Consider -̃ = - + G sin(2β).
The goal is to construct G so thatLα(-̃) satisfies (7.4), i.e.

∫ π/2
0 Lα(-̃) sin(2β)dβ = 0.

Recall the notation L12(+) in (2.16). Following the argument in [11], in Appendix A.3,
we derive

G = − 1
πα

L12(+)(R) + Ḡ, Ḡ ! − 1
απ

R− 4
α

∫ R

0

∫ π/2

0
+(s,β) sin(2β)s

4
α −1ds.

(7.5)

Although there is a large factor 1/α in Ḡ, it can be proved that ||Ḡ||H3 can be bounded
byC ||+||H3 using a Hardy-type inequality. We refer the reader to [11] and [14] for more
details.

Using Proposition 7.1 and an argument similar to that in [11], we have the following
result, which is similar to Theorem 2 in [11].

Proposition 7.3. Assume that α ≤ 1
4 and + ∈ H3. Let - be the solution to (7.1) with

boundary condition (7.2). Then we have

α2||R2∂RR-||H3 + α||R∂Rβ-||H3 + ||∂ββ(- − 1
απ

sin(2β)L12(+))||H3 ≤ C ||+||H3

for some absolute constant C independent of α, γ in the definition ofH3 (7.3).

Remark 7.4. The H3 norm of αDR∂β- is not included in Theorem 2 in [11]. Yet, the
estimate of such term can be derived easily from Proposition 7.1 and the estimate of G
defined in (7.5).

7.2. Estimates of nonlinear terms. In this subsection, we generalize several estimates
of nonlinear terms derived in [11], which will be used in our nonlinear stability estimate
in the next section.
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We define the W l,∞ norm:

|| f ||W l,∞ !
∑

0≤k+ j≤l, j ̸=0

∣∣∣
∣∣∣ sin(2β)−

α
5 Dk

R

(
sin(2β)∂β

) j
α
10 + sin(2β)

f
∣∣∣
∣∣∣
L∞ +

∑

0≤k≤l

∣∣∣
∣∣∣Dk

R f
∣∣∣
∣∣∣
L∞ .

(7.6)

A similarW l,∞ has been used in [11] and ourW l,∞ norm is slightly different from
that in [11]. We replace the operator (R +1)k∂kR by Dk

R = (R∂R)
k . The reason for doing

this is that the stronger weight (R + 1)k is not necessary in the derivation of the product
rule in [11] related to W l,∞, and that the differential operator DR commutes with Lα

in the elliptic equation (7.1), while ∂R does not. Therefore, the higher order elliptic
estimates related to ∂R can depend on the value of α. We will only use these estimates
when α is very small.

Functions inW7,∞ From Proposition A.7 in the Appendix, we know that 0(β), +̄, η̄ ∈
W7,∞.

Remark 7.5. We do not apply the W l,∞ norm to ξ̄ , ξ .

Recall the C1 norm in (6.5). For the C1 and W1,∞ norms, we have a simple result.

Proposition 7.6. For any f, g ∈ C1 and 1+R
R p ∈ W1,∞, we have

|| f g||C1 ≤ || f ||C1 ||g||C1, ||p||C1 " ||1 + R
R

p||W1,∞ .

The W4,∞ version of the following result has been established in [11], whose general-
ization to W l,∞ is straightforward.

Proposition 7.7. Assume that f, g ∈ W l,∞. Then we have

|| f g||W l,∞ "l || f ||W l,∞ ||g||W l,∞ .

Recall from (4.9) that L12(+̄) = 3πα
2

1
1+R . We define -̄ by

Lα(-̄) = −α2R2∂RR-̄ − α(4 + α)R∂R-̄ − ∂ββ-̄ − 4- = +̄,

where Lα is the operator in (7.1). We have the following estimates.

Proposition 7.8. For α ≤ 1
4 , we have

||1 + R
R

∂ββ(-̄ − sin(2β)
πα

L12(+̄))||W7,∞ " α, ||L12(+̄)||W7,∞ " α,

α||1 + R
R

D2
R-̄||W5,∞ + α||1 + R

R
∂βDR-̄||W5,∞

+ ||1 + R
R

∂ββ(-̄ − sin(2β)
πα

L12(+̄))||W5,∞ " α.

The proof of the first inequality follows from the same argument in [11]. The proof
of the second inequality follows from L12(+̄) = 3πα

2(1+R) in (4.9) and a direct calculation.
The third inequality follows from the first two inequalities. We refer more details to the
arXiv version of this paper [6].
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7.2.1. Some embedding Lemmas A similar version of the following estimate has been
established in [11]. We remark that we have modified the weight for the R variable in
the W l,∞ norm. We refer the proof to the arXiv version of this paper [6].

Proposition 7.9. Assume that (1+R)3

R2 f ∈ W3,∞, then we have f ∈ H3 and

|| f ||H3 " || (1 + R)3

R2 f ||W3,∞ .

We have the following decay estimate.

Lemma 7.10. Suppose that ξ ∈ H2(ψ), we have

||R1/2 sin(2β)1/4ξ ||L∞ " ||ξ ||H2(ψ).

The above estimate also holds for ξ ∈ H2 since H2 is stronger than H2(ψ) (see
Lemma 6.4).

Proof. Using a direct calculation yields

|| sin(2β)1/2Rξ2||L∞ " ||∂R∂β(sin(2β)1/2Rξ2)||L1 = ||∂β(sin(2β)1/2(ξ2 + 2ξDRξ))||L1

" || sin(2β)−1/2(ξ2 + 2ξDRξ)||L1 + || sin(2β)1/2(2ξ∂βξ + 2∂βξDRξ + 2ξ∂βDRξ)||L1 .

Recall the definition of H2(ψ) (6.17) and the weights in Definition 5.2. Using the
Cauchy–Schwarz inequality concludes the proof. ⊓3
Lemma 7.11. We have

|| f ||L∞ " α−1/2|| f ||H2 ,

|| f ||C1 = || f ||L∞ + ||1 + R
R

DR f ||L∞ + ||(1 + (R sin(2β)α)−
1
40 )Dβ f ||L∞ " α−1/2|| f ||H3 ,

provided that the right hand side is bounded.

The first inequality has been established in [11]. Recall the definition of H3 and its
associated weights in (7.3). The proof of the C1 estimates follows from the argument in
the proof of Lemma 7.10, the Cauchy–Schwarz inequality and

|| 1
1 + R

sin(2β)γ /2−1||L2 " α−1/2, || R1− α
40

(1 + R)2
sin(2β)γ /2−1− α

40 ||L2 " α−1/2.

7.2.2. The product rules In this subsection, we generalize the estimates of nonlinear
terms and the transport terms derived in [11] to the H3(ψ) norm.

Denote the sum space X ! H3 ⊕ W5,∞ with sum norm

|| f ||X ! inf{||g||H3 + ||h||W5,∞ : f = g + h}. (7.7)

We use the following product rules to estimate the nonlinear terms.

Proposition 7.12. For all f ∈ X, g ∈ H3, ξ ∈ H3(ψ) ∩ C1, we have

|| f g||H3 " α−1/2|| f ||X ||g||H3,

|| f ξ ||H3(ψ) " α−1/2|| f ||X (α1/2||ξ ||C1 + ||ξ ||H3(ψ)).
(7.8)
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The first inequality has been proved in [11]. We will focus on the product rule with
H3(ψ) norm.

Proof. If f ∈ W5,∞, applying the same argument in [11] yields

|| f ξ ||H3(ψ) " α−1/2|| f ||W5,∞ ||ξ ||H3(ψ).

Now, we assume f ∈ H3. We consider the third derivative D3 = Di
RD

j
β terms

since other are terms are easier. If (D3,ψi ) = (D3
R,ψ1), (D3

β ,ψ2), we use a L2 × L∞

interpolation

||D3( f ξ)ψ1/2
i ||22 "

∑

k=0,1

||Dk f D3−kξψ
1/2
i ||22 +

∑

k=2,3

||Dk f D3−kξψ
1/2
i ||22

" || f ||C1 ||ξ ||H3(ψ) + || f ||H3(ψ)||ξ ||C1 " α−1/2|| f ||H3 ||ξ ||H3(ψ)

+ || f ||H3 ||ξ ||C1,

wherewehave appliedLemma7.11 to || f ||C1 andLemma6.4 to obtain the last inequality.
If D3 = D2

RDβ or D2
βDR , the corresponding singular weight in the H3(ψ) norm is

ψ2. We consider the term D2
RξDβ f ψ1/2

2 in the L2 estimate of D3( f ξ)ψ1/2
2 , which is a

typical and the most difficult term. The previous L2 × L∞ estimate fails since D2
Rξψ

1/2
2

is not in L2(R,β). Recall the Definition 5.2 of ψ2,ϕ2. Denote

W = (1 + R)4

R4 , P = sin(β)−σ cos(β)−γ , Q = sin(2β)−γ , S = sin(2β)−σ , λ = γ − σ.

(7.9)

Clearly, we have ϕ2 = WQ,ψ2 = WP, ψ1 ≍ WS and P " sin(β)λQ. We use a
L2(R, L∞(β)) × L∞(R, L2(β)) estimate3

||D2
RξDβ f (WP)1/2||22 ≤

∣∣∣
∣∣∣|| sin(β)λ/2D2

Rξ(R, ·)||2L∞(β)||Dβ f Q1/2(R, ·)||2L2(β)
W

∣∣∣
∣∣∣
L1(R)

! ||A(R)2B(R)2W ||L1(R).

(7.10)

We further estimate the integrands A(R), B(R). Using the Poincare inequality, we have

A(R) " ||∂β (sin(β)
λ/2D2

Rξ(R, ·))||L1(β) + || sin(β)λ/2D2
Rξ(R, ·)||L2(β) ! A1(R) + A2(R).

Using the Cauchy–Schwarz inequality, we can bound the first term as follows

A1(R) " || sin(β)λ/2−1D2
Rξ(R, ·)||L1(β) + || sin(β)λ/2 sin(2β)−1DβD2

Rξ(R, ·)||L1(β)

" ||S1/2D2
Rξ(R, ·)||L2(β)||S−1/2 sin(β)λ/2−1||L2

+ ||P1/2DβD2
Rξ(R, ·)||L2(β)||P−1/2 sin(β)λ/2 sin(2β)−1||L2 .

3 The L2(R, L∞(β)) × L∞(R, L2(β)) estimate of the mixed derivatives term in the H2 norm is due to
Dongyi Wei. We are grateful to him for telling us this estimate. We apply this idea to derive the estimates in
theH3(ψ) norm.
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Recall P, S, λ defined in (7.9) and γ = 1 + α
10 . A simple calculation yields

||S−1/2 sin(β)λ/2−1||L2 " || sin(β)γ /2−1||L2(β) " α−1/2,

||P−1/2 sin(β)λ/2 sin(2β)−1||L2 " || sin(β)γ /2−1 cos(β)γ /2−1||L2(β) " α−1/2.

Combining the above estimates, we derive

A " A1(R) + A2(R) " α−1/2(||S1/2D2
Rξ(R, ·)||L2(β) + ||P1/2DβD2

Rξ(R, ·)||L2(β))

+||D2
Rξ(R, ·)||L2(β).

Recall WS " ψ1,WP " ψ2. Consequently, we have

||A2(R)W ||L1(R) " α−1||ξ ||2H3(ψ)
.

Recall B(R) in (7.10). Since Dβ f Q1/2W 1/2, DRDβ f Q1/2W 1/2 ∈ L2, we have
lim inf R→0 B(R) = 0 and yield

||B2||L∞(R) ≤ ||∂R B2||L1(R) " ||∂RDβ f Q1/2||L2 ||Dβ f Q1/2||L2 " || f ||2H3,

where we have used ∂R = R−1DR, R−1 " W 1/2 and WQ = ϕ2 to obtain the last
inequality. Plugging the estimates of A and B in (7.10), we yield the desired estimate
on ||D2

RξDβ f ψ1/2
2 ||L2 . ⊓3

We generalize the H2 estimate of transport term derived in the earlier arXiv version
of [11] as follows.

Proposition 7.13. Assume that u, ∂βu, DRu ∈ H3 and + ∈ H3, ξ ∈ H3(ψ) ∩ C1 we
have

|⟨+, uDR+⟩H3 | " α− 1
2
(
||u||H3 + ||∂βu||H3 + ||DRu||H3

)
||+||2H3,

|⟨ξ, uDRξ ⟩H3(ψ)| " α− 1
2
(
||u||H3 + ||∂βu||H3 + ||DRu||H3

)
(||ξ ||H3(ψ) + α1/2||ξ ||C1)2.

Moreover, for all u, DRu ∈ X = H3 ⊕ W5,∞ and + ∈ H3, ξ ∈ H3(ψ) ∩ C1, we have

|⟨+, uDβ+⟩H3 | " α−1/2 (||u||X + ||DRu||X )) ||+||2H3,

|⟨ξ, uDβξ ⟩H3(ψ)| " α−1/2 (||u||X + ||DRu||X )) (||ξ ||H3(ψ) + α1/2||ξ ||C1)2.

The proof follows from the argument in the proof of Proposition 7.12 and that in
the earlier arXiv version of [11]. Here, the proof is easier since the data is more regular
(than H2), i.e.H3 or H3(ψ), and then the estimate of several nonlinear terms can be
done by applying L∞ estimate on one term. To estimate the mixed derivative terms, e.g.
⟨D2

RDβξ, D2
RDβ(uDβξ)ψ2⟩, we apply the L2(R, L∞(β)) × L∞(R, L2(β)) argument

similar to that in the proof of Proposition 7.12.
The following result is a simpleH3,H3(ψ) generalization of another transport esti-

mate in the earlier arXiv version of [11].

Proposition 7.14. Let H3(ρ) be either H3 or H3(ψ). For all g ∈ H3(ρ), u with
||Di

Ru||L∞ < ∞ for i ≤ 3 and ||Di
RD

j
β∂βu||L∞ < ∞ for i + j ≤ 2, we have

|⟨g, uDRg⟩H3(ρ)| " α−1/2(
∑

0≤i≤3

||Di
Ru||L∞ +

∑

i+ j≤2

||Di
RD

j
β∂βu||L∞)||g||2H3(ρ)

,

The proof follows simply from applying L∞ estimate on the u term and integration by
parts.
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7.3. A new estimate of the transport term and the estimate of vxξ . In this subsection, we
establish a new estimate of the transport term which is necessary to close the nonlinear
estimate and estimate ||vxξ ||H3 which is not covered by Proposition 7.12.

Proposition 7.15. Let - be a solution of (7.1). Suppose that g,+ ∈ H3, ξ ∈ H3(ψ) ∩
C1. We have

|⟨g, 1
sin(2β)

DR-Dβg⟩H3 | " α−3/2||+||H3 ||g||2H3,

|⟨ξ, 1
sin(2β)

DR-Dβξ ⟩H3(ψ)| " α−3/2||+||H3(||ξ ||H3(ψ) + α1/2||ξ ||C1)2.

If one apply Proposition 7.13 with u = DR-
sin(2β) , ||DRu||H3 in the upper bound cannot

be bounded by ||+||H3 .

Proof. Denote u = DR-
sin(2β) . The estimate of the transport term is similar to that

in Proposition 7.12 except that we need to perform integration by parts for the
terms ⟨D3g, uD3Dβϕ⟩ in the estimate. We focus on a typical and difficult term
⟨D2

RDβξ, D2
RuD

2
βξψ2⟩ to see why we can improve the estimate in Proposition 7.13.

Other terms can be estimated similarly.
For this term, it suffices to estimate the L2 norm of D2

RuD
2
βξψ

1/2
2 . Recall ψ2 = WP

with W, P defined in (7.9). We have

||D2
RuD

2
βξψ

1/2
2 ||2 ≤ ||D2

RuW
1/2||L2(R,L∞(β))||D2

βξ P1/2||L∞(R,L2(β)) ! A · B.

The term A can be bounded by Cα−1/2||u||H3 , which is further bounded by
Cα−3/2||+||H3 using Proposition 7.3. The term B is bounded by C ||ξ ||H3(ψ). It is
similar to the argument in the proof of Proposition 7.12 and we omit the detail. ⊓3

Finally, we estimate the nonlinear term vxξ in the η equation (5.1).

Proposition 7.16. Let -, -̄ be a solution of (7.1) with source term +, +̄, respectively,
and V1(-) be the operator which is related to vx and is to be defined in (8.6). Assume
that ξ ∈ H3(ψ) ∩ C1,+ ∈ H3. We have

||V1(-)ξ ||H3 " α−1/2||+||H3(α1/2||ξ ||C1 + ||ξ ||H3(ψ)),

||V1(-̄)ξ ||H3 " α1/2||ξ ||H3(ψ).
(7.11)

The difficulty lies in that H3(ψ) is weaker than H3 (see Lemma 6.4). We can not
apply Proposition 7.12 directly to estimate vxξ .We need to use a key fact that vx vanishes
on β = 0.

Proof. We use the formula of V1(-) (8.8) to be derived

V1(-) = α(1 + 2 cos2 β)DR- − αDRDβ- − Dβ-∗ + 2-∗
+ sin2(β)∂2β-∗ + α2 cos2(β)D2

R-

! A(-) + α2 cos2(β)D2
R-.

where -∗ = - − sin(2β)
πα L12(+). We first consider the second inequality in (7.11).

Notice that V1(-̄) vanishes on β = 0. More precisely, Proposition 7.8 implies
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sin(β)−1/2V1(-̄) ∈ W5,∞. Applying the product rule in H3 norm in Proposition 7.12,
Lemma 6.4 and then Proposition 7.8, we yield

||V1(-̄)ξ ||H3 " α−1/2|| sin(β)−1/2V1(-̄)||W5,∞ || sin(β)1/2ξ ||H3 " α1/2||ξ ||H3(ψ).

Next, we consider the first inequality in (7.11). From Proposition 7.3, we know that
sin(β)−1/2A(-) ∈ H3. Applying Propositions 7.12, 7.3 and Lemma 6.4, we derive

||A(-)ξ ||H3 " α−1/2||A(-) sin(β)−1/2||H3 ||ξ sin(β)1/2||H3(ψ) " α−1/2||+||H3 ||ξ ||H3(ψ).

Finally, we focus on the term g ! α2D2
R- in V1(-). We consider the third derivative

terms D3(D2
R- ·ξ)with D3 = Di

RD
j
β , i + j = 3 in theH3 estimate since other terms are

easier. If D3 = D3
R , we need to estimate the L2 norm of D3

R(gξ)ϕ
1/2
1 . Since ϕ1 ≍ ψ1,

the estimate follows from the argument in the proof of Proposition 7.12 and we obtain

||D3
R(α

2D2
R-ξ)ϕ

1/2
1 ||22 " α3/2||+||H3(||ξ ||H3(ψ) + α1/2||ξ ||C1).

Otherwise, we need to estimate the L2 norm of D2Dβ(g · ξ)ϕ
1/2
2 with D2 =

Di
RD

j
β , i + j = 2 (note that Dβ commutes with DR). We rewrite Dβ(gξ) as follows

Dβ(gξ) = ∂βg(sin(2β)ξ) + gDβξ = sin(2β)3/4∂βg(sin(2β)1/4ξ)

+ sin(2β)1/4(sin(2β)−1/2g) sin(2β)1/4Dβξ .

Notice that sin(2β)1/4ϕ2 " ϕ1,ψ1. Using the idea in the discussion of Lemma 6.4 and
expanding theH2 norm, one can verify easily that

||D2(Dβ(gξ))ϕ
1/2
2 ||L2 " || sin(2β)1/2∂βg · sin(2β)1/4ξ ||H2

+|| sin(2β)−1/2g sin(2β)1/4Dβξ ||H2 .

Applying the H2 version of the product rule in Proposition 7.12 (it is given in [11]),
Proposition 7.3 to g = α2D2

R-, and Lemma 6.4, we obtain

||D2(Dβ(gξ))ϕ
1/2
2 ||L2 " α−1/2|| sin(2β)1/2∂βg||H2 || sin(2β)1/4ξ ||H2

+ α−1/2|| sin(2β)−1/2g||H2 || sin(2β)1/4Dβξ ||H2

" α3/2||+||H3 ||ξ ||H3(ψ).

Combining the estimates of A(-) and α2D2
R- completes the proof. ⊓3

8. Nonlinear Stability

In this section, we complete the estimates of the remaining terms R3 in Corollary 6.3
and in (6.11),(6.14),(6.15). We will prove the following for the energy E3 in (6.3) and
E(ξ,∞)

1
2
d
dt

E2
3 ≤ − 1

12
E2
3 + Cα1/2(E2

3 + α||ξ ||2C1) + Cα−3/2(E3 + α1/2||ξ ||C1)3 + Cα2E3,

(8.1)
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1
2
d
dt

E(ξ,∞)2 ≤ −E(ξ,∞)2 + C ||ξ ||C1(α1/2E3 + α||ξ ||C1)

+ C ||ξ ||C1(α−1E2
3 + α−1E3||ξ ||C1) + Cα2E(ξ,∞), (8.2)

for any initial perturbation+, η, ξ with E3(+, η, ξ) < +∞ and E(ξ,∞) < +∞, where

E(ξ,∞) ! (||ξ ||2∞ + ||φ2Dβξ ||2∞ + µ4||φ1DRξ ||2∞)1/2 (8.3)

for some absolute constantsµ4. E(ξ,∞) is equivalent to ||ξ ||C1 (6.5) once we determine
the absolute constants µ4.

The major step is the linear stability that gives the damping term (− 1
12 +Cα)E3

2 and
(−1+Cα)E(ξ,∞)2.We have already established the linear stability in Corollary 6.3 and
estimates (6.11), (6.14), (6.15). The remaining termsR3 in Corollary 6.3 and in (6.11),
(6.14), (6.15) contribute other terms in (8.1)–(8.2). We will further construct an energy
E2(+, η, ξ) ! αE(ξ,∞)2 +E2

3(+, η, ξ) and these remaining terms are relatively small
at the threshold E = O(α2). Then we can close the nonlinear estimate.

We will first derive several formulas for later use in Sect. 8.1. Then we estimate
the remaining terms mentioned above. In Sects. 8.2 and 8.3, we will apply the product
rules obtained in Sect. 7.2 to estimate the transport terms and nonlinear terms and then
complete the estimate (8.1). We will derive the C1 estimate (8.2) in Sect. 8.5 and prove
finite time blowup in Sect. 8.6.We remark that estimates similar to the C1 estimates (8.2)
are not required in [11] since there is no swirl.

Notations Throughout this section, χ is the radial cutoff function in Lemma A.4. We
use -∗, -̄∗ to denote the lower order terms in -, -̄, i.e.

-∗ ! - − sin(2β)
πα

L12(+), -̄∗ ! -̄ − sin(2β)
πα

L12(+̄). (8.4)

-∗ and - enjoys the elliptic estimate in Proposition 7.1 and -̄, -̄∗ satisfy Proposi-
tion 7.8.

8.1. Formulas of the velocity and related terms. In this subsection, we derive the for-
mulas of the velocity in terms of the stream function in the (R,β) coordinates to be
used later and then collect the remaining terms to be estimated in the nonlinear stability
analysis.

Denote

u ! U (-), v ! V (-), ux ! U1(-), uy ! U2(-), vx ! V1(-), vy ! V2(-).

(8.5)

The formula ofU, V in terms of- are given in (2.10).We also collect them below. Using
(2.9)–(2.10), DR = R∂R, r∂r = αDR and the incompressible condition ux + vy = 0 ,
we compute
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U (-) = −2r sin β- − αr sin βDR- − r cosβ∂β-,

V (-) = 2r cosβ- + αr cosβDR- − r sin β∂β-,

U1(-) = −1
2
α2 sin(2β)D2

R- − α

2
sin(2β)DR- − cos(2β)∂β-

− α cos(2β)∂βDR- +
sin(2β)

2
∂2β-,

U2(-) = α(−1 − 2 sin2 β)DR- − αDRDβ- − Dβ- − 2-

− α2 sin2(β)D2
R- − cos2(β)∂2β-,

V1(-) = α(1 + 2 cos2 β)DR- − αDRDβ- − Dβ- + 2-

+ α2 cos2(β)D2
R- + sin2(β)∂2β-,

V2(-) = −U1(-).

(8.6)

Recall - = sin(2β)
πα L12(+) + -∗. For the terms not involving the R-derivative,

e.g. -, ∂β-, we compute the contributions from the leading order part of -, i.e.
sin(2β)

πα L12(+), and -∗ separately,

U (-) = −2r cos(β)
πα

L12(+) − 2r sin(β)-∗ − αr sin βDR- − r cosβ∂β-∗ !

− 2r cos(β)
πα

L12(+) +U (-,-∗),

V (-) = 2r sin(β)
πα

L12(+) + 2r cosβ-∗ + αr cosβDR-

− r sin β∂β-∗ ! 2r sin(β)
πα

L12(+) + V (-,-∗),

U1(-) = − 2
πα

L12(+) − α2

2
sin(2β)D2

R- − α

2
sin(2β)DR- − cos(2β)∂β-∗

− α cos(2β)∂βDR-

+
sin(2β)

2
∂2β-∗ ! − 2

πα
L12(+) +U1(-,-∗),

V2(-) = −U1(-) = 2
πα

L12(+) −U1(-,-∗).

(8.7)

The first term in the formulas of U, V,U1, V2 is the leading order term. Observe that

−Dβ sin(2β) − 2 sin(2β) − cos2(β)∂2β sin(2β) = 0,

−Dβ sin(2β) + 2 sin(2β) + sin2(β)∂2β sin(2β) = 0.

For the terms not involving the R-derivative in U2(-), V1(-) (8.6), the contributions
from sin(2β)L12(+) cancel each other. Hence, we have

U2(-) = α(−1 − 2 sin2 β)DR- − αDRDβ- − Dβ-∗ − 2-∗
− α2 sin2(β)D2

R- − cos2(β)∂2β-∗,

V1(-) = α(1 + 2 cos2 β)DR- − αDRDβ- − Dβ-∗ + 2-∗
+ α2 cos2(β)D2

R- + sin2(β)∂2β-∗.

(8.8)
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We decompose U, V in (8.7)–(8.8) so that we can apply the elliptic estimate in Propo-
sitions 7.3, 7.8 to U (-,-∗), V (-,-∗), U1(-,-∗), V2(-,-∗),U2(-), V1(-).

Recall the formula of u · ∇ in (2.12)

u · ∇ = −(αR∂β-)∂R + (2- + αR∂R-)∂β .

Since - = sin(2β)
πα L12(+) + -∗, Dβ = sin(2β)∂β , we have

u · ∇ = (−2 cos(2β)
π

L12(+) − α∂β-∗)DR + (
2

πα
L12(+) +

2-∗ + αDR-

sin(2β)
)Dβ

! 2
πα

L12(+)Dβ + T (+),

T (+) ! −2 cos(2β)
π

L12(+)DR − α∂β-∗DR +
2-∗ + αDR-

sin(2β)
Dβ .

(8.9)

Using (4.9), we have 2
πα L12(+̄) = 3

1+R and

ū · ∇ = 3
1 + R

Dβ + T (+̄).

Recall the formulations (5.5)–(5.7) and their equivalence (5.12).We use the notations
(8.5) to rewrite ux , uy and so on, and the above computations to expand the remaining
termsR in (5.5)–(5.7).R consists of three parts: the lower order terms in the linearized
equation (denote as P), the error term F̄ (4.10) and the nonlinear term N (5.2). The
formula of P is given below

R+ = P+ + F̄+ + N+, Rη = Pη + F̄η + Nη, Rξ = Pξ + F̄ξ + Nξ ,

P+ = (−3αDR − T (+̄))+ + (αcωDR − (u · ∇))+̄,

Pη = (−3αDR − T (+̄))η + (αcωDR − (u · ∇))η̄ − (U1(-̄) +
3

1 + R
)η

− (U1(-) +
2

πα
L12(+))η̄ − (V1(-̄)ξ + V1(-)ξ̄),

Pξ = (−3αDR − T (+̄))ξ + (αcωDR − (u · ∇))ξ̄ + (−V2(-̄) +
3

1 + R
)ξ

+ (−V2(-) +
2

πα
L12(+))ξ̄ − (U2(-)η̄ +U2(-̄)η).

(8.10)

We remark that P is the difference between the linear part of (5.1) and (5.5)–(5.7).
Recall c̄ω = −1, c̄l = 1

α + 3 and +̄, η̄ in (4.8). Notice that cl = 1
α ,+∗ =

3α
c

R
(1+R)2 , η∗ = 6α

c
R

(1+R)3 ,0 = cos(β)α is a solution of (3.2) and +̄, η̄ satisfy

+̄ = +∗0(β), η̄ = η∗0(β), c
α

∫ ∞
R

+∗
s ds = 3

1+R . Hence, we have

DR+̄ = c̄ω+̄ + η̄, DR η̄ = 2c̄ω+̄ +
3

1 + R
η̄.
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Hence, we can simplify F̄+, F̄η in (4.10) as

F̄+ = (−3αDR − ū · ∇)+̄, F̄η = (− 3
1 + R

−U1(-̄))η̄ − V1(-̄)ξ̄ + (−3αDR − ū · ∇)η̄,

(8.11)

where we have used the notations in (8.5) for ūx , ū y, v̄x , v̄y .
Recall the definition of the H3,H3(ψ) inner product in (6.19) and the remaining

terms R3 in (6.3),(6.20). See also the full expression of the weighted H3 energy E3
(6.16) related to R3 Clearly, we have

R3 = ⟨R+,+ϕ0⟩ + ⟨Rη, ηψ0⟩ +
81
4πc

L12(+)(0)⟨R+, sin(2β)R−1⟩ + ⟨R+,+⟩H3

+⟨Rη, η⟩H3 + ⟨Rξ , ξ ⟩H3(ψ). (8.12)

We remark that ⟨·, ·⟩ in the first three terms is the L2 inner product defined in (1.4). We
assume that +, η ∈ H3,+ ∈ L2(ϕ), η ∈ L2(ψ), ξ ∈ H3(ψ), ξ ∈ C1. We will choose
initial perturbations+, η, ξ in these classes. In Sect. 8.2, we estimate the transport terms
in the last three terms in R3. In Sect. 8.3, we estimate the nonlinear terms in the last
three terms inR3. In Sect. 8.4, we estimate the first three terms inR3.

8.2. Analysis of the transport terms in P, N , F. In this subsection, we estimate the
transport terms in P , N and F in H3 or H3(ψ) norm. Our main tools in this and the
next few subsections are the product rules, the elliptic estimates obtained in Sect. 7 and
Lemma A.4 on L12(+). The reader should pay attention to the subtle cancellation near
R = 0 in the estimates in Sects. 8.2.3, 8.2.4.

8.2.1. Transport terms I : (−3αDR − T (+̄))g in P We estimate

I1 = |⟨(−3αDR − T (+̄))+,+⟩H3 |, I2 = |⟨(−3αDR − T (+̄))η, η⟩H3 |,
I3 = |⟨(−3αDR − T (+̄))ξ, ξ ⟩H3(ψ)|.

Recall T (+̄) in (8.9)

3αDR + T (+̄) = 3αDR − 2 cos(2β)
π

L12(+̄)DR − α∂β-̄∗DR +
1

sin(2β)
(2-̄∗ + αDR-̄)Dβ .

Applying Proposition 7.8 to estimate the above coefficients, then Proposition 7.13 to the
Dβ transport terms and Proposition 7.14 to the DR transport terms yield

I1 " α1/2||+||2H3, I2 " α1/2||η||2H3, I3 " α1/2||ξ ||2H3(ψ)
.
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8.2.2. Transport term I I : −αcl R∂Rg − (u ·∇)g in N (5.2) We are going to estimate

|⟨(−αcl DR − (u · ∇))+,+⟩H2 |, |⟨(−αcl DR − (u · ∇))η, η⟩H2 |,
|⟨(−αcl DR − (u · ∇))ξ, ξ ⟩H2(ψ)|.

Recall αcl = − 2(1−α)
πα L12(+)(0) in (4.11) and the computation about u · ∇ in (8.9)

(−αcl DR − (u · ∇)) = (
2(1 − α)

πα
L12(+)(0) +

2 cos(2β)
π

L12(+) + α∂β-∗)DR

− (
2

πα
L12(+) +

2-∗
sin(2β)

+
αDR-

sin(2β)
)Dβ .

For the first two DR transport terms, we apply Proposition 7.14 and Lemma A.4 to
estimate ||Dk

RL12(+)||L∞ for k ≤ 3. For the third, fourth (( 2
πα L12(+))Dβ ) and fifth

( 2-∗
sin(2β) )Dβ ) transport terms, we apply Proposition 7.13, Proposition 7.3 to ∂β-∗, -∗

sin(2β)
and (A.10) in LemmaA.4 to L12(+). For the last transport term,we use Proposition 7.15.
Hence, we derive

|I1| " α−3/2||+||3H3, |I2| " α−3/2||+||H3 ||η||2H3,

|I3| " α−3/2||+||H3(||ξ ||H3(ψ) + α1/2||ξ ||C1)2.

The largest term is 2
πα L12(+)Dβ , which leads to α−3/2 in the upper bound.

8.2.3. Transport term III : (αcωDR − (u · ∇))ḡ in P Next, we estimate

||αcωDR − (u · ∇))+̄||H3, ||αcωDR − (u · ∇))η̄||H3, ||αcωDR − (u · ∇))ξ̄ ||H3(ψ).

Recall that H3 contains a singular weight (1+R)4

R4 . We use the explicit form 0(β) =
cos(β)α and a careful calculation to cancel the singular weight R−4 near R = 0.Using
the formula for cω in (4.11) and the computation in (8.9), we have

(αcωDR − (u · ∇))g =
(

− 2
π
L12(+)(0)DR +

2 cos(2β)
π

L12(+)DR − 2
πα

L12(+)Dβ

)
g

+ (α∂β-∗DR − (sin(2β))−1(2-∗ + αDR-)Dβ )g ! I (g) + I I (g).

(8.13)

Denote Q = L12(+) − χL12(+)(0). We use L12(+) = Q + χL12(+)(0) to rewrite
I (g)

I = 2
π
L12(+)(0)(−DRg + cos(2β)χDRg − 1

α
χDβg) +

2
π
Q(cos(2β)DRg

− 1
α
Dβg) ! I1 + I2. (8.14)

Using (5.22) and the formula of g = +̄, η̄ in (4.8), we have

Dβ0 = −2α sin2(β)0, Dβg = −2α sin2(β)g.
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It follows that

I1 = 2
π
L12(+)(0)(−DRg + cos(2β)χDRg + 2 sin2(β)χg)

= 2
π
L12(+)(0)(−(1 − χ)DRg + 2 sin2(β)χ(−DRg + g)). (8.15)

Since the smooth cutoff function χ satisfies 1 − χ(R) = 0 for R ≤ 1. I1 vanishes
quadratically near R = 0. For (g,H3(ρ)) = (+̄,H3), (η̄,H3) or (ξ̄ ,H3(ψ)), applying
Lemma A.6 to g = +̄, η̄, (A.26) in Lemma A.8 to g = ξ̄ and using a direct calculation
yield

||I1(g)||H3(ρ) " |L12(+)(0)|(||(1 − χ)g||H3(ρ) + ||DRg − g||H3(ρ))

" α|L12(+)(0)| " α||+||H3,

where we have used (A.9) in Lemma A.4 in the last inequality.
Recall Q = L12(+) − χL12(+)(0) and I2, I I (g) in (8.13), (8.14). For g = +̄, η̄,

applying the product estimate in Proposition 7.12, we get

||I2(g||H3 " α−1/2||Q||H3(||DRg||W5,∞ + α−1||Dβg||W5,∞) " α1/2||+||H3,

||I I (g)||H3 " α−1/2||+||H3(α||DRg||W5,∞ + ||Dβg||W5,∞) " α3/2||+||H3,

where we have applied Proposition 7.3 to -, Lemma A.4 to Q and Proposition A.7 to
g = +̄, η̄. For g = ξ̄ , applying Proposition 7.12 yields 4

||I2(ξ̄)||H3(ψ) " α−1/2||Q||H3(α1/2||DR ξ̄ ||C1 + ||DR ξ̄ ||H3(ψ)

+ α1/2||Dβ ξ̄ ||C1 + ||Dβ ξ̄ ||H3(ψ)) " α1/2||+||H3,

||I I (ξ̄)||H3(ψ) " α−1/2||+||H3(α3/2||DR ξ̄ ||WC1 + α||DR ξ̄ ||H3(ψ)

+ α1/2||Dβ ξ̄ ||C1 + ||Dβ ξ̄ ||H3(ψ)) " α1/2||+||H3,

where we have used Lemma A.8 to estimate the norm of ξ̄ . Hence, we prove

||αcωDR − (u · ∇))+̄||H3 + ||αcωDR − (u · ∇))η̄||H3 + ||αcωDR − (u · ∇))ξ̄ ||H3(ψ)

" α1/2||+||H3 .

8.2.4. Transport term I V : (−3αDR − ū · ∇)g in F̄+, F̄η, F̄ξ We will prove for
(g,H3(ρ)) = (+̄,H3), (η̄,H3), (ξ̄ ,H3(ψ))

||(−3αDR − ū · ∇)g||H3(ρ) " α2. (8.16)

From (4.9), we have 2
π L12(+)(0) = 3α. Hence, we can apply the decomposition in

(8.13)–(8.14) to (−3αDR − ū · ∇)g to get

(−3αDR − ū · ∇)g = I1(g) + I2(g) + I I (g), I I (g) = (α∂β-̄∗DR

− (sin(2β))−1(2-̄∗ + αDR-̄)Dβ)g

I1(g) =
2
π
L12(+̄)(0)(−DRg + cos(2β)χDRg − 1

α
χDβg),

I2(g) =
2
π
Q̄(cos(2β)DRg − 1

α
Dβg),

(8.17)

4 The estimate of I2(ξ̄), I I (ξ̄) can be improved to α3/2||+||H3 but we do not need this extra smallness
here.
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where Q̄ = L12(+̄) − χL12(+̄)(0). Notice that the computation (8.15) still holds for
g = +̄, η̄

I1(g) =
2
π
L12(+̄)(0)(−(1 − χ)DRg + 2 sin2(β)χ(−DRg + g).

Recall L12(+̄) = 3απ
2(1+R) . Notice that (1 − χ)DRg, DRg − g, QDRg, QDβg vanish

quadratically near R = 0. Applying Lemma A.6 to g = +̄, η̄ and using a direct calcu-
lation yield

||I1(g)||H3 " α|L12(+̄)(0)| " α2, ||I2(g)||H3 " α2.

Since ξ̄ already vanishes quadratically near R = 0, using Lemma A.8 for ξ̄ and a direct
calculation give

||I1(ξ̄)||H3(ψ) " α|L12(+̄)(0)| " α2, ||I2(ξ̄)||H3(ψ) " α2.

For I I (g) with g = +̄, η̄, we apply Propositions 7.9, 7.7 and the triangle inequality
to yield

||I I (g)||H3 "|| (1 + R)3

R2 I I (g)||W3,∞ " ||1 + R
R

α∂β-̄∗||W5,∞ || (1 + R)2

R
DRg||W3,∞

+ ||1 + R
R

(sin(2β))−1(2-̄∗ + αDR-̄)||W5,∞ || (1 + R)2

R
Dβg||W3,∞ " α2,

where we have applied Proposition 7.8 to -̄, -̄∗ and Proposition A.7 to g = +̄, η̄.
For I I (ξ̄), we use Propositions 7.12, 7.8 and Lemma A.8 to get

||I I (ξ̄)||H3(ψ) "α−1/2||∂β-̄∗||W5,∞(α3/2||DR ξ̄ ||WC1 + α||DR ξ̄ ||H3(ψ))

+ α−1/2||(sin(2β))−1(2-̄∗ + αDR-̄)||W5,∞(α1/2||Dβ ξ̄ ||C1

+ ||Dβ ξ̄ ||H3(ψ)) " α5/2.

8.3. Nonlinear forcing terms in P, N , F. The estimates in this subsection are obtained
by applying the product estimates in Sect. 7.2 directly. The reader should pay attention
to the cancellation near R = 0 in the estimates in Sect. 8.3.2.

8.3.1. Nonlinear forcing term in Pη, Pξ We are going to estimate

I1 = || − (U1(-̄) +
3

1 + R
)η − (U1(-) +

2
πα

L12(+))η̄||H3,

I2 = ||V1(-̄)ξ + V1(-)ξ̄ ||H3,

I I1 = ||(−V2(-̄) +
3

1 + R
)ξ + (−V2(-) +

2
πα

L12(+))ξ̄ ||H3(ψ),

I I2 = ||U2(-)η̄ +U2(-̄)η||H3(ψ).
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From (4.9), 2
πα L12(+̄) = 3

1+R . Recall the formula ofUi , Vj in (8.7)–(8.8). Applying
Propositions 7.8, 7.3, we obtain

||U1(-̄) +
2

πα
L12(+̄)||W5,∞ = || − V2(-̄) +

2
πα

L12(+̄)||W5,∞ " α, ||U2(-̄)||W5,∞ " α,

||U1(-) +
2

πα
L12(+)||H3 = || − V2(-) +

2
πα

L12(+)||W5,∞ " ||+||H3

||U2(-)||H3 " ||+||H3 .

(8.18)

Applying Proposition 7.12, Lemma A.7 to η̄ and Lemma A.8 to ξ̄ , we yield

I1 " α1/2||η||H3 + α−1/2||+||H3 ||η̄||W5,∞ " α1/2(||η||H3 + ||+||H3),

I I1 " α1/2(α1/2||ξ ||C1 + ||ξ ||H3(ψ)) + α−1/2||+||H3(α1/2||ξ̄ ||C1 + ||ξ̄ ||H3(ψ))

" α1/2(α1/2||ξ ||C1 + ||ξ ||H3(ψ)) + α3/2||+||H3,

where we have used Lemma A.8 in the last inequality. Using Lemma 6.4 and Proposi-
tion 7.12, we derive

I I2 " ||U2(-)η̄ +U2(-̄)η||H3 " α−1/2(||+||H3 ||η̄||W5,∞

+||U2(-̄)||W5,∞ ||η||H3) " α1/2(||+||H3 + ||η||H3).

For I2, we use Proposition 7.16 and Lemma A.8 to obtain

I2 " α1/2||ξ ||H3(ψ) + α−1/2||+||H3(α1/2||ξ̄ ||C1 + ||ξ̄ ||H3(ψ)) " α1/2||ξ ||H3(ψ)

+α3/2||+||H3 .

8.3.2. Nonlinear forcing term in N (5.2): cω+, (2cω − U1(-))η − V1(-)ξ, (2cω −
V2(-))ξ −U2(-)η Recall the formula ofU1, V2 in (8.7). We use the following decom-
position

−V2(-) = U1(-) = (U1(-) +
2

πα
L12(+)) − 2

πα
L12(+) = I + I I.

Applying Proposition 7.3 to I and Lemma A.4 to I I , we obtain

||V2(-)||X = ||U1(-)||X " ||I ||H3 + α−1||L12(+)||X " α−1||+||H3 . (8.19)

Applying Propositions 7.12, 7.3, we get

||U1(-)η||H3 " α−3/2||+||H3 ||η||H3, ||(V2(-)ξ ||H3(ψ) " α−3/2||+||H3(||ξ ||H3(ψ)

+α1/2||ξ ||C1).

Applying Proposition 7.16 to V1ξ , Proposition 7.12 and Lemma 6.4 to U2η yields

|| − V1(-)ξ ||H3 " α−1/2||+||H3(||ξ ||H3(ψ) + α1/2||ξ ||C1),

|| −U2(-)η||H3(ψ) " ||U2(-)η||H3 " α−1/2||+||H3 ||η||H3 .

Finally, from (4.11), (A.9), the scalar cω satisfies |cω| " α−1||+||H3 . Hence, we obtain

||cω+||H3 " α−1||+||2H3, ||cωη||H3 " α−1||+||H3 ||η||H3, ||cωξ ||H3(ψ)

" α−1||+||H3 ||ξ ||H3(ψ).
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8.3.3. Nonlinear forcing terms in F Recall that we have estimated the transport term
(−3αDR − ū∇)g in F+, Fη, Fξ in (8.16). The remaining terms in F̄η and F̄ξ (see (4.10),
(8.11)) are

I = (− 3
1 + R

−U1(-̄))η̄ − V1(-̄)ξ̄ , I I = (2c̄ω − V2(-̄))ξ̄ −U2(-̄)η̄ − DR ξ̄ ,

(8.20)

where we have used −αc̄l DR = −DR − 3αDR since c̄l = 1
α + 3 (4.8). From (4.9), we

have 2
πα L12(+̄) = 3

1+R . Using Ui , Vj in (8.7)–(8.8), η̄ (4.8) and Proposition 7.8, we
have

||1 + R
R

(U1(-̄) +
3

1 + R
)||W5,∞ " α, ||1 + R

R
U2(-̄)||W5,∞ " α, || (1 + R)2

R
η̄||W5,∞ " α.

Applying the embedding in Proposition 7.9 and then the algebra property of W3,∞ in
Proposition 7.7 to η̄ and the above estimates, we get

||(− 3
1 + R

−U1(-̄))η̄||H3 " α2, ||U2(-̄)η̄||H3(ψ) " ||U2(-̄)η̄||H3 " α2,

where we have used (6.18) in the second inequality. Applying the product estimates in
Propositions 7.12, 7.16, Proposition 7.8 to V2(-̄) and Lemma A.8 to ξ̄ , we yield

||(V2(-̄) − 3
1 + R

)ξ̄ ||H3(ψ) " α−1/2 · α(α1/2||ξ̄ ||C1 + ||ξ̄ ||H3(ψ)) " α5/2,

||V1(-̄)ξ̄ ||H3 " α1/2||ξ̄ ||H3(ψ) " α5/2.

For the remaining part in I I , we simply use c̄ω = −1 and Lemma A.8 to get

||2c̄ωξ̄ − DR ξ̄ ||H3(ψ) + || 3
1 + R

ξ̄ ||H3(ψ) " α2.

Therefore, combining the formula of F̄ in (4.10), (8.11), the estimate (8.16) and the
above estimates of I, I I , we prove

||F̄+||H3 " α2, ||F̄η||H3 " α2, ||F̄ξ ||H3(ψ) " α2. (8.21)

8.4. Analysis of the remaining terms in R3. It remains to estimate

⟨R+,+ϕ0⟩, ⟨Rη, ηψ0⟩,
81
4πc

L12(+)(0)⟨R+, sin(2β)R−1⟩, (8.22)

inR3 (8.12). Recall the definition of ϕ0,ψ0 in Definition 5.32 and ϕ1 in Definition 5.2.
Note that ψ0(R,β) grows linearly for large R. Clearly, we have

ϕ0 " ϕ1, ψ0 = 9
32

R0(β)−1 +
3
16

(
(1 + R)3

R4 +
3
2
(1 + R)4

R3 − 3
2
R

)

0(β)−1 ! ψ0,1 + ψ0,2.

Since the weights ϕ0,ψ0,2, R−1 sin(2β) are much weaker than the weights ϕ1, the esti-
mates of

⟨R+,+ϕ0⟩, ⟨Rη, ηψ0,2⟩,
81
4πc

L12(+)(0)⟨R+, sin(2β)R−1⟩
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follows from the same argument as that in the last two sections and a similar bound can
be derived. It remains to estimate ⟨Rη, ηR0(β)−1⟩. Compared to ϕ1, R0(β)−1 is much
less singular in R and β. We focus on how to control the growing factor R. We use the
decay estimate of η̄ in Lemma A.6 and ξ̄ in Lemma A.8. In particular, for i + j ≤ 7 we
have

|Di
RD

j
βη̄| " α(1 + R)−2, |Di

RD
j
β ξ̄ | " |ξ̄ | " α2(1 + R)−2 sin(β)−2α. (8.23)

Recall the decomposition of Rη in (8.10) and the error F̄η defined in (8.11). We
use argument similar to that in the last subsection to estimate ||F̄η(R0(β)−1)1/2||2. A
typical term in F̄η can be estimated as follows

∫ ∞

0

∫ π/2

0
V1(-̄)2ξ̄2R0(β)−1dRdβ

" α2
∫ ∞

0

∫ π/2

0
α4(1 + R)−4 sin(β)−4αR0(β)−1dRdβ " α6 " α4,

where we have applied Proposition 7.8 to estimate V1(-̄) and used α < 1
8 (we will

choose α sufficiently small). Similarly, we have ||F̄η(R0(β)−1)1/2||22 " α4. Hence,
using the Cauchy–Schwarz inequality, we get

|⟨F̄η, ηR0(β)−1⟩| " ||F̄η(R0(β)−1)1/2||2||η(R0(β)−1)1/2||2 " α2||ηψ
1/2
0 ||2 " α2E3,

where we have used (6.20) to derive the last inequality.
Recall Pη in (8.10), Nη in (5.2) and the formula of u ·∇ in (8.9). We use integration

by parts and then a L∞ estimate to estimate the transport terms in Pη, Nη. A typical
term in these transport terms can be estimated as follows

|⟨ 2
πα

L12(+)Dβη, ηR0−1⟩| = |⟨ 2
πα

L12(+)∂β(sin(2β)0−1), η2R⟩|

" α−1||L12(+)||∞||η(R0−1)1/2||22
" α−1||+ϕ

1/2
1 ||L2 ||ηψ

1/2
0 ||22 " α−1E3

3 ,

wherewehaveused0(β) = cos(β)α, | sin(2β)∂β0(β)−1| " 0(β)−1 in thefirst inequal-
ity, Lemma A.4 in the second inequality and (6.20) in the last inequality.

For the nonlinear terms related to η, i.e. (2cω −U1(-))η in Nη (5.2) and −(U1(-)+
3

1+R )η in Pη (8.10), we also apply a L∞ estimate. For example, we have

|⟨(2cω −U1(-))η, ηR0(β)−1⟩| " ||2cω −U1(-)||L∞ ||ηψ
1/2
0 ||22

" α−1||+||H3 ||ηψ
1/2
0 ||22 " α−1E3

3 ,

where we have used (8.19) and |cω| = 2
πα |L12(+)(0)| " α−1||+||H3 (see Lemma A.4)

in the last inequality.
For the terms related to η̄, ξ̄ in Pη (8.10), i.e. (U1(-)+ 2

πα L12(+))η̄, V1(-)ξ̄), they
can be estimated easily by using the fast decay of ξ̄ , η̄ (8.23).
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Finally, for the terms related to ξ , i.e. V1(-)ξ in Nη (5.2) and V1(-̄)ξ in (8.10), we
get

|⟨V1(-̄)ξ, ηR0−1⟩| + |⟨V1(-)ξ, ηR0−1⟩|
" ||η, R1/20−1/2||L2 ||ξ R1/2 sin(2β)1/4||L∞(||V1(-̄) sin(2β)−1/40−1/2||L2

+ ||V1(-) sin(2β)−1/40−1/2||L2)

" ||ηψ
1/2
0 ||L2 ||ξ ||H3(ψ)(||V1(-̄) sin(2β)−σ/2||L2 + ||V1(-) sin(2β)−σ/2||L2)

" E2
3(||+̄ sin(2β)−σ/2||L2 + ||+ sin(2β)−σ/2||L2) " E2

3(α + E3),

where we have applied Lemma 7.10 in the second inequality, the weighted L2 (with
weight sin(2β)−σ , σ = 99

100 ) version of Proposition 7.3 in the third inequality and a
direct computation using (4.8) in the last inequality.

Combining the estimates of F̄η, Pη, Nη, we have

|⟨Rη, ηR0−1⟩| " α−3/2E3
3 + α1/2E2

3 + α2E3.

8.4.1. Completing the H3 and H3(ψ) estimates From (6.21), we can use E3 to bound
||+||H3 , ||η||H3, ||ξ ||H3(ψ). Combining the estimates in the last few subsections, we
prove

|⟨R+,+⟩H3 | , |⟨Rη, η⟩H3 | , |⟨Rξ , ξ ⟩H3(ψ)|
" α1/2(E2

3 + α||ξ ||2C1) + α−3/2(E3 + α1/2||ξ ||C1)3 + α2E3,

where E3 is defined in (6.3). Combining Corollary 6.3 and the above estimates, we prove
(8.1).

8.5. Remaining terms in the C1 estimate of ξ . Recall that we perform L∞ estimates of
ξ and its derivatives in Sect. 6.3. In this subsection, we complete the estimate of the
remaining terms in these estimates and derive (8.2). We group together the remaining
terms in (6.11), (6.14), (6.15), which remain to be estimated. They can be bounded by

||ξ ||C1(||91||C1 + ||92||C1 + ||F̄ξ ||C1 + ||No||C1), ||ξ ||C1 ||[φ1DR,A2]ξ ||∞,

||ξ ||C1 ||[φ2Dβ ,A2]ξ ||∞, |αcl |||φ1DRξ ||2L∞, ||φ2Dβξ ||∞||A1(φ2 − 1) · Dβξ ||L∞ .

8.5.1. Analysis of 91,92, No Recall 91,92, No in (6.7), (6.8),(6.10)

91 = (
3

1 + R
− V2(-̄))ξ, 92 = −V2(-)ξ̄ + cω(2ξ̄ − R∂R ξ̄)

+ (αcωR∂R − (u · ∇))ξ̄ − (U2(-)η̄ +U2(-̄)η),

No = (2cω − V2(-))ξ −U2(-)η,

where we have used V2(-) = vy,U2(-) = uy (8.5). Recall (4.9), (4.11), (8.4). We
have

2
πα

L12(+̄) = 3
1 + R

, cω = − 2
πα

L12(+)(0), -∗ = - − sin(2β)
πα

L12(+).
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Then we obtain V2(-̄) − 3
1+R = −U1(-̄, -̄∗) (see (8.7)) .

For the transport term (αcωDR − (u · ∇))ξ̄ , we use the decomposition (8.13)–
(8.14) with g = ξ̄ . Then each term in 91,92, No depends only on L12(+),-, η, ξ
and their approximate steady state, e.g. V2(-̄). To estimate the C1 norm of the product
in 91,92, No, using Proposition 7.6, we only need to estimate the C1 norm of each
single term.

For the terms depending on-,-∗, e.g.V2(-)− 2
πα L12(+) (see (8.7)–(8.8)),we apply

Proposition 7.3 and Lemma 7.11 to obtain the C1 estimate. For the terms depending on
-̄, -̄∗, we apply Propositions 7.8 and 7.6 to estimate the C1 norm.

For the terms depending on L12(+), we use (A.10) in Lemma A.4 to estimate the C1
norm.

The slightly difficult term is V2(-). Using the formula of V2(-) in (8.7), (8.8),
Propositions 7.3, and Lemmas 7.11, A.4, we get

||V2(-)||C1 " ||V2(-) − 2
πα

L12(+)||C1 +
2

πα
||L12(+)||C1 " (α−1/2 + α−1)||+||H3

" α−1||+||H3 .

(8.24)

Using (A.23)–(A.24) in Lemma A.8 and Lemma A.6, we have ||ξ̄ ||C1 + ||DR ξ̄ ||C1 "
α2, ||η̄||C1 " α. From (4.9), we know ||L12(+̄)||C1 " α. Therefore, we get

||91||C1 " α||ξ ||C1, ||92||C1 " α1/2||+||H3 + α1/2||η||H3,

||No||C1 " α−1||ξ ||C1 ||+||H3 + α−1||+||H3 ||η||H3 .

The largest term in 92 is given by (U2(-)η̄ +U2(-̄)η), which leads to the above upper
bound.

8.5.2. Analysis of F̄ξ Recall F̄ξ and ū · ∇ defined in (4.10) and (8.9)

F̄ξ = (2c̄ω − V2(-̄))ξ̄ −U2(-̄)η̄ − αc̄l R∂R ξ̄ − (ū · ∇)ξ̄ ,

ū · ∇ ξ̄ = (−2 cos(2β)
π

L12(+) − α∂β-∗)DR ξ̄ + (
2

πα
L12(+) +

2-∗ + αDR-

sin(2β)
)Dβ ξ̄ .

For ξ̄ terms, we use ||Di
RD

j
β ξ̄ ||C1 " α2, i + j ≤ 2 from (A.23)–(A.24) in Lemma A.8.

For other terms, we use ||η̄||C1 " α from Lemma A.6 and apply the strategy in the last
subsection to estimate the C1 norm . We get

||F̄ξ ||C1 " α2.

8.5.3. ||[φ2Dβ ,A2]ξ ||∞, ||[φ1DR,A2]ξ ||∞ Recall A2 defined in (6.12). Using (8.9),
we have

A2(ξ) =
2

πα
L12(+)Dβξ + (T (+̄) + T (+))ξ = 2

πα
L12(+)Dβξ

− 2
π
cos(2β)(L12(+) + L12(+̄))DRξ

− α(∂β-∗ + ∂β-̄∗)DRξ +
2-∗ + αDR- + 2-̄∗ + αDR-̄

sin(2β)
Dβξ

!(H1Dβ + H2DR + H3DR + H4Dβ)ξ .
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Recallφ1,φ2 defined in (6.4). For D = DR, Dβ andφ = φ1,φ2, a direct computation
yields

|φ−1Dφ| " 1. (8.25)

Let H D̃ be a term in the above formula ofA2 and (D,φ) = (DR,φ1) or (Dβ ,φ2). Using
(8.25) and the C1 norm defined in (6.5) to control the L∞ norm of φDH,φDξ, D̃ξ, H ,
we obtain

|[φD, H D̃]ξ | = |φDH · D̃ξ − H D̃φ · Dξ | ≤ ||H ||C1 ||ξ ||C1

+ ||H ||L∞ ||φ−1 D̃φ||L∞ ||φDξ ||L∞ " ||H ||C1 ||ξ ||C1 .

Applying the strategy in Sect. 8.5.1 to estimate the C1 norm of -, -̄, L12(+) terms,
we get

||H1||C1 " α−1||+||H3, ||H2||C1 " ||+||H3 + α, ||H3||C1 " α1/2||+||H3 + α2,

||H4||C1 " α−1/2||+||H3 + α.

The largest term is α−1L12(+) in H1, which is estimated by (A.10) in Lemma A.4 and
using DβL12(+) = 0.

Combining the above estimates, we conclude that

||[DR,A2]ξ ||∞, ||[Dβ ,A2]ξ ||∞ " ||ξ ||C1(α−1||+||H3 + α).

8.5.4. Analysis of |αcl |, ||A1(φ2 −1) ·Dβξ ||L∞ Using (4.11) and (A.9) in Lemma A.4,
we obtain

|αcl | ≤ Cα−1|L12(+)(0)| ≤ Cα−1||+||H3 .

Using the formulas of φ2,A1 in (6.4), (6.12), we get

|φ−1
2 A1(φ2 − 1)| = |φ−1

2 ((1 + 3α + αcl )DR +
3

1 + R
Dβ )(R sin(2β)α)−1/40|

≤ φ−1
2 (

1
40

(1 + 3α + αcl ) + Cα)(R sin(2β)α)−1/40 ≤ 1
40

(1 + 3α + Cα−1||+||H3) + Cα,

where we have used DR(R sin(2β)α)−1/40 = − 1
40 (R sin(2β)α)−1/40, |Dβ(R sin

(2β)α)−1/40| " α|(R sin(2β)α)−1/40| in the first inequality. Therefore, we get

||A1(φ2 − 1) · Dβξ ||L∞ ≤ (
1
40

+ Cα + Cα−1||+||H3)||φ2Dβξ ||L∞ .
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8.5.5. Completing the C1 estimates From (6.21), we can use E3 to further bound
||+||H3, ||η||H3, ||ξ ||H3(ψ). Plugging all the above estimates of the remaining terms
in (6.11), (6.14), (6.15), we prove

1
2
d
dt

||ξ ||2∞ ≤ − 2||ξ ||2∞ + C ||ξ ||C1(α1/2E3 + α||ξ ||C1 + α−1E2
3 + α−1E3||ξ ||C1)

+ Cα2||ξ ||∞,

1
2
d
dt

||φ2Dβξ ||2∞ ≤ − (2 − 1
40

)||φ2Dβξ ||2∞
+ C ||ξ ||C1(α1/2E3 + α||ξ ||C1 + α−1E2

3 + α−1E3||ξ ||C1)

+ Cα2||φ2Dβξ ||∞,

1
2
d
dt

||φ1DRξ ||2∞ ≤ − 2||φ1DRξ ||2∞ + 3||φ1DRξ ||∞(||φ2Dβξ ||∞ + ||ξ ||∞)

+ C ||ξ ||C1(α1/2E3 + α||ξ ||C1 + α−1E2
3 + α−1E3||ξ ||C1)

+ Cα2||φ1DRξ ||∞.

Hence, for some absolute constant µ4, e.g. µ4 = 1
10 , the energy defined in (8.3) satisfies

(8.2).

8.6. Finite time blowup with finite energy velocity field.

8.6.1. The bootstrap argument Now, we construct the energy

E(+, η, ξ) = (E3(+, η, ξ)2 + αE(ξ,∞)2)1/2. (8.26)

Adding the estimates (8.1) and α×(8.2), we have

1
2
d
dt

E2(+, η, ξ) ≤ − 1
12

E2 + Kα1/2E2 + Kα−3/2E3 + Kα2E, (8.27)

for some universal constant K , where we have used the fact that E(ξ,∞) is equivalent
to ||ξ ||C1 since µ4 is an absolute constant. We know that there exists a small absolute
constant α1 <

1
1000 and K∗, such that, for any α < α1 and E = K∗α2, we have

− 1
12

E2 + Kα1/2E2 + Kα−3/2E3 + Kα2E < 0. (8.28)

If E(+(·, 0), η(·, 0), ξ(·, 0)) < K∗α2, we have

E(+(t), η(t), ξ(t)) < K∗α2, (8.29)

for all time t > 0, where we have used the time-dependent normalization condition
(4.11) for cω(t), cl(t). Applying Lemma A.4 to L12(+)(0) and Lemma 7.11 to +, η, we
derive

|cω(t)| =
2

πα
|L12(+)(0)| < Cα−1||+||H3 ≤ Cα−1E ≤ K9α,

|cl(t)| = |1 − α

α

2
πα

L12(+)(0)| < Cα−2E ≤ K9,

||+||L∞ + ||η||L∞ < CE ≤ Cα2 ≤ K9αmin(||+̄||L∞ , ||η̄||L∞),

||ξ ||L∞ < Cα−1/2E ≤ K9α
3/2,
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where we have used ||+̄||L∞ , ||η̄||L∞ ≥ Cα according to (4.8) and Lemma A.1 in the
last inequality, and K9 > 0 is some absolute constant. We further take

α0 = min(α1,
3π
4K∗

,
K 2

∗
4K 2

10
,

1
16(K9 + 1)4

), (8.30)

where K10 is the constant defined inLemmaA.11. Forα < α0, using c̄ω = −1, c̄l = 1
α+3

and the formula of +̄, η̄ in (4.8), we further yield

− 3
2
< cω + c̄ω < −1

2
, cl + c̄l >

1
2α

+ 3,

||+ + +̄||L∞ ≍ ||+̄||L∞ ≍ α, ||η + η̄||L∞ ≍ ||η̄||L∞ ≍ α, ||ξ ||L∞ ≤ 1
2
α5/4.

(8.31)

8.6.2. Finite time blowup For Hölder initial data, the local well-posedness of the solu-
tions follows from the argument in [3] for the 2DBoussinesq equations. The Beale-Kato-
Majda type blowup criterion still applies to the Boussinesq equations in the specified
domain. The time integral of ||∇θ ||L∞ controls the breakdown of the solutions in the
2D Boussinesq equations [3]. We will control this quantity and show that there exists
T0 such that

∫ T0
0 ||∇θ(·, s)||∞ds = ∞ in the 2D Boussinesq equations. The solutions

remain in the same regularity class as that of the initial data before the blowup time. In
particular, the velocity field is in C1,α before the blowup time.

Let χ(·) : [0,∞) → [0, 1] be a smooth cutoff function, such that χ(R) = 1
for R ≤ 1 and χ(R) = 0 for R ≥ 2. We choose perturbation + = (χ(R/λ) −
1)+̄, θ(R,β) = (χ(R/λ)−1)θ̄ and η = θx , ξ = θy can be obtained accordingly, where
θ̄(x, y) is recovered from θ̄x by integration (A.20). Obviously, +, η, ξ ≡ 0 for R ≤ λ.
Using Lemma A.11 for +, η, ξ and α < α0 (see (8.30)), we obtain that these initial
perturbations satisfy E(+(0), η(0), ξ(0)) < 2K10α

5/2 ≤ K∗α2 for sufficiently large
λ. We remark that the initial perturbation is of size Cα5/2 even for extremely large λ
because ξ̄ does not decay in the C1 norm for large R. It is important to add a small weight
α in E(ξ,∞) when we define the final energy in (8.26).

In particular, the initial data +̄++ = χ(R/λ)+̄ (recall+(R,β) = ω(x, y)), θ̄ +θ =
χ(R/λ)θ̄ have compact support and thus we have finite energy ||u + ū||L2 < +∞, ||θ +
θ̄ ||L2 < +∞. cω(t), cl(t) are determined by (4.11).

Denote byωphy, θphy the corresponding solutions in the original Boussinesq equation
(2.1)–(2.2), which are related to the rescaled variables ω, θ via the rescaling formula
(4.1), (4.3)

ωphy(x, t (τ )) = Cω(τ )
−1(ω + ω̄)(Cl(τ )

−1x, τ ),

θphy(x, t (τ )) = Cθ (τ )
−1(θ + θ̄)(Cl(τ )

−1x, τ ),

Cω(τ ) = exp
(∫ τ

0
cω(s) + c̄ωds

)
, Cl(τ ) = exp

(
−

∫ τ

0
cl(s) + c̄lds

)
,

t (τ ) =
∫ τ

0
Cω(τ )dτ.

(8.32)

We remark that the scaling parameters in (4.3) become (cω + c̄ω, cl + c̄l). Denote

M(τ ) !
∫ t (τ )

0
||∇θphy(s)||L∞ds.
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Using a change of variable s = t (p) and ∂x (θ + θ̄) = (η + η̄), ∂y(θ + θ̄) = (ξ + ξ̄),
we obtain

M(τ ) =
∫ τ

0
||∇θphy(t (p))||L∞Cω(p)dp =

∫ τ

0
Cω(p)−1(||(η + η̄)(p)||L∞

+||(ξ + ξ̄)(p)||L∞)dp,

where we have used the formula (8.32) and C−1
θ (p)C−1

l (p) = Cω(p)−2 according to
(4.3),(4.4) in the second equality. Using the bootstrap estimates (8.31) and Lemma A.8
about ξ̄ , we obtain

M(τ ) ≍ α

∫ τ

0
Cω(p)−1dp.

Using (8.31) and (8.32), we have e−3p/2 < Cω(p) < e−p/2. Therefore, we obtain
M(τ ) < +∞ ∀τ < +∞ and

∫ ∞

0
M(τ )dτ ≥ Cα

∫ ∞

0

∫ τ

0
ep/2dpdτ = ∞, t (∞) ≤

∫ ∞

0
e−p/2dp < +∞.

Denote T ∗ = t (∞). Applying the BKM type blowup criterion in [3], we obtain that
the solutions remain in the same regularity class as that of the initial data before T ∗
and develop a finite time singularity at T ∗. Similarly, by rescaling the time variable, we
prove that ||ωphy ||L∞ and ||∇θphy ||L∞ blowup at T ∗.

Remark 8.1. The crucial nonlinear estimate (8.27) and a priori estimate (8.29), i.e. the
bootstrap estimate for small perturbation, offer strong control on the perturbation and
the exact solution before the blowup time. In particular, it allows us to truncate the far
field of the approximate steady state, which leads to a small perturbation only, to obtain
initial data with finite energy.

8.6.3. Convergence to the self-similar solution Taking the time derivative of (5.1), using
the a priori estimate (8.29) for the small perturbation and analysis similar to that in
the previous section, we can further perform H2 estimates on +t , ηt , H2(ψ) and L∞
estimates on ξt . In particular, following the argument in our previous joint work with
Huang [7],we can further obtain that there exists an exact self-similar solution+∞, η∞ ∈
H3, ξ∞ ∈ H3(ψ) ∩ L∞, such that the solution of the dynamic rescaling equation with
initial data constructed in Sect. 8.6.2 converges to (+∞, η∞, ξ∞) exponentially fast. The
convergence is in theH2 norm for the variables +, η and bothH2(ψ) and L∞ norm for
the variable ξ .

Using the a-priori estimate (8.29) andLemmaA.8,we have ||ξ̄+ξ(t)||C1 ≤ Cα3/2 for
all time in the dynamic rescaling equation. Using Lemma A.13, we know that the space
C1 (theweightedC1 space) can be embedded continuously into the standardHölder space
Cα/40. Therefore, the C1 estimate of ξ̄ + ξ implies that ξ̄ + ξ(t) ∈ Cα/40 with uniform
Hölder norm. Since ξ̄ + ξ(t) converges to ξ∞ in L∞, we have ξ∞ ∈ Cα/40. Finally,
using the same argument, the fact that +∞, η∞ ∈ H3 and the embedding H3 ↪→ C1 in
Lemma 7.11, we conclude +∞, η∞, ξ∞ ∈ Cα/40.

Notice that cl + c̄l > 1
2α from (8.31). Thus, the self-similar blowup is focusing. This

completes the proof of Theorem 1.1.
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9. Finite Time Blowup of 3D Axisymmetric Euler Equations with Solid Boundary

In this section, we prove Theorem 1.2. We first review the setup of the problem. In
Sect. 9.1, we reformulate the 3D Euler equations and discuss the connection between
the 3D Euler and 2D Boussinesq; see e.g. [32]. In Sect. 9.2, we establish the elliptic
estimates. In Sect. 9.3, we will construct initial data and control the support of the
solution under some bootstrap assumptions. With these estimates, the rest of the proof
follows essentially the nonlinear stability analysis of the 2D Boussinesq equations and
is sketched in the same subsection.

Notations In this section, we use x1, x2, x3 to denote the Cartesian coordinates in R3,
and

r =
√
x21 + x22 , z = x3, ϑ = arctan(x2/x1) (9.1)

to denote the cylindrical coordinates. The reader should not confuse r with the radial
variable in the 2D Boussinesq.

Let u be the axi-symmetric velocity and ω = ∇ × u be the vorticity vector. In the
cylindrical coordinates, we have the following representation

u(r, z) = ur (r, z)er + uθ (r, z)eθ + uz(r, z)ez, ω = ωr (r, z)er + ωθ (r, z)eθ + ωz(r, z)ez,

where er , eθ and ez are the standard orthonormal vectors defining the cylindrical coor-
dinates,

er = (
x1
r
,
x2
r
, 0)T , eθ = (

x2
r
,− x1

r
, 0)T , ez = (0, 0, 1)T ,

and r =
√
x21 + x22 and z = x3.

We study the 3D axisymmetric Euler equations in a cylinder D = {(r, z) : r ∈
[0, 1], z ∈ T},T = R/(2Z) that is periodic in z. The equations are given below:

∂t (ruθ ) + ur (ruθ )r + uz(ruθ )z = 0, ∂t
ωθ

r
+ ur (

ωθ

r
)r + uz(

ωθ

r
)z =

1
r4

∂z((ruθ )2).

(9.2)

The radial and axial components of the velocity can be recovered from the Biot–Savart
law

− (∂rr +
1
r
∂r + ∂zz)ψ̃ +

1
r2

ψ̃ = ωθ , ur = −ψ̃z, uz = ψ̃r +
1
r
ψ̃ (9.3)

with a no-flow boundary condition on the solid boundary r = 1

ψ̃(1, z) = 0 (9.4)

and a periodic boundary condition in z.
We consider solutionωθ with odd symmetry in z, which is preserved by the equations

dynamically. Then ψ̃ is also odd in z. Moreover, since ψ̃ is 2-periodic in z, we obtain

ψ̃(r, 2k − 1) = 0. for all k ∈ Z (9.5)

This setup of the problem is essentially the same as that in [30,31].
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Equation (9.3) is equivalent to−'(ψ̃ sin(ϑ)) = ω sin(ϑ), where ϑ = arctan(x2/x1)
and ' is the Laplace operator in R3. We further assume that ωθ ∈ Cα(D) with support
away from r = 0. It follows ωθ sin(ϑ) ∈ Cα(D). Note that the cylinder Dk,l ! {(r, z) :
r ∈ [0, 1], 2k − 1 ≤ z ≤ 2l − 1} satisfies the exterior sphere condition. Under the
boundary condition (9.4)–(9.5), using Theorems 4.3, 4.6 in [17] we obtain a unique
solution ψ̃ sin ϑ ∈ C2,α(Dk,l) ∩ C(D̄k,l) for any k < l, k, l ∈ Z. This further implies
the existence and the uniqueness of solution of (9.3)–(9.5).

Due to the periodicity in z direction, it suffices to consider the equations in the first
period D1 = {(r, z) : r ∈ [0, 1], |z| ≤ 1}. We have the following pointwise estimate on
ψ̃ , which will be used to estimate ψ̃ away from the supp(ωθ ) in Sect. 9.2.

Lemma 9.1. Let ψ̃ be a solution of (9.3)–(9.4), and ωθ ∈ Cα(D1) for some α > 0 be
odd in z with supp(ωθ ) ∩ D1 ⊂ {(r, z) : (r − 1)2 + z2 < 1/4}. For 1

4 < r ≤ 1, |z| ≤ 1,
we have

|ψ̃(r, z)| "
∫

D1

|ωθ (r1, z1)|
(
1 + | log((r − r1)2 + (z − z1)2)|

)
r1dr1dz1.

If the domain of the equation (9.3) is R3, the estimate is straightforward by using the
Green function. For the domain we consider, the Green function would be complicated.
The proof is based on comparing ψ̃ sin(ϑ) with the solutions of −'(ψ± sin(ϑ)) =
f±(r, z) sin(ϑ) in R3, where f± are some functions related to ωθ . We defer the proof to
Appendix A.7.

If the initial data uθ of (9.2)–(9.4) is non-negative, uθ remains non-negative before
the blowup, if it exists. Then, uθ can be uniquely determined by (uθ )2. We introduce the
following variables

θ̃ ! (ruθ )2, ω̃ = ωθ/r. (9.6)

We reformulate (9.2)–(9.4) as

∂t θ̃ + ur θ̃r + uz θ̃z = 0, ∂t ω̃ + ur ω̃r + uzω̃z =
1
r4

θ̃z,

−(∂2r +
1
r
∂r + ∂2z − 1

r2
)ψ̃ = r ω̃, ψ̃(1, z) = 0, ur = −ψ̃z, uz = 1

r
ψ̃ + ψ̃r .

(9.7)

9.1. Dynamic rescaling formulation. We introduce new coordinates (x, y) centered at
r = 1, z = 0 and its related polar coordinates

x = Cl(τ )
−1z, y = (1 − r)Cl(τ )

−1, ρ =
√
x2 + y2, β = arctan(y/x), R = ρα,

(9.8)

where Cl(τ ) is defined below (9.11). The reader should not confuse ρ with the notations
for the weights, and the relation R = ρα with R = rα in the 2D Boussinesq. By
definition, we have

z = Cl(τ )x, r = 1 − Cl(τ )y = 1 − Cl(τ )ρ sin(β). (9.9)
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We consider the following dynamic rescaling formulation centered at r = 1, z = 0

θ(x, y, τ ) = Cθ (τ )θ̃(1 − Cl(τ )y,Cl(τ )x, t (τ )),
ω(x, y, τ ) = Cω(τ )ω̃(1 − Cl(τ )y,Cl(τ )x, t (τ )),

ψ(x, y, τ ) = Cω(τ )Cl(τ )
−2ψ̃(1 − Cl(τ )y,Cl(τ )x, t (τ )),

(9.10)

where Cl(τ ),Cθ (τ ),Cω(τ ), t (τ ) are given by Cθ = C−1
l (0)C2

ω(0) exp
(∫ τ

0 cθ (s)dτ
)
,

Cω(τ ) = Cω(0) exp
(∫ τ

0
cω(s)dτ

)
, Cl(τ ) = Cl(0) exp

(∫ τ

0
−cl(s)ds

)
,

t (τ ) =
∫ τ

0
Cω(τ )dτ,

(9.11)

and the rescaling parameter cl(τ ), cθ (τ ), cω(τ ) satisfies cθ (τ ) = cl(τ ) + 2cω(τ ). We
remark that Cθ (τ ) is determined by Cl ,Cω via Cθ = C2

ωC
−1
l . We have this relation

due to the same reason as that of (4.4). We choose (r, z) = (1, 0) as the center of the
above transform since the singular solution is concentrated near this point. We have
0 ≤ y ≤ C−1

l , |x | ≤ C−1
l since r ∈ [0, 1], |z| ≤ 1. We have a minus sign for ∂y

∂yθ = −CθCl(τ )θ̃r , ∂yω = −CωCl(τ )ω̃r , ∂yψ = −CωCl(τ )
−1ψ̃r .

Let (θ̃ , ω̃) be a solutions of (9.7). It is easy to show that ω, θ satisfy

θt + clx · ∇θ + (−ur )θy + uzθx = cθ θ, ωt + clx · ∇ω + (−ur )ωy + uzωx = cωω +
1
r4

θx .

The Biot–Savart law in (9.7) depends on the rescaling parameter Cl , τ

−(∂xx + ∂yy)ψ +
1
r
Cl∂yψ +

1
r2

C2
l ψ = rω, ur (r, x) = −ψx , uz(r, x) = 1

r
Cl(τ )ψ − ψy,

where r = 1 − Cl(τ )y (9.9). We introduce u = uz, v = −ur . Then, we can further
simplify

θt + (clx + u · ∇)θ = cθ θ, ωt + (clx + u · ∇)ω = θx +
1 − r4

r4
θx ,

− (∂xx + ∂yy)ψ +
1
r
Cl∂yψ +

1
r2

C2
l ψ = rω,

u(x, y) = −ψy +
1
r
Clψ, v = ψx ,

(9.12)

with boundary conditionψ(x, 0) ≡ 0. IfCl is extremely small, we expect that the above
equations are essentially the same as the dynamic rescaling formulation (4.2) of the
Boussinesq equations. We look for solutions of (9.12) with the following symmetry

ω(x, y) = −ω(−x, y), θ(x, y) = θ(−x, y).

Obviously, the equations preserve these symmetries and thus it suffices to solve (9.12)
on x, y ≥ 0 with boundary condition ψ(x, 0) = ψ(y, 0) = 0 for the elliptic equation.
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9.2. The elliptic estimates. In this section, we use the ideas in Sect. 1.3.2 to estimate
the time-dependent elliptic equation in (9.12). We first estimate ψ away from supp(ω).
In Sect. 9.2.1, we outline the estimates. In the remaining subsections, we localize the
elliptic equation and establish theH3 elliptic estimates.

Under the polar coordinates (9.8) ρ =
√
x2 + y2,β = arctan(y/x), we reformulate

(9.12) as

− ∂ρρψ − 1
ρ

∂ρψ − 1
ρ2 ∂ββψ +

Cl

r
sin(β)∂ρψ +

Cl

r
cos(β)

ρ
∂βψ +

C2
l

r2
ψ = rω.

(9.13)

Recall R = ρα from (9.8). Denote

-(R,β) = 1
ρ2ψ(ρ,β), +(R,β) = ω(ρ,β), η(R,β) = (θx )(ρ,β),

ξ(R,β) = (θy)(ρ,β). (9.14)

Since we rescale the cylinder D1 = {(r, z) : r ≤ 1, |z| ≤ 1}, the domain for (x, y)
is

D̃1 ! {(x, y) : |x | ≤ C−1
l , y ∈ [0,C−1

l ]}. (9.15)

We focus on the sector ρ ≤ C−1
l , or equivalently R ≤ C−α

l , and β ∈ [0,π/2] due
to the symmetry of the solutions. Notice that ρ∂ρ = αR∂R = αDR . It is easy to verify
that (9.13) is equivalent to

− α2R2∂RR- − α(4 + α)R∂R- − ∂ββ- − 4-

+
Clρ

r
(sin(β)(2 + αDR)- + cos(β)∂β-) +

C2
l ρ

2

r2
- = r+.

(9.16)

We keep the notation ρ = R1/α, r = 1 − Clρ sin(β) to simplify the formulation. The
boundary condition of - is given by (in the sector R ≤ C−α

l )

-(R, 0) = -(R,π/2) = 0. (9.17)

Definition 9.2. We define the size of support of (θ,ω) of (9.12)

S(τ ) = ess inf{ρ : θ(x, y, τ ) = 0,ω(x, y, τ ) = 0 for x2 + y2 ≥ ρ2}.

Obviously, the support of +, η defined in (9.14) is S(τ )α . After rescaling the spatial
variable, the support of (θ̃, ω̃) of (9.7) satisfies

supp θ̃(t (τ )), supp ω̃(t (τ )) ⊂ {(r, z) : ((r − 1)2 + z2)1/2 ≤ Cl(τ )S(τ )}.

We will construct initial data of (9.12) with compact support S(0) < +∞ and use the
idea described in Sect. 1.3.1 to prove that Cl(τ )S(τ ) remains sufficiently small for all
τ > 0.
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Remark 9.3. There are several small parameters α,Cl(τ ),Cl(τ )S(τ ) in the following
estimates.Wewill chooseα to be small. Formost estimates, the constants are independent
ofCl(τ ). We will chooseCl(0) to be much smaller than α at the final step. This allows us
to prove thatCl(τ ),Cl(τ )S(τ ), (Cl(τ )S(τ ))α are very small. One can regardCl(τ ) ≈ 0.
Recall the relation (9.9) about r . In the support of the solution, we have r = 1 −
Clρ sin(β) ≈ 1. We treat the error terms in these approximations as small perturbations.

Recall the L2 inner product defined in (1.4). Using the estimate in Lemma 9.1, we
obtain in the following Lemma that the L2 norm of - away from the support of the
solution is small. It will be used later to localize(9.16).

Lemma 9.4. Suppose that the assumptions in Lemma 9.1 hold true. Let S(τ ) be the
support size of ω(τ ), θ(τ ). Assume Cl(τ )S(τ ) < 1

4 . For any M > (2S(τ ))α , we have

||-1M≤R≤(2Cl )−α ||L2 " C(M) · ||+||L2 , C(M) ! (1 + | log(ClM1/α)|)SM−1/α||+||L2 .

The proof follows from the estimate in Lemma 9.1, the Cauchy–Schwarz inequality
and a direct calculation, which is standard. We refer it to the arXiv version of this paper
[6]. We will choose M so that C(M) is small, e.g. C(M) " 1 or C(M) " 3−1/α . If we
use an estimate similar to Proposition 7.3 and then restrict it to M ≤ R ≤ (2Cl)

−α , the
constant in the upper bound is α−1, which is not sufficient for our purpose.

Remark 9.5. We restrict the domain of the integral DI to R ≤ (2Cl)
−α , which is

equivalent to ρ ≤ (2Cl)
−1 due to (9.8), so that DI is in D̃1 (9.15). We impose

R ≥ M > (2S(τ ))α so that DI is away from the support of the solution. Since
S(τ ),Cl(τ ) are the variables defined in (x, y) coordinates, when we pass to (R,β)
coordinates, we have a α power for these variables, e.g. (S(τ ))α, (Cl(τ ))

α .

9.2.1. Outline of the estimates In Sect. 9.2.2,we use (9.16) to derive the elliptic equation
(9.20) for χ- with some cutoff function χ . The equation is similar to (7.1) in the 2D
Boussinesq and has an extra error term Zχ . We first establish the L2 estimate of χ1- in
the same Sect. 9.2.2. To estimate the terms involving derivatives of χ , e.g. D2

Rχ-, we
use Lemma 9.4. The L2 estimate enables us to estimate the error term Zχ . The advantage
of localizing (9.16) is that χ- can be treated as a solution of the elliptic equation (7.1)
in R+

2 . Then, in Sect. 9.2.3, we apply the Hk version of the key elliptic estimate in
Proposition 7.3 recursively to χi- with χi that has smaller support, and establish the
higher order elliptic estimates.

9.2.2. Localizing the elliptic equation Wewill take advantage of the fact thatCl(τ )S(τ )
can be extremely small and localize the elliptic equation. Firstly, we assume that
Cl(τ )S(τ ) < 1

4 . Recall the relation (9.9) about r . Then we have r = 1 − Clρ sin(β) ≥
3
4 , r

−1 " 1.
Let χ1(·) : [0,∞) → [0, 1] be a smooth cutoff function, such that χ1(R) = 1 for

R ≤ 1, χ1(R) = 0 for R ≥ 2 and (DRχ1)
2 " χ1. This assumption can be satisfied if

χ1 = χ2
0 where χ0 is another smooth cutoff function. Denote χλ(R) = χ1(R/λ). It is

easy to verify that

(DRχλ)
2 = (R/λ∂Rχ1(R/λ))2 " χ1(R/λ) = χλ(R), |Dk

Rχλ| " 1λ≤R≤2λ,

(9.18)
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for k ≤ 5, where we have used the property |D2
Rχ1| " χ1 in the first inequality. Denote

-χ = -χλ, +χ = +χλ.

At this moment, we just simplify χλ as χ . Observe that R2∂RR + R∂R = D2
R and

r+χ = (1 − Clρ sin(β))+χ = +χ − Clρ sin(β)+χ , αDR(χ-)

= αDRχ- + αχDR-,

α2D2
R(χ-) = α2χD2

R- + 2αDRχ · αDR- + α2D2
Rχ-.

(9.19)

Multiplying χ on both sides of (9.16), and using (9.19) and a direct calculation yield

− α2D2
R-χ − 4αDR-χ − ∂ββ-χ − 4-χ = +χ + Zχ , Zχ = Z1 + Z2 + Z3,

(9.20)

with boundary condition (9.17), where Z1, Z2 and Z3 are given below

Z1 = −Clρ

r
(sin(β)(2-χ + αDR-χ ) + cos(β)∂β-χ ) − C2

l ρ
2

r2
-χ ,

Z2 =
Cl sin(β)ρ

r
αDRχ- − (α2D2

Rχ + 4αDRχ)- − 2α2DRχDR-,

Z3 = −Clρ sin(β)+χ .

(9.21)

Recall that R = ρα, r = 1−Cl y = 1−Clρ sin(β) from (9.8), (9.9) and L12( f )(0)
from (2.16). Next, we derive L12(Zχλ)(0). It will be used in Sect. 9.2.3 when we apply
Proposition 7.3.

Firstly, for sufficiently smooth +,- with + vanishing at least linear near R = 0,
we show that L12(Zχλ)(0) is independent of the cutoff radial λ for λ ≥ (S(τ ))α . From
λ ≥ (S(τ ))α , we have + = + · χλ = +χλ . For any ε > 0, using integration by parts,
we get

⟨∂ββ-χ + 4-χ , sin(2β)R−11R≥ε⟩ = ⟨−4-χ + 4-χ , sin(2β)R−11R≥ε⟩ = 0,

⟨α2D2
R-χ + 4αDR-χ , sin(2β)R−1⟩ = ⟨α2∂R(DR-χ ) + 4α∂R-χ , sin(2β)⟩

= −4α
∫ π/2

0
-(0,β) sin(2β)dβ.

Note that - may not vanish at R = 0. Since ρ = R1/α vanishes at R = 0, it is
easy to see that Zχ vanishes at R = 0. Therefore, integrating both sides of (9.20)
with sin(2β)R−11R≥ε, and then using the above computations and taking ε → 0, for
λ ≥ (S(τ )α), we have

L12(Zχλ)(0) = −L12(+)(0) + 4α
∫ π/2

0
-(0,β) sin(2β)dβ. (9.22)

Next, we perform L2 estimate for -χ . It will be used later to estimate Zχ in (9.20).

Lemma 9.6. There exists α2 > 0 such that if α < α2,Cl S < 4−1/α−1, for λ = 1
4C

−α
l ,

the solution of (9.20) satisfies

α2||DR-χλ ||2L2 + α||-χλ ||2L2 + α||∂β-χλ ||2L2 " α−1||+||2L2 .
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Firstly, we have λ = 1
4C

−α
l > Sα and +χ = +χλ = +. We impose Cl S < 4−1/α−1

so that λ > (2S)α and C(M) " Cα−1 in Lemma 9.4 with M = λ. At this step, this
bound is good enough for us to treat Z2 in (9.20)–(9.21) as perturbation. In the following
estimates, we treat the small factor Cl in Zχ approximately equal to zero and r ≈ 1. See
also Remark 9.3.

Proof. We simplify χλ as χ . Multiplying (9.20) by -χ and using integration by parts,
we get

I ! α2||R∂R-χ ||2L2 +
4α − α2

2
||-χ ||2L2 + ||∂β-χ ||2L2 − 4||-χ ||2L2

= ⟨+,-χ ⟩ + ⟨Z1 + Z3,-χ ⟩ + ⟨Z2,-χ ⟩.
(9.23)

Using the Fourier series expansion with basis {sin(2nβ)}n≥1, one can verify that

||∂β-χ ||2L2 ≥ 4||-χ ||L2 ,

which is sharp with equality when -χ = sin(2β). Therefore, multiplying the above
inequality by 1 − α

4 and then applying it to the left hand side of (9.23) yields

I ≥ α2||DR-χ ||2L2 +
2α − α2

2
||-χ ||2L2 +

α

4
||∂β-χ ||2L2 ≥ α2||DR-χ ||2L2

+
α

2
||-χ ||2L2 +

α

4
||∂β-χ ||2L2 ,

where we have used α ≤ 1.
Within the support of χ = χλ, we have R ≤ 2λ. By assumption, we have λ =

1
4C

−α
l > 4αSα . It follows that

Clρ1R≤2λ = Cl R
1
α 1R≤2λ ≤ Cl (2λ)

1
α = 2− 1

α " α2, | log(Clλ
1
α )| " α−1, 2S ≤ λ1/α .

(9.24)

The Z1, Z3 terms (9.21) contain the small factor Clρ. Since r−1 " 1, we get

||Z1||L2 " α2(||-χ ||L2 + ||αDR-χ ||L2 + ||∂β-χ ||L2) " α2α−1/2 I 1/2 " α3/2 I 1/2,

||Z3||L2 " α2||+||L2 " ||+||L2 .

We perform integration by parts for the last term −2α2DRχDR- in Z2 (9.21)

−2α2⟨DRχDR-,-χ⟩ = −α2⟨RχDRχ , ∂R-2⟩ = α2⟨(RχDRχ)R,-
2⟩

= α2⟨(DRχ)2 + χD2
Rχ + χDRχ ,-2⟩.

Using the above identity, (9.18) for |Dk
Rχ | and (9.24), we obtain

|⟨Z2,-χ ⟩| " (α2 + α)||-1λ≤R≤2λ||2L2 " α||-1λ≤R≤2λ||2L2 " α||-1λ≤R≤(2Cl )−α ||2L2 ,

where we have used 2λ < (2Cl)
−α in the last inequality. Since (2S)α ≤ λ and Sλ−1/α "

1 (see (9.24)), we apply Lemma 9.4 with M = λ and (9.24) to get

|⟨Z2,-χ ⟩| " α(1 + | log(Clλ
1/α)|)2(Sλ−1/α)2||+||2L2 " α−1||+||2L2 .
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Plugging the estimates of Z1, Z2, Z3 and ||-χ ||L2 " α−1/2 I 1/2 into (9.23) and then
using the Cauchy–Schwarz inequality, we prove

I ≤ Cα−1/2 I 1/2||+||L2 + Cα · I + Cα−1||+||2L2 .

Now we choose

α2 = min((2C)−1, 4−1). (9.25)

Then for α < α2, we haveCα < 1
2 . Solving the above inequality yields I " α−1||+||2L2 .

⊓3

9.2.3. Localized H3 estimates Notice that the elliptic equation (9.20) is localized to
R ≤ 2λ ≤ 1

2C
−α
l , which is away from the boundary of the rescaled domain D̃1 =

[0,C−1
l ]×[−C−1

l ,C−1
l ]. Therefore,-χ canbe treated as a solutionof (9.20) in thewhole

space R ≥ 0,β ∈ [0,π/2] with source term +χ + Zχ . We can apply Proposition 7.3 to
improve the elliptic estimate in Lemma 9.6. In this estimate, we need to further estimate
+χ + Zχ and L12(+χ + Zχ ).

The term in Zχ (9.20),(9.21) either has a small factorClρ ≈ 0 (see Remark 9.3), or is
localized to λ ≤ R ≤ 2λ due to the factor (DRχ)k , where λ is the parameter in the cutoff
function χ(R/λ). To show that the second type of term is small, we use Lemma 9.4 and
interpolation. Using the smallness of these variables and Lemmas 9.4 and 9.6, we can
treat Zχ as a small perturbation. Since ρ = R1/α and DRχ = 0 for |R| ≤ 1, the singular

weight W = (1+R)k

Rk , k = 1, 2 is treated approximately as 1 in the following estimates
of terms involving ρ, DRχ .

Proposition 9.7. Let - be the solution of (9.16) and W = (1+R)k

Rk for k = 1 or 2. If
α < α2 (9.25), Cl S < α · 8−1/α−1, for λ = 1

8C
−α
l , we have

α2||R2∂RR-χλW ||L2 + α||R∂Rβ-χλW ||L2

+ ||∂ββ(-χλ − sin(2β)
απ

(L12(+) + χ1L12(Zχλ)(0)))W ||L2 " ||+W ||L2 ,

where Zχ is defined in (9.20),(9.21) and χ1 is the cutoff function. Moreover, for ν ≥
(S(τ ))α , L12(Zχν )(0) does not depend on ν and satisfies

|L12(Zχλ)(0)| = |L12(Zχν )(0)| " (4− 1
α α−1 + min(α, (81/αCl S)1/2))||+

1 + R
R

||L2 .

(9.26)

Remark 9.8. Let χλ1 be the cutoff function in Lemma 9.6. We choose λ = 1
8C

−α
l so

that χλ1 ≡ 1 in supp(χλ). This allows us to apply Lemma 9.6 to estimate various
terms in supp(χλ). We use L12(Zχλ)(0) to correct - so that -χλ − sin(2β)

πα (L12(+) −
χ1L12(Zχλ)(0)) vanishes near R = 0. Choosing small Cl S,α later, we use (9.26) to
show that L12(Zχλ)(0) is very small.

Proof. Step 1.We apply the elliptic estimate in Proposition 7.3 in the weighted L2 case,
which can be proved using the same argument in [11], to obtain

I ! α2||R2∂RR-χλW ||L2 + α||R∂Rβ-χλW ||L2

+ ||∂ββ(-χλ − sin(2β)
απ

(L12(+χ + Zχ ))W ||L2 " ||(+χ + Zχ )W ||L2 .
(9.27)
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Under the assumption Cl S < α8−1/α−1, we have (2S)α < 1
8C

−α
l = λ. Thus, +χ =

χλ+ = +. Recall Zχ = Z1 + Z2 + Z3 in (9.21) and ρ = R1/α . Within the support of χ ,
we have

ClρW = Cl R1/α−2(1 + R)2 " Cl(2λ)1/α ≤ 4−1/α. (9.28)

We can apply Lemma 9.6 to estimate the L2(W 2) norm of Z1

||Z1W ||L2 " ||ClρWχ ||L∞(||-χ ||L2 + α||DR-χ ||L2 + ||∂β-χ ||L2) " 4−1/αα−1||+||L2 .

(9.29)

Estimate of Z3 defined in (9.21) is trivial

||Z3W ||L2 " 4−1/α||+||L2 . (9.30)

Recall Z2 defined in (9.21). Notice that the support of Z2 lies in λ ≤ R ≤ 2λ due to
the DRχ term. Within this annulus, we get W " 1. Due to the smallness of Clρ from
(9.28), we have

||Z2W ||L2 " α||-1λ≤R≤2λ||L2 + α2||DRχDR-||L2 . (9.31)

Using λ = 1
8C

−α
l and Cl S < α8−1/α−1, we obtain

| log(Clλ
1/α)| = | log(8−1/α)| " α−1, Sλ−1/α = 81/αCl S < α. (9.32)

Since λ ≥ (2S(τ ))α , applying Lemma 9.4 with M = λ and (9.32) to C(M), we get

||-1λ≤R≤2λ||L2 " α−181/αCl S||+||L2 " ||+||L2 . (9.33)

Applying Lemma 9.6 to DR-χ , and using (9.31), (9.33), we yield

||Z2W ||L2 " α||+||L2 + α1/2||+||L2 " α1/2||+||L2 . (9.34)

Plugging (9.29)–(9.34) into (9.27) and using 4−1/αα−1 " 1, we prove

I " ||+χW ||L2 " ||+W ||L2 , (9.35)

Step 2: Smallness of Z2.We use interpolation and the smallness of ||-1λ≤R≤2λ||L2

(9.33) to refine the estimate of Z2 in (9.34). The refinement is used to estimate the term
α−1L12(Zχ ) in I (9.27), and is important to prove (9.26). Using integration by parts,
we obtain

J ! ||α2DRχDR-||22 = α4⟨R(DRχ)2DR-, ∂R-⟩
= −α4⟨∂R(R(DRχ)2)DR-,-⟩ − α4⟨R(DRχ)2∂RDR-,-⟩.

(9.36)

Using (9.18), we get |∂R(R(DRχ)2)| " |DRχ |1λ≤R≤2λ, (DRχ)2 ≤ χ1λ≤R≤2λ.
Using the Cauchy–Schwarz inequality, we yield

J " α2(α2||DRχDR-||2 + α2||χD2
R-||L2)||-1λ≤R≤2λ||L2 . (9.37)

We further estimate α2||χD2
R-||L2 . Using |D2

Rχ | " 1λ≤R≤2λ and (9.19), we obtain

α2||χλD2
R-||L2 " α2||D2

R-χ ||L2 + α2||DRχDR-||L2 + α2||-1λ≤R≤2λ||L2 .
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By definition, we have α2||DRχDR-||L2 = J 1/2. Using (9.27),(9.35),(9.33), we
obtain

α2||χλD2
R-||2 " ||+W ||2 + J 1/2 + α2||+||2 " ||+W ||2 + J 1/2. (9.38)

Plugging α2||DRχDR-||L2 = J 1/2, the first inequality in (9.33) and the estimate (9.38)
in (9.37), we establish

J " α2(J 1/2 + ||+W ||2 + J 1/2)α−181/αCl S||+||L2 " α(J 1/2 + ||+W ||2)81/αCl S||+W ||L2 .

The above inequality is a quadratic inequality on B = J 1/2/||+W ||2 : B2 " A(B +
1), A = α81/αCl S ≤ α, which implies B " A1/2. Thus, we prove

J 1/2 " α1/2(81/αCl S)1/2||+W ||L2 .

Combining the above estimate of J and (9.31)–(9.32), we yield

||Z2W ||L2 " (81/αCl S + α
1
2 (81/αCl S)1/2)||+W ||L2

" min(α, (81/αCl S)1/2)||+W ||L2 .
(9.39)

Using Lemma A.4, (9.29), (9.30) and (9.39), we establish

||L12(Zχλ) − χ1L12(Zχλ)(0)W ||L2 " ||ZχW ||L2 " ||(Z1 + Z2 + Z3)W ||L2 " α||+W ||L2 ,

(9.40)

where we have used 4−1/αα−1 " α. Combining (9.27), (9.35) and (9.40), we complete
the proof of the first estimate. We remark that we only need the bound ||Z2W ||L2 "
α||+W ||L2 from (9.39) in this estimate.

Step 3: Estimate of L12(Zχλ)(0). Note that the previous estimates hold true for the

weights W = Wk ! (1+R)k

Rk with k = 1 or 2. Recall Zχλ = Z1 + Z2 + Z3 (9.20). Using
Lemma A.4, (9.29), (9.30) and (9.39), we prove

|L12(Zχλ)(0)| " ||ZχλW1||L2 " ||(Z1 + Z2 + Z3)W ||L2 " (4− 1
α α−1

+min(α, (81/αCl S)1/2))||+W1||L2 ,

which is (9.26). Using (9.22), we yield that L12(Zχν ) is independent of ν for ν ≥ S(τ )α .
⊓3

Proposition 9.9. Suppose that- is the solution of (9.16) and+ ∈ H3. If α < α2 (9.25),
λ = 2−13C−α

l , Cl S < α · (213)−1/α−1, then we have

α2||R2∂RR-χλ ||H3 + α||R∂Rβ-χλ ||H3 + ||∂ββ(-χλ − sin(2β)
απ

(L12(+)

+ χ1L12(Zχλ)(0)))||H3 " ||+||H3,

|L12(Zχλ)(0)| " 3− 1
α ||+1 + R

R
||L2 .

We need to further estimate Moreover, L12(Zχν )(0) does not depend on ν for ν ≥
(S(τ ))α .
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The small factor 3−1/α will be used later to absorb α−k for several k ∈ Z+, i.e.
3−1/αα−k "k 1. The estimate of L12(Zχλ)(0) follows from (9.26). The proof of the first
inequality follows from the idea discussed at the beginning of Sect. 9.2.3 and estimates
similar to the Step 1 in the proof of Proposition 9.7. Suppose that+ has size 1. Using the
smallness of Cl ,Cl S (see Remark 9.3), Lemma 9.4 and Proposition 9.7, formally, we
get that Clρ+ has size 0, ClρT -χ has size ≈ 0 for T = ∂β , DR or I d, α2DRχDR-

has size α2α−1 = α and Dk
Rχ- has size≈ 0. Hence, Zχ ,

1
α (L12(Zχ )−χ1L12(Zχ )(0))

have size less than α, 1, respectively, which enables us to treat them as perturbation.
Moreover, the terms Z1, Z2 in Zχ (9.20) have derivatives whose orders are lower than
D2

R-χ , ∂
2
β-χ . The term Z3 = −Clρ sin(β)+ in (9.21) does not involve - and its

estimate is trivial. These allow us to use induction to establish higher order estimates.
Denote-χλ,∗ = -χλ− sin(2β)

απ (L12(+)+χ1L12(Zχλ)(0)). To simplify our discussions,
we introduce some notations for different elliptic estimates. RecallHm defined in (7.3)
and H0 = L2(ϕ1). For some weight W̃ , differential operator T = D j

βD
i
R and constant

µ, we denote byP(W̃ , T , µ,α,Cl ,-,+) the following elliptic estimate for the solution
- of (9.17)

α2||T D2
R-χλ W̃

1
2 ||2 + α||T DR∂β-χλ W̃

1
2 ||2 + ||T ∂2β-χλ,∗W̃

1
2 ||2 " ||Di

R+||H j + ||+||H j ,

(9.41)

where λ = µC−α
l is the parameter for the cutoff function. We put Di

R+ in the
upper bound since DR commutes with the elliptic operator Lα (7.1), which was
observed in [11]. The upper bound controls the D j

β derivatives of Di
R+. We simplify

P(W̃ , T , µ,α,Cl ,-,+) as P(W̃ , T , µ).
Recall the weights ϕi (5.2) and theH3 norm (7.3). DenoteP0 = P( (1+R)

4

R4 , I d, 2−3),

P1+ j = P(ϕ1, (DR)
j , 2−4− j]), 0 ≤ j ≤ 3, P5+ j = P(ϕ2, (DR)

j Dβ , 2−8− j ), 0 ≤ j ≤ 2,

P8+ j = P(ϕ2, (DR)
j D2

β , 2
−11− j ), j = 0, 1, P10 = P(ϕ2, D3

β , 2
−13),

(9.42)

We establishPi in an increasing order by induction. In other words, we first establish
(9.41) for T being DR derivatives, then for T including one Dβ derivatives, and so on.
Estimate P0 is established in Proposition 9.7, and it serves as the base case. This order
of estimates has been used in [11]. The support of the cutoff function in Pl satisfies

χ (l) ≡ 1 in supp(χ (l+1)) ∪ supp(+), χ (l) ! χ1(R/(2−3−lC−α
l )). (9.43)

Hence, to prove Pn , we can apply Pl , l ≤ n − 1. The H3 elliptic estimate follows
from all Pi .

Proof. We demonstrate the ideas in the induction by mainly proving the L2(ϕ1) elliptic
estimate P1. To establish Pn, n ≥ 1, in step I, we use the Pn version of the elliptic
estimates in Proposition 7.3 with source term + + Zχ , which can be proved by the
argument in [11]. We simplify χ (n) as χ . In the case of n = 1, using the P1 elliptic
estimates (or the L2(ϕ1) estimates), we obtain
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α2||R2∂RR-χλϕ
1/2
1 ||L2 + α||R∂Rβ-χλϕ

1/2
1 ||L2

+ ||∂ββ(-χλ − (πα)−1 sin(2β)(L12(+χ + Zχ )) · ϕ1/2
1 ||L2 " ||(+χ + Zχ )ϕ

1/2
1 ||L2 .

(9.44)

In step II, we apply Lemma A.4 to the L12(·) terms and the elliptic estimate we have
obtained, i.e. Pi , i ≤ n − 1, to control the Zχ terms. In the case of n = 1, Pi , i ≤ n − 1
is P0, which has been established in Proposition 9.7. Our goal is to establish

||Zχϕ
1/2
1 ||L2 " ||+ϕ

1/2
1 ||L2 , (9.45)

||∂ββ

( sin(2β)
απ

(L12(Zχ ) − χ1L12(Zχ )(0))
)
ϕ
1/2
1 ||L2 " ||+ϕ

1/2
1 ||L2 , (9.46)

in the case of n = 1, and similar estimates in the case of n > 1.
Recall Zχ = Z1+Z2+Z3 and (9.21). By triangle inequality, it suffices to establish the

above estimates for Zi separately. Note that Z3 in (9.21) does not involve- and contains
the small factorClρ (see (9.48) below). The above estimates (and similar estimates in the
case of n > 1) for Z3 are straightforward by applying Lemma A.4 to estimate the L12(·)
term. The above estimates (and similar estimates appeared in the proof of Pn, n > 1)
for Z1, Z2 are established by the following substeps.

Firstly, Z1, Z2 defined in (9.21) only contain the first order derivative DR, ∂β of
-χ , which are lower order than the leading terms D2

R-χ , ∂
2
β-χ in (9.20). Hence, we

can apply the previous elliptic estimates, e.g. P0 or Proposition 9.7 for n = 1, to
estimate the norm of higher order derivatives of Z1, Z2 or the norm of Z1, Z2 with more
singular weight. To estimate the - terms in Z1, Z2 that do not involve DR derivative,
e.g. ∂β-χ ,-χ , we decompose -χ into

-χ,∗ ! -χ − sin(2β)
πα

(L12(+) + χ1L12(Zχ )(0)), -χ,2 ! sin(2β)
πα

(L12(+) + χ1L12(Zχ )(0)).

(9.47)

We apply the elliptic estimates to estimate -χ ,∗, Lemma A.4 and Proposition 9.7 for
L12(Zχ )(0) to estimate-χ ,2. Formally, compared to+,-χ ,∗ and-χ ,2 have size 1,α−1,
respectively.

Secondly, Z1 and Z2 contain small factors. For Z1 (9.21), since λ = CC−α
l for

C ∈ [2−13, 2−4], in supp(χ), we get a small factor

Clρχ ≤ 1R≤2λClρ ≤ Cl(2λ)1/α ≤ 8−1/α "k αk (9.48)

for any k ∈ Z+. For Z2 defined in (9.21), the first term in Z2 also contains the small
factor Clρ, the second and the fourth terms contains a small factor α2 and the third term
contains α. These small factors cancel the factor α−1 in -χ ,2 in (9.47). In the case of
n = 1, we estimate typical terms, Clρr−1∂β-χ ,αDRχ-, in Zχ (9.21). Denote

W = (1 + R)2

R2 . (9.49)

Recall ϕ1 = ( f (β)W )2, f (β) = sin(2β)−σ/2, σ = 99
100 (5.2). Using

||g(R,β) f (β)||L2(β) " ||g(R,β)||L∞(β) " ||∂βg(R, ·)||L2(β), g = ∂β-χ , -,
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ρ = R1/α , DRχ = 0 for |R| ≤ 1, Proposition 9.7 and Lemma A.4, we get

||Clρr−1∂β-χϕ
1/2
1 ||2 " α4||∂β-χ f ||2 " α4||∂ββ-χ ||2 " α3||+W ||2 " α3||+ϕ

1/2
1 ||L2 ,

||αDRχ-ϕ
1/2
1 ||2 " α||DRχ- f ||2 " α||DRχ∂β-||2 " α · α−1||+W ||2 " ||+ϕ

1/2
1 ||L2 ,

where we have used (9.43) with l = 0 so that we can apply Proposition 9.7 to estimate
DRχ∂β-. Other terms in Zχ can be estimated similarly. We prove (9.45). Estimates
similar to (9.45) in the case of n > 1 are proved similarly.

Thirdly, we consider (9.46) and similar estimates appeared in the proof of Pn with
n > 1, which are more difficult to prove since they contain α−1. Recall ϕ1,ϕ2 in (5.32)
andW in (9.49). Using LemmaA.4 and (A.12) in its proof, for any p, l ≥ 0 and q = 1, 2,
we obtain

||Dp
β D

l
R∂2β

sin(2β)
πα

(L12(Z1 + Z2) − χ1L12(Z1 + Z2)(0))ϕ
1/2
q ||2

" α−1
∑

i≤max(l−1,0)

||Di
R(Z1 + Z2)W ||2. (9.50)

We need to further estimate the right hand side. The most difficult term in Z1, Z2
(9.20),(9.21) is αDRχ-, since other terms contain smaller factors α2,Clρ and their
weighted Sobolev norm can be bounded by α(||Dl

R+||Hp + ||+||Hp ) using the same
argument as that in Step 2. Formally, α- has size 1 compared to+. Exploiting the factor
DRχ , we show that αDRχ- has size α.

To estimate αDi
R(DRχ-), we have two types of terms I1 ! αDi+1

R χ- and I j,m !
αD j

RχDm
R- with j,m ≥ 1 and j+m = i+1.Note that | log(Clλ

1/α)| " α−1, Sλ−1/α ≤
213/αCl S " α. Applying Lemma 9.4 with M = λ to Di+1

R χ-, we get

||αDi+1
R χ-W ||2 " ||αDi+1

R χ-||2 " α||+||2. (9.51)

When i = 0, we do not have I j,m . Recall i ≤ max(l − 1, 0) in the summation in
(9.50). Thus, in the case of n = 1, combining (9.50) and (9.51) implies (9.46). The same
argument applies to the case of l ≤ 1.

It remains to estimate I j,m with j,m ≥ 1, in the case of l ≥ 2. Recall L12(·) from
(2.16), -χ ,2 from (9.47) and χ = χ (n). Since supp(D j

Rχ) = {λn ≤ R ≤ 2λn} is away
from supp(+) ∪ supp(χ1) ⊂ {R ≤ Sα} (see (9.43)), we get

D j
RχDm

R-χ (m),2 = D j
Rχ · sin(2β)

πα

(
−

∫ π/2

0
Dm−1

R +(R,β) sin(2β)dβ + Dm
Rχ1L12(Zχ (m) )(0)

)
= 0.

Thus, we can subtract the singular term from D j
RχDm

R-

D j
RχDm

R- = D j
RχDm

R (- − -χ (m),2). (9.52)

Formally, compared to +, D j
RχDm

R- has size 1. In the summation in (9.50), we have
i ≤ l − 1. Since j +m = i + 1 and j ≥ 1, we get m = i + 1 − j ≤ l − 1. By definition
(9.42), the weighted Dp

β D
l
R elliptic estimates appear in Pn , if n ≥ l and l ≤ 3. Thus,

using the elliptic estimate Pm (m ≤ l − 1 ≤ n − 1) in the induction hypothesis, i.e.
T = Dm

R , W̃ = ϕ1 in (9.41), we yield



Finite Time Blowup of 2D Boussinesq Equations

||αD j
RχDm

R (- − -χ (m),2)W ||2 " α||Dm
R (-χ (m) − -χ (m),2)W ||2 " α(||Dm

R+||H0 + ||+||H0 ),

(9.53)

where H0 = L2(ϕ1). Combining (9.50)-(9.53), we establish the Pn version of (9.46)
for Z1 + Z2.

Therefore, combining (9.44)–(9.46), we obtain the L2(ϕ1) elliptic estimate, i.e. P1.
Repeating this argument, we can obtain the Pl , 2 ≤ l ≤ 10 and H3 elliptic estimates.

Note that the assumption on λ,Cl , S, i.e. Cl S < α · (213)−1/α−1, implies λ ≥ Sα

and

4−1/αα−1 " 3−1/α, (81/αCl S)1/2 ≤ ((210)−1/α)1/2 ≤ 3−1/α.

Since the estimate (9.26) in Proposition 9.7 does not depend on λ as long as λ ≥ (S(τ ))α ,
using (9.26) and the above calculation, we establish the desired estimate on L12(Zχλ)(0).

⊓3
Remark 9.10. The term D j

RχDm
R- can also be estimated using an argument similar to

that in the Step 2 of the proof of Proposition 9.7. We find the above approach simpler.

Recall +̄ in (4.8). We have a result similar to Proposition 7.8.

Proposition 9.11. Let -̄0(t) be the solution of (9.16)with source term +̄0 = +̄χ(R/ν).
If α < α2 (9.25), λ = 2−13C−α

l , Cl S < α(213)−1/α−1, 2ν < λ, then we have

α||1 + R
R

D2
R-̄0,χλ ||W5,∞ + α||1 + R

R
R∂Rβ-̄0,χλ ||W5,∞

+ ||1 + R
R

∂ββ(-̄0,χλ − sin(2β)
απ

(L12(+̄0) + χ1L12(Z̄χλ)(0)))||W5,∞ " α,

|L12(Z̄χλ)(0)| " 3− 1
α ,

where Z̄χλ associated to -̄0 is defined in (9.20),(9.21). Moreover, L12(Z̄χµ)(0) does not
depend on µ for µ ≥ (S(τ ))α and enjoys the above estimate for L12(Z̄χλ).

Remark 9.12. Although +̄0 = +̄χν is time-independent, the equation (9.3) is not and
-̄0(t) depends on how we rescale the space. The factor 2ν is the support size of +̄0. We
impose λ > 2ν so that χλ = 1 in the support of +̄0.

The proof follows from the argument in the proof of Propositions 7.8, 9.7 and 9.9.

9.3. Nonlinear stability. We apply the nonlinear stability analysis of the 2D Boussinesq
equations to prove Theorem 1.2. In Sect. 9.3.1, we impose the bootstrap assumption on
the support size. In Sect. 9.3.2, we construct the approximate steady state and impose the
normalization conditions, which are small perturbations to those in the 2D Boussinesq.
In Sect. 9.3.3, we estimate the terms in the 3D Euler (9.12) that are different from the 2D
Boussinesq (4.6). These terms contain factors that are much smaller than α and we treat
them as perturbations. In Sect. 9.3.4, we generalize the nonlinear stability estimates in
the 2DBoussinesq to the 3DEuler. In Sect. 9.3.5, we use the ideas described in Sect. 1.3.1
to control the growth of the support. In Sect. 9.3.6, we prove finite time blowup.
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9.3.1. Bootstrap assumption on the support size Recall α2 defined in (9.25) in
Lemma 9.6. We first require α < α2. We impose the first bootstrap assumption: for
t ≥ 0, we have

Cl(t)max(S(t), S(0)) < α · (213)− 1
α −1 ! K (α). (9.54)

Under the above Bootstrap assumption, the support of ω, θ in D1 does not touch the
symmetry axis and z = ±1, and the assumption in Proposition 9.9 is satisfied. We will
choose Cl(0) at the final step, which guarantees the smallness in (9.54).

9.3.2. Approximate steady state and the normalization condition Since the rescaled
domain D̃1 (9.15) is bounded, we construct approximate steady state with bounded
support. We localize +̄, θ̄ defined in (4.8) to construct the approximate steady state for
(9.12)

+̄0 ! χν+̄, θ̄0 ! χνθ̄ = χνx J (η̄), (9.55)

where χν = χ1(R/ν) and we have applied the integral operator J ( f ) in Lemma A.11.
We use ω̄0 to denote +̄0 in the (x, y) coordinates. Clearly, the support size of +̄0, θ̄0 is
2ν. Using the computation in (A.44), we have

η̄0 = ∂x (χνθ̄) = α cos2(β)DRχν · J (η̄) + χνη̄, ξ̄ν(R,β) = ∂y(χνθ̄)

= α sin(β) cos(β)DRχν · J (η̄) + χνξ̄ , (9.56)

Let -̄0(t) be the solution of (9.20) with source term +̄0. Applying Lemma A.11 and
the analysis in its proof, we know that +̄0, η̄0, ξ̄0 enjoys the same estimates as that of
+̄, η̄, ξ̄ in Lemmas A.6 and A.8.

We need to adjust the time-dependent normalization condition for cω(t), cl(t). Firstly,
we choose the time-dependent cutoff radial λ(t) = 2−13(Cl(t))−α according to Propo-
sition 9.9.

Define Z̄χλ(0) (t) according to (9.21), or equivalently (9.22), with- = -̄0(t),+ = +̄0
and χ = χλ(0). It does not depend on the cutoff radial as long as λ(0) ≥ (2ν)α , where
2ν is the size of support of +̄0. We use the following conditions

c̄ω(t) = −1 − 2
πα

L12(+̄0 − +̄ + Z̄χλ(0) )(0) c̄l(t) =
1
α
+ 3

− 1 − α

α

2
πα

L12(+̄0 − +̄ + Z̄χλ(0) )(0).
(9.57)

We remark that c̄ω(t), c̄l(t) is time-dependent. Without the Z term, the above con-
ditions for c̄ω, c̄l are the same as that in (4.8) with a correction due to the difference
between the profiles (+̄, η̄) in (4.8) and +̄0, η̄0 in (9.55)–(9.56). For this difference, we
use (4.11) to correct c̄ω, c̄l .

For any perturbation +(t), we use the following conditions for cω(t), cl(t)

cω(t) = − 2
πα

L12(+(t) + Zχλ(t) (t))(0), cl(t) =
1 − α

α
cω(t). (9.58)

Without the Z term, the above conditions for cω(t), cl(t) are the same as that in (4.11).
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We add the Z terms in (9.57), (9.58) since the behavior of -, which is the solution
of (9.16), is characterized by L12(+ + Zχ )(0) for R close to 0 according to the elliptic
estimate in Proposition 9.9. For the 2D Boussinesq equation, we use L12(+)(0) to
determine cω, cl since it also characterizes the behavior of - near R = 0 according to
Proposition 7.3.

We choose the above conditions so that the error of the approximate steady state
vanishes quadratically in R near R = 0 and that the update of +(t), η(t)(ω, θx ) in
equation (9.12) also vanishes quadratically in R near R = 0 if the initial perturbation
+(·, 0), η(·, 0) (θx (0)) vanishes quadratically. We also determine c̄ω, c̄l in (4.8) and
cω, cl in (4.11) based on this principle.

Remark 9.13. We will choose ν to be very large, relative to α−1. Therefore, we treat
+̄0 ≈ +̄, θ̄0 ≈ θ̄ . Due to the small factor 3−1/α in Propositions 9.9, 9.11, we treat
L12(Zχ )(0), L12(Z̄χ )(0) ≈ 0. From Remark 9.3 and the bootstrap assumption (9.54),
we also have Cl ≈ 0,Cl S ≈ 0, r ≈ 1. We treat the error terms in these approximations
as perturbation.

9.3.3. Estimate of the lower order terms The equations (9.12) are slightly different from
(4.6) for the Boussinesq systems. We show how to estimate their differences. Suppose
that ω(t), θ(t) are the perturbations and the support size of ω̄0 + ω(t), θ̄0 + θ(t) is S(t).

Assume that the bootstrap assumption (9.54) holds true. For the term 1−r4

r4 θx , within
the support of ω, θ , we have ρ ≤ S(t), r = 1 − Clρ sin(β) ∈ [3/4, 1]. We get

|1 − r4

r4
| " 1 − r ≤ Clρ ≤ Cl S(t) < α(213)−1/α−1, (9.59)

which is extremely small compared to α. Since ρ = R1/α , the factor Clρ, 1− r4 vanish
high order in R near R = 0. Hence, 1−r4

r4 θx is a smooth (near R = 0) small error term.
For the term 1

r Clψ in u = −ψy + 1
r Clψ defined in (9.12). Under the (R,β)

coordinates, it becomes Clρ
r (ρ-(R,β)). Compared to −ψy = −(ρ2-)y in (2.10),

Clρ
r (ρ-(R,β)) vanishes on β = 0,π/2 and contains a small smooth factor Clρ =

Cl R1/α within the support of ω, θ .
The last difference is the elliptic estimate between Propositions 7.3 and 9.9. Notice

that in (9.12), we only use -(R,β) for (R,β) within the support of ω, θ . We have
-χλ(t) (R,β) = -(R,β) for λ(t) = 2−13C−α

l , R ≤ S(t). Finally, χ1L12(Zχλ(t) )(0) in
Proposition 9.9 only affects the equation near R = 0. Since 1+R

R +̄ ∈ L2, using the
estimate in Proposition 9.9, we get

|L12(Z̄χλ(0) )(0)| = |L12(Z̄χλ(t) )(0)| " α3−1/α, |L12(Zχλ(t) )(0)| " 3−1/α||1 + R
R

+||L2 ,

(9.60)

where we have used λ(t) ≥ (S(t))α due to (9.54) to obtain the first identity, and used
(4.8),(9.55) and || 1+RR +̄0||L2 " α to obtain the first inequality. The terms in (9.60) are
treated as small terms with amplitude close to 0.

Using the argument in Sect. 8, we can estimate these lower order terms inH3,H3(ψ)
or C1 norm accordingly and obtain a small constant in the estimate bounded by C(1 +
α−κ)(3−1/α + Cl S), where κ,C > 0 are some absolute constant.
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9.3.4. Nonlinear stability Notice that the domain D̃1 (9.15) of the dynamic rescaling
equation is bounded and is different from R+

2 . We cannot apply directly the estimates in
Sects. 5–8 because in these estimates, we linearize the equations around +̄, η̄, ξ̄ which
are defined globally.

We consider the system of θx , θy,ω obtained from (9.12) and then linearize it around
the approximate steady state +̄0, η̄0, ξ̄0, c̄ω, c̄l constructed in Sect. 9.3.2 to obtain a sys-
tem similar to (5.5)–(5.7) for the perturbation (+, η, ξ)with +̄, η̄, ξ̄ , 3

1+R (= 2
πα L12(+̄))

replaced by +̄0, η̄0, ξ̄0,
2

πα L12(+̄0). We also put the lower order terms discussed in
Sect. 9.3.3 into the remaining termsR+,Rη,Rξ .

According to Lemma A.11, we know that +̄0, η̄0, ξ̄0 converges to +̄, η̄, ξ̄ in the
H3,H3(ψ) norm as ν → ∞ (ν is the cutoff radial in (9.55)). Moreover, we can easily
generalize theH3,H3(ψ) convergence to the higher order convergence. We choose the
same weights and the same energy norm as that in Sects. 5–8. Then for sufficient large ν,
due to these convergence results, under the bootstrap assumption (9.54), we can obtain
the following H3,H3(ψ) estimates similar to that in Corollary 6.3

1
2
d
dt

E2
3(+, η, ξ) ≤ (− 1

13
+ Cα)E2

3 +R3,

where E3,R3 are defined in (6.3). We have a slightly weaker estimate ( 1
13 < 1

12 ) due to
the small difference between (+̄0, η̄0, ξ̄0) and (+̄, η̄, ξ̄).

Remark 9.14. The choice of ν is independent of Cl(0). We will choose initial data with
the size of the support S(0) ≥ 2ν. Though S(0) > ν is large, we choose Cl(0) small
enough at the final step and verify (9.54).

Recall the equation (6.9) for the 2D Boussinesq equation in the C1 estimate of ξ .
The damping part in (6.9) is (−2 − 3

1+R )ξ . For the 3D Euler equation, it is replaced by
(−2− 2

πα L12(+̄0))ξ . For sufficient large ν, using the convergence results, we can obtain
estimates similar to (6.11), (6.14), (6.15) with slightly larger constants, e.g. −2, 3 are
replaced by −2 + 1

100 , 3 +
1

100 .
There exists a large absolute constant ν0, such that for ν > ν0, ν satisfies the above

requirements, and we have

| 2
πα

L12(+̄ − +̄0)(0)| ≤ 1
100

. (9.61)

To estimate theH3 norm ofR+,Rη andH3(ψ), C1 norms ofRξ , we apply the estimates
in Sect. 8 and the argument in Sect. 9.3.3. Therefore, for ν > ν0, under the bootstrap
assumption, we obtain the following nonlinear estimate for compactly supported pertur-
bations +(t), η(t), ξ(t) around (+̄0, η̄0, ξ̄0), which is similar to (8.27),

1
2
d
dt

E2(+, η, ξ) ≤ − 1
13

E2 + C(α1/2E2 + α−3/2E3 + α2E)

+ C(α,Cl(t), S(t))(E2 + E + E3),

(9.62)

where the energy E is defined in (8.26). The last term is from the estimates of the
lower order terms discussed in Sect. 9.3.3, e.g. 1−r4

r4 θx ,
1
r Clψ , and C(α,Cl(t), S(t)) =

C(1 + α−κ)(3−1/α + Cl(t)S(t))), for some universal constant C . Under the bootstrap
assumption 9.54, we further obtain

C(α,Cl(t), S(t)) " (1 + α−κ)3−1/α " α3. (9.63)
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Combining (9.62), (9.63), we obtain that there exist α3 with 0 < α3 < α2 (α2 is
the constant in (9.25) in Lemma 9.6) and an absolute constant K̃ > 0, such that if
E(+(0), η(0), ξ(0)) < K̃α2, under the bootstrap assumption 9.54, we have

E(+(t), η(t), ξ(t)) < K̃α2. (9.64)

Recall cω, cl , c̄ω, c̄l defined in (9.57), (9.58). Using (9.60), (9.61), |L12(+)(0)| "
||+||H3 " E " α2, we obtain

|cω + c̄ω + 1| < 1
100

+ C3−1/α + Cα, cl + c̄l >
1
α
+ 3 − 1

100α
− C3−1/αα−1 − C.

We further choose α4 with 0 < α4 < α3, such that for α < α4,

− 3
2
< cω + c̄ω < −1

2
, cl + c̄l >

3
4α

. (9.65)

9.3.5. Growth of the support Recall Definition 9.2 of S(τ ). Finally, we use the idea in
Sect. 1.3.1 to estimate the growth of the support S(τ ) of the solutions ω + ω̄0, θ + θ̄0.
Denote

û(t) = u(t) + ū(t), -̂(t) = -(t) + -̄0(t), ĉl(t) = cl(t) + c̄l .

Applying (2.9)–(2.10) and (2.12) to -̂, we can rewrite the transport term û · ∇ in
(9.12) as

û · ∇ = (−∂yψ̂ + Clr−1ψ̂)∂x + ∂x ψ̂∂y = (
αClρ cos(β)

r
R-̂ − αR∂β-̂)∂R

+(2-̂ + αR∂R-̂ − Clρ sin(β)
r

-̂)∂β ,

where ρ = R1/α, r = 1 − Clρ sin(β). The above formula is different from (2.12) due
to the extra term Clr−1ψ̂∂x . Notice that ĉlx · ∇ becomes αĉl R∂R under the (R,β)
coordinates. For a point which is inside the support of ω + ω̄, θ + θ̄ and has coordinates
(R(t)), (β(t)), its trajectory under the flow (̂clx + û) · ∇ is governed by

d
dt

R(t) = (αĉl R(t) +
αCl(t)ρ(t) cos(β(t))

r(t)
R(t)-̂(R(t),β(t)) − αR(t)∂β-̂(R(t),β(t)),

(9.66)

where the relation between ĉl(t),Cl(t) is given in (9.11).

Lemma 9.15. Under the assumption of Propositions 9.9, 9.11 and that + ∈ H3, for
R ≤ S(t), we have

|(1 + R1/3)-̂(R,β)| + |(1 + R1/3)∂β-̂(R,β)|
" α−1||+||H2 + 1 " α−1E(+(t), η(t), ξ(t)) + 1.
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Recall the weights ϕi in Definition 5.2 for the H3 norm (7.3). Denote by H̃3 the
modified H3 space with radial weight (1+R)2

R2 in theH3 space replaced by 1+R
R . The H̃3

version of the elliptic estimates in Proposition 9.9 can be obtained by the same argument.
Since +̄0 ++ is in H̃3 space (+̄0 vanishes linearly near R = 0), applying the H̃3 elliptic
estimate to -̂ − -̂2 and L12(Zχ )(0), where -̂2 = sin(2β)

πα (L12(+)+χ1L12(Zχ )(0)), and
Lemma A.4 to -̂2, we obtain

||∂ββ-̂||H̃3 " α−1||+ + +̄0||H̃3 " α−1||+||H3 + 1 " α−1E(+(t), η(t), ξ(t)) + 1.

Applying the argument in the proof of Lemma 7.10, we establish the decay estimate.
Now we assume that the initial data satisfies E(+(0), η(0), ξ(0)) < K̃α2. Under the

bootstrap assumption (9.54), we have a priori estimates (9.64), (9.65).
Plugging the bootstrap assumption 9.54, (9.64) and Lemma 9.15 in (9.66), we derive

d
dt

R(t) ≤ αĉl R(t) + Cα(α−1E + 1)R(t)2/3 ≤ αĉl R(t) + CαR(t)2/3,

where we have used Cl(t)ρ(t) ≤ Cl(t)S(t) " 1, r−1 " 1. From the formula of Cl(t),
we know d

dt Cl(t) = −ĉl(t)Cl(t). Multiplying Cα
l (t) on both sides, we get

d
dt

Cα
l R(t) ≤ CαCα

l R
2/3(t) = Cα(Cα

l R)
2/3Cl(t)α/3.

From the a priori estimate (9.65) and the formula of Cl in (9.11), we know Cα
l (t) ≤

Cα
l (0) exp(− t

2 ). Then solving this ODE, we yield

(Cα
l R(t))1/3 ≤ (Cl (0)

αS(0)α)1/3 + Cα

∫ ∞

0
Cα/3
l (0) exp(−b

6
)db ≤ Cl (0)

α/3(S(0)α/3 + Cα).

Taking the supremum over (R(t),β(t)) within the support of +, θ , we prove

Cl(t)S(t) ≤ C(α, S(0))Cl(0). (9.67)

9.3.6. Finite time blowup For fixed α < α4, ν > ν0, we choose zero initial perturbation
+(0) = 0, η(0) = 0, ξ(0) = 0. Then the initial data is (+̄0, θ̄0) defined in (9.55) which
has compact support with support size S(0) = 2ν.We choose initial rescalingCl(0) such
that C(α, S(0))Cl(0) < K (α)/2, where K (α) is defined in (9.54). Using the a priori
estimates (9.64), (9.65) and (9.67), we know that the bootstrap assumption in (9.54) can
be continued. Thus these estimates hold true for all time.

Since − 3
2 < cω + c̄ω < − 1

2 ((9.65)) and the solutions ω, θ are close to ω̄0, θ̄0 for all
time in the dynamic rescaling equation, using the argument in Sect. 8.6 and the BKM
blowup criterion in [2], we prove that the solutions remain in the same regularity class
as that of the initial data before T ∗ < +∞ and develop a finite time singularity at T ∗,
where T ∗ = t (∞) =

∫ ∞
0 Cω(τ )dτ < +∞.

Since θ̄0 + θ(t) ≥ 0 and the support of ω, θ is away from the axis, we can recover
uθ ,ωθ from θ,ω via (9.6), (9.10). Due to the regularity on uθ

0,ω
θ
0 and the fact that in

D1, they are supported near (r, z) = (1, 0), the solutions have finite energy in D1.
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10. Concluding Remarks

We have proved finite time blowup of the 2D Boussinesq and the 3D axisymmetric
Euler equations with solid boundary and large swirl using Cα initial data with small
α for (ω,∇θ) in the case of the 2D Boussinesq equations and for (ωθ ,∇(uθ )2) in the
case of the 3D Euler equations, respectively. For the 2D Boussinesq, the singularity is
asymptotically self-similar. In particular, we showed that the velocity field is in C1,α

and has finite energy.
The results presented in this paper can be generalized to prove finite time singularity

of some related problems. First of all, the proof of Theorem 1.2withminormodifications
on Lemma 9.1 implies similar results for the 3D Euler equations in a bounded domain
D̃ with smooth boundary and the following properties: D̃ is symmetric with respect to
the plane z = 0, and satisfies D ∩ {(r, z) : |z| ≤ ε} = {(r, z) : r ∈ [0, 1], |z| ≤ ε} for
some ε > 0. Formally, D̃ is a cylinder near z = 0. Secondly, almost the same analysis
can be applied to prove finite time blowup of the 3D axisymmetric Euler equations in a
domain outside the cylinder {(r, z) : r ≥ 1, z ∈ R}. The proof is easier since the domain
is away from the symmetry axis and the term − 1

r ψ̃ + 1
r2 ψ̃ in Lψ̃ is of lower order (

r−1 ≤ 1 ).
Thirdly, our method of analysis can be applied to prove the finite time blowup of the

following modified 2D Boussinesq equation on the whole space for Cα initial data ω, θ
x

with small α:

ωt + u · ∇ω = θ/x, θt + u · ∇θ = 0, u = ∇⊥(−')−1ω.

The above modified Boussinesq equations with a simplified Biot–Savart law have been
studied in [18,27]. Note that the above equations are a closed system for ω, θ/x . We can
derive the corresponding dynamic rescaling formulation for the above system and refor-
mulate problem using the (R,β) variables. We consider the equations for the variable
+(R,β) = ω(x, y), η(R,β) = (θ/x)(x, y). The approximate steady state for +̄, η̄ is
similar to (4.8) with cos(β)α replaced by (sin(2β))α/2, which is Cα/2 globally on R2.
Moreover, the scaling parameters are c̄l = 1

α , c̄ω = −1. The leading order part of the
linearized operator of this system is exactly the same as that in (5.5)–(5.6). The same
analysis in Sects. 5–8 applies to the above system and the proof is much easier since the
θy variable appeared in (5.5)–(5.7) is not present in this system.

We would like to point out that the results presented in this paper do not provide a
full justification of the finite time singularity of the 3D axisymmetric Euler equations
with solid boundary considered in [30,31]. The method of analysis presented here relies
heavily on the assumption that the initial velocityfield is inC1,α with a smallα.Under this
assumption, several important nonlocal terms in the perturbation analysis can be made
arbitrarily small by choosing a sufficiently small α. For smooth initial data considered
in [30,31], it is almost impossible to obtain an analytic expression of an approximate
steady state with a small residual error for the dynamic rescaling equations. Even if
we use a numerically constructed approximate steady state, there are several essential
difficulties in proving nonlinear stability of this approximate steady state. In particular,
the most difficult part is to control the nonlocal terms in the linear stability analysis. The
standard energy estimates are simply too crude to control the nonlocal terms.

Recently, in collaborator with De Huang, we have been able to prove the finite time
self-similar singularity of the HL model with C∞

c initial data by using the method of
analysis presented in [7] and a computer assisted analysis.We are nowworking to extend
this computer assisted analysis to prove the finite time self-similar singularity of the 2D
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Boussinesq and 3D axisymmetric Euler equations in the presence of boundary with
smooth initial data in the same setting as that considered in [30,31]. We will report these
results in a forthcoming paper.
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Appendix A.

In Appendix A.1, we estimate 0(β) and the constant c appeared in the approximate pro-
file (4.8). In Appendix A.2, we perform the derivations and establish several inequalities
in the linear stability analysis in Sect. 5.6. In Appendix A.3, we derive the singular term
(7.5) in the elliptic estimates. In Appendix A.4, we will establish several estimates of
L12(+) that are used frequently in the nonlinear stability analysis. Notice that we only
have the formula of η̄ = θ̄x in (4.8). We need to recover θ̄ , ξ̄ = θ̄y from η̄ via inte-
gration. Yet, we do not have a simple formula to perform integration. Alternatively, we
derive useful estimates for ξ̄ in Appendix A.5. Some estimates of +̄, η̄ are also obtained
there. In Appendix A.6, we show that the truncation of the approximate steady state
would contribute only to a small perturbation under the norm we use, and we prove
Lemma 9.1. In Appendix A.7, we prove Lemma 9.1. In Appendix A.8, we study the toy
model introduced in [11].

A.1. Estimates of 0(β) and the constant c.

Lemma A.1. For x ∈ [0, 1], the following estimate holds uniformly for λ ≥ 1/10,

(1 − xκ )xλ ≤ κ

λ
. (A.1)

Consequently, for β ∈ [0,π/2], 2 ≥ λ ≥ 1/10, we have

|(0(β) − 1)(sin(2β))λ| " |(cosα(β) − 1)(cos(β))λ| " α,

and
∣∣∣c − 2

π

∣∣∣ =
∣∣∣
2
π

∫ π/2

0
(0(β) − 1) sin(2β)dβ

∣∣∣ ≤ 2α.

Proof. Using change of a variable t = xκ , it suffices to show that for t ∈ [0, 1], (1 −
t)tλ/κ ≤ κ

λ . Notice that λ ≥ 1/10 and t ≤ 1. Using Young’s inequality, we derive

(1 − t)tλ/κ = κ

λ
· (λ

κ
(1 − t))tλ/κ ≤ κ

λ

(
λ
κ (1 − t) + λ

κ t

1 + λ
κ

)1+λ/κ

= κ

λ

(
λ

λ + κ

)1+λ/κ

≤ κ

λ
,

which implies (A.1). The remaining inequalities in the Lemma follows directly from
(A.1). ⊓3
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A.2. Computations in the linear stability analysis. Weperform the derivations and estab-
lish several inequalities in the linear stability analysis in Sect. 5.6.

The calculations and estimates presented below can also be verified using Mathe-
matica5 since we have simple and explicit formulas.

A.2.1. Derivations of (5.35) Recall the formulas ofψ0,ϕ0 in (5.32).A direct calculation
yields

1
2
(Rϕ0)R − ϕ0 =

(1
2

(
R · (1 + R)3

R3

)

R
− (1 + R)3

R3

)
sin(2β)

=
(1
2

(
− 2R−3 − 3R−2 + 1

)
− (1 + R)3

R3

)
sin(2β)

= −
(
2R−3 +

9
2
R−2 + 3R−1 +

1
2

)
sin(2β).

Denote ψ0 = A(R)0(β)−1. For the coefficient in the η integral in (5.35), we have

1
2
(Rψ0)R + (−2 +

3
1 + R

)ψ0

=
(1
2
(RA(R))R + (−2 +

3
1 + R

)A(R)
)
0(β)−1 ! (I + I I )0(β)−1.

Note that A(R) = 3
16

(
(1+R)3

R4 + 3
2
(1+R)4

R3

)
(5.32). A direct calculation implies

I = 3
32

(
(1 + R)3

R3 +
3
2
(1 + R)4

R2

)

R

= 3
32

(
3
(1 + R)2

R3 − 3
(1 + R)3

R4 + 6
(1 + R)3

R2 − 3
(1 + R)4

R3

)

= 3
32

(
(1 + R)2

R4 (3R − 3(1 + R) + 6(1 + R)R2 − 3(1 + R)2R)
)

= 3(1 + R)2

32R4 (−3 − 3R + 3R3),

I I =
(

−2 +
3

1 + R

)
3
32

(
2
(1 + R)3

R4 + 3
(1 + R)4

R3

)

= 3(1 + R)2

32R4 (−2 − 2R + 3)(2 + 3R(1 + R)),

I + I I = 3(1 + R)2

32R4 (−3 − 3R + 3R3 + (1 − 2R)(2 + 3R + 3R2))

= 3(1 + R)2

32R4 (−1 − 4R − 3R2 − 3R3).

The above calculations imply (5.35).

5 The Mathematica code for these calculations can be found via the link https://www.dropbox.com/s/
y6vfhxi3pa8okvr/Calpha_calculations.nb?dl=0.
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A.2.2. Derivations of (5.40) From (4.8), we know

η̄ − R∂R η̄

η̄
= (1 + R)3

6R

( 6R
(1 + R)3

− R · 6
(1 + R)3

+ R · 18R
(1 + R)4

)
= 3R

1 + R
.

Using the above identity, (5.32) and cω = − 2
πα L12(+)(0) (4.11), we can compute

(η̄ − R∂R η̄)ψ0cω = η̄ − R∂R η̄

η̄

9
8

α

c

(
R−3 +

3
2
1 + R
R2

)
cω

= 27α
8c

R
1 + R

(
R−3 +

3
2
1 + R
R2

)
cω

=
(27α
8c

1
(1 + R)R2 +

81α
16c

1
R

)
· −2
πα

L12(+)(0)

=
(

− 27
4πc

1
(1 + R)R2 − 81

8πc
1
R

)
L12(+)(0),

which implies (5.40).

A.2.3. Derivation of the ODE (5.41) for L12(+)(0) Multiplying sin(2β)/R on both
sides of (5.5) and then integrating (5.5), we derive

d
dt

L12(+)(0) = −
〈
R∂R+,

sin(2β)
R

〉
− L12(+)(0) + cω

〈
+̄ − R∂R+̄,

sin(2β)
R

〉

+
〈
η,

sin(2β)
R

〉
−

〈 3
1 + R

Dβ+,
sin(2β)

R

〉
+

〈
R+,

sin(2β)
R

〉
.

The first term vanishes by an integration by parts argument. Using (4.8) and (4.11), we
can compute the third term

cω

〈
+̄ − R∂R+̄,

sin(2β)
R

〉
= α

c
cω

∫ ∞

0

∫ π/2

0
0(β)

6R2

(1 + R)3
· sin(2β)

R
dβdR

= πα

2
cω

∫ ∞

0

6R
(1 + R)3

dR

= 3παcω

(
−(1 + R)−1 +

1
2
(1 + R)−2

) ∣∣∣
∞

0

= 3πα

2
cω = −3L12(+)(0).

It follows that

d
dt

L12(+)(0) = −4L12(+)(0) +
〈
η,

sin(2β)
R

〉
−

〈3 sin(2β)
(1 + R)R

, Dβ+
〉
+

〈
R+,

sin(2β)
R

〉
.

Multiplying 81
4πc L12(+)(0) to the both sides, we derive (5.41).
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A.2.4. Computations of the integrals in (5.43) A simple calculation implies that for
any k > 2

∫ ∞

0
(1 + R)−kd R = 1

k − 1
,

∫ ∞

0

R
(1 + R)k

d R =
∫ ∞

0

1
(1 + R)k−1

− 1
(1 + R)k

d R = 1
(k − 1)(k − 2)

. (A.2)

For the integral in β, we get
∫ π/2

0
(1 − 2 sin(2β))2dβ = π

2
− 4

∫ π/2

0
sin(2β)dβ + 4

∫ π/2

0
(sin(2β))2dβ = π

2

−4 + 4 · π

4
= 3π

2
− 4.

Using (A.2) with k = 4 and the above calculation, we can compute

∣∣∣
∣∣∣

R3/2

(1 + R)2
1
R
(1 − 2 sin(2β))

∣∣∣
∣∣∣
2

2

=
∫ ∞

0

R
(1 + R)4

dR ·
∫ π/2

0
(1 − 2 sin(2β))2dβ = 1

6
(
3π
2

− 4).

For A1 in (5.40), we apply the Cauchy–Schwarz inequality directly to yield

A1 = − 27
4πc

L12(+)(0)
〈
η,

1
(1 + R)R2

〉

≤ 27
4πc

|L12(+)(0)|
〈
η2,

(1 + R)3

R4

〉1/2〈 R4

(1 + R)3
,

1
(1 + R)2R4

〉1/2
.

Using (A.2), we can calculate

∣∣∣
∣∣∣

R2

(1 + R)3/2
· 1
(1 + R)R2

∣∣∣
∣∣∣
2

2
=

∫ π/2

0
1dβ ·

∫ ∞

0
(1 + R)−5dR = π

8
.

A.2.5. Estimates of D(+), D(η) and the proof of (5.51) We introduce

D1(η) ! −3(1 + R)2

32R4 (1 + 4R + 3R2 + 3R3),

D2(η) !
(

3
16

R−3 +
3
8
(1 + R)2

R2 +
3R

4(1 + R)

)
+

3
16

(
1
6
(1 + R)4

R3 +
3
8
(1 + R)3

R4

)
.

Recall D(+), D(η) in (5.50) and the weights ϕ0,ψ0 defined in (5.32). By definition,
D(η) = D1(η)0(β)

−1 + D2(η). Thus, (5.51) is equivalent to

sin(2β)D(+) ≤ −1
6
ϕ0, D1(η)0(β)

−1 + D2(η) ≤ −1
8
ψ0. (A.3)

To prove the first inequality, it suffices to prove

D(+) = −2R−3 − 9
2
R−2 − 3R−1 − 1

2
+
4
3
R−3 + 6R−2 +

1 + R
3R

≤ − (1 + R)3

6R3 ,
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which is equivalent to proving

(−2 +
4
3
+
1
6
)R−3 + (−9

2
+ 6 +

1
2
)R−2 + (−3 +

1
3
+
1
2
)R−1 + (−1

2
+
1
3
+
1
6
) ≤ 0.

It is further equivalent to

−1
2
R−3 + 2R−2 − 13

6
R−1 ≤ 0,

which is valid since 2
√

1
2 × 13

6 > 2. Hence, we prove the first inequality in (A.3).
For the second inequality in (A.3), firstly, we use 0(β)D2(η) ≤ D2(η) (0(β) =

cosα(β) (4.8)) to obtain

D3(η) ! D1(η) + D2(η)0(β) ≤ D1(η) + D2(η)

= 3
16

{
− (1 + R)2

2R4 (1 + 4R + 3R2 + 3R3) + R−3 + 2
(1 + R)2

R2

+
4R

1 + R
+
1
6
(1 + R)4

R3 +
3
8
(1 + R)3

R4

}
.

(A.4)

Recall the definition of ψ0 in (5.32). Multiplying both sides of the second inequality
in (A.3) by 0(β), we obtain that the inequality is equivalent to

D3(η) ≤ 3
16

(
−1
8
(1 + R)3

R4 − 3
16

(1 + R)4

R3

)
. (A.5)

We split the negative term in the upper bound of D3(η) in (A.4) as follows

− (1 + R)2

2R4 (1 + 4R + 3R2 + 3R3)

= − (1 + R)2

2R4

{
(1 + R) + (3R2) + R(1 + R)2 + R(2 − 2R + 2R2)

}

= − (1 + R)3

2R4 − 3
2
(1 + R)2

R2 − (1 + R)4

2R3 − (1 + R)2(1 − R + R2)

R3 .

It follows that

D3(η) ≤ 3
16

{
(1 + R)3

R4

(
−1
2
+
3
8

)
+
(1 + R)4

R3

(
−1
2
+
1
6

)
+
1
2
(1 + R)2

R2 − (1 + R)2(1 − R + R2)

R3

+
1
R3 +

4R
1 + R

}
= 3

16

{
−1
8
(1 + R)3

R4 − 1
3
(1 + R)4

R3 +
1
2
(1 + R)2

R2 − (1 + R)(1 + R3)

R3 +
1
R3 +

4R
1 + R

}
.

Observe that

− 1
3
(1 + R)4

R3 +
1
2
(1 + R)2

R2 = − 3
16

(1 + R)4

R3

+
(

− 7
48

(1 + R)4

R3 +
1
2
(1 + R)2

R2

)
≤ − 3

16
(1 + R)4

R3 ,

− (1 + R)(1 + R3)

R3 +
1
R3 +

4R
1 + R

= − 1
R2 − (1 + R)

+
4R

1 + R
= − 1

R2 − (R − 1)2

(1 + R)
≤ 0,
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where we have used 7
48

(1+R)2
R ≥ 7

48 × 4 ≥ 1/2 to derive the first inequality. Therefore,
we prove (A.5), which further implies the second inequality in (A.3).

A.3. Derivation of the singular term (7.5) in the elliptic estimates. Suppose that - is
the solution of (7.1). Consider -̃ = - + G sin(2β). Notice that if α = 0, sin(2β) is the
kernel of the operator Lα in (7.1) (it is self-adjoint if α = 0). We have

Lα(-̃) = + + Lα(G sin(2β)) = + − (α2R2∂RRG + α(α + 4)R∂RG) sin(2β).

We look for G(R) that satisfies G(R) → 0 as R → +∞ and Lα(-̃) is orthogonal to
sin(2β):

0 =
∫ π/2

0
sin(2β)(+ − (α2R2∂RRG + α(α + 4)R∂RG) sin(2β))dβ

for every R, which implies

α2R2∂RRG + α(α + 4)R∂RG = 4
π

+∗, (A.6)

where+∗(R) =
∫ π/2
0 +(R,β) sin(2β)dβ and we have used

∫ π/2
0 sin2(2β)dβ = π

4 . The
above ODE is first order with respect to ∂RG and can be solved explicitly. Multiplying
the integrating factor 1

α2 R
−2+ 4+α

α to both sides and then integrating from 0 to R yield

R
4+α
α ∂RG = 4

α2π

∫ R

0
+∗(t)t

4
α −1dt.

Imposing the vanishing condition G(R) → 0 as R → +∞, we yield

G = − 4
α2π

∫ ∞

R
s− 4+α

α

∫ s

0
+∗(t)t

4
α −1dtds.

Using integration by parts, we further derive

G = 1
απ

∫ ∞

R
∂s(s− 4

α )

∫ s

0
+∗(t)t

4
α −1dtds = − 1

απ

∫ ∞

R

+∗(s)
s

ds

− 1
απ

R− 4
α

∫ R

0
+∗(s)s

4
α −1ds.

Using the above formula and the notation L12(+) (2.16), we derive (7.5).

A.4. Estimates of L12(+). Recall L̃12(+) = L12(+)− L12(+)(0). We have the follow-
ing important cancellation between L̃12(+) and +.

Lemma A.2. For k ∈ [3/2, 4] and any λ > 0, we have

⟨sin(2β)+L̃12(+), R−k⟩ = −k − 1
2

∣∣∣
∣∣∣L̃12(+)R−k/2

∣∣∣
∣∣∣
2

L2(R)
,

⟨(sin(2β)+ + λL̃12(+))2, R−k⟩ = ⟨R−k(sin(2β))2,+2⟩ − ((k − 1)λ

− π

2
λ2)

∣∣∣
∣∣∣L̃12(+)R−k/2

∣∣∣
∣∣∣
2

L2(R)
.

(A.7)
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Proof. From the definition of L̃12(ω)(R) in (5.8), we know that it does not depend on
β and

∫ π/2

0
+(s,β) sin(2β)dβ = −(∂R L̃12(R))R.

Using integration by parts, we obtain

⟨sin(2β)+L̃12(+), R−k⟩ =
∫ ∞

0
(−(∂R L̃12(R))R)L̃12(+)R−kd R

= −k − 1
2

∫ ∞

0
L̃12(+)2R−kd R,

which is exactly the first identity in (A.7). The second identity in (A.7) is a direct
consequence of ⟨L̃2

12(+), R−k⟩ = π
2 ||L̃12(+)R−k/2||2L2(R) and the first identity. ⊓3

To estimate L̃12(+)g in Li , we use the following simple Lemma.

Lemma A.3. Let g be some function depending on +̄, η̄, ξ̄ and ϕ be some weights. We
have

⟨L̃2
12(+)g2,ϕ⟩ " ||R−1 L̃12(+)||2L2(R)

∣∣∣
∣∣∣
∫ π/2

0
R2g2(R,β)ϕ(R,β)dβ

∣∣∣
∣∣∣
L∞(R)

,

⟨(Dk
R L̃12(+))2g2,ϕ⟩ " ||R−1Dk−1

R +||2L2

∣∣∣
∣∣∣
∫ π/2

0
R2g2(R,β)ϕ(R,β)dβ

∣∣∣
∣∣∣
L∞(R)

,

(A.8)

for k ≥ 1, provided that the upper bound is well-defined, where DR = R∂R.

Proof. The first inequality follows directly from that L̃12(+) does not dependent on β.
Recall the definition of L̃12(+) in (5.8) and DR = R∂R . Notice that for k ≥ 1, we have

Dk
R L̃12(+) = −

∫ π/2

0
Dk−1

R +(R,β) sin(2β)dβ.

Using the Cauchy–Schwarz inequality, we prove

⟨(Dk
R L̃12(+))2g2,ϕ⟩ =

∫ ∞

0

(
(

∫ π/2

0
Dk−1

R +(R,β) sin(2β)dβ)2
∫ π/2

0
g2ϕdβ

)
dR

"
∫ ∞

0
(

∫ π/2

0
(Dk−1

R +)2dβ)(
∫ π/2

0
g2ϕdβ)dR

≤ ||R−1Dk−1
R +||2L2

∣∣∣
∣∣∣
∫ π/2

0
R2g2ϕ(R,β)dβ

∣∣∣
∣∣∣
L∞(R)

.

⊓3
Lemma A.4. Letχ(·) : [0,∞) → [0, 1]bea smooth cutoff function, such thatχ(R) = 1
for R ≤ 1 and χ(R) = 0 for R ≥ 2. For k = 1, 2, we have



Finite Time Blowup of 2D Boussinesq Equations

||L12(+)||L∞ " ||1 + R
R

+||L2 , ||L̃12(+)(R−2 + R−3)1/2||2L2(R) " ||+ (1 + R)2

R2 ||2L2 ,

||L12(+)||2 " ||+||2, || (1 + R)k

Rk (L12(+) − L12(+)(0)χ)||L2(R) " || (1 + R)k

Rk +||L2 .

(A.9)

provided that the right hand side is bounded. Moreover, if + ∈ H3, then for 0 ≤ k ≤
3, 0 ≤ l ≤ 2, we have

||L12(+) − L12(+)(0)χ ||H3 + ||DR(L12(+) − L12(+)(0)χ)||H3 " ||+||H3,

||Dk
RL12(+)||∞ + ||Dk

R(L12(+) − χL12(+)(0))||∞ " ||+||H3,

||(1 + R)∂RDl
RL12(+)||∞ + ||(1 + R)∂RDl

R(L12(+) − χL12(+)(0))||∞ " ||+||H3,

||L12(+)||X + ||DRL12(+)||X " ||+||H3,

(A.10)

where X ! H3 ⊕ W5,∞ is defined in (7.7).

Remark A.5. We subtract χL12(+)(0) near R = 0 since L12(+) does not vanishes at
R = 0.

Proof. Recall L12(+) in (2.16) and L̃12(+) in (5.8). Using the Cauchy–Schwarz and
the Hardy inequality, we get

||L12(+)||L∞ " ⟨|+|, 1
R

⟩ " ||1 + R
R

+||L2 || 1
1 + R

||L2(R) " ||1 + R
R

+||L2 ,

|| 1
Rl L̃12(+)||L2(R) "

∫ ∞

0

1
R2l L̃

2
12(+)dR "

∫ ∞

0

1
R2l−2 (∂R L̃12(+))2dR " ⟨+2, R−2l⟩,

(A.11)

for l = 1, 3
2 , 2, which implies the first two inequalities in (A.9). For k = 1, 2, observe

that

|| (1 + R)k

Rk (L12(+) − L12(+)(0)χ)||L2(R) " || (1 + R)k

Rk L̃12(+)χ ||L2(R)

+ || (1 + R)k

Rk L12(+)(1 − χ)||L2(R)

" || 1
Rk L̃12(+)||L2(R) + ||L12(+)||L2(R) " ||+ (1 + R)k

Rk ||L2 + ||L12(+)||L2(R),

where we have used (A.11) in the last inequality. Denote +∗ =
∫ π/2
0 +dβ. From (2.16),

we know

L12(+)(R) =
∫ ∞

R

+∗(S)
S

dS =
∫ ∞

0
K (R, S)+∗(S)dS, K (R, S) = 1

S
1R≤S .

The L2 boundedness of L12 is standard. Notice that K is homogeneous of degree −1,
i.e. K (λR, λS) = λ−1K (R, S) for λ > 0. Using change of a variable S = Rz , we get

L12(+)(R) =
∫ ∞

0

1
R
K (1, z)+∗(Rz)Rdz =

∫ ∞

0
K (1, z)+∗(Rz)dz.
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Then, the Minkowski inequality implies

||L12(+)||L2 ≤
∫ ∞

0
K (1, z)||+∗(Rz)||L2(R)dz "

∫ ∞

0
K (1, z)z−1/2||+||L2dz

= ||+||L2

∫

z≥1
z−3/2dz " ||+||L2 .

We complete the proof of (A.9). Notice that DRL12(+) = −+∗, ||Dk
Rχ ||L2 " 1 for

1 ≤ k ≤ 4 and DβL12(+) = 0, Dβχ = 0. Using that sin(2β)−σ in the weight

ϕ1 = sin(2β)−σ (1+R)4

R4 is integrable in the β direction and (A.9), we yield

||(L12(+) − L12(+)(0)χ)ϕ1/2
1 ||L2 + ||Dk

R(L12(+) − L12(+)(0)χ)ϕ1/2
1 ||L2

" ||(L12(+) − L12(+)(0)χ)
(1 + R)2

R2 ||L2 + ||Dk
R(L12(+) − L12(+)(0)χ)

(1 + R)2

R2 ||L2

" ||+ (1 + R)2

R2 ||L2 + ||Dk−1
R +∗

(1 + R)2

R2 ||L2 + |L12(+)(0)|||Dk
Rχ

(1 + R)2

R2 ||L2

" ||+ (1 + R)2

R2 ||L2 + ||Dk−1
R +

(1 + R)2

R2 ||L2 " ||+||H3 ,

(A.12)

which implies the first estimate in (A.10). From the definition of L12(+) in (2.16), we
have DRL12(+) = L12(DR+). Notice that |Dk

Rχ(R)| " 1. Using (A.9), we prove for
k ≤ 3

||Dk
RL12(+)||L∞ + |L12(+)(0)| · ||Dk

Rχ ||L∞ " ||+||H3,

which implies the second estimate in (A.10). Similarly, since ∂RDl
RL12(+) =

∂RL12(Dl
R+) = −R−1Dl

R+∗(R), where +∗(R) =
∫ π/2
0 +(R,β)dβ, and that l ≤ 2,

we have

||∂RDl
RL12(+)||L∞ = ||R−1Dl

R+∗||L∞(R) " ||R−1Dl
R+∗||1/2L2(R)||∂R(R

−1Dl
R+∗)||1/2L2(R)

" ||+||H3,

which alongwith the secondestimate in (A.10) and |∂RDl
RχL12(+)(0)| " |L12(+)(0)| "

||+||H3 completes the proof of the third estimate in (A.10).
Since χL12(+)(0) does not depend on β, we apply the first two estimates in (A.10)

to yield

||Di
RL12(+)||X ≤ ||Di

R(L12(+) − χL12(+)(0))||H3 + ||Di
RχL12(+)(0)||W5,∞

" ||+||H3 + |L12(+)(0)| " ||+||H3

for i = 0, 1. We complete the proof of (A.10). ⊓3

A.5. Estimate of the approximate self-similar solution. In appendix A.5.1, we estimate
some norm of +̄, η̄ using the explicit formulas. For ξ̄ , it is given by an integration of η̄
that does not have an explicit formula. We estimates ξ̄ , its derivatives and some norm in
Sect. A.5.2.
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A.5.1. Estimate of +̄, η̄ Recall the formula of +̄, η̄ in (4.8). A simple calculation yields

+̄ = α

c
3R0(β)

(1 + R)2
, η̄ = α

c
6R0(β)

(1 + R)3
, +̄ − DR+̄ = α

c
6R20(β)

(1 + R)3
, η̄ − DR η̄ = α

c
18R20(β)

(1 + R)4
.

(A.13)

Without specification, in later sections, we assume that R ≥ 0,β ∈ [0,π/2].
Lemma A.6. The following results apply to any k ≤ 3, 0 ≤ i + j ≤ 3, j ̸= 1. (a) For
f = +̄, η̄, +̄ − DR+̄, η̄ − DR η̄, we have

|Dk
R f | " f, |Di

RD
j
β f | " α sin(β) f. (A.14)

(b) Let ϕi be the weights defined in (5.14). For g = +̄, η̄, we have
∫ π/2

0
R2(Dk

Rg)
2ϕ1dβ " α2,

∫ π/2

0
R2(Di

RD
j
βg)

2ϕ2dβ " α3, (A.15)

uniformly in R and

⟨(Dk
R(g − DRg))2,ϕ1⟩ " α2, ⟨(Di

RD
j
β(g − DRg))2,ϕ2⟩ " α3. (A.16)

Proof. Recall Dβ = sin(2β)∂β , DR = R∂R . Using0(β) = cos(β)α , (5.22) and a direct
calculation gives

|D j
β0(β)| " α sin(β)0(β), |Di

R
R

(1 + R)m
| " R

(1 + R)m
, |Di

R
R2

(1 + R)m
| " R2

(1 + R)m
.

(A.17)

for 1 ≤ j ≤ 5, 0 ≤ i ≤ 5 and m = 2, 3, 4. Combining these estimates and the formulas
in (A.13) implies (A.14). As a result, we have the following pointwise estimates for
g = +̄ or η̄

|Dk
Rg| " g " α0(β)

R

(1 + R)2
, |Di

RD
j
βg| " α sin(β)g " α2 sin(β)0(β)

R

(1 + R)2
,

|Dk
R(g − DRg)| " g − DRg " α

R20(β)

(1 + R)3
, |Di

RD
j
β (g − DRg)|

" α sin(β)(g − DRg) " α2 sin(β)
R20(β)

(1 + R)3
,

for k ≤ 3, i + j ≤ 3, j ̸= 0, where we have used c ≈ 2
π in Lemma A.1. Recall ϕi in

Definition 5.2.

ϕ1 ! (1 + R)4R−4 sin(2β)−σ , ϕ2 ! (1 + R)4R−4 sin(2β)−γ .

Notice that for σ = 99
100 , γ = 1 + α

10 , we have
∫ π/2

0
0(β)2 sin(2β)−σdβ " 1,

∫ π/2

0
α2 sin(β)20(β)2 sin(2β)−γ dβ " α2

∫ π/2

0
cos(β)2α−1−α/10dβ " α.

Combining the pointwise estimates, the estimates of the angular integral and a simple
calculation then gives (A.15), (A.16). ⊓3
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Recall theW l,∞ norm in (7.6). We have

Proposition A.7. It holds true that 0(β), +̄, η̄ ∈ W7,∞ with

||0(β)||W7,∞ " 1, || (1 + R)2

R
+̄||W7,∞ + || (1 + R)2

R
η̄||W7,∞ " α,

||Dβ+̄||W7,∞ + ||Dβη̄||W7,∞ " α2.

Proof. Theproof follows directly from the calculationA.17 and sin(β)0(β) sin(2β)−α/5

" 1. ⊓3

A.5.2. Estimates of ξ̄ Recall that the approximate self-similar profile η̄ (4.8) is given
by

(θ̄x )(x, y) = η̄(R, θ) = α

c
6R

(1 + R)3
cosα(β) = 6α

c
xα

(1 + (x2 + y2)α/2)3
. (A.18)

We also use η̄(x, y) to denote the above expression. Throughout this section, we use the
following notation

R = (x2 + y2)α/2, β = arctan(y/x), S = (z2 + y2)α/2, τ = arctan(y/z),
(A.19)

where z will be used in the integral. θ̄(x, y), ξ̄(R, θ) = θ̄y(x, y) can be obtained from
η̄(x, y) (or θ̄x ) as follows

θ̄ =
∫ x

0
η̄(z, y)dz, ξ̄ = θ̄y =

∫ x

0
η̄y(z, y)dz, (A.20)

where we have used θ̄(0, y) = 0. Observe that

η̄y(z, y) = −6α
c

· 3αy
y2 + z2

(z2 + y2)α/2zα

(1 + (z2 + y2)α/2)4

= −1
z

3αyz
y2 + z2

(z2 + y2)α/2

1 + (z2 + y2)α/2
η̄(z, y) = −1

z
3α sin(2τ )S
2(1 + S)

η̄,

(A.21)

where we have used the notation S, τ defined in (A.19). Hence, we get

ξ̄ =
∫ x

0
−6α

c
· 3αy
y2 + z2

(z2 + y2)α/2zα

(1 + (z2 + y2)α/2)4
dz =

∫ x

0

1
z

(
−3α sin(2τ )S

2(1 + S)
η̄

)
dz.

(A.22)

These integrals cannot be calculated explicitly for general α. We have the following
estimates for ξ̄ .
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Lemma A.8. Assume that 0 ≤ α ≤ 1
1000 . For R ≥ 0,β ∈ [0,π/2] and 0 ≤ i + j ≤ 5,

we have

|Di
RD

j
β ξ̄ | " −ξ̄ , |Di

RD
j
β(3ξ̄ − R∂R ξ̄)| " −ξ̄ , (A.23)

|ξ̄ | " α2(x2 + y2)α/2

(1 + (x2 + y2)α/2)
yα

(1 + yα)3
min

(
1,

x1+α

y1+α

)

" α2R2

1 + R

(
1β<π/4

sinα(β)

(1 + R sinα(β))3
+ 1β≥π/4

cosα+1(β)
(1 + R)3

)
,

− ξ̄ " α2 cos(β), ||ξ̄ ||C1 " ||1 + R
R

(1 + (R sin(2β)α)−
1
40 )ξ̄ ||L∞ " α2, (A.24)

where || · ||C1 is defined in (6.5). Let ψ1,ψ2 be the weights defined in (5.14). We have

∫ π/2

0
R2(Di

RD
j
β ξ̄)2ψkdβ " α4 (A.25)

uniformly in R, and

⟨(Di
RD

j
β(3ξ̄ − R∂R ξ̄))2,ψk⟩ " α4, ⟨(Di

RD
j
β ξ̄)2,ψk⟩ " ⟨ξ̄2,ψk⟩ " α4, (A.26)

where (Di
RD

j
β ,ψk) represents (Di

R,ψ1) for 0 ≤ i ≤ 5, and (Di
RD

j
β ,ψ2) for i + j ≤

5, j ≥ 1.

Remark A.9. Using (A.22), we have −ξ̄ ≥ 0 for R ≥ 0,β ∈ [0,π/2].
We have several commutator estimates which enable us to exchange the derivative

and integration in (A.22) so that we can estimate Di
RD

j
β ξ̄ easily.

Recall the relation between ∂x , ∂y and ∂R, ∂β in (2.9).We have the following relation

DR = R∂R = 1
α
(x∂x + y∂y), Dβ = sin(2β)∂β = 2y∂y − 2α sin2(β)DR .

(A.27)

Thefirst relation holds because R = rα, R∂R = 1
α r∂r , and the second relation is obtained

by multiplying ∂y = sin(β)
r αDR + cos(β)

r ∂β by y and then using y/r = sin(β), x/r =
cos(β).

Lemma A.10. Suppose that f (0, y) = 0 for any y. Denote

I ( f )(x, y) =
∫ x

0

1
z
f (z, y)dz. (A.28)

We have

DR I ( f )(x, y) = I (DS f )(x, y), (A.29)

Dβ I ( f )(x, y) − I (Dτ f )(x, y) = −2α sin2(β) · I (DS f ) + 2α I (sin2(τ )DS f ),
(A.30)

where R,β, S, τ are defined in (A.19), provided that f is sufficiently smooth.



J. Chen, T. Y. Hou

Proof. Notice that y∂y commutes with the z integral. From (A.27), it suffices to prove

x∂x I ( f )(x, y) = I (z∂z f ).

A directly calculation yields

x∂x I ( f )(x, y) = x∂x (
∫ x

0

1
z
f (z, y)dz) = f (x, y),

I (z∂z f )(x, y) =
∫ x

0

1
z
· z∂z f (z, y)dz = f (x, y).

It follows (A.29). Using the fact that both y∂y and R∂R commute with the z integral and
the formula of Dβ (A.27) twice, we derive

Dβ I ( f )(x, y) = (2y∂y − 2α sin2(β)DR)I ( f ) = I (2y∂y f ) − 2α sin2(β)I (DS f )

= I (Dτ f + 2α sin2(τ )DS f ) − 2α sin2(β)I (DS f ) = I (Dτ f )

+ 2α I (sin2(τ )DS f ) − 2α sin2(β)I (DS f ).

(A.30) follows by rearranging the above identity. ⊓3
Next, we prove Lemma A.8.

Proof of Lemma A.8. Step 1. Recall DR = R∂R, Dβ = sin(2β)∂β . First, we show that

|Di
RD

j
β ξ̄ | " α

∫ x

0

1
z
sin(2τ )

S
1 + S

η̄(z, y)dz ≍ −ξ̄ (A.31)

for 0 ≤ i + j ≤ 5. Using 0(β) = cos(β)α ,(5.22) and a direct calculation yields

∣∣∣Di
R

R2

(1 + R)4

∣∣∣ " R2

(1 + R)4
, |Di

β0(β)| " α sin(β)0(β), |Di
β sin(2β)| " sin(2β)

(A.32)

for i ≤ 5. Denote

f (S, τ ) = 3α
2

sin(2τ )
S

1 + S
η̄ = 9α2

c
sin(2τ )0(τ )

S2

(1 + S)4
. (A.33)

We remark that f = −zη̄y(z, y) according to (A.21). Obviously, f (S, τ ) ≥ 0. Using
the above estimates, we get

|Di
SD

j
τ f | " f (A.34)

for i + j ≤ 5. Notice that (A.22) implies ξ̄ = −I ( f ) and that I (·) (A.28) is a positive
linear operator for x ≥ 0. We further derive

|I (Di
SD

j
τ f |)| ≤ I (|Di

SD
j
τ f |) " I ( f ) (A.35)

for i + j ≤ 5. Using (A.29) and the above estimates, we yield

|Di
R ξ̄ | = |Di

R I ( f )| = |I (Di
S f )| " I ( f ).
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For other derivatives Di
RD

j
β with j ≥ 1, i + j ≤ 5, we estimate D2

β ξ̄ , which is repre-
sentative. Using (A.30), we have

D2
β ξ̄ =D2

β I ( f ) = Dβ

(
I (Dτ f ) − 2α sin2(β) · I (DS f ) + 2α I (DS f sin2(τ ))

)

=I (D2
τ f ) − 2α sin2(β) · I (DSDτ ( f )) + 2α I (sin2(τ )DSDτ f )

+ Dβ

(
−2α sin2(β) · I (DS f )

)
+ Dβ

(
2α I (DS f sin2(τ ))

)
= J1 + J2 + J3 + J4 + J5.

For J1, J2, J3, we simply use sin2(β), sin2(τ ) ≤ 1 and (A.35) to obtain

I1, J2, J3 " I (|Di
RD

j
τ f |) " I ( f ) (A.36)

for (i, j) = (0, 2), (1, 1), (1, 1) respectively. For J4, if Dβ acts on sin2(β), we obtain
αDβ(sin2(β))· I (DS f ), which can be bounded as before using (A.35). For the remaining
parts in J4 and J5, Dβ acts on I (·) and we can use (A.30) again to obtain several terms.
Each term can be bounded using (A.35) and an argument similar to (A.36). The estimates
of other derivatives Di

RD
j
β can be done similarly. We omit these estimates. Since the

right hand side of (A.31) is 2
3 I ( f ) = − 2

3 ξ̄ ≍ −ξ̄ , the above estimates imply (A.31).
Step 2. The estimate (A.31) can be generalized to i + j ≤ 6 easily. Hence, we get

|Di
RD

j
β(3ξ̄ − R∂R ξ̄)| " |Di

RD
j
β ξ̄ | + |Di+1

R D j
β ξ̄ | " −ξ̄ ,

for any i + j ≤ 5, which proves (A.23).
Step 3: Pointwise estimate. In this step, we prove (A.24). From (A.22), we know that

the first inequality in (A.24) is equivalent to
∫ x

0

y
y2 + z2

zα(y2 + z2)α/2

(1 + (y2 + z2)α/2)4
dz " (x2 + y2)α/2

(1 + (x2 + y2)α/2)
yα

(1 + yα)3
min

(
1,

x1+α

y1+α

)
.

For z ∈ [0, x], we have z2 + y2 ≤ x2 + y2. Since t
1+t is increasing with respect to t ≥ 0,

we yield

(y2 + z2)α/2

1 + (y2 + z2)α/2
" (y2 + x2)α/2

1 + (y2 + x2)α/2
.

Therefore, it suffices to prove

J (x, y) !
∫ x

0

y
y2 + z2

zα

(1 + (y2 + z2)α/2)3
dz " yα

(1 + yα)3
min

(
1,

x1+α

y1+α

)
.

(A.37)

Case 1 : x ≤ 1 + y Observe that

J ≤ 1
(1 + yα)3

∫ x

0

yzα

y2 + z2
dz = yα

(1 + yα)3

∫ x
y

0

tα

1 + t2
dt,

where we have used change of a variable z = yt to derive the identity. Since α ≤ 1/10,
we get

∫ x
y

0

tα

1 + t2
dt ≤

∫ ∞

0

tα

1 + t2
dt " 1,

∫ x
y

0

tα

1 + t2
dt ≤

∫ x
y

0
tαdt " x1+α

y1+α
.
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Combining the above estimates, we prove (A.37) for x ≤ 1 + y.
Case 2 : x > 1 + y Firstly, we have

J (x, y) =
∫ 1+y

0

y
y2 + z2

zα

(1 + (y2 + z2)α/2)3
dz

+
∫ x

1+y

y
y2 + z2

zα

(1 + (y2 + z2)α/2)3
dz ! J1 + J2.

We apply the result in Case 1 to estimate J1

J (1 + y, y) " yα

(1 + yα)3
min

(
1,

(1 + y)1+α

y1+α

)
" yα

(1 + yα)3
.

For J2, we have

J2 ≤
∫ x

1+y

y
y2 + z2

zα

z3α
dz = y−2α

∫ x
y

1+y
y

t−2α

1 + t2
dt " y−2α

∫ ∞

1+y
y

t−2α−2dt

" y−2α
(
1 + y
y

)−1−2α

= y
(1 + y)1+2α

= yα

(1 + y)3α
y1−α

(1 + y)1−α
" yα

(1 + yα)3
,

where we have used change of a variable z = yt to derive the first identity. Noting that
x ≥ y in this case. We conclude

J (x, y) = J1 + J2 " yα

(1 + yα)3
≤ yα

(1 + yα)3
min

(
1,

x1+α

y1+α

)
.

Combining the above two cases, we prove (A.37), which implies the first inequality in
(A.24).

Finally, we prove the second inequality in (A.24). Using the notation (A.19), we have

R = (x2 + y2)α/2,
(x2 + y2)α/2

1 + (x2 + y2)α/2
= R

1 + R
, yα = R sinα(β),

yα

(1 + yα)3
= R sinα(β)

(1 + R sinα(β))3
.

For x ≤ y, we have β ≥ π/4, 1 " sin(β), x2 + y2 " y2. Hence,

yα

(1 + yα)3
x1+α

y1+α
" yα

(1 + (x2 + y2)α/2)3
x1+α

y1+α
= R sinα(β)

(1 + R)3
· cos

1+α(β)

sin1+α(β)
" R cos1+α(β)

(1 + R)3
.

Combining the above identity and the estimate, we prove the second inequality in (A.24).
The last inequality in (A.24) follows directly from (A.23) and the first two inequalities
in (A.24).

Step 4: Estimates of the integralNow, we are in a position to prove (A.25) and (A.26).
We are going to prove

∫ π/2

0
ξ̄2(R,β)ψkdβ " α4

(1 + R)2
. (A.38)

Clearly, (A.25) and (A.26) follow from the above estimate and (A.23).
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Notice that ψi defined in (5.14) satisfies

ψ1,ψ2 " (1 + R)4

R4 sin(β)−σ cos(β)−γ , (A.39)

where γ = 1 + α
10 , σ = 99

100 . Using (A.24), 1 + R sinα(β) ≥ (1 + R) sinα(β), we yield

(1 + R)2
∫ π/2

0
|ξ̄ |2ψkdβ " (1 + R)2

α4R4

(1 + R)2
·
{∫ π/4

0

sin2α(β)
((1 + R) sinα(β))6

ψkdβ

+
∫ π/2

π/4

cos2α+2

(1 + R)6
ψkdβ

}

" α4R4

(1 + R)6
(1 + R)4

R4

{∫ π/4

0
sin(β)−4α sin(β)−σ cos(β)−γ

+
∫ π/2

π/4
cos(β)2+2α sin(β)−σ cos(β)−γ dβ

}

" α4
(∫ π/4

0
sin(β)−σ−4αdβ +

∫ π/2

π/4
cos(β)2+2α−γ dβ

)
" α4,

where we have used α ≤ 1
1000 , 4α+σ < 199

200 , 2+2α−γ ≥ 1, to derive the last inequality
which does not depend on α for α ≤ 1

1000 . It follows (A.38). ⊓3

A.6. Other Lemmas. We use the following Lemma to construct small perturbation.

Lemma A.11. Letχ(·) : [0,∞) → [0, 1] be a smooth cutoff function, such thatχ(R) =
1 for R ≤ 1 and χ(R) = 0 for R ≥ 2. Denote

χλ(R) = χ(R/λ), +̄λ = χλ+̄, η̄λ = ∂x (χλθ̄), ξ̄λ = ∂y(χλθ̄), (A.40)

where θ̄ is obtained in (A.20). We have

lim
λ→+∞

||+̄λ − +̄||H3 + ||(1 + R)(η̄λ − η̄)||H3 + ||ξ̄λ − ξ̄ ||H3(ψ)

= 0, limλ→+∞||ξ̄λ − ξ̄ ||C1 ≤ K10α
2, (A.41)

where K10 > 0 is some absolute constant. In particular, we also have

lim
λ→+∞

L2
12(+̄λ − +̄)(0) + ⟨(+̄λ − +̄)2,ϕ0⟩ + ⟨(η̄λ − η̄)2,ψ0⟩ = 0. (A.42)

We need a Lemma similar to Lemma A.10.

Lemma A.12. Suppose that f (0, y) = 0 for any y.Denote J ( f )(x, y) = 1
z

∫ x
0 f (z, y)dz.

We have

DR J ( f )(x, y) = J (DS f )(x, y),

Dβ J ( f )(x, y) − J (Dτ f )(x, y) = −2α sin2(β) · J (DS f ) + 2α J (sin2(τ )DS f ),

where R,β, S, τ are defined in (A.19), provided that f is sufficiently smooth.

The first identity follows from a direct calculation and the proof of the second is similar
to that in Lemma A.10. We omit the proof.
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Proof of Lemma A.11. Step 1: Estimate of θ̄ . Using (A.20) and the operator J in
Lemma A.12, we get θ̄

x = J (η̄). We have the following estimate for θ̄

|Di
RD

j
β

θ̄

x
| = |Di

RD
j
β J (η̄)| " J (η̄) = 1

x

∫ x

0
η̄(z, y)dz " η̄, (A.43)

for 0 ≤ i + j ≤ 5. The proof of the first inequality follows from Lemma A.12 and the
argument in the proof of (A.31). The proof of the second inequality is similar to that of
(A.37) by considering x ≤ 1 + y and x > 1 + y. We omit the proof.

Step 2: Estimate of η̄λ − η̄, ξ̄λ − ξ̄ . Recall η̄λ = ∂x (χλθ̄), ξ̄λ = ∂y(χλθ̄) and the
formula of ∂x , ∂y (2.9). A direct calculation yields

η̄λ(R,β) − η̄ = α
cos(β)

r
DRχλ · θ̄ + (χλ − 1)η̄ = α cos2(β)DRχλ · J (η̄) + (χλ − 1)η̄,

ξ̄λ(R,β) − ξ̄ = α
sin(β)

r
DRχλ · θ̄ + (χλ − 1)ξ̄ = α sin(β) cos(β)DRχλ · J (η̄) + (χλ − 1)ξ̄ ,

(A.44)

where we have used ∂x θ̄ = η̄, ∂y θ̄ = ξ̄ , (r cos(β))−1θ̄ = 1
x θ̄ = J (η̄). From (A.40), we

have

Dβχλ = 0, |DRχλ| = (R/λ)|χ ′(R/λ)| " 1.

Similarly, we have

|Dk
Rχλ| " 1, (A.45)

for k = 1, 2, 3, 4. Notice that ∂Rχλ, (χλ − 1) = 0 for R ≤ λ. From the formula of η̄
and (A.26) in Lemma A.8, we know (χ1 − 1)(1+ R)η̄ ∈ H3 (η̄ decays R−2 for large R)
and ξ̄ ∈ H3(ψ). Using the estimates of J (η̄) in (A.43), we also have (χ1 − 1)J (η̄) ∈
H3 ⊂ H3(ψ). Therefore, applying (A.44), (A.45) toχλ and theDominatedConvergence
Theorem yields

lim
λ→∞

||(1 + R)(η̄λ − η̄)||H3 = 0, lim
λ→∞

||ξ̄λ − ξ̄ ||H3(ψ) = 0.

Similarly, we have

lim
λ→∞

||+̄λ − +̄||H3 = 0.

Using (A.43), (A.45) and the fact that η̄ decays for large R (see (4.8)), we have

limλ→∞|| sin(β) cos(β)DRχλ · J (η̄)||C1 = 0.

Using (A.23)–(A.24) in Lemma A.8 and (A.45), we conclude

||(χλ − 1)ξ̄ ||C2 " α2.

We complete the proof of (A.41).
Recall that the H3 norm is stronger than L2(ϕ1). Using Lemma A.4 for L12(+)(0),

the fact that ϕ0 " ϕ1,ψ0 " (1 + R)ϕ1 (see Definition 5.2, 5.7) and the limit obtained in
(A.41), we prove (A.42). ⊓3
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Let C
α
40 be the standard Hölder space. Recall the C1 norm defined in (6.5). We have

the following embedding.

Lemma A.13. Suppose that f ∈ C1(R,β) and f (R,π/2) = 0 for R ≥ 0. We have

|| f ||
C

α
40

≤ Cα|| f ||C1

for some constant Cα depending on α only.

Proof. Recall the relation between the Cartesian coordinates (x, y) and the polar coor-
dinates (r,β), (R,β). Since f vanishes on the axis β = π

2 . It suffices to prove that
f is Hölder in R2

++. Let (R1,β1), (R2,β2) be arbitrary two different points in R2
++,

i.e. R1, R2 ≥ 0,β1,β2 ∈ [0,π/2], and r1 = R1/α
1 , r2 = R1/α

2 . Without loss of
generality, we assume R1 ≤ R2, β1 ≤ β2 and || f ||C1 = 1. From (6.5), we have
| f | ≤ 1, |∂R f | ≤ 1

1+R , |∂β f | ≤ R1/40 sin(2β)α/40−1. Using

sin(2β)α/40−1 " (sin(β)α/40−1 + cos(β)α/40−1) " (βα/40−1 + (π/2 − β)α/40−1)

and the estimates of the derivatives, we obtain

| f (R1,β1) − f (R1,β2)| ≤
∫ β2

β1

|∂β f (R1,β)|dβ ≤ CR
1
40
1

∫ β2

β1

(
β

α
40−1 + (

π

2
− β)

α
40−1

)
dβ

≤ CαR
1
40
1 (β

α
40
2 − β

α
40
1 + (

π

2
− β1)

α
40 − (

π

2
− β2)

α
40 )

≤ CαR
1
40
1 |β2 − β1|

α
40 ,

| f (R1,β2) − f (R2,β2)| ≤
∫ R2

R1

|∂R f (R,β2)|dR ≤
∫ R2

R1

1
1 + R

dR

= log
1 + R2

1 + R1
" (R2 − R1)

1/40,

where we have used log 1+R2
1+R1

≤ log(1 + R2 − R1) and log(1 + x) " x1/40 for x ≥ 0 in
the last inequality. The distance d between two points is

d2 = (r1 cos(β1) − r2 cos(β2))
2 + (r1 sin(β1) − r2 sin(β2))

2

= (r1 − r2)
2 + 2r1r2(1 − cos(β1 − β2))

= |R1/α
1 − R1/α

2 |2 + 4R1/α
1 R1/α

2 sin(
1
2
(β1 − β2))

2 ≥ Cα(|R1 − R2|2/α + R2/α
1 |β1 − β2|2),

where we have used R1 ≤ R2 in the last inequality. Using the triangle inequality and
the above estimates, we conclude | f (R1,β1) − f (R2,β2)| " Cαd

α
40 . ⊓3

A.7. Proof of Lemma 9.1.

Proof of Lemma 9.1. We simplifyωθ asω and denote by ϑ = arctan(x2/x1) the angular
variable. Recall the cylinder D1 = {(r, z) : r ∈ [0, 1], |z| ≤ 1}. We extend ω1(r,z)∈D1

to R3 as follows :

ωe(r, z) = ω(r, z) for (r, z) ∈ D1, ωe(r, z) = 0 for (r, z) /∈ D1. (A.46)
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Note that ωe is only supported in D1, which is different from ω. Denote

ω± = max(±ωe, 0), L = −∂rr − 1
r
∂r − ∂zz +

1
r2

, ' = ∂rr +
1
r
∂r + ∂zz +

1
r2

∂ϑϑ ,

ψ±(r, z) =
1
4π

∫ ∞

0

∫ ∞

−∞

∫ 2π

0

sin(ϑ)ω±(r1, z1)
(
(z − z1)2 + r2 + r21 − 2 sin(ϑ)rr1

)1/2 r1dr1dz1dϑ,

(A.47)

where ' is the Laplace operator in R3 in cylindrical coordinates. Clearly, ψ± solve the
Poisson equation in R3: −'(sin(ϑ)ψ±(r, z)) = ω±(r, z) sin(ϑ), which can be verified
easily using the Green function of −'. Since ω± ≥ 0, using the above formula and

sin(ϑ)(
(z−z1)2+r2+r21−2 sin(ϑ)rr1

)1/2 − sin(ϑ)(
(z−z1)2+r2+r21 +2 sin(ϑ)rr1

)1/2 ≥ 0 for ϑ ∈ [0,π ], we get

ψ± ≥ 0.
Let ψ̃ be a solution of (9.3)–(9.4). By definition of L, we have

−'(ψ̃ sin(ϑ)) = sin(ϑ)Lψ̃ = ω sin(ϑ).

Consider the domain D+
1 = {(r, z,ϑ) : r ∈ [0, 1], |z| ≤ 1,ϑ ∈ [0,π ]}, which is a half

of the cylinder D1. Next, we compare ψ̃ sin(ϑ) and ψ+ sin(ϑ) in D+
1 using the maximal

principle for the Laplace operator '.
Recall from (A.46) thatωe = ω in D+

1 ⊂ D1. For (r, z,ϑ) ∈ D+
1 , we have sin(ϑ) ≥ 0

and

− '((ψ̃ − ψ+) sin(ϑ)) = (ω − ω+) sin(ϑ) ≤ 0. (A.48)

On the boundary of ∂D+
1 , we have ϑ ∈ {0,π}, r = 1 or z ∈ {−1, 1}. The boundary

related to ϑ ∈ {0,π} is {(r, z,ϑ) : r ∈ [0, 1], |z| ≤ 1,ϑ = 0,π}, or equivalently
{(x, y, z) : |x | ≤ 1, y = 0, |z| ≤ 1} in the Cartesian coordinates. It contains the symme-
try axis r = 0. Recall that ψ̃ is odd and 2-periodic in z. We obtain (9.5) ψ̃(r,±1) = 0.
Recall the boundary condition (9.4) ψ̃(1, z) = 0 and the fact that ψ+ is nonnegative.
We have

(ψ̃ − ψ+) sin(ϑ) = 0 for ϑ ∈ {0,π}, (ψ̃ − ψ+) sin(ϑ) ≤ 0 for r = 1 or z ∈ {−1, 1},
where we have used sin(ϑ) ≥ 0 in D+

1 . Applying the maximal principle to (A.48) in
the bounded domain D+

1 , we yield (ψ̃(r, z)− ψ+(r, z)) sin(ϑ) ≤ 0 in D+
1 , which further

implies ψ̃(r, z) ≤ ψ+(r, z) for r ≤ 1, |z| ≤ 1. Similarly, we have ψ̃ + ψ− ≥ 0. Hence
|ψ̃ | ≤ ψ+ + ψ−.

Recall from (A.46),(A.47) that supp(ω±) ⊂ supp(ω) ∩ D1 and the assumption
supp(ω) ∩ D1 ⊂ {(r, z) : (r − 1)2 + z2 < 1/4} in Lemma 9.1. Thus, for r > 1

4 ,
(r1, z1) in the support of ω± and |ϑ | ≤ π , we have r1 > 1

2 and

(z − z1)2 + r2 + r21 − 2 cos(ϑ)rr1
= (z − z1)2 + (r − r1)2 + 4 sin2(ϑ/2)rr1 ≍ (((z − z1)2 + (r − r1)2)1/2 + |ϑ |)2.

We have similar estimate with cos(ϑ) replaced by sin(ϑ). Using this estimate and inte-
grating the ϑ variable in the integral about ψ± in (A.47), we complete the proof. ⊓3
Remark A.14. The above proof can also be established in the Cartesian coordinates,
which is essentially the same up to change of variables.
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A.8. A toy model for 2D Boussinesq. We consider the toy model introduced in [11]

ωt − (x1λ(t),−x2λ(t)) · ∇ω = ∂1θ,

θt − (x1λ(t),−x2λ(t)) · ∇θ = 0, λ(t) =
∫

R2

y1y2
|y|4 ω(y, t)dy,

where ∂1θ = ∂x1θ . This model can be derived from the 2D Boussinesq equations by
approximating the velocity (u, v) by ux1(0, 0, t) · (x1,−x2) and rescale the solution by
a constant. We assume that ω is odd in x1 and x2, and θ is even in x1 and odd in x2. We
show that for initial data ω0,∇θ0 ∈ Cα

c (R2), the solution exists globally. We follow the
argument in [11]. Without loss of generality, we assume supp(∂1θ0) ⊂ [−1, 1]2. Using
the derivation in [11], we get

ω(x1, x2, t) = (∂1θ0)(µ(t)x1,
x2
µ(t)

)

∫ t

0
µ(s)ds, µ(t) ! exp(

∫ t

0
λ(s)ds),

µ̇

µ
= 4

∫ t

0
µ(s)ds J (t), J (t) !

∫ ∞

0

∫ ∞

0

y1y2
|y|4 (∂1θ0)(µ(t)y1,

y2
µ(t)

)dy1dy2.

(A.49)

Next, we estimate J (t). Denote θ̃(x1, x2) = θ0(x1, x2)− θ0(0, x2). Clearly, we have
∂1θ̃ = ∂1θ . We simplify µ(t) as µ. Since (∂1θ̃0)(µy1,

y2
µ ) = µ−1∂1(θ̃0(µy1,

y2
µ )),

supp(∂1θ̃0) = supp(∂1θ0) ⊂ [−1, 1]2, using integration by parts and ∂1
y1y2
|y|4 =

y2(y22−3y21 )
|y|6 , we yield

J = µ−1
∫ µ−1

0

∫ ∞

0

y1y2
|y|4 ∂1

(
θ̃0(µ(t)y1,

y2
µ(t)

)
)
dy1dy2

= µ−1
∫ ∞

0

µ−1y2
(µ−2 + y22 )

2
θ̃0(1,

y2
µ
)dy2

− µ−1
∫ µ−1

0

∫ ∞

0

y2(y22 − 3y21 )
|y|6 θ̃0(µy1,

y2
µ
)dy1dy2 ! J1 + J2.

Since θ̃0 ∈ C1,α , θ̃0(0, x2) = 0 and θ̃0(x1, 0) = 0, we have |θ̃0(x1, x2)| " |x1|α|x2|.
It follows

|J1| " µ−1
∫ ∞

0

µ−1y2
(µ−2 + y22 )

2

y2
µ
dy2 = µ−2

∫ ∞

0

z2

(1 + z2)2
dz " µ−2,

|J2| " µ−2
∫ µ−1

0
(µy1)

α
∫ ∞

0

∣∣∣
y22 (y

2
2 − 3y21 )

|y|6
∣∣∣dy2dy1 " µ−2

∫ µ−1

0
(µy1)

α y−1
1 dy1 "α µ−2.

Plugging the above estimates in (A.49), we obtain

∣∣∣
µ̇

µ

∣∣∣ "α µ−2
∫ t

0
µ(s)ds.

Thus, µ remains bounded for all time. Formula (A.49) implies that the solution exists
globally.
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