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Abstract: Inspired by the numerical evidence of a potential 3D Euler singularity by Luo-
Hou [30,31] and the recent breakthrough by Elgindi [11] on the singularity formation of
the 3D Euler equation without swirl with C'-* initial data for the velocity, we prove the
finite time singularity for the 2D Boussinesq and the 3D axisymmetric Euler equations
in the presence of boundary with C ¢ initial data for the velocity (and density in the case
of Boussinesq equations). Our finite time blowup solution for the 3D Euler equations
and the singular solution considered in [30,31] share many essential features, including
the symmetry properties of the solution, the flow structure, and the sign of the solution
in each quadrant, except that we use C*¢ initial data for the velocity field. We use a
dynamic rescaling formulation and follow the general framework of analysis developed
by Elgindi in [11]. We also use some strategy proposed in our recent joint work with
Huang in [7] and adopt several methods of analysis in [11] to establish the linear and
nonlinear stability of an approximate self-similar profile. The nonlinear stability enables
us to prove that the solution of the 3D Euler equations or the 2D Boussinesq equations
with C1¢ initial data will develop a finite time singularity. Moreover, the velocity field
has finite energy before the singularity time.

1. Introduction

The three-dimensional (3D) incompressible Euler equations in fluid dynamics describe
the motion of ideal incompressible flows. It has been used to model ocean currents,
weather patterns, and other fluids related phenomena. Despite their wide range of applica-
tions, the question regarding the global regularity of the 3D Euler equations has remained
open. The interested readers may consult the excellent surveys [1,10,16,19,26,32] and
the references therein. The main difficulty associated with the regularity properties of
the 3D Euler equations is due to the presence of vortex stretching, which is absent in
the 2D Euler equations. To better illustrate this difficulty, we consider the so-called
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vorticity-stream function formulation:
wr+u-Vo=w-Vu, (1.1)

where w = V X u is the vorticity vector of the fluid, and u is related to w via the Biot—
Savart law. Under some decay conditions in the far field, one can show that w satisfies
the property

lollLr < IVullLr < Cpll@llLr, 1< p < oo. (1.2)

Thus, the vortex stretching term o - Vu formally scales like w?. If such nonlinear align-
ment persists in time, the 3D Euler equations may develop a finite-time singularity.
However, due to the nonlocal nature of the vortex stretching term, such nonlinear align-
ment may deplete itself dynamically (see e.g. [22]). Despite considerable efforts, whether
the 3D Euler equations with smooth initial data of finite energy can develop a finite time
singularity has been one of the most outstanding open questions in nonlinear partial
differential equations.

In [30,31], Luo and Hou presented some convincing numerical evidence that the
3D axisymmetric Euler equations with a solid boundary develop a potential finite time
singularity for a class of smooth initial data with finite energy. The presence of the
boundary and the odd-even symmetry of the solution along the axial direction play
an important role in generating a stable and sustainable finite time singularity. The
singularity scenario reported in [30,31] has generated great interests and has inspired a
number of subsequent developments, see e.g. [8,24,25] and the excellent survey article
[26].

Despite all the previous efforts, there is still lack of theoretical justification of the
finite time singularity for the 3D axisymmetric Euler equations reported in [30,31].
Very recently, Elgindi made a breakthrough on the 3D Euler equation singularity [11]
by constructing the self-similar blowup solutions to the 3D axisymmetric Euler equations
with C1¢ velocity and without swirl.

1.1. Main results. In this paper, inspired by the computation of Hou-Luo [30,31] and
Elgindi’s work [11], we study the singularity formation of 3D axisymmetric Euler equa-
tions and the 2D Boussinesq equations with boundary. Since the singularity of the 3D
axisymmetric Euler equations reported in [30,31] occurs at the boundary, away from the
symmetry axis, it is well known that the 3D axisymmetric Euler equations are similar
to the 2D Boussinesq equations [32]. Thus, it makes sense to investigate the finite time
singularity of the 2D Boussinesq equations.

The main results of this paper are summarized by the following two theorems. In
our first main result, we prove finite time blowup of the Boussinesq equations with C 1
initial data for the velocity field and the density.

Theorem 1.1. Let w be the vorticity and 0 be the density in the 2D Boussinesq equa-
tions described by (2.1)—(2.3). There exists g > 0 such that for 0 < a < «q, the
unique local solution of the 2D Boussinesq equations in the upper half plane devel-
ops a focusing asymptotically self-similar singularity in finite time for some initial data
w e CY (R%), 0 € CCI’O‘(]R%). In particular, the velocity field is C'* with finite energy.
Moreover, the self-similar profile (weo, Oo0) Satisfies Woo, Voo € Cio.
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By asymptotically self-similar, we mean that the solution in the dynamic rescaling
equations (see Definition in Sect. 4.1) converges to the self-similar profile in a suitable
norm. We will specify the norm in the convergence in Sect. 8.6.3.

In our second result, we prove the finite time singularity formation for the 3D axisym-
metric Euler equations with large swirl in a cylinder D = {(r,z) : r < 1,z € T}
that is periodic in z (axial direction) with period 2, where r is the radial variable and
T =R/ (2Z).

Theorem 1.2. Consider the 3D axisymmetric Euler equations in the cylinder r,z €
[0, 1] x T. Let 0 be the angular vorticity and u® be the angular velocity. There exists
ao > 0 such that for 0 < o < «ay, the unique local solution of the 3D axisymmetric
Euler equations given by (9.2)—(9.4) develops a singularity in finite time for some initial
data o’ € C*(D), (u?)? e C1*(D) supported away from the axis r = 0 with u? > 0.
In particular, the velocity field in each period has finite energy.

Our analysis shows that the singular solution in Theorem 1.2 in the dynamic rescaling
formulation remains very close to an approximate blowup profile in some norm (see
Sect. 9) for all time (or up to the blowup time in the original formulation). Itis conceivable
that it converges to a self-similar blowup profile of 2D Boussinesq at the blowup time so
that the blowup solution is asymptotically self-similar. However, we cannot prove this
result using the current analysis since the domain D is not invariant under dilation. We
leave it to our future work.

1.2. Main ingredients in our analysis. Our analysis follows the general framework
developed by Elgindi in [11]. We use the Boussinesq equations to illustrate the main
ideas in our analysis.

As in our previous work [7], we reformulate the equations using an equivalent
dynamic rescaling formulation (see e.g. [28,34]). We follow [11] to derive the lead-
ing order system. In the derivation, we have used the argument in [11] to obtain the
leading order approximation of the stream function for small «. Moreover, as observed
by Elgindi and Jeong in [14] (see also [11]), the advection terms are relatively small
compared with the nonlinear vortex stretching term when we work with C* solution
with small « for vorticity or VO, which vanishes weakly near the origin, e.g. [x|*. In
the 2D Boussinesq equations (2.1)—(2.2), the vortex stretching term for the w equation
is given by 6,. Within the above C* class of solution, the transport term u - Vo may
not be smaller than 6,. For example, one can choose w, 6 so thatu - Vo = O (1) and
0, = O(1). We further look for solutions of the 2D Boussinesq equation (2.1)—(2.2)
by letting @ = a®, 6 = af with & = O(1) and & = O(1) as @ — 0. Formally, the
nonlinear transport term u - Vw becomes relatively small compared with 6, due to the
weakening effect of advection for C* data and the weak nonlinear effect due to the fact
that o = O(x) and 6, = O(w) for small « at a given time. Thus, we can ignore the
contributions from the advection terms for small « when we work with this class of w and
6. See more discussion in Sect. 2.4. In addition, inspired by our own computation of the
Hou-Luo singularity scenario [30,31], we look for 6 that is anisotropic in the sense that
6y is small compared with 6,.. We will justify that this property is preserved dynamically
for our singular solution. As a result, we can decouple the 6, equation from the leading
order equations for w and 6. This gives rise to a leading order coupled system of Riccati
type for @ and 6, which is similar to the scalar leading order equation obtained in [11].
Inspired by the solution structure of the leading order system in [11], we are able to find
a class of closed form solutions of this leading order system.
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The most essential part of our analysis is to establish linear stability of the approximate
steady state using the dynamic rescaling equations. As in [11] and our previous work
with Huang [7], we design some singular weights to extract the damping effect from the
linearized operator around the approximate steady state. In order for the perturbation
from the approximate steady state to be well defined in the weighted norm with a more
singular weight, we impose some vanishing conditions on the perturbation at the origin
by choosing some normalization conditions. This leads to some nonlocal terms related
to the scaling parameter c,, in the linearized equations, which are not present in [11].

Compared with the scalar linearized equation considered in [11], the linearized equa-
tions for the 2D Boussinesq equations lead to a more complicated coupled system and
we need to deal with a few more nonlocal terms that are of O(1) as « — 0. Thus we
cannot apply the coercivity estimate of the linearized operator in [11], which is one of
the key steps in constructing the self-similar solution in [11]. One of the main difficul-
ties in our linear stability analysis is to control the nonlocal terms. If we use a standard
energy estimate to handle these nonlocal terms, we will over-estimate their contributions
to the linearized equations and would not be able to obtain the desired linear stability
result. Since the damping term has a relatively small coefficient, we need to exploit the
coupling structure in the system and take into account the cancellation among different
nonlocal interaction terms in order to obtain linear stability. For this purpose, we design
our singular weights that are adapted to the approximate self-similar profile and contain
different powers of R~ to account the interaction in the near field, the intermediate field
and the far field. To control the nonlocal scaling parameter c,,, we will derive a separate
ODE for ¢, which captures the damping effect of c,,.

We have used the elliptic estimate and several nonlinear estimates from [11] in our
nonlinear stability analysis. The presence of swirl (the angular velocity u?) or density
() introduces additional technical difficulties. Since the approximate steady state for
V6 does not decay in certain direction, we need to design different weighted Sobolev
spaces carefully for different derivatives and further develop several nonlinear estimates.
To obtain the L estimate of a directional derivative of 6, which is necessary to close the
nonlinear stability analysis, we make use of the hyperbolic flow structure. Once we obtain
nonlinear stability, as in [7], we establish finite time blowup from a class of compactly
supported initial data wp and 6y with finite energy by truncating the approximate steady
state and using a rescaling argument. We further establish convergence of the solution
of the dynamic rescaling equations to the self-similar profile using a time-differentiation
argument. This argument has also been used in our recent joint work with Huang in [7]
and developed independently in [11].

1.3. From the 2D Boussinesq to the 3D Euler equations. For the 3D Euler equations, we
consider the domain within one period, i.e. D1 = {(r,z) : r € [0, 1], |z] < 1}. We will
construct a singular solution that is supported near r = 1, z = 0 up to blowup time and
blows up at r = 1, z = 0. Since the support is away from the symmetry axis, we show
that the 3D Euler equations are essentially the same as the 2D Boussinesq equations
up to some lower order terms. This connection is well known; see e.g. [32]. Then we
generalize the proof of Theorem 1.1 to prove Theorem 1.2. To justify this connection
rigorously, we need two steps. The first step is to establish the elliptic estimates in the
new domain. The second step is to control the support of the solution and show that it
remains close to r = 1, z = 0 up to the blowup time.
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1.3.1. Control ofthe support Thereason that the support of the singular solution remains
close to (r, z) = (1, 0) is due to the following properties of the singular solution. Firstly,
the singular solution is focusing, which is characterized by the rescaling parameters
c(t) > % for all T > 0. See the definition of ¢; in Sect. 4.1. Secondly, the velocity in
the dynamic rescaling formulation has sublinear growth in the support of the solution.
These properties hold for the singular solution of the 2D Boussinesq equations. We prove
that they remain true for the 3D Euler in Sect. 9. Using these properties, we derive an
ODE to control the size of the support and show that it remains small up to the blowup
time. See more discussion in Sect. 9.3.5. Similar ideas and estimates to control the
support have been used in [7] to generalize the singularity formation of the De Gregorio
type model from the real line to a circle.

1.3.2. The elliptic estimates The elliptic equation for the stream function v/ (r, z) in D;
reads

~ 1 ~ 1 -
Ly = —(Brr+;8r+3zz)1ﬁ+r—21ﬂ :a)g’ (1.3)

where ? is the angular vorticity. We impose the periodic boundary condition in z and a
no-flow boundary conditionon r =1 : 1,5(1 z) = 0. See [31,32]. Since the solution is
supported nearr =1,z =0,wewill only use w(r z) for (r, z) near (1, 0) in our analysis.
In this case, r—* =~ 1 and the term — 8 1// +3 w in L’l/f is of lower order compared

with 8¢ + BZZW In the dynamic rescahng equations, we obtain a small factor C;(t)
for the term — 8 w + 3 1// and treat it as a perturbation in Ew Moreover, if we relabel

the variables (r, Z) as (y, x) in R2, we formally have El/f ~ —Azpt//. In Sect. 9.2, we
will justify this connection rigorously and then generalize the elliptic estimates that we
obtain for the 2D Boussinesq to the 3D Euler equations.

1.4. Connections to the Hou—Luo scenario. Many settings of our problem are similar to
those considered in [30,31]. See more discussions after Lemma 3.1. The driving mecha-
nism for the finite time singularity that we consider in this paper is essentially the same as
that for the 3D axisymmetric Euler equations with solid boundary considered in [30,31].
In both cases, the swirl (the angular velocity u” ) and the boundary play an essential
role in generating a sustainable finite time singularity. It is the strong compression of the
angular velocity u? toward the symmetry plane z = 0 along the axial (z) direction on
the boundary r = 1 that creates a large gradient in x?. Then the nonlinear forcing term
3, (u?)? induces a rapid growth in the angular vorticity »?, ultimately leading to a finite
time blowup. Moreover, the singularities that we consider occur at the solid boundary,
which are the same as the one reported in [30,31].

We would like to emphasize that the presence of boundary plays a crucial role in the
singularity formation even with C'- initial data for the velocity and 6. If we remove the
boundary, a promising potential blowup scenario for the 2D Boussinesq equation is to
have a hyperbolic flow structure near the origin with 4-fold symmetry for 6, i.e. 6 is odd in
y and even in x. Similar scenario has been used in [38]. Since 6 (x, y) is odd with respect
toyand6 € C1%, atypical 0 is of the form: 0 (x, y) ~ ciax**y+l.0.t., ¢ # Onear the
origin. From our derivation and analysis of the leading order system, it is the nonlinear
coupling between w and 6, that generates the blow-up mechanism. However, without
the boundary, 6y ~ cia(1 + «)x*y + [.0.t. and it does not vanish to the order O (|y|)
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near y = 0 with a small exponent k > 0. The advection of 6, along the y direction is not
small compared with the vortex stretching term —u, 6y in the 6, equation (2.6). Thus,
we can no longer neglect the contribution from the y advection term and we cannot
derive our leading order system in this case. In fact, the transport of 6, along the y
direction provides a strong destabilizing effect to the singularity formation and would
likely destroy the self-similar focusing blowup mechanism [20,21].

If we approximate the velocity field (u, v) by (xu, (0,0, t), yvy(0, 0, 7)) (note that
uy(0,0,1) +vy(0,0,7) = 0) as was done in a toy model introduced in [11], we have
the following result. For any wq, V8 € C¢ (R?), which is in the local well-posedness
class for the 2D Boussinesq equations [3], under the 4-fold symmetry assumption, the
solution of the toy model exists globally. The key point is that due to the odd symmetry
of 6 with respect to y and the assumption that 6y € C'**, 6y must vanish linearly in y,
i.e. |0(x, y)| < |y|. The proof follows an estimate similar to that presented in [11] and
we defer it to Appendix A.8.

In the presence of the boundary (y = 0), 6 can be nonzero on y = 0, which removes
the above constraint |6(x, y)| < |y|. Then we can further weaken the transport terms
in the 2D Boussinesq as discussed in Sect. 1.2. Although the leading order system for
the 2D Boussinesq equations and the 3D Euler equations with C1-¢ initial velocity and
the boundary looks qualitatively similar to that for the 3D Euler equations without swirl
and without boundary obtained in [11], the physical driving mechanisms of the finite
time singularity behind these two blowup scenarios are quite different. In our case, the
swirl and the boundary play a crucial role. Our numerical study suggests that even for
smooth initial data, 6 is an order of magnitude larger than 6, and the effect of advection
is relatively weak compared with the vortex stretching term. More importantly, our
computation reveals that the real parts of the eigenvalues of the discretized linear operator
are all negative and bounded away from zero by a finite spectral gap. See also Section
3.4 in [29] for an illustration of the eigenvalue distribution of the discretized linearized
operator. This is a strong evidence that the linearized operator should be stable even for
smooth initial data. The essential step in proving this rigorously is the linear stability
analysis, which requires us to estimate the Biot—Savart law without the availability of
the leading order structure for C1-¢ velocity and control a few more nonlocal terms that
we can neglect using the C1:¢ initial data. In some sense, our blowup analysis for C1-*
initial data captures certain essential features of the Hou-Luo scenario [30,31] and some
essential difficulties in the analysis of such scenario.

1.5. Review of other related works. In the recent works [13,15], Elgindi and Jeong
proved finite time singularity formation for the 2D Boussinesq and 3D axisymmetric
equations in a physical domain with a corner and €0 data. The domain we study in
this paper does not have a corner. In the case of the 3D Euler equations, our physical
domain includes the symmetry axis. In comparison, the domain studied in [13] does not
include the symmetry axis.

In [18,27], the authors studied a modified 2D Boussinesq equations with 6, in (2.1)
replaced by 6 /x and using a simplified Biot—Savart law. In these works, the simplified
Biot—Savart law has a positive kernel and the authors have been able to prove finite time
blowup for smooth initial data using a functional argument.

After we completed our work, we learned from Dr. Elgindi that the stability of the
self-similar blowup solutions in [11] and the construction of finite-energy C!-* solutions
that become singular in finite time have been established recently in [12].
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Organization of the paper In Sects. 2—4, we provide some basic set-up for our analysis,
including the derivation of the leading order system, the dynamic rescaling formula-
tion, the reformulation using the polar coordinates (R, 8), and the construction of the
approximate self-similar solution. Section 5 is devoted to the linear stability analysis of
the leading order system. In Sect. 6, we perform higher order estimates of the leading
order system as part of the nonlinear stability analysis. Sections 7 and 8 are devoted to
the nonlinear stability analysis of the original system. In Sect. 9, we extend our analysis
for the 2D Boussinesq equations to the 3D axisymmetric Euler equations. Some con-
cluding remarks are provided in Sect. 10 and some technical estimates are deferred to
the Appendix.

Notations We use (-, -), || - ||;2 to denote the inner product in (R, 8) and its L? norm

oo pm/2
<f,g>=/0 A F(R,P)g(R, B)dRdB, || fllL2 = V(] f)- (1.4)

We also simplify || - ||;2 as || - [|2. We remark that we use d Rdp in the definition of the
inner product rather than Rd Rdp.

We use the notation A < B if there is some absolute constant C > 0 with A < CB,
and denote A < Bif A < B and B < A. The notation - is reserved for the approximate
steady states, e.g. Q denotes the approximate steady state for 2. We will use C, C1, C»
for some absolute constant, which may vary from line to line. We use K1, K>, .. and
U1, M2, ... to denote some absolute constant which does not vary.

2. Derivation of the Leading Order System

In this section, we will derive the leading order system that will be used for our analysis
later in the paper. We first recall that the 2D Boussinesq equations on the upper half
space are given by the following system:
wr+u-Vo =6,, (2.1)
O +u-Vo =0, (2.2)

where the velocity field u = (u, 0T . Ri x [0, T) — R% is determined via the Biot—
Savart law

—AY =w, u=-—yy,, v=1yy, (2.3)
with no flow boundary condition
Y(x,00=0 xeR

and v is the stream function. The reader should not confuse the vector field u with its
first component u.

The 2D Boussinesq equations have the following scaling-invariant property. If (w, 6)
is a solution pair to (2.1)—(2.3), then

1 x t A x t
wy(x,1) = ;60 (X’ ;) , O (x, 1) = ?9 (X’ ;) (2.4)

is also a solution pair to (2.1)—(2.3) for any A, 7 > O.
Next, we follow the ideas in Sect. 1.2 to derive the leading order system for the
solutions w, V8 € C* with small «.
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2.1. The setup. We look for a solution of (2.1)—(2.3) with the following symmetry

w(x,y)=—-wkx,—y), 0x,y)=0(0x,y)

for all x, y > 0. Accordingly, the stream function ¥ (2.3) is odd with respect to x

'(//(X, y) = _l//(_x’ )’)

It is easy to see that the equations (2.1)—(2.3) preserve these symmetries during time
evolution. With these symmetries, it suffices to solve (2.1)—(2.3) on (x, y) € [0, 00) X
[0, co) with the following boundary conditions

U(x,0) =v(0,y)=0

for the elliptic equation (2.3).
Taking x, y derivative on (2.2), respectively, we obtain

w;+u-Vo =0, (2.5)
Oxt +u- V@x - _uxex - vxey, (2.6)
Oy +1- VO, = —u,0; — v,0y. 2.7)

Under the odd symmetry assumption, we have u (0, y) = 0. If the initial data 6 (0, y) = 0,
this property is preserved. Therefore, we can recover 6 from 6, by integration. We will
perform a-prior estimate of the above system, which is formally a closed system for
(0), 0x ’ ey)'

2.2. Reformulation using polar coordinates. Next, we reformulate (2.5)—(2.7) using the
polar coordinates introduced by Elgindiin [11]. We assume that o < 1/10. We introduce

r=./x2+y%, B =arctan(y/x), R =r?,
Notice that 9, = o Rog. We denote
1
Q(R,B,1) =w(x,y, 1), V= r—zlﬁ, n(R, B, 1) = (0x)(x, y, 1),

§(R,B,1) = (6y)(x,y,1). (2.8)
We have

5, = cos(B), — sinr(,B) 55 cos(B) sin(B) 5,

= o ROp —
r (2.9)

.
9y = sin(B)d, + Cosr(ﬂ) dp = Smr(ﬂ)aRaR + Cos'r(ﬂ)aﬁ,

Then using (2.3), we derive

u= —(r2\p)y = —2rsin BY — arRsin BogW — r cos Bag V¥, (2.10)
v = (rZ\IJ)x = 2rcos BY +arRcos BorRW — rsin BogW. '
Using the new variables R, 8, we can reformulate the Biot—Savart law (2.3) as

— @?RPIRpW — (4 + @) RIRY — gV — 4W = Q (2.11)
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with boundary condition

W(R,0) = (R, %) —0.

For the transport term in (2.5)—(2.7), we use (2.9) to derive
udy +vdy — —(aRIgW)dg + 2V +aRIRW)dg. (2.12)

Recall the notations €2, n, & in (2.8) for w, 0, 6 in the (R, B) coordinates. Using
(2.12), we can rewrite (2.5)—(2.7) in (R, B) coordinates as follows

Qi+ (= @RIW)Ip + 2 + a RO, )2 = 1, (2.13)
0+ ( — (@RIpW)dg + QW +aRaR\11)a,3)n = —uyn — vk, (2.14)
£ + ( — (@RI + QU +aRaR\p)aﬂ)s = —uyn — vyE. (2.15)

The formulas of Vu in (R, f) coordinates are rather lengthy and presented in (8.6).

2.3. Leading order approximations of the Biot—Savart law and the velocity. Next, we
use an important result of Elgindi in [11] to obtain a leading order approximation of
the modified stream function. Using this approximation, we can simplify the transport
terms and Vu, and further derive the the leading order system of (2.13)—(2.15).
Following [11], we decompose the modified stream function W as follows

1
v = —sin(28)L12(2) + lower order terms,
To
o0 /2 o 28)Q
Lix(9) :/ / sin( ,B)S (s’ﬁ)dsdﬂ.
R 0

For w € C% with sufficiently small « > 0, the leading order term in W is given by
the first term on the right hand side. The lower order terms (l.o.t.) are relatively small
compared to the first term and we will control them later using the elliptic estimates. We
will perform the L? estimate for the solution of (2.11) and one can see that the a-priori
estimate blows up as « — 0. For @ = 0, (2.11) becomes

(2.16)

Lo(W) = —0pp ¥ — 40,

with boundary conditions W(R,0) = W(R, /2) = 0, which is self-adjoint and has
kernel sin(28). In this case, to solve Lo(V) = €2, a necessary and sufficient condition
is that €2 is orthogonal to sin 2. Imposing this constraint when we perform the elliptic
estimate leads to the leading order term in W (2.16).

Following the same procedure as in [11], we drop the O («) terms in (2.9), (2.10) and
the lower order terms in (2.16) to extract the leading order term of the velocity u, v

2 2 si
_2reOSP (@) +lor., v S0P

u = L12(Q2)+1.0.t.,

) (2.17)
Uy = —Vy = —ngz(Q) +l.o.t.,, uy=Ilot., ve=Ilot.
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The complete calculation and the formulas of the lower order terms are given in (8.6)—
(8.8).
Similarly, the leading order term in the transport terms (2.12) is

—(xRIgW)og + Q¥ +aRIgrW)dg

— _% cos(2B)L12(Q)Rog + % Sin(2B)L12(Q)dp +Lo.t..  (2.18)

Later on, we will prove that the self-similar blowup is non-linearly stable and we
will control the above lower order terms using the elliptic estimates. These terms will
be treated as small perturbations and are harmless to the self-similar blowup.

2.4. Decoupling and simplifying the system. We will look for solution 6 of (2.5)—(2.7)
(or equivalently (2.13)—(2.15)) such that 6, € C%, 6y is odd, and 6, is relatively small
compared to 6, i.e. 0 is not isotropic. The anisotropic property of 6 will enable us
to further simplify (2.13)—(2.15). The reason that we have this property is due to the
following key observation. For the purpose of illustration, we construct a function 6
that has the same qualitative feature as our solution 6. We first construct 6, of the form:

— X
Oy = a5 for x, y > 0. Then for x, y close to 0, we have
1 I+a @ (x2 4 y2)a/2
0 ~ . x , |0y|% « . Xy ) x*(x ) SO[QX.
L+ 1+ (x2+yH)e2 T+a x2+y2 (14 (x2+y2)e/2)2

(2.19)

Compared to 6y, 0y is relatively small. Equivalently, & is small relative to . Moreover,
& is weakly coupled with €2, n in (2.13)—(2.14) since v, = l.0.t. according to (2.17).
Hence, we can decouple & from the 1 equation in (2.14) as follows

n + ( — (@RIpW)dg + QW +aRaR\11)aﬂ)n — —un+lot.

These key observations motivate us to focus on the system (2.13)—(2.14) about €2, 7.
Using the calculations of Vu (2.17), the transport terms (2.18) and treating & (6y) as
a lower order term, we can simplify (2.13)—(2.15) as follows

2 2
Q; — —cos(2B)L12(R)RIR2 + — sin(2B)L12(2)02 =n +l.0.1., (2.20)
b4 T

2 2 . 2
N — — cos(2B)L12(2)RIgn + — sin(2B)L12(2)0pn = — L12(2)n +1.0.1.,
T T To
2.21)

where the equations are evaluated at (R, f) with R = (x2 + y2)*/2 B = arctan(y/x).
Notice that in (2.21), the first transport term looks much smaller than the other transport
term and the nonlinear term which contains a 1/« factor. Thus we can ignore it in
our leading order approximation. For the angular transport term, we use an argument
introduced in [11] and look for approximate solutions (€2, i) of the form

Q(R,B.1) =al'(B)Qu(R, 1), n(R,B,1) =al'(B)n«(R,1), T(B) = (cos(B))”.
(2.22)
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We have added the factor « in the above form, which is slightly different from [11]. For
B € [0, /2], we gain a small factor « from the angular derivative:

|$in(28)sT (B)] = |2a sin* () (cos(B))*| < 2aT (B).

Hence, the angular transport term in (2.21) becomes smaller compared to the nonlinear
term.

Using (2.22) and the above estimate, formally, we obtain that the transport terms in
(2.20) is of order o and n in (2.20) is of order «. Therefore, we drop the transport terms
in (2.20). This additional consideration is not required in [11] for 3D asymmetric Euler
without swirl.

We remark that in our dynamic rescaling formulation, 1 is comparable to the nonlinear
term oz_lL]z(SZ)n. Therefore, we drop the transport terms and the lower order terms in
(2.20),(2.21) to derive a leading order system for (€2, 1)

2 oo pm/2 Q(s, in(2
Q=n m=_Lo@n L@ =/R /0 (s ﬁ)ssm( P) isap.

(2.23)

It is not difficult to see that if the initial data €2, n are non-negative and are odd with
respect to x, the solutions preserve these properties dynamically. In the first equation,
Q2 tends to align with n during the evolution. Then the nonlinear term in the second
equation is of order n2, which is the driving force of finite time singularity of the leading
order system.

3. Self-similar Solution of the Leading Order System

The leading order system (2.23) is crucial in our analysis and it captures the leading
behavior of the blowup solution of the Boussinesq equations (2.1)—(2.3). In this section,
we construct the self-similar solution of the leading order system (2.23) for (€2, ).
Notice that L1, (€2) does not depend on the angular component 8. Inspired by the solution
structure of the leading order system in [11], we look for a self-similar solution in the
form

Q(R, B, 1) = (T — 1)y ( ) L'(B),

77(R7 ﬁ’ t) - (T_I)CG_C[TI*( )F(IB)’

(T —ryxa

where ¢, ¢/, cp are the scaling parameters. The reason that we use the scaling factor
o

(T — 1) in the space variable R is that R = r* and W = (ﬁ) , where

r = +/x%+ y2. Factor (T — 1) corresponds to the scaling of the original variables x, y

and (T — t)“ is the scaling of 6 in (2.5)—(2.7). See (2.4) for the scaling invariance of

the Boussinesq equations.
Plugging the self-similar solutions ansatz into (2.23), we obtain

= (T =0 leuQu@T(B) + (T = " 'aez8:Q: (T (B) = (T = "5 ()T (B).
— (T =)™ eg = epne T (B) + (T = ™" aeizd:n. ()T (B) 3.1)

_ co—Cl+cy 2 o Q4 (s) /2 .
=T -1 N+ () (B)— ds - I'(B) sin(2B)dp,
T J, N 0
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where z = R - (T — t)”%“ > 0. From the above equations, we obtain that the scaling
parameters (c,,, ¢y, cp) satisfies

Cop—1=cop—c;, cop—c—1=cy+cop—cy,
which implies
Co =—1, co=c+2.

Denote
c = % /ﬂ I'(B) sin(2B)dB.
7T Jo

Plugging the relations among the scaling parameters into (3.1) and factorizing the tem-
poral variable, we derive

aciz0; 2 (B) = —Q.I'(B) + nI'(B),

= 3.2
acizd.n:T(B) = =21, (B) + gﬂ*r(ﬂ)/ (5) (3.2)

ds.

S

We can factorize the angular part I' () to further simplify the above equations. Surpris-
ingly, the above equations have explicit solutions of the form

azg

Q*(Z) = m,

= —
o

(recall that z > 0). We determine 7, from the first equation in (3.2)

2abz
N4(2) = 001202 + Qi = 20, Q4 + Qe = m
Then (1., ©24) solves (3.2) exactly if and only if
c 0 Qu(s
o z
which is equivalent to
B 6abz N 2ab N 4abz ¢ 2abz a B 2ab(—3ab +ac)z
B (b+2)* (b+z2)3) B+23 ab+2)3b+z a (b +2)*

Hence, we obtain

3ab
a=—.
c

Using the above formula, we can derive the solutions (2, 17,) of (2.23). We remark that
there is a free parameter b in the solutions (€24, 1x). After we impose a normalization
condition, e.g. the derivative of 2, at z = 0, we can determine b. For simplicity, we

choose b = 1 and then a becomes a = 3«/c. Consequently, we obtain the following
result.
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Lemma 3.1. The leading order system (2.23) admits a family of self-similar solutions

o

QR B =2 . (=2 R.B.1) = Lor X
R 5.0 = TR (7 ) s =St e (7).

for some T > 0, where

3z 6z

We will choose I'(8) = (cos(8))“ in the later discussion.
Properties of 0.,  The self-similar profile (€2, n) of the leading order system (2.23) in
Lemma 3.1 is indeed anisotropic in x, y direction. Moreover, 6, and w are positive in the
first quadrant. For I'(8) = (cos(8))?, the self-similar profile of 6, in the first quadrant
is

2 /2
Qu(2) = =2 fo [(B) sin(2B)dB 0.

0, = Cal'(B)—— = ¢ Ll
e = Cel ) Ry = T ey

for some constant C. If x2 + y2 is small, the formal argument (2.19) shows that 6,
is relatively small compared to 6,. We will estimate it precisely in Lemma A.8 in the
Appendix.

Hyperbolic flow field The leading order of the flow structure corresponding to the
self-similar solution of the leading order system can be obtained using (2.17)

I (Q)(R,Bt)—mx 1 3 _ o 3
PR T O T i+ R/(T =) 2 T—D+R
3rcosf 3r sin(B)
, v, ) = ——— +[.0.1., , v, 1) = ——— +l.0.t..
u@ y. ) ==y g thets vy =g tlo

In the first quadrant, the flow is clockwise since u < 0,v > 0. Moreover, the odd
symmetry of w implies that the flow is hyperbolic near the origin. These properties of
the solutions are similar to those considered in [30,31].

4. The Dynamic Rescaling Formulation and the Approximate Steady State

In this section, we reformulate the problem using the dynamic rescaling equation and
construct an approximate steady state based on the self-similar solution of the leading
order system.

4.1. Dynamic rescaling formulation. Let w(x,1t),0(x,t),u(x,t) be the solutions of
(2.1)—(2.3). Then it is easy to show that

B(x,7) = Co(TD)w(C(T)x, 1(T)),  O(x,7) = Co(1)0(Ci(T)x, 1(1)),

i : 4.1)
u(x, v) = Co(v)Ci (7)) u(Ci(1)x, 1(7)),

are the solutions to the dynamic rescaling equations
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Or (X, T) + () (D)X +1) - VO = cp(T)D + 0y,  O:(x,7) + (c(T)x +0) - VO = 0,
(4.2)

where u = (u, v)T = VEH(—=A)"1d, x = (x, T,

Cy(t) =exp (/r cw(s)dr> , Ci(t) =exp (fr —cl(s)ds) ,
0 0
Cp = exp (/‘I ch (s)dr) , 4.3)
0

t(r) = fOT C,(7)dt and the rescaling parameter ¢;(t), cg(7), ¢, (7) satisfies
co(t) = (1) +2c4 (7). 4.4)

Let us explain the above relation. Using this relationship and (4.1), we have u- Voo =
C,(t)*u-Vwand 6, = Cy(tr)C;()0,. To obtain (4.2) from (2.1)~(2.3), we require that
the scaling factors of - Vo and 6, are the same, which implies C,(1)? = Cy(v)Cy (7).
Using this relationship and (4.3), we obtain (4.4).

Recall that the Boussinesq equations have scaling-invariant property (2.4) with two
parameters. We have the freedom to choose the time-dependent scaling parameters ¢; ()
and ¢, (1) according to some normalization conditions. After we determine the normal-
ization conditions for ¢;(t) and ¢, (7), the dynamic rescaling equation is completely
determined and the solution of the dynamic rescaling equation is equivalent to that of
the original equation using the scaling relationship described in (4.1)—(4.3), as long as
c;(t) and ¢, () remain finite.

We remark that the dynamic rescaling formulation was introduced in [28,34] to study
the self-similar blowup of the nonlinear Schrodinger equations. This formulation is also
called the modulation technique in the literature and has been developed by Merle,
Raphael, Martel, Zaag and others. It has been a very effective tool to analyze the forma-
tion of singularities for many problems like the nonlinear Schrédinger equation [23,35],
the nonlinear wave equation [37], the nonlinear heat equation [36], the generalized KdV
equation [33], and other dispersive problems. Recently, this method has been applied to
study singularity formation in the De Gregorio model and the generalized Constantin-
Lax-Majda model for the 3D Euler equations from smooth initial data [4,5,7]. It has
also been applied to prove singularity formation in other equations in fluid dynamics,
see e.g. [9,11].

If there exists C > 0 such that for any 7 > 0, ¢, (t) < —C < 0 and the solution @
is nontrivial, e.g. ||@(z, -)||zc > ¢ > 0 for all T > 0, we then have

o0
Cou(r) < e_cr’ t(o0) < / e CTdr =C7 < +o0 ,
0

and that |w(C;(7)x, (1)) = Cou(t) Ma(x, 7)] = €“Tla(x, v)| blows up at finite
time T = t(o0). If (w(7),0(1),ci(1), cy(T), co(T)) converges to a steady state
(Woo» Oo0s Cl,00s Cwr,00, €0,00) Of (4.2) as T — 00, one can verify that

. 1) 1 X
w(x,t) = w ,
L—1 0\ (1 = 1)~ Coo/Co00

X
Q(X’ t) = (1 _ t)ce,oo/cw,oo 900 ((1 — t)—C[yoo/Cw,oo>

is a self-similar solution of (2.1)—(2.3). To simplify our presentation, we still use ¢ to
denote the rescaled time in the rest of the paper and drop - in (4.2).
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4.2. Reformulation using the (R, B) coordinates. Taking x, y derivative on the 6 equa-
tion in (4.2), we obtain a system similar to (2.5)—(2.7).

wr + (x+u) - VO, = cpw + 0y,
Oxr + (X + 1) - VO = (co — ¢] — ux)0y — vy0y, 4.5)
Oy + (cix+u) - VO, = (cg — ¢c; — vy)0y — uyby,

where we have dropped ~ to simplify the notations. We make a change of variable
R =r%, B = arctan(y/x) and introduce

Q(R,,B,t):a)(x, yvt)a n(vag9t):(9X)(-x9y’t)’ S(R9137t):(9y)(xa yat)
in (4.5) as we did in Sect. 2. Notice that the stretching term and the damping term satisfy

cgx-Vw(x,y,t) =cro,o(r, B,t) = aciRIRQ(R, B, 1),
Cow(X,y,1) =cu,2(R, B, 1),
and similar relations hold for 6y, 6. The reformulated system (4.5) under (R, ) coor-
dinates reads
Q;+acRIgQL+(u-V)Q =¢,Q2+1n
Nt +acRIRN + (- V)n = 2cy — ux)n — vy (4.6)
§& +acRIRE + (- V)E = (2cy — vy)§ —uyn,

with the Biot—Savart law in the (R, ) coordinates (2.10) and (2.11), where we have
used ¢y —c; = 2¢, (4.4). For now, we do notexpand u - V using (2.12) and uy, uy, vy, vy
due to their complicated expressions. Using the same argument as that in Sect. 2.4, the
leading terms in (4.6) are given by

Q +aciRIRQL =c,+n+l.0.t.,

2
Nt +aciRORN = 2cy, + —L12(2))n +1.0.1., 4
Ta 4.7)
2
& +aciRORE = 2cpy — —L12(RQ)E+ 0.1,
To

where we have dropped the transport terms and simplified uy, uy, vy, vy, u/x, v/y using
(2.17). We remark that the first two equations in (4.7) are exactly the dynamic rescaling
formulation of the leading order system (2.23).

4.3. Constructing an approximate steady state. Notice that the system (4.7) captures
the leading order terms in the system (4.6) and that the self-similar profile of (2.23)
corresponds to the steady state of the first two equations in (4.7) after neglecting the lower
order terms. It motivates us to use the self-similar solutions of (2.23) in Lemma 3.1 as the
building block to construct the approximate steady state of (4.6). Firstly, we construct

i 6R 1 _
1+ R)Z’ n(R, B) = —F(ﬂ)( TR a=- +3, Co=-—1,
(4.8)

2 /2
L(B) = (cos(B))*, c¢= ;/0 I'(B) sin(2B)dp.

Q(R, B) = —F(ﬂ)



J. Chen, T. Y. Hou

Notice that (€2, 7) is a solution of (3.2) with¢; = E We modify ¢; so that the approximate
error vanishes quadratically near R = 0, which will be discussed later. The correspond-
ing 6 can be obtained by integrating 6, with condition (0, y) = 0, which is discussed
in Appendix A.5, and u, v are obtained from the Biot—Savart law (2.10), (2.11). We can
derive the leading order terms using (2.16) and (2.17)

LIZ(Q):/OO/W s'z(s,ﬁ)sin(zﬂ)d 7w 3a - sin(2B) 3

s = — , V= +1l.0.t.,
S 21+R 2 1+R (4.9)

2
Uy = —Ey = _ELIZ(Q) +l.0.t. =

+lot., uy, vy=1lot.

We will explain later why we choose the above I'(8). Lemma A.1 in the Appendix
shows that I'(B) is essentially equal to the constant 1 in some weighted norm.
We define the error of the approximate steady state below

Fo2¢,Q+7—acRIRQ — (- V),
Fy £ (26, — iy)i] — 0:& — @ ROg7 — (U~ V)7, (4.10)
Fr & (26, — Vy)E —iiyi] — @l RIRE — (@ - V)E.

The criteria to choose I' in (4.8) is that F,,, F;), F¢ vanish quadratically near R = 0
since we will perform energy estimates with a singular weight in the later sections. Using
the formula (2.12) for & - V and (4.8), one can obtain the following expansion of F,,
near R =0

_ _ _ - 9x R . 2
F,=-3aRorQ2 — (u-V)Q = —(aF cos(2B) —sin(2B)dgl’ —al') + O(R”),

where we have used the explicit formula (4.8) in the first equality and the factor 3 comes
from ¢; = 1+ + 3 in (4.8). In order for F,, to vanish quadratically near R = 0, we have
no choice but to set the coefficient in the O (R) term to be zero, which gives

al’ cos(2B) —sin(2B)dgl’ —al’ = 0.

To solve the above first order ODE for I', we choose the boundary condition I' (7 /2) = 0
and requires I'(8) > Ofor B € (0, 7 /2]. The solution of this ODE is exactly given by the
formula of I'(8) in (4.8). As we can see, such choice of I' is unique and is a consequence
of the condition that F,, = O(R?) near R = 0. This condition plays an essential role in
our stability analysis for the approximate self-similar profile. With this I"(8), we also
have F;, Fr = O(R?) near R = 0. We justify these rigorously in Sect. 8.

4.4. Normalization conditions. For initial data  + €, n+n, 5 + & of (4.6), we treat
@, n, & as perturbation and choose time-dependent scaling parameters ¢; + ¢y, ¢y + Co
as follows

o
Co(1).
4.11)

2 l—o 2
Co(t) = ——Lpp(Q0))0), ) =————L12(Q2(1))(0) =
To a 7o

Here, ¢;(t), c,(t) are treated as the perturbation of the scaling parameters ¢;, ¢,,. Suppose
that Fo(r), Fy (1), Fg(t) are the time-dependent update in (4.6) ,i.e.

Fo(t) = (Cop +Co)(Q+ Q)+ (n+ 1) —alc; +¢)RIR(QL+ Q) + (w+1) - V)(Q+ Q),
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and so on. The reason we choose (4.11) is that we want Fq(t), F;)(t), F:(f) vanishes
quadratically near R = O for any perturbation €2(¢), n(t), & (¢) that vanishes quadratically
near R = 0, so that we can choose a singular weight to analyze the stability of the
approximate steady state. Similar consideration has been used in our previous work
with D. Huang on the asymptotically self-similar blowup of the Hou-Luo model from
smooth initial data. We will provide rigorous estimates for these terms in Sect. 8.

5. Linear Stability

We present our linear stability analysis in this section. In Sect. 5.1, we linearize the
dynamic rescaling formulation in the (R, B) coordinates (4.6) around the approximate
steady state (Q, n, 5, Cl, Cw). In Sect. 5.2, we outline the steps in the linear stability
analysis. In the rest of the section, we establish the linear stability of the leading terms
in the linearized system. Throughout this section, we use 2, 1, &, ¢;, ¢, to denote the
perturbations around the approximate profile (4.8) and assume that Q € L?(¢),n €
L?(¢), & € L*(y) for some singular weights ¢, 1 to be determined later.

5.1. Linearized system. We linearize (4.6) around (€2, 7, €, ¢1, Coy) (4.8) and derive the
equations for the perturbation €2, n, & as follows

Qi+ (1+30)RIRQL+ (- V)Q = —Q+ 1+, (2 — RIRQ) + (e, ROR
—(u-V)Q+ Fq+ Ny,
N+ (1 +30)ROpn+ - V) = (=2 —ux)n — uxn + o (21 — RORM)
+ (e RIR — (W~ V))ij — € — U, + F + Ny,
& + (1 +3a)RIRE + (U - V)E = (=2 — 0y)é — vyE + (2 — RIRE)
+ (e RIR — (W~ V))E — uyi) — ityn + Fg + N,
(5.1)
where we have used ¢; = 1/a + 3, ¢, = —1 (4.8), ac;(t) = cy(t) — acy(t) (4.11) and
—acRORg = —c,RIRg +ac, RIRg for g = 2, 1, &. The error Fgq, F;, F¢ are defined
in (4.10) and the nonlinear terms are defined below
Ng =cpQ+n—oaciRIRQ2 — (u- V)2,
Ny = 2cey —ux)n — vxé§ —acRIgn — (u- V)n, (5.2)
Ne = (2¢ — vy)§ —uyn — aciRIRE — (u- V)§E.

We focus on the linearized equation of (5.1). From (2.18) and (4.9), we have

3sin(28)

3aROg +it -V =2Wdg + {—aRIgWog +aRIgVig} = R

8'3 +1l.0.t..
(5.3)

We will justify the above decomposition using integration by parts to avoid loss of
derivatives. We will also show that

(cyRIg — (- V)R, (acyRIg — (- V))ij, (acyRIg — (u-V)E (5.4)
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in (5.1) are lower order terms. Moreover, we will justify that £ is small and is of order
o? in Lemma A.8 so that we can treat v as a lower order term in the 7 equation.

Using (2.17), (4.9), (5.3), (5.4) and then collecting the lower order terms with a small
factor «, the error terms F and the nonlinear terms N in the remaining term R, we derive
the leading order terms in the linearized equations

Q,+R3RQ+%3,39:—sz+n+cw(§z—RaR§z)+RQ, (5.5)
N+ Rogn + Maﬁn =(-2+ ) m+ ile(ﬂ)r‘z +cu(2n — RIRN) + R
1+R 1+R Ta ¢ ’7’
(5.6)
& + RORE + Maﬁé =(-2- i)é - ile(Q)é +¢w(26 — RORE) + Re,
1+R 1+R T 5.7

where the full expansion of R is given in (8.10) and their estimates are deferred to
Sect. 8. In the following subsections, we establish the linear stability for (5.5)—(5.7).
The contribution of R is small.

Using this property, we can further establish the nonlinear stability of the approximate
profile (4.8) using a bootstrap argument.

We introduce the following notation

= R (72 Q(s, B) sin(2B)
L12(2)(R) £ L12(2)(R) — L12(2)(0) = —/ f S dpdx.
0 0
(5.8)
According to the normalization condition of c,, (4.11), we can simplify
2 2 .
Co+ —L12(R2)(R) = — L12()(R). (5.9)
To T

Definition 5.1. We define the differential operators
DR = RaR, Dﬂ = sin(2ﬁ)8,g
and the linear operators L;

3 - -
L1(2,n) & —DrQ — ml)ﬂsz — Q+n+cy(Q2— DRQ),

3
L2(2,1) = —Dgn — T3k RDﬁTI +(—2+

A 3
L3(2,&) = —Dgré — mDﬁg +(—2—

2 .
I )+ —L12(2)7 + co,(11 — Drmp),  (5.10)
+ R T

2 . _ _ _
TR~ ﬁle(Q)S +Co (3§ — DR§),

where f,lz(Q) is defined in (5.8) and 2, 7 are defined in (4.8). Define the local part of
L; by eliminating c,,, L12(£2)

3 3
Lio(2,n) L2 —DrQ— —DgQ—Q+n, L £ _Drn— ——D
10(£2, n) R T R Dp n 20(1) RN = TR DA

+(—2+ ), (5.11)

1+R
N 3 3
L30(6) = —Dgé — mDﬂé +(—2 - m)&
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With the above notations, (5.5)—(5.7) can be reformulated as
Q=L Q,nM+Ra, m=L(2,nN+Ry, &=L3(E)+Re,  (5.12)

where we have used the following identities to rewrite the L12(£2), ¢, terms in (5.6)—
(5.7

2L17(Q 201,(
2L 50— Driy = Z22E0 5 L G = Drib),
T To
2L17() - _ _ 2L17( _ _
_Hn@) s 0F - préy = 2225 GE Dby,
o T

5.1.1. Key observations There are several key observations that play a crucial role in
our analysis. Firstly, the leading order terms in the €2, n equations (5.5)—(5.6) do not
couple the & term, which is consistent with our derivation for the leading order system
(2.23).

Secondly, in the § equation, the coupling between €2 and & through the nonlocal term
L12(2) and ¢, (4.11) is weak due to the fact that & is much smaller than €2, . After
removing these nonlocal terms, (5.7) only involves local terms about &£. By choosing a
suitable singular weight, we will show that £ is linearly stable up to the weak nonlocal
term.

Thirdly, all the nonlocal terms in (5.5)—(5.6), e.g. ¢y, L12(£2), have coefficients with
small angular derivative. For example, using (4.8), we have

_ _ 6R?
co(Q — RIRD) :cw~%F(ﬂ)m. (5.13)

We can apply the weighted angular derivative to gain a small factor «
|sin(2B)3pT(B)| = [2a sin*(B)T'(B)| < 2aT (B).

A similar observation and estimate have been obtained in [11] for a different I".

5.1.2. The angular transport term To understand the effect of the angular transport term
in (5.5)—(5.7), we choose a weight ¢ (R, B) = A(R)(sin(B)) "' (cos(B))¥? and then
perform the L? estimate and use integration by parts to obtain

1d 3sin(2
55(92, @) = —<%8/§Q, Qo(R, ,3)> + other terms (0.t.)
TN
21+ R

It is not difficult to show that

3(sin(2B)9)p

— _ 2 _ _ )
0+ R reo = 21—y 08 (B) =3(1 —y2)sin’(B).

Suppose that y1, y» < 1. If B is small, the angular transport term contributes a growing
factor 3(1 — y1) > O to the energy norm.

To establish the linear stability, it is natural to first establish the (weighted) L? esti-
mate of (5.5)—(5.7). However, the above argument shows that for small g > 0 the angu-
lar transport term destabilizes the profile of the singularity using the singular weights
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A(R)(sin(B)) " (cos(B))~ "> with y; < 1. A possible approach to address this issue
in the estimate is to choose y; close to or larger than 1, i.e. a very singular weight in
the B direction is desired. In [11], y; is chosen to be close to 1 so that such grow-
ing factor is minimized. For (5.5)—(5.7), due to the presence of the nonlocal term, e.g.
¢ (2 — RIRR), which only vanishes of order sin(2,8)o‘/2 near B = 0, /2, if we use
a very singular weight for the angular component g, such nonlocal term will be very
difficult to control.

To handle the angular transport term in the L? estimate, we observe that sin(2p)dg Q

is small since  varies slowly in 8. We expect that a similar smallness result holds for
the perturbation term sin(28)3d5€2 and we will justify it in Sect. 5.4. This observation
motivates us not to perform integration by parts for the angular transport term in the
weighted L? estimate.

5.2. Outline of the linear stability analysis. We decompose the linear stability analysis
of (5.5)—(5.7), or equivalently (5.12) into several steps. Based on the first observation in
Sect. 5.1.1, we separate the estimates of the system of €2, n (5.5)—(5.6) and the equation
of & (5.7).

In Sect. 5.3, we estimate the local part of the linearized operators £; (5.10), i.e. Lq
(5.11). The argument is mainly based on integration by parts.

Instead of first performing the weighted L? estimate of the system, we perform the
weighted L? estimate of the angular derivative in Sect. 5.4. The motivation is that using
the third observation in Sect. 5.1.1, we gain a small factor a!/2 for the nonlocal terms
in the equations of DgS2, Dgn. Therefore, we can treat the nonlocal terms as small
perturbations and use the estimates of L;o in Sect. 5.3 to establish the estimates of
DgS2, Dgn. See also the motivation in Sect. 5.1.2. Once we obtain the estimates of

DgS2, Dgn, we can treat the angular transport terms in the weighted L? estimates of the
equations of €2, n (5.5)—(5.6) as perturbations. This overcomes the difficulty discussed
in Sect. 5.1.2.

In Sect. 5.5, we use two models to illustrate the cancellations in (5.5),(5.6), which
are crucial for the estimates of L,(£2), ¢,. This motivates several technical estimates
in Sect. 5.6.

In Sect. 5.6, we establish the weighted L2 estimates of €2, n with less singular weights,
and obtain the damping terms for c,,, L 12(£2). We design the less singular weights
carefully to fully exploit the cancellations discussed in Sect. 5.5. This is the most difficult
part in the whole analysis.

After we obtain the damping terms for c,,, L 12(£2), we can treat the nonlocal terms in
(5.5)—(5.6) as perturbations. Using the estimates of the local operators L;q in Sect. 5.3,
we further establish weighted L? estimates of 2, n with more singular weights that are
introduced in [11] in Sect. 5.7. This enables us to apply several key estimates in [11] in
our nonlinear estimates and simplify the whole estimates.

From the second observation in Sect. 5.1.1, we treat the nonlocal terms in the &
equation (5.7) as small perturbations. We estimate Dg&, & in Sect. 5.8 using the estimate
of L3¢ in Sect. 5.3.

5.3. Estimates of L10, L20, L£30. We first introduce several singular weights that will be
used throughout the paper.
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Definition 5.2. Define ¢;, ¥; by

L (1+R)* B L 1+ R)* B
o2 O inep e, e sinap
(1+R)* A 1+ R)? G149

>

———sin(B) "7 cos(B) "7,

Y1 & S Gsin(B) cos(B) 7, 2 2

=29 ., _ o
where o = {55, v = 1 + 5.

The weights ¢1, ¢» have been introduced in [11] for stability analysis.

The weights ¢; and | are essentially the same. We introduce | for consistency
and the following reasons. Firstly, we will apply the weights ¢; to 2,  and the weights
¥; to &. In particular, we will construct weighted H3 norm > (¢) for , n and H>(¥)
for & in (6.17). Secondly, ¢ and ¢, have similar forms, and ¥r; and v, also have similar
forms. It is easy to see that @1 < ¢, Y1 < . We choose 1, less singular than ¢, for
B close to 0 since & does not decay in R when R sin(8)* is fixed and $ is small. See
Lemma A.8 regarding the estimate of &.

Recall L9, L£20, L30 (5.11) in Definition 5.1. The following Lemmas will be used
repeatedly.

Lemma 5.3. For some 8, 81, 62 > 0, consider the weights

1+R)* 1+ R)*
¢(R. p) = (;T)@inaﬂ))—‘i V(R p) = %(sin(ﬂ))—sl(cosw»—“z.
(5.15)
Assume ¢'?Q, /%y € L?. We have
1
(L10(S2, 1), Q) + (Lao(n), @) < (=7 + 31 = SDUIQ 2113 + 1Ine'2113).
(5.16)
Assume that y'/2& € L. Denote a v b = max(a, b). Then it holds true that
1
(Lao©).6v) = (= 5+301=ailvIL=&D)IEW' 3. (.17)

We will apply Lemma 5.3 to the singular weights in Definition 5.2, i.e. ¢ = ¢
or 2 and v = Y1 or Y. Hence, the exponents we will use are § = o = % or
d=y=1+ 1"‘—0, 81 = 0,8y = o or § = y. Since these exponents are very close to 1,
we have the order |1 — §| =~ 0, |1 — §1| V |1 — 82| = 0. The reader can regard the terms
[1—=36], |1 =381 V|l —238]~0.

Remark 5.4. The constant —% in (5.16) can be improved to —% + ¢ for any ¢ > 0 by

considering A;(L10(2, n), QL) + (L20(n), ng) for some A, > 0, and —% in (5.17) can
be improved to —%. Yet, we do not need these sharper estimates.
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Proof of Lemma 5.3. By definition of ¢, 1/, we have

(Bsin2B)p)g 3 (sin@2B)' Vg 3cos(2B) - (1 — )

= : = < 3|1 -4,
2(1+ R)gp 2(1+R) sin(2B)~9 1+R
GBsin2B)Y)g 3 (sin(B)! 7% cos()! %)
20+R)Y  (1+R) sin(B)~% cos(B)—%2 (5.18)
3
= o (1 =8 cos’(B) — (1 = &) sin’(B)) < 3max(]1 = &1, |1 = &2,
(Re)r _ (Ry)r _ (A+R*\ RY 2R 3 _ 1 2
20 2y _< R3 >R2(1+R)4 " 1+R 2 2 1+R’
Using integration by parts for the transport terms in L1¢ (5.11), we yield
. 1 2\ 1 2\ (RY)R o
(~Dr%2. Q) = (= R 50:2) = (S (Ro)r. 27) = { 2y @ o).

Similar calculation applies to —%Dﬂﬂ in L19. Using the above calculations, we get

(Rp)R N (3sin(2B)p)p
2¢ 2(1+ R)p

(L10(2, ), Q) = 20) = (2, 20) + (2. 10)

1 2 2
<<__ +3|1—5|—1,Q<p>+<9,n<p)

—\2 1+R
—( L2 apos @ >+<sz )
={-3- 7% , Q%)+ (2, ng).

Similarly, using integration by parts for the transport terms in Lo (5.11) and (5.18), we
get

(Rp)r . 3sin(2B)p)g 5 2
L , :( + , >+< -2+ , >
(L20(n), ng) 20 20+ Ry @)+ (( TR
<<2R a8+ (24— 2>—< ! +3]1 =8 2>
=\1+r 2 1+rTITNT 2T AR ey
(5.19)
We estimate the interaction term between €2, . Note that
1 2 1 R 2 R
4(—+ —)(=+ ) > + > 1
4 1+R 4 1+R 1+R 1+R

Using the Cauchy—Schwarz inequality implies

<Q,n<p><<l+ 2 ,92<p>+<1+i,n2<p>.
~—\4 1+R 4 1+R

Combining the above estimates, we prove

1
(L1022, 1), Q) + (L2020, ng) < (= 5 = —— +3]1 = 8], Q%)

2 1+R

+( LR 5oy 2)
2 1+R e

1 2 1 R 1
1 ,Qz> (_ ,2>< i3l —s Q0!/2(12 1722y,
g @)+ (g o P w) = (5 #3181 Qe 1B+ ling 1)
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Recall L3 in Definition 5.1. For (5.17), we use the computations (5.18)—(5.19) to obtain

(RY)r  Gsin2h)v)p

(La0(®), £9) = ( )2 ). 8)

29 2(1+ R)yr
<<2R 3+3(|1 11V 1 —=82])+ (=2 3 )521/f>
“\1+R 2 ! 2 1+R”
1
= (=3 +301 =811V 1 =D )l1Ev" 113
O
5.4. Weighted L? estimate of the angular derivative DgS2, Dgn.
Definition 5.5. Define an energy E (B, 1) > 0 and a remaining term R (S, 1) by
a 12,2 12,2\ /2
EB. (@, n) 2 (110520, 13+ 1Dgmey2113)
R(B. 1) £ (DgRa. DgQep2) + (DgRyy. Dpnga). (5.20)

To simplify the notations, we drop €2, nin E(f, 1). The main result in this subsection
is the following. This proposition enables us to treat the angular transport terms in (5.5)—
(5.7) as perturbations. A similar estimate has been established in [11].

Proposition 5.6. Assume that <p;/ 2DﬁQ, (pzl/ 2D/377 e L%. We have

(DgL1(S2,m), (D)) + (D Lr(2, 1), (Dpn)e2)

1 ) ) 3 ~ (5.21)
< _(§ —a)(E(B, 1))” + Ca(L1(S2)(0) + [[L12(2)R

12
||L2(R))’

where L1, Lo are defined in Definition 5.1.

We will use the following basic property of Dg = sin(28)dg, I'(B) = cos(B)*
repeatedly

DgT(B) = —2asin*(B) cos®(B) = —2asin®(B)T'(B), |DgT(B)| < 2asin(B)T(B).
(5.22)

Proof. Notice that the angular transport term in (5.5)—(5.6) can be written as %Dﬁ
and that Dg commutes with the derivatives in (5.5)—(5.6) and L1, L20 (5.11). We have

DgL1(22,1n) = Dg(L10(2, 1) + cwDp(Q — RIRQ)) = L10(DsRQ, Dgn)
+coDp(2 — RORQ),

2 - - -
DpLa(S2, m) = Dp(L20(2, 1) + — L12(R)7] + co(§2 — RIRL) (5.23)

2 - _ _ _
= L10(Dg2, Dgn) + ﬁLIZ(Q)DﬁU +cwDp(n — RORN),
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where we have used (5.9). Applying Lemma 5.3 with ¢ = ¢2 and § = y = 1 + 75, we
derive

(L10(DpS2, Dgn), (Dp)¢2) + (L20(DpS2, Dgn), (Dpn)¢2)
1 1/2 1/2
< (=5 +31L=yD(11Ds%20, 113 + 1Dsne; * 13 (5.24)

1 1/2 1/2
< (—Z+a)<|lDﬁQ<ﬁ2/ 13 +11Dgne, ||§)~

Recall ¢, = — 2L 12(£2)(0). Using (A.16) in Lemma A.6 and the Cauchy—Schwarz

T
inequality, we obtain

|{coDp(R2 — RIRQ), (Dp)¢2)| + [(coy Dp (7] — RIRT), (Dpm)¢2)|

(5.25)
1/2 1/2
< a2 IL1a(Q)(0)] (11D ey * 113 + || Dpnes 1152,

Recall the notation le(Q) (5.8). Applying Lemma A.3 and (A.15) in Lemma A.6,
we derive

2 - _ 12 > —12
<
| = La@Dyiiey?|| < allLi@R™ 12,

Therefore, using the Cauchy—Schwarz inequality, we yield
2 . _ ~ _ 1/2
(— Li2(Q) Dpit, Dpm2) S @' PILa( @R Il 20a)1Dpmgy *ll2. - (5.26)

Combining (5.24), (5.25), (5.26) and adding the inner product about two terms in
(5.23), we prove

(DL1(82,m), (Dp2)@a) + (DpLr(82,1m), (Dgn)e2)
1 1/2 1/2
< (5~ ) (|1Ds0y 2113 + 11 Dgnes*113)
1/2 12,0\ 1/2
+Ca L@ O)(11Ds20; 13 +11Dsne; *113)

+Ca1/2Hl~,12(Q)R_1‘

1/2
poo 10870112

where C is some absolute constant. Using the notation E (g, 1) (5.20), the Cauchy—
Schwarz inequality concludes the proof of Proposition 5.6 (notice that —1/4 < —1/5).
O

5.5. Ideas in the estimates of the nonlocal terms. Recall c,,, L 12(2) from (4.11), (5.8)

2 2 [ (72 Qsin(2B)
Co = ———L12(R2)(0) = ——f / ————dRdp,
To Ta Jo Jo R

B R pm/2 :
L12(Q)(R) = —/ / wOIRd,B. (5.27)
0 0

The most difficult part in the linear stability analysis of (5.12),(5.10) (or equivalently
(5.5)—(5.7)) lies in the nonlocal terms L12(£2), c,,. Note that the constant in the coercivity
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estimates of the local part of the linear operators L;, i.e. Lo, is small. For example, this
constant is about —211 in Lemma 5.3. We cannot estimate the nonlocal terms in some
weighted Sobolev norm and treat them as small perturbations since these nonlocal terms
are O (1) for small «. It is crucial for us to exploit the cancellation among various terms
so that we can obtain sharp estimates of these nonlocal terms.

We use two models to study L 12(£2) and the ¢, term. Similar models have been used
in our previous work with D. Huang on the asymptotically self-similar blowup of the
Hou-Luo model.

5.5.1. Model 1 for nonlocal interaction We consider the following coupled system
2 - _
S2=mn, n=—Ln)n (5.28)
T

to study the cancellation between the nonlocal term %le(ﬁ)ﬁ in the 1 equation and
n in the €2 equation in (5.12). The above model is derived by dropping other terms in
(5.12). The profile 7 satisfies n(0, 8) = 0and n > 0 for R > 0.

The motivation to exploit nonlocal cancellation is inspired by our previous joint
works with Huang on the De Gregorio model [7] and the Hou-Luo model for smooth
initial data. In these works, the nonlocal cancellations between Hf and f, where H 1is
the Hilbert transform, play an important role.

From Lemma A.2, we have a similar cancellation between L1, (£2) and Q. Roughly
speaking, L1>(R) behaves like —Q. We perform L%(p;) estimate on € and L?(p)
estimate on n for some singular weights p;, p» to be determined and combine both
estimates

1d 2 .
5 g7 (828201 + (0. mp2)) = (. mp1) + (—— L12(R)71, 1p2) =1 (529
! T

Formally, I is the sum of the projections of 1 onto two opposite directions. To exploit
this cancellation using Lemma A.2, we choose p1 = sin(28)pg, p2 = k% 0o wWith some

A > 0 and singular weight pg, such as pg = R~3, R72, to obtain

I = (Qsin(2B), npo) + (AL12(Q), npo) = (Qsin(2B) + AL12(), npo).

2

For k € [%, 4], applying Young’s inequality ab < sa“ + %bz for some s > 0, we yield

I <s]|(Q2sin(2B) + AL12()R /2|15 + (4s) " InpoR*?|3 £ A + B.

If k — 1> ZA, using Lemma A.2, we obtain

- 2
A = s[|Qsin2B) 2 R2|12 — s((k — DA — %AZ)HLQ(Q)R—"/Z‘

L2(R)
< s]|Qsin(28)' /RT3

We remark that even estimating the first term in I, which is (€2sin(28), npo) and
does not involve the nonlocal term, we get an upper bound 5|2 sin(28)/2R=*/2||3 + B.
The above calculation shows that by designing the weights p1, p» carefully, we can
exploit the nonlocal cancellation and obtain an even better estimate. Moreover, we gain
a damping term for L (2) from A.

We will use similar ideas to estimate the f,lz(Q) term in the linearized equation
(5.5)-(5.7).
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5.5.2. Model 2 for the c,, term We consider the following coupled system
HQU=n+cog, IN=cof, (5.30)

where f(0,8) =0,5(0,8) =0, f,g > 0for R > 0 with fR™!, gR™! € L!. Note
that the profiles 7 — Rdg7, Q — RIg<2 satisfy similar properties. This system models
the ¢, terms in the €2, n equations in (5.12) by dropping other terms.

Denote W = sin(Zﬁ)R_l. Recall ¢,, in (5.27). We have

2
(Q, W).

2
Co=——(Q,sin2BR™") = ——
To T

Denote B = % (g, W). By definition, B > 0. We derive an ODE for ¢, using the Q2
equation

2
(2, W)(g, W)+ (n, W) = —=B(Q, W) + (n, W).

QW) = ol W)+ (0. W) = ——

Multiplying both sides by (2)%(Q, W) = —2-c,,, we get

2
——c2 = —Bcl — ——c,(n, W) 2 | + . 531
5 7o Co — o Call W) =11+ 1 (5.31)

We see that the ¢, g term in the 2 equation in (5.30) provides a damping term for ¢,
in this ODE. In the Lz(,oz) estimates of n in (5.30), we have

3 (0, np2) = cw(n, fp2) = L.

Since fpo, W > 0, we can exploit the cancellation between the integral /> in (5.31)
and /3. By combining the estimates of both terms, we can obtain better estimates of I,
and /3.

In the estimates of (5.5)—(5.7), we will derive a similar ODE for ¢,,, which provides
a damping term for cZ). This damping term is crucial for us to control the nonlocal ¢,
terms in (5.5)—(5.7). There is a coupling term —c,,(n, W) in this ODE similar to /5 in
(5.31). Using an idea similar to the one stated above, we will combine the estimates of
such term and the c,, term in the n equation in (5.6).

5.6. Weighted L? estimate of 2, n with a less singular weight. In this subsection, we
prove Proposition 5.8 to be introduced on the weighted L? estimate of Q, n with less
singular weights.

The proof consists of several steps and we sketch it below. Firstly, we introduce
the weights in our weighted estimates and motivate the choices of these weights. In
Sect. 5.6.2, we estimate the local part of £, £, using mainly integration by parts argu-
ment, which is similar to that in Sect. 5.3. In Sect. 5.6.3, we use some ideas and esti-
mates similar to those in Model 1 to estimate the interaction among €2, n and L12(2).
In Sect. 5.6.4, we use a direct calculation to estimate the c,, term in the €2 equation in
(5.12). Due to the special form of the weight ¢g in (5.32), the main term in this estimate
is a damping term for L%Z(Q) (0). In Sect. 5.6.5, we use some ideas and estimates similar
to those in Model 2 in Sect. 5.5.2 to estimate the c,, term in the n equation. In Sect. 5.6.6,
we estimate the angular transport term in the €2, n equations in (5.12) and treat it as
perturbations. In Sects. 5.6.7, 5.6.8, we summarize these estimates, and establish some
inequalities to conclude the proof of Proposition 5.8.
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Since the amount of damping in the energy estimate is small, we cannot overestimate
several terms and need to track the coefficients in the estimates. Thus the estimates
involve several explicit calculations, which will be presented in Appendix A.2. These
calculations,(5.37) and (5.46) can also be verified with the aid of Mathematica. ' In view

of Lemma A.1, in the following estimates, the reader can regard I'(8) ~ 1, ¢ = %

Definition 5.7. To exploit the cancellation of the system, we define the following weights

9a [ _» 31+R 3 /01+R)? 30+R* _
W:ga(’” 2Rz>:E( Bty )TeT
3 (5.32)
1+R
(poé%sin@ﬂ), p2 RI4+R2,

where 77, I'(8) = cos*(B) are given in (4.8).

Compared to ¢; in (5.14), the above weights are less singular in the R, 8 components.

5.6.1. The forms of the singular weights There are several considerations to choose the
above weights v, ¢p. Firstly, to obtain the damping terms in the energy estimate similar
to that in Lemma 5.3, the weights in the R direction can be a linear combinations of
R~* with various k [7,11]. See also Lemma 5.3. For R near 0, we need the weight to
be singular, e.g. R~% for a large k. For very large R, we need the weight with slow
decay, e.g. R™%2 with small k». However, using only these two powers R and R~*2
are not sufficient. Suppose that we use a weight 9 = R~*2 + cR~% with well chosen
k1, ka, c. Applying a calculation similar to that in (5.19) in Lemma 5.3 to (L2on, n¢o),
we can obtain (D, 772(/)0) for some coefficient D(R, B). However, D may not be negative
in the whole domain as the one that we obtain in (5.19) or |[D(R, )| with R = O(1)
may become much smaller than |D(0, 8)| and |D(oco, B)|. In either case, we cannot
establish linear stability since the nonlocal terms are not small. Therefore, we need to
add several powers R~ % in ©o, Yo. The first formula of ¥ in (5.32) is more important
than the second, and it contains three different powers.

Secondly, we add 7 in the denominator in v to cancel the variable coefficient in our
energy estimates, and design ¢g with the factor sin(2f). These forms are similar to that
in Model 1 in Sect. 5.5.1, where we choose p; = sin(28) 00, p2 = % po for some weight
po. These special forms are important and enable us to combine the estimates among
L12(R2), 2 and 7. This is the most important motivation in designing v, ¢g in (5.32).
See Model 1 in Sect. 5.5.1 and estimate (5. 36)

Thirdly, we choose ¢ with the factor (1+R) to derive a damping term for L12(€2)(0)

from the nonlocal term ¢, (2 — D). See (5.39).
The main result in this section is the following

Proposition 5.8. Define an energy E(R, 0) and a remaining term R(R, Q)

E(R,0) = (11203113 + vy * 13 + 1oL}, (2) (0) /2,

81

RAR,0) = (R, Qo) + (Ry, n¥0) + oL12()(0)(Ra, sin2BR™), o = Tmc

(5.33)

' The Mathematica code for these calculations can be found via the link https://www.dropbox.com/s/
y6vfhxi3pa8okvr/Calpha_calculations.nb?d1=0.



J. Chen, T. Y. Hou

Assume that 2, n satisfies that E(R, 0), E(B) < +00. For some absolute constant 1,
we have

ld 2 2 ! 2 2
EE((E(R’O) +u E(B, 1)7) = —(5 —Co)((E(R,0)" + w1 E(B, 1))

1 - 2
— (4= CaLH@O) - (7 = Ca)||Lhp'”?|

® +R(R,0) + u1R(B, 1),

L(
where the energy E(f, 1) and the remaining term R(B, 1) are defined in (5.20).
Recall L1, £ in Definition 5.1. A direct calculation with weights ¢g, ¥ implies
(L£1(82,m), Qoo) = —(RIR2, Qgo) — (€2, QLgo) + (1, Leo)
- - 3
e (@ — RIRS, Q —<—D Q,Q >
Cor R ®o) TR Ds %o

3
1+R

2 - _
(L2(S2. 1), o) = = (Ragn. mpo) +((=2+ . nyo) + (==L 127, mbo)

_ _ 3
+ co(n — RORN, o) — <mDﬁUa mﬂo>,

(5.34)

where we have used the notation Dg = sin(2)0dg to simplify the formula. We treat the
sum of the first two terms on the right hand side as the damping terms.

5.6.2. The damping terms We first handle the first two terms on the right hand side of
the £ equation in (5.34). Using integration by parts for dz, we derive

1 1
— (RAR2, Qo) — (2, Qo) = —(Ryo, §3R§22) — (2, Qoo) = <§(R€00)R — %0, 92>,

3 3
1+R 1+R

— (Rign, o) + (=24 —m o) = (5 Rvor + -2+ v, )

Using the formulas of v, ¢o (5.32), we compute the coefficients in the inner products
in Appendix A.2.1 and obtain

9 |
— (RORQ, Quo) — (2, Qoo) = —<(2R—3 + ER_Z +3R '+ 3)sin(2). 522>,

3
1+R

3(1 + R)?
32R4

(1+4R +3R> +3RHI (B, n2>.
(5.35)

— (R3grM, n¥o) +<(—2+ . WO> - _<

5.6.3. Estimate of interaction between €2 and 1 We use ideas in Model 1 in Sect. 5.5.1
to combine the estimates of (€2, nyr) and (%le(ﬂ)ﬁ, nYo). Using (4.8) and (5.32),
we can compute

Ié<2l~, Q) W>_< 9 i @ (1 +31+R>>
- Ta 12 n,nvo| = drc 12 i R3 ) R2 s

N . 1 1+R
112 (2, ngy) = <Q sin(28), ”(ﬁ +3—+ 1)>
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where c is defined in (4.8) and satisfies ¢ = % + O (@) (see Lemma A.1). We design v
(5.32) so that the denominator in v and the coefficient 1 in I cancel.
Applying the Cauchy—Schwarz inequality, we yield

. 9 - _3 , 9 - I+R
[+11 = <sz sin(24) + -—L1(). R >+<Qsm(2,3)+%L12(Q),3n . >
+(Qsin(28), n)
< f((sz SN2P) + ——L12(Q))? R_3>+ L2 k3
=3 dmc ’ 443" (5.36)
. 9 - 2 oo\, 3P 1o (L+R)?
+6<(§2s1n(2,8)+%L12(Q)) R >+4.6< 3 )

1 1+R 3 R
+-(Q2, in(2 2> —( 2,—>= Ji.
3< S R Uy Z’

We design the special forms ¥, ¢p in (5.32) to obtain the good form 2sin(28) +
CL17(€2) for some C > 0 in I + II. Next, we exploit the cancellation between 2

and L12(R) using Lemma A.2. We apply Lemma A.2 with k = 2, 3 to simplify Ji, J3
defined above:

4 ). 4 9 7 9 . ~
heds=| <§R THOR 2) sin@6)", ) = 3 (2‘ e 2 (4716)2) @RI

9 92
—6(— T

Src 3 o) D120 R Iy = Mi+ Mo+ M.

We further simplify M,, M3 defined above. Using Lemma A.1, we have |7rc — 2| < «
and

4 9 T 9 4 9 T 9 1
—— —R2—-=—)<——=--2—=-2)+Ca < — +Ca,
3 4nc 24mc 3 8 2 8 4 (5.37)
6. 2 1-2 )< 6.20-% 2 ¢ +C '
J— - —_— —_—— — — o —_— —_—— . — a < _—— a
8mc 2 8mwec” T 16 2 16 4 ’
for some absolute constant C. It follows that
My + M3 < ! Ca)(||L12(2), R73/?|)? L12(8), R7)?
2+ M3 = (_Z"' O‘) || 12( )a ”LZ(R) + || 12( )7 ||L2(R))

1 -
= (= + COllL 2 Il 2,

where we have used the notation p defined in (5.32). Therefore, we yield the damping
for L12(£2).

Remark 5.9. The above computations of Jy, J», J3, J4 are exactly the same as those in
Model 1 in Sect. 5.5.1. We choose the constants in the weights (5.32) carefully so that
when we apply Lemma A.2, the constant —((k — 1)\ — %Xz) in (A.7) is negative, i.e.
(5.37).
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Using (5.36), the above estimate of M> + M3 in J; + J3 and sin(2,8)2 < sin(2pB), we
prove

<—L12(Q)n,m/fo>+(9,mpo)=1+11§<<—R +6R72+ ——= ) sin(2p), @)
T 3 R
+<3R_3 3(1+R)? 3 R

_ + — + —
16 8 RZ? 41+R’

> _ (_ — Ca)||L12(Q)p/ 2||L2(R)
(5.38)

5.6.4. Estimate of the projection c, in the Q equation We estimate the terms involving
Cw 1n (5.34) in this subsection. Notice that c,, defined in (4.11) is the projection of 2
onto some function. Using (4.8) and (5.32), we can calculate

6R? (1+R)’ . 6a sin(28)T(B)
L UERY o) - S EATE) o)
(1+R) R3 R
We show that the above projection is almost equal to L12(£2)(0). Notice that

%<Sin(2ﬂ)r(ﬁ),g> B %(Sin(2ﬂ),9> _ %<Sin(2ﬁ)(F(ﬂ) - 1)’ gz>

(@ — Rog2. Q0) = (ZT(B)

R R R
2
(—— —)(Sm( P oyveryerr
Using Lemma A.1, (5.32) and the Cauchy—Schwarz inequality, we have
Lo (L+R R
Al /2 a+ Ry 12|] || L
11 S alzsin2p)2, |20) S af Q55— sinep) || || (1+R)3/2H
< allQpy 112,
o1 < Jlod+ R 1 o
111 5 et sin2p), 1920) 5 |0 sinp)| [ A+R7 sin(26)||,
< a0y 112
It follows that
1 2
— (2 — RIRS, Qo) — 6 - <Sm( p) >‘ < 6|1 +11] < al|Q0h 2.
o

Recall the definition of ¢, in (4.11). Using the above estimate and then the formula of
L1>(£2)(0) (2.16), we have
_ _ 2 1 _ _
cu(Q — RORQ Qpo) = =~ L12()(0) - —(Q — RorL. Qo)
2
<sm( B) Q>

5.39
+Ca|L1a()0)] - 112603112 539

= —6(L12(Q)(0))> + Ca|L12(Q)(0)] - |12,
< —(6 — Ca)(L12(R)(0))> + Cal |2y |l2.

2
<——L12(Q)(0) 6.~

12
2

By choosing ¢y in (5.32) carefully, we obtain a damping term for L2 (£2) (0)? from
Cw(§2 — ROR2). This is one of the motivations to choose the special form of ¢y.
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5.6.5. Estimate of the projection c,, in the n equation We use some ideas and estimates

similar to those in Model 2 1in Sect. 5.5.2 to estimate the c,, term in the n equation (5.34).
Using ¢, = —”—LIQ(Q)(O) (4.11) and expanding the coefficient (n — RIrn)Yo

using the formulas (4.8) and (5.32), which is presented in Appendix A.2.2, we derive

1 1
le(Q)(0)<n, }) £ A+ Ay,

_ _ 27
Co(n — RIRn, ng) = ——47[CL12(Q)(0)<77, —(1 " R)R2> ~ %o
(5.40)

An ODE for L,(£2)(0) Using the €2 equation in (5.12) and derivation similar to that in
Model 2 in Sect. 5.5.2, we derive the following ODE for L1>(£2)(0) in Appendix A.2.3

1d 81 in(2
S 1@ = o (~4LH@O + L@, )
t4mc 7T R (5.41)
L7 ()0 3sin(2B) Ds2) + Ly @R sin(28) '
~ Lo@O( Ty g g Po2)+ L@ O)(Ra, =2))

Note that we have multiplied both sides of the ODE for L? 12(£2)(0) by the constant
481 and will include ;- 81 L%Z(Q) (0) in the energy E (R, 0) (5.33). The first term on the
right hand side provides damping for L22(Q)(O), which is similar to that in (5.31). It

enables us to control the term A, A in (5.40). Based on the ideain Model 2 in Sect. 5.5.2
and the fact that the integrands in A and L17(2) (0)<n, %) in (5.41) have different

signs, we combine the estimate of A; in (5.40) and the n term in (5.41) as follows to
exploit cancellation

sin(2,3)> !

81
Az 2 Ay + —— L (D 0(
3= 2+4 12(€2)(0) R -

1
Lio(@(O)n. & (~1+2sin(2p))).
(5.42)

Next, we estimate A; in (5.40) and A3 by treating them as perturbation. Applying
the Cauchy—Schwarz inequality yields

81 (1+R)> R -
A3 = L@ O |l |, H(1+R>2R -2, (5.43)
ar = Zipp@o [ SR K

- (1+R)32 (1+R)R?

The integrals on R, B in (5.43) equal to ,/ %(3” 4), [ respectively, which are com-
puted in Appendix A.2.4. Then we reduce (5.43) to

(1+R)? (1+R)3?
A3 = Bl L@O)||17 57| A1 = baAL@ O[] . 544
R3/2 2 2
where by, by are given by
81 /1 3 27
by £ (s, bt 2

87cV 6 2 ’ 4rc\ 8
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2

Using the Young’s inequality ab < sa“ + %bz for any s > 0, we get

O [
1A =" R 128 >
b? b3
+L%2(Q)(0)( L, 7 ) (5.45)
4x1/32 4x9/128

Using Lemma A.1 for the estimate of ¢ and a direct calculation yield

b} b} 8l 81 \? 1 37 32 (27 \*7 81
18 03 ame T Ngae) 62 TV 9 \ane) 37 e
T C TC T C C(546)

_4 8l 2(371 He 4w [27\? 81+C c
= —_— = — ] - = < .
=3\16 9 \g p T =t

Combining the identities (5.40), (5.42), the damping term of L? 12(£2)(0) in (5.41) and
the estimate (5.45), we prove

L3,(2)(0)

sin(2,8)> B 81
R 4mc

in26)\ 8l
stﬁ >—4 AL%,(Q)(0) = A; + As

81 )
— o ALL @) (5.47)

B 2i(1+R)4 9 (1+R)? b% bg 81
=R s e 7 2(Q)(O)<1/8 9/32 e

3<2 1(1+R)4 3(1+R)?
< + —

— 16 6 R3 8 R4
where we have used (5.46) to derive the last inequality.

81
Colil — RORT, 10 + 4—L12(Q)(0)<n,
T C

81
= A1+ A+ — L@ O,
T C

> + CaL%(Q)(0),

5.6.6. Estimate of the angular transport term From the definition of the weights (5.14),
(5.32), we have

3sin(28) _
wSen ARy Sy, |[TRCA ||

(1+R)R"2
Therefore, we can estimate the angular transport terms in (5.34), (5.41) as follows
3D 3Dgn
—{ lfR Qo) < 110520y 1111200 ll2. -~ mbo) < 11Dpmdy" lalimrg 12,
81 3sin(28) - 2
_EL“(Q)(M@ TR  Ds2) S 1L @ O] | Dp20} 12,

where we have used ¢! < 1 (see Lemma A.1). Using the energy notations E(f, 1)
(5.20) and E(R, 0) (5.33), we further derive

3D,352 3D BN 81 3sin(28)
(R Q) — (T ) — o Lo@O( SRR 0e)

< KiE(R,0)E(B, 1),

for some absolute constant K;. We remark that the absolute constants K, K», .. do not
change from line to line.
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5.6.7. Completing the estimates with a less singular weight Combining the estimates
(5.34)—(5.38), (5.39), (5.41), (5.47), (5.48) and using the notations E(R, 0), R(R, 0)
(5.33), we obtain

ld 2_14d 12,2 12,0, 81

2th(R’0) =2q (IIQ% 13+ Iny ||2+4ncL12(9)(0)

1 . 4
< (@7, 5in@)D(Q) + (1, D) + (= 7 + CONL2(Dp Il g, 64

+ L3, (2)(0) (=6 + Ca) + Ca (2%, o) + K1 E(R,0)E(B, 1) + R(R, 0),
where D(€2), D(n) are given by

9 1 4 1+R
D)2 2R3 2R 23R 4RI 4R 24 1
2 23 3R
3(1+ R)?
Do & —%(1 +4R +3R? +3R3)T(B)~! (5.50)
3 5 3(1+R)? 3R 3,10+R)* 3(1+R)3
+| —R "+ + +—<— + = )
16 8 R2 41+R)) 16\6 R3 8§ R*

Recall the weights ¢q, 1o in (5.32). In Appendix A.2.5, we estimate D(S2), D(n)
and prove

1 1
sin(2B)D(£2) = g0 D) = =gy, (5.51)

which only involves elementary estimates.
For L%Z(Q) (0) in (5.49), we use Lemma A.1 about ¢ (cr =2 + O(w)) to get

81 1 81
—6+Ca<—-x——4+Ca <—=x — —4+Ca,
8 8 8 4dme

which implies
1 81
(=6 + Ca)L},(2)(0) < -3 QL%Z(Q)(O) — (4= Ca)L3,(2)(0), (5.52)
where C is some absolute constant and may vary from line to line. Observe that
1
K\E(R,0)E(B, 1) = 1o-E(R, 0)? + 100KZE%(B, 1). (5.53)

Recall E(R, 0) in (5.33). Finally, substituting the estimates (5.51)—(5.53) in (5.49),
we prove

1d 1 12,0 1 12,2 1 81
——ER,()2<———C Q - — — = —L7{(2)(0
VT (R,0)" < (6 a) |20, 7|13 8||771ﬂ0 15 S dme 12(£2)(0)

2 1 = 12
— (4= Ca)L1,(£2)(0) — (Z — Ca)||[L12(2)p "Il 2r)
+ ﬁE(R,O)2+ 100KZE*(B, 1) + R(R, 0) (5.54)
< (—é +Ca)E*(R,0) — (4 — Ca)L},(2)(0)
. 1_ T 1/2 22
(4 Ca)llL12()p " “[lp2(ry + I00KTEZ(B, 1) + R(R, 0),

1 1 1, 1 1 - . .
where we have used —g + Ca + 155, —5 + 195 < —g + C to derive the last inequality.
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5.6.8. Linear stability with a less singular weight Using the reformulation (5.12), and
the notations E(f, 1) and R(B, 1) defined in (5.20), we have

1d
EE(E(/?, 1)? = (DgL1(2, 1), (DgR)g2) + (DpLa (2, 1), (Dpm)p2) + R (B, 1).
(5.55)

Now we combine (5.21) and (5.54) to establish the linear stability of (5.5)—(5.6) with
the less singular weight (5.32). Firstly, we choose an absolute constant ;¢; such that

) 1
100K} < %,ul,

where the absolute constant K is determined in (5.48). From (5.32), we have R~2 < 0.
Hence,

L2 @R 1725y < 1L12(R00" 21172,

Combining Proposition 5.6, (5.54), the formulation (5.55), and the above estimates, we
establish the estimate for E (R, 0)® + 1 E(B, 1)?

1d 2 2 1 2 2
5, (ER 07+ EB, 1)) = =(5 — Ca)((E(R, 0)7 + w1 E(B, 1))

+R(R,0)+u R(B, 1).
(5.56)

1 -
— (4= COLHQ)O) = (7 = Ca)llLTrp I La

The proof of Proposition 5.8 is now complete.

5.7. Weighted L? estimate of 2, n with a more singular weight. With the linear stability
(5.56) with a less singular weight, we can proceed to perform the weighted L? estimate
with a more singular weight.

Definition 5.10. Define an energy E(R, 1) and a remaining term R(R, 1) by

1/2 1/2,2\/?
ER, 1) 2 (1190713 + g *1B) . R 1D 2 (R, Q1) + (Ry, ngn),

(5.57)
where @1, Y1 are given in Definition 5.2.
The main result in this section is the following.

Proposition 5.11. Assume that Q(pll/z, n<p11/2 € L?. We have that

(L£1(82,m), Q1) + (L2(2, n), ng1)

1 ~
= ——(E(R. 1)’ + K3 (L%zm)w) +||Le@r|

2
L2(R) )’

where L1, Lo are defined in Definition 5.1, K3 > 0 is some fixed absolute constant.
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Proof of Proposition 5.11. A direct calculation yields
(L1(2, 1), Qp1) = (L10(R. 0), Q1) + €0 (Q — RIRQ, Qo1),

2
(L2(82,m), np1) = (L20(n), ne1) (L1221, 1) + co(n — RORN, ne1).

+ _
o
(5.58)

Applying Lemma 5.3 withp = ¢ and § = 0 = %, we yield
(L10(2, m), Q1) + (L20(0), ne1)

1 1/2 1/2 1 1/2 1/2
s(—1+3|1—o|)<||9¢>1/ 1B+ 11 2113) < —g(IIle/ 15 +1Ine; 2 113).

Recall ¢, = —%le(Q)(O) (4.11). Using (A.16) in Lemma A.6 and the Cauchy—
Schwarz inequality, we obtain

_ _ _ _ 2 2
lco (€ — RIR), Q1) + lcu (i — RORM), n@1)] < 1L12( Q) O) (1120113 + [Ine,*115) /.

For le(Q) in (5.58), using the Cauchy—Schwarz inequality, we derive

172

PN [

2 - _ —1y 7 _ 12 1/2 > -
(= Le@ine) o« IL@ie lalingi Iz S || Liz@R™|

where we have applied Lemma A.3 and (A.15) in Lemma A.6 in the second inequality.
Using the Cauchy—Schwarz inequality and the energy notation E(R, 1) (5.57), we
complete the proof of Proposition 5.11. O

5.8. Weighted L? estimate of Dgé& and &. The estimates of & are simpler since the main
terms in the equation of & (5.7) do not couple with €2, n directly. We use the weights
Y1, ¥» in Definition 5.2.

Proposition 5.12. Suppose that wll/ 25 , wzl/ ZDﬂS € L%. We have

1
(£3(2.6). 691) < (—3 +Ca)llEv?113

+Ca (LL@O) +IIL @R g ). (559

1
(DpL3(R.6). (Dp&)Y2) < (3 + Ca)||DpeY, 113

+Co (L@ O + 1L @R By ). (5:60)

Proof of Proposition 5.12. Since Dg commutes with £3 (see Definition 5.1) and L 12(R)
does not depend on B, a direct calculation implies

2 . _ _ _
(L12(2)&,EY1) + ¢ (36 — DRE, EY1)

(L£3(82,8),691) = (L30(5), Ev1) — .
(5.61)

2 . i}
(DpL3(2,8), (Dp&)Yra) = (L30(Dg&), (Dpé)yra) — E(LH(Q)D/SS, (Dgé)vr2)

+cw(Dp (3§ — DrE), §vn).
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Applying (5.17) in Lemma 5.3 with i = i1 (a constant multiple of i does not change
the estimate in (5.17)) and with ¢ = 1, (see Definition 5.2), respectively, we derive

1/2 1/2

1 3
(L30(8). §¥1) = (=7 + 31 — o IIEY, 15 < —3l15¥ 113,
1
(L30(Dps). (Dp&)¥a) = (=5 +3(1 —y| VI — sIIDpeY,* 13 (5.62)

3
< (—§+a)||D,ssw§/2||§,

where y =1+ {5,0 = %. Using the Cauchy—Schwarz inequality, we yield

2 T = ~ —_
— —(Ln(@E. &y1)| S @ L& klIEv, Il
SallLi@R ™ L11Ev, 1, 5.63)

where we have applied Lemma A.3 and (A.25) in Lemma A.8 to derive the second
inequality.
Using the Cauchy—Schwarz inequality, (4.11) and Lemma A.8, we obtain

1/2 1/2

co(3€ — DRE, EYn1) S o ' |L12()(0)] - [|3E — DrEYY " [1allEw, 7|12

< alL()0)] - 16w, ],

(5.64)

Plugging (5.62)—(5.64) in (5.61) and using the Cauchy—Schwarz inequality, we prove
(5.59).

The proof of (5.60) is completely similar. We apply estimates similar to those in
(5.63)—(5.64) and Lemmas A.3, A.8 to control the ¢, and L12(€2) terms. Combining
these estimates, using the second inequality in (5.62) and then the Cauchy—Schwarz
inequality prove (5.60). O

5.8.1. The weighted L* energy Using the reformulation (5.12), we have

| =~

1/2 1/2
(120,113 + 1In,?113) = (L1(2, 1), Q1) + (L2(2, 1), 191) + (Ra, Q1) + (Ry, 191),

N =
QU

Ld eyl 2| = (D D D D
EE” &Y, I3 = (D L3(§), (Dpé)Y2) + (DgRe, Dg&ia).

Recall the energy E(R, 1) and the remaining term R (R, 1) in Definition 5.10.

1/2 1/2
E(R, 1) = (120,715 +Ine; 2152, R(R. 1) = (Ra. Q1) + (Ryy. n91).

Combining the above reformulation, Propositions 5.8,5.11,5.12 and R2 < 0 (5.32), we
know that there is some absolute constant 147, which is small enough, e.g. u2 K3 <
such that the following estimate holds

L
100°
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Q“&.

(E(R 02 + 1 BB 12 + 2 ER, D? + 118w 113 + 11D, 113)

N =

< (5~ Co (ER 0P + 1 B 102+ j ER, 12 + l16y] 1B +11Dge 1)
2 2 1/2
~ (3~ Ca)L3(R)(0) - <§ —co)|23,0" Hmm +Ro(2.7.5).

(5.65)

where R is defined below. We define the following weighted L? energy and the remain-
ing term R 2

/2
Eo(@.7.6) 2 (ER. 02+ 1 EB.1% + maER. D2 + llgy) 213 + 105603 %13) .
Ro(2,1,6) £ R(R,0) + 11 R(B, 1) + noaR(R, 1) + (Re, Y1) + (DgRe. (Dpé)vr),

" (5.66)

where (E(R, 0), R(R,0)), (E(B, 1), R(B, 1)), (E(R, 1), R(R, 1)) aredefined in (5.33),
(5.20) and (5.57), respectively, and w; are some fixed absolute constants.
We do not need the extra damping for le(Q),ol/2 and L12(£2)(0) in (5.65) due to

Lemma A.4 and the fact that Ey is stronger than ||Q2*—5— (1+R) [|72. Using (A.9), we know

that Coc||L12(Q),01/2||L2 R Ca|L1>(2)(0)|? can be bounded by CozE2 Hence, using
the notation Eg, Rg, we derlve the following result from (5.65).

Corollary 5.13. Let Eo(2,n, &), Ro(2, n, &) be the energy and the remaining term
defined in (5.66). Under the assumptions of Propositions 5.6, 5.11 and 5.12, we have

1d 1 )
S8 B2 < (2 Ca)E2 + Ry,
2 a; o =G = CEy+Ro

6. Higher Order Estimates and the Energy Functional

In this section, based on the weighted L? estimates established in Corollary 5.13, we
proceed to perform the higher order estimates in the spirit of Propositions 5.11, 5.12
so that we can complete the nonlinear analysis. In Sect. 6.1, we perform the weighted
H' estimates of £; and illustrate how to apply several lemmas to control different terms
in DgL;. In Sect. 6.2, we use a similar argument to establish weighted H> and H?
estimates. In these estimates, we treat the nonlocal terms as perturbations and apply
Lemma 5.3 recursively.

Since & (x, y) does not decay in the x direction when Yy is fixed (see the estimates of
£ in Lemma A.8), we cannot obtain the decay estimate for its perturbation &. Hence,
in order to obtain the L control of & and its derivatives, which will be used later to
estimate the nonlinear terms, we cannot apply a H* — L type Sobolev embedding.
We perform the L°° estimates of £ and its derivative directly in Sect. 6.3. This difficulty
is not present in [11] by removing the swirl. The coefficient of the damping term in
(5.7) is given by I} = —2 — % < —2. This simple inequality is actually related to
the flow structure. In fact, /; is the leading order term of —2 — vy, (see (5.1) and (4.9)),
and the positive sign of vy is related to the hyperbolic flow structure # < 0,v > 0
and v(x, 0) = 0. See more discussions after Lemma 3.1. The fact that /; is bounded
uniformly away from O enables us to establish the L estimate of &.

2 In fact, Eq contains a L2 norm of the angular derivative DgQ, Dgn, Dg&.
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6.1. Weighted H' estimates. We remark that the weighted H' estimate with angular
derivatives is already established in Sect. 5.4 about D2, Dgn and Sect. 5.8 about Dgé&.
Recall the weighted differential operator Dg = Rdg in Definition 5.1. We define an
energy and a remaining term
a /2,2 1/2 12,2\ /2
E(R,2)(2,n,8) = ([IDrQe,""[l5 + [|Drne; |2 + [IDREV 112 ) 6.1)
R(R,2)(2,n,&) = (DrRa, DrQp1) + (DrRy, Drne1) + (DrRe, DrEY1),
where @1, ¥ are defined in (5.14).

Proposition 6.1. Under the assumption of Corollary 5.13 and that <p11/2 Dgr€2, (pi/zDR n,

wll/zDRE € L2, we have

(DRL1(2, 1), (DRS)@1) + (DRL2(2, 1), (DrM)¢@1) + (DRL3(E), (DRE) Y1)
< —éEz(R, 2) + K4 E},

where K4 is some fixed absolute constant and Eo, E(R, 2) are defined in (5.66) and
(6.1).

Proof. Since D commutes with D, Dg in L;, L;o (see Definition 5.1), we have

3 _ _
DRL{(2,n) = L10(DRS2, Drn) — Dg I D2+ ¢y DR(S2 — RORS2)

+ R
2

= L10(DRQ. Drm) + Y _ I;.
i=1

3 2 - _
DRLy(2,m) = Loo(Dgrn) — DR~—— - Dgn+ DRp(—2+ )+ —L1a() - DRil

1+R 1+R

5
2 ~ _ _ _
+ —DpL1a(Q) i1+ cwDR( — RORT) = Loo(Drm) + Y _11;,
i=1

3 2 - -
- Dpé+DR(=2— ——) & — —L1p(R) - Dk
o

DRL3(2,8) = L30(DRrE) — DR 1+R

1+R
) 3 . ) ) 5
— —DRL12(R2) - § +coDR(3E — RIRE) = L3o(DRé) + leli-
T o
Applying (5.16) with ¢ = ¢ (see (5.14)), and (5.17) with ¥ = i (see (5.14)) in

Lemma 5.3, and 3|1 — 0| < 55, we yield

(L10(DRrS2, Drn), (DR ¢1) + (L20(Drn), (Drn)g1)
1 1/2 1/2
= —5 (I1Dr20) 113+ 1DR00} 115

3
(L20(DRE), (DREVY) < —gnDstf”H%.

Notice that o, ¥p (5.14) satisfy ¢1 < @2, ¥1 < . For the terms not involving
L12(K2), ¢y, we use Eq defined in (5.66) to control the weighted L? norm of DgS2, Dgn.
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It is easy to see that

1/2 1/2 1/2 1/2
e N2 S 11D 1112 < Eo. 1L 1112 < 11Dgnes 21112 < Eo,
1/2 1/2 1/2 1/2
T Le! (12 S ey M2 < Eow HITL,*l12 S 11DgEVL 112 S Eo.

1/2 1/2
WLy 2 < N1Ew P2 S Eo.

Recall ¢, = —%le(ﬂ)(O). Applying (A.16) in Lemma A.14 to I, I Is and (A.26) in
Lemma A.8 to /115, we obtain
12, < < 172, < <
129, " ll12 S [L12(2)(0) S Eo, [ Isey " [l2 S |L12(82)(0)] S Eo,
1/2
111159121112 S @l L1a(R)(0)] S wEp.
Finally, for the L»(£2) terms, we apply Lemma A.3. To apply Lemma A.3, we need the

L norm of some angular integrals, whose estimates are given in (A.15) in Lemma A.6
about €2, n and (A.25) in Lemma A.8 about &. Using these estimates, we obtain

1/2 =~ _ 1/2 _
110,12 SHL@R 2k S Eo g Pl SRR S Eo,
1/2 =~ _ 1/2 _
1139, 212 S allLin @R gy S @Bo, Ly, Iz S @llR7'QII S ako.

The result now follows using the Cauchy—Schwarz inequality (notice that —% <
—%, a < 1) and applying the energy notation (6.1). O

Using the reformulation (5.12), we have

ld » 1d 1/2,2 1/2,2 1/2,2\1/2
S B (R.2) = 5= (11DRS0) %15 +11DRne; 13 + 1DRE W, *113)
= (DRLI(Q, 1), (DR¢1) + (DRL(R, 1), (Drmgr) + (DRL3(E), (DREW) + R(R, 2).

Therefore, it is not difficult to combine the above reformulation, Corollary 5.13 and
Proposition 6.1 to prove the following results.

Corollary 6.2. Suppose that 2, n, & satisfy that Eo(2, n, &), E(R,2)(2,1n, &) < 400,
where Eq, E(R,?2) are defined in (5.66) and (6.1), respectively. Then there exists an
absolute constant 3, such that, the following statement holds true. The weighted H'
energy E| and its associated remaining term R defined by

A 2 2 1/2 A
EN@, 0.6 2 (EJ@.0.6) + i3 EAR.D@,1,8) . Ri@,n,§) 2 Ro+ p3RAR, 2),
(6.2)

where Ro, R(R, 2) are defined in (5.66) and (6.1), satisfy

1d 1
EEE% < (_E +Ca)E? +Ry.
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6.2. Weighted H?> and H? estimates. Recall the weights ¢;, ¥; in Definition 5.2. For
Dk Q, Dll‘en, k = 2,3, we use weight ¢1; for other second or third derivative terms

D’RDéQ D} Dén j = 1 we use weight ¢,. For D% rE. k =2,3, we use weight ry; for

other second or third derivative terms D’R Déé , J > 1, we use weight y3.

In the same spirit of the weighted H! estimates established in Sects. 5.4 and 6.1, we
perform the weighted H? and H? estimates. We estimate the second and third derivative
terms in the order of D/%, DgDg, D2 Dz, D% Dg, Dg D%e’ D%. The motivation to first
estimate the angular derivative terms is the same as that in Sects. 5.1.2 and 5.4. This
order of energy estimates has been used in [11]. In these estimates, we treat the nonlocal
terms as perturbations and apply Lemma 5.3 recursively.

Similar to the weighted H' energy function E; and Corollary 6.2, there exist
some absolute constants i ;i, which can be determined in the order (j,k) =
(2,0),(2,1),(2,2),(3,0), (3, 1), (3, 2), (3, 3), such that the weighted H3 energy func-
tional E3 > 0 and its associated remaining term R3 defined below satisfy the estimates
stated in Corollary 6.3.

1/2 1/2

E2@on.6) 2 B+ Y > w (IDE D)0 P15 + 1Dk D) 0! 113

[=2,30<k<I

— 1/2
+ 11Dk D gy 13)
(6.3)

R0, ) 2R+ Y. > wik (DD Ra, (DR D @)

1=2,30<k<lI

HDR DY Ry (DR DY ) + (D} Dy *Re. (D D)0
where E1, R are defined in (6.2), (¢;, ¥i) = (¢3,¥3) for k = 0, 1,2 and (¢1, Y1)
otherwise.

Corollary 6.3. Suppose that E3(2, n, &) < +00. Then the energy E3 satisfies

1dE2(Q £) < ( ! +Ca)EZ +R
- — N, 8) < (——= o .
2dr 3 12 3T

We refer the details of the weighted H? estimates to the arXiv version of this paper
[6]. The weighted H? estimates can be generalized in a straightforward manner.

6.3. C! estimates. We introduce the following weights for the weighted C! estimates

1+R

- ¢ = 1+ (Rsin(28)%)" ™, (6.4)

P =

and the following C! norm

S ller 2 11 f oo +11¢1 DR flloo + 1162 Dp f1loo

1+R . . (6.5)
= ||f||oo+||TDRf||oo+||(1+(R31n(2/3) )" %) Dg flloo-
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To close the nonlinear estimates, we need to control the L°° norm of 2, n, £ and their
derivatives. For Q, n, the weighted H?> estimates that we have obtained guarantee that
Q.necl I which will be established precisely in later sections. For &, however, since
the weight ¥, (see Definition 5.2) is less singular in 8 for S close to 0, the weighted H?>
space associated to & is not embedded continuously into C'. Alternatively, we perform
C! estimates on £ directly. This difficulty is absent in [11] by removing the swirl.

Firstly, the transport term in the & equation in (5.1), including the nonlinear part in
Ng, is given by

A(&) £ (1 +3a)DgE +aciDRE + (- V)E + (u - V)E. (6.6)

The main damping term in the & equation is (=2 — vy)&. (4.9) shows that —v, =

—% +[.0.t.. Therefore, we consider

3 3
—2—0))E=(—2— —— 2, B2
( vy)§ = ( 1+R)§+ 1 1 (1+R

—vy)é. (6.7)
We further introduce E» to denote the lower order terms in the & equation (5.1)

Ex = —vy€ + (26 — RIRE) + (acyRIR — (u- V)E — (uyij +ityn).  (6.8)

Then the & equation in (5.1) can be simplified as

3 _
0E+AE)=(-2——=)5+E1+Ex+ Fg +N,, (6.9)
1+R

where we have moved part of the nonlinear term Ng defined in (5.2) to the transport
term A(§) and N, is given by

No = 2co — vy)§ —uyn. (6.10)

. 1Ndotice that — % < 0. Multiplying & on both sides and then performing L estimate
yie

1d -
Eausnio < =201 11Z, + ENUIE1 Iz + [1B2lloo + || Felloo + [ Nglloo), (6.11)

where the transport term A () vanishes.
Before we perform weighted C I estimates, we rewrite A(&) defined in (6.6) as follows

3 A
Dgé&) + ((w+u) -V — ——Dpg)§) = A (§) + A2 ().

AE) = ((1 +3a + ac)) DR + TR
(6.12)

1+R

Recall the weights ¢1, ¢ in (6.4). Observe that Dg commutes with A; and D com-
mutes with Dg, Dg. Denote by [P, Q] the commutator P Q — Q P. A direct calculation
shows that
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¢1DRAE — A(p1DRé) = ¢1 DR -Dgé — (1 +3a +ac)) Dy - DRE + [¢1 DR, A2lé,

3 1
=1 pPpE+U+3arac)—— d1DRé+ [¢1 DR, A2l§,

$2DgAE — Alp2Dgé) = —A1(¢2 — 1) - Dgé +[¢p2Dg, A&,

1+R

(6.13)

where we have used .41 (1) = 0 in the last equality. Hence, using (6.9) and the above
calculation, we obtain the equation of ¢1 Dgé&

3 1
0; (91 DRE) + A(p1 DRE) =mDﬂ§ — (1 +3a+ac) I R¢1DR§ — [¢1 DR, Ai&]
3 _
+¢1Dp((—2 — m)f?) +¢1DR(E1 + E2 + F¢ + N,).

We remark that —(1 + 3a)ﬁ¢1DR§ is a damping term, though we will not use it.
Performing L estimate for ¢1 Dg&, we obtain the following estimate, which is similar
to (6.11)

|1¢1DREIS, < —(2 — laci) |1 DRE|IS, + 311d1 DrE ool 1€l

|1 DRE Lo (3| Dgé oo + [1[1 DR, A21E |00 + |91 DR(EL + B2 + Fe + No)l| 1),
(6.14)

1d
2dt
+

where we have used |%| <3and

3 3
¢1DRE - 91 DRr(—2 — m)é = ¢1DRé - ((—2 — m)(lHDRS

3RE

m) < —2(¢1DRE)” +3/1¢1 DR ool & oo

+¢1

Similarly, using (6.9), (6.13) and then performing L°° estimate on ¢ Dg&, we obtain

5377 192Pp8lloo = —2lI¢2Dpélloo + ll¢2DgélloollA1(d2 — 1) - Dgéllpee

+|1¢2 D& oo (12 Dp. A21E oo + |¢2 Dg (B + Eo + Fz + No)ll o),
(6.15)

where we have used

3
2D - $2Dp(=2 — ) < —2(¢rDgé)>.

We defer the estimates of the remaining terms in (6.11),(6.14),(6.15) which are small,
to Sect. 8.
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6.4. The energy functional and the H™ norm. Using all the energy notations (5.20),
(5.33), (5.57), (5.66), (6.1),(6.2) and (6.3), we obtain the full expression of E3 (6.3)

81
E3 =112/ *15 + 1?13 + L@ + 1 (11Dp%20,% 13 + 1105w, 13)
+IDgEv,’ ||§+m(||s2<o1 213+ 1w 213 ) + w13
w13 (11DrS201 213 + 11D R 213 + 11D REW213)

1/2 1/2 1/2
+ 30 2w (WDk Dy 20213 + 1D D F el 213 + 1D D Few ! 1)
[=2,3 0<k<l

(6.16)

where (¢;, ¥i) = (g1, Y1) fork =1, (¢i, Vi) = (@2, ¥2) fork #land [ = 2, 3.
Recall ¢;, ¥; in Definition 5.2. We define the H" (o) norm with m > 0 as follows

1/2 1 1/2
1y 2 D Dk fo Pl + Y 1IDRDE fo, 21112 (6.17)

0<k=<m i+j<m—1

The H° (¢) norm is the same as L2(<p1) norm. For the 3 (¢) norm, we use (6.17) with
pi = ¢;; for the H3 () norm, we use (6.17) with p; = i, i = 1,2. We simplify H3 (p)
as H>. We apply the > norm for €2, 1 and the H> (1) norm for £. We use the " norm
to establish the elliptic estimate in the next section. We will only use the 72, H? () and
H3, H3(¥) norms. Remark that the H™ norm is different from the canonical Sobolev
H™ norm.

From the Definition 5.2 of ¢;, ¥;, we have a simple relationship between H" and

H™ ().

Lemma 6.4. For % <A< % and m < 3, we have

1 lmepy S U Nrems 11singB) fllagn S lrm - (6.18)

The proof follows from several simple inequalities ¥; < ¢, sin(B) ¢; <,
D}} sin(B)* - ¢ = 24 cos?(B) sin(B) ¢z < ¥ fori < 3, and expanding the norm.

We also define the corresponding inner products on > and H> (), which are equiv-
alent to H>, H3(¥)

(f. 8)13 = m1(Dp f. Dpgen) + u2(f. gp1) + u3(Dg f, Drge)
1/2 P -
+ 3wkl Di fe Pz Y. Risi(DR DL f. Dy DYgen).
k=273 J=1, 2<i+j<3
(6.19)
(f. 8163y = (D f. Dpg¥n) + (f. g¥1) + u3(Dr f, Drg¥1)
1 2 P .
+ 3wk IDE Pl + Y e (DR D) f. Dk Dhgn).
k=23 j>1, 2<i+j<3
Clearly, using these notations and (5.66), (6.1), (6.2), (6.3), we have

81
E3 = EL@(Q)(O) +(Q%, o) + (0%, Yo) + (2, Qyggs + (0, Mg + (€. E)app s

81
Rz = (Ra, Qo) + (Ry, no) + lez(Q)(O) (Ra, Sin(Zﬂ)R_l> (6.20)

+ (Ra, Q) + Ry, Mg + (Re, E)gp3 9
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We also have the following simple inequality

190175 + Il + 118155, S E3F(Q,n,8). (6.21)

7. Elliptic Regularity Estimates and Estimate of Nonlinear Terms

In this section, we first follow the argument in [11] to establish the H3 estimates for the
elliptic operator and justify that the leading order term of the (modified) stream function
can be written as (2.16) in Sect. 7.1. Then to simplify our nonlinear estimates, we will
generalize several estimates derived in [11] in Sect. 7.2.

The fact that £ (see Lemma A.8) and & do not decay in certain direction makes
the estimates of nonlinear terms complicated since we cannot apply the same weighted
Sobolev norm to 2, i, &. More precisely, the H¥ () norm for £ is weaker than the H*
norm for 2,  (see (6.18)). To compensate this, we use a combination of C! norm and
H"(xﬁ) norm for £. We will establish several estimates for & in Sect. 7.2. Moreover,
estimating the HK norm of v, € in the n equation (5.1) will be more difficult since £ is in
a weaker Sobolev space. In Sect. 7.3, we will estimate the nonlinear term v, £ in the n
quation (5.1). We will also perform a new estimate of the transport term with weighted
H- data.

Recall that the Biot-Savart law in R? is given by (2.3), which can be reformulated
using the polar coordinates as

1 1
— 0 — ;arw - r_zaﬂﬁw = w,

where r = /x2+y2, 8 = arctan(y/x). We introduce R = r% and W(R, B) =
rizl//(r, B), Q(R, B) = w(r, B). It is easy to verify that the above elliptic equation is
equivalent to

Lo(W) 2 —a?R*9pp¥ — a(4+a)RIRY — dpp¥ — 4¥ = Q. (7.1)
The boundary condition of W is given by

W(R.0)=W(R,7/2) =0, lim W(R,p)=0. (7.2)

7.1. H3 estimates. Recall that the H™, m > 0 norm defined in Sect. 6.4 is given by

2 2

A X (1+R) il (1+R)
nE Y DR f 2+ )Y DYDY f 112,
1711 . RfRZsin(zﬁ)v/Z“L2 1P Dj fR2sin(2;3)y/z“L2

0<k=m i+j<m—1

(7.3)

where o = 99/100, y = 1+«/10 and we have used the definition of ¢; in Definition 5.2.
The H° norm is the same as Lz((pl) norm.

Proposition 7.1. Assume that 0 < o < %, Il <y < 451, and 2 satisfies ||2||3 < +00
with

/2
/ Q(R, B)sin(2B)dp =0 (7.4)
0
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for every R. The solution of (7.1) satisfies
@?||R*ORrW |13 + | |RORgW |74 + 11085 |13 < ClIQ21343

for some absolute constant C independent of a and y .

Remark 7.2. We need the orthogonality assumption (7.4) since sin(2p) is in the null
space of the self-adjoint operator Lo(W) = —dgg¥ — 4W with boundary condition
V() = W(r/2) = 0, which is the limiting operator in (7.1) as « — 0. See more
discussion on the connection between this orthogonality assumption and the elliptic
estimate in the arXiv version of this paper [6].

Since the H? norm is the same as that in [11] and the H? estimates can be easily
extended to the > estimates, the complete proof follows from the same argument in
[11]. Here, the proof is even simpler since there is no first order angular derivative term
in (7.1), i.e. dg(tan(B) V), which is one of the major difficulties in obtaining the elliptic
estimate in [11].

The singular term In general the vorticity €2 does not satisfy the assumption (7.4) in
Proposition 7.1. Suppose that W is the solution of (7.1). Consider ¥ = W + G sin(2).
The goal is to construct G so that £, () satisfies (7.4), i.e. fon/z Lo () sin(28)dp = 0.
Recall the notation L1>(£2) in (2.16). Following the argument in [11], in Appendix A.3,

we derive

1 o 1 . (R pan \
G=-—Lo@@®+G 62—k [ [T e psinepsilds
T o 0 0
(7.5)

Although there is a large factor 1 /« in G,itcanbe proved that || G| |743 can be bounded
by C||€2||4 using a Hardy-type inequality. We refer the reader to [11] and [14] for more
details.

Using Proposition 7.1 and an argument similar to that in [11], we have the following
result, which is similar to Theorem 2 in [11].

Proposition 7.3. Assume that « < Al‘ and Q € H3. Let W be the solution to (7.1) with
boundary condition (7.2). Then we have

.
a?||R*0rR W ||33 + || RORE Y||35 + [10pp (W — o sin(2B) L12(2) [l = ClI€2][43

for some absolute constant C independent of o, y in the definition of H> (7.3).

Remark 7.4. The H> norm of a Dy dgW is not included in Theorem 2 in [11]. Yet, the
estimate of such term can be derived easily from Proposition 7.1 and the estimate of G
defined in (7.5).

7.2. Estimates of nonlinear terms. In this subsection, we generalize several estimates
of nonlinear terms derived in [11], which will be used in our nonlinear stability estimate
in the next section.
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We define the W norm:

Il 2> |[sin2p)~% D y GnCP). £t ZHD’z‘efHLm

O<kir =1, j£0 10 + sin(28)
(7.6)

A similar W has been used in [11] and our W"* norm is slightly different from
that in [11]. We replace the operator (R + 1)"8;‘e by Dll‘e = (Rg)X. The reason for doing

this is that the stronger weight (R + 1)¥ is not necessary in the derivation of the product
rule in [11] related to W-°°, and that the differential operator D commutes with L,
in the elliptic equation (7.1), while dg does not. Therefore, the higher order elliptic
estimates related to dg can depend on the value of «. We will only use these estimates
when « is very small.

Functions in /7-> From Proposition A.7 in the Appendix, we know that I'(8), Q, ij €
w7,

Remark 7.5. We do not apply the W' norm to &, &.

Recall the C! norm in (6.5). For the C! and W!* norms, we have a simple result.

Proposition 7.6. For any f, g € C' and 1+Rp e W™ we have

1+
I fgller < N fllerllgllers lpller S IITplleoo-

The W% version of the following result has been established in [11], whose general-
ization to W is straightforward.

Proposition 7.7. Assume that f, g € W, Then we have

1Fglwree St lLf ool I8yt

Recall from (4.9) that L1,(Q) = 3”"‘ 1+R We define W by

Lo(W) = —a’R*0grVY — a(4 +a)RIRY — dpg ¥ — 4¥ = Q,
where L, is the operator in (7.1). We have the following estimates.

Proposition 7.8. For o < 4—11, we have

1+R " W sin(2)

I Li@)lhwre S, L@ S @,

+R
DZ\IJ||W500+0£|| dg DRV | ys.00

(,3)
To

Otll

1+R -
+I|T3,3,3(‘1’— Li2(Q) s S c.

The proof of the first inequality follows from the same argument in [11]. The proof
of the second inequality follows from L7 (€2) = % in (4.9) and a direct calculation.
The third inequality follows from the first two inequalities. We refer more details to the

arXiv version of this paper [6].
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7.2.1. Some embedding Lemmas A similar version of the following estimate has been
established in [11]. We remark that we have modified the weight for the R variable in
the W% norm. We refer the proof to the arXiv version of this paper [6].

3
Proposition 7.9. Assume that (H% f € W, then we have f € H> and

(1+R)?
1l S IITfHW,OO.

We have the following decay estimate.

Lemma 7.10. Suppose that € € H> (), we have
IRYZsin28)"/*& 112 S 111132y

The above estimate also holds for & € H? since H? is stronger than H2(Y) (see
Lemma 6.4).

Proof. Using a direct calculation yields

|Isin2B) /2 RE?|| 1o < [18RDp (sin(2B) 2 RE) || 11 = |19 (5in(2B) /2 (8% + 26 DRE)) || 11
< |1sinB) V2 (E% + 26 DRE)|| 1 + || sin(2B) "/ (268pE + 2058 DRE + 2635 DRE)|| 11

Recall the definition of Hz(w) (6.17) and the weights in Definition 5.2. Using the
Cauchy—Schwarz inequality concludes the proof. O

Lemma 7.11. We have

f e S a Y21 fllpge,

1+R
A et = [1fllzee +

1
= Drf Iz +11(1+ (Rsin@B)*) %) Dg flp> < a V211 fllpgs,

provided that the right hand side is bounded.

The first inequality has been established in [11]. Recall the definition of > and its
associated weights in (7.3). The proof of the C! estimates follows from the argument in
the proof of Lemma 7.10, the Cauchy—Schwarz inequality and

R
sin2B)"/* 2 S V2|

TRz snee bl S a2

Il :
1+R

7.2.2. The product rules In this subsection, we generalize the estimates of nonlinear
terms and the transport terms derived in [11] to the 73 () norm.
Denote the sum space X £ H> @ W with sum norm

1 f11x = inf{llgllps + [lhllysoo : [ =g +h). (7.7)
We use the following product rules to estimate the nonlinear terms.

Proposition 7.12. Forall f € X, g € H>,& € H3(¥) NC!, we have

1 fellre < a2 Flixllgl s,

(7.8)
WfENray S PIFlx @ 2 ller + 1E e )
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The first inequality has been proved in [11]. We will focus on the product rule with
H3 () norm.

Proof. If f € W, applying the same argument in [11] yields
1781y S @ 21 Hhwsoo 18 193 -

Now, we assume f € H>. We consider the third derivative D> = D%D;{J terms

since other are terms are easier. If (D3, Vi) = (D3 , Y1), (Dg, Yn), we use a L? x L
interpolation

ID3(Fe)y! I3 < > DK D3 ey P13+ > 1D D3 ey 213

k=0,1 k=2,3
S AlelE ey + 1 e 1N S o 21 fllael1E s @)
+11fllgpl1E e

where we have applied Lemma7.11to || f||-1 and Lemma 6.4 to obtain the last inequality.
If D3 = D%e Dg or Dé Dp, the corresponding singular weight in the > (v/) norm is

Y. We consider the term D%SDﬁf{/le/z in the L? estimate of D3(f$)1/f21/2, whichis a

typical and the most difficult term. The previous L? x L™ estimate fails since D%& wzl /2

18 not in L2(R, B). Recall the Definition 5.2 of i, ¢2. Denote

W (1+R)*

A P =sin(B) % cos(B)"Y, Q=sin2B) Y, S=sin2B) %, A=y —o.

(7.9)

Clearly, we have ¢ = WQ,¥» = WP, Yy =< WS and P < sin(8)*Q. We use a
L*(R, L*®(B)) x L®(R, L*(B)) estimate’

1D6 D fWPYPIE < |115in(BY/2DRE(R, )l 3 I Dp £ Q' (R, 112 W|

2 |JAR)*B(R*W |1 ()-

LY(R)

(7.10)

We further estimate the integrands A(R), B(R). Using the Poincare inequality, we have

AR) < 119p(sin(B>DRER, NlIL1 gy + 11 sin(BY /2 DRE(R, 125 2 AL(R) + Ax(R).
Using the Cauchy—Schwarz inequality, we can bound the first term as follows
AL(R) S |Isin(B)* I DRER, |11 () + | sin(B)*/? sin2B) "' D DRER, |11 ()
SISY2DRER, Il 2 1S~ sin(B) 71| 12
+[|P'2Dg DRE(R, )l 20| P~"% sin(B)* sin(2B) ] 2.

3 The LZ(R, L*®(B)) x L°°(R, Lz(ﬁ)) estimate of the mixed derivatives term in the {2 norm is due to
Dongyi Wei. We are grateful to him for telling us this estimate. We apply this idea to derive the estimates in

the H3 () norm.
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Recall P, S, A definedin (7.9)and y =1 + f‘—o. A simple calculation yields
1S~ 2sin(B) > 2 < Hsin(B) 2 ] 2y S a7V,
1P~ sin(8)"/ sin28) 11,2 < |Isin(B) >~ cos(B) > | o) S a2,
Combining the above estimates, we derive
A S AI(R) + Ay(R) S a ' 2(IS'2DRER, IIp2p) + 1P Dg DRE(R, )l 25))
+HIDRER, I 2¢5)-
Recall WS < ¢, WP < . Consequently, we have

2 —1 2
IAARW Iy S @ 1EIF -

Recall B(R) in (7.10). Since Dg fQY?W'/2 DrDgfQ?W!/2 € L2, we have
liminfg_o B(R) = 0 and yield

1B?[|L(r) < 10r B> L1(r) S 110rDp f Q2 111211Dg £ Q2112 S I35

where we have used 9 = R~ !Dg, R™! < W1/2 and WQ = @7 to obtain the last
inequality. Plugging the estimates of A and B in (7.10), we yield the desired estimate

1/2
on ||DXEDg £, |12, O
We generalize the H? estimate of transport term derived in the earlier arXiv version
of [11] as follows.
Proposition 7.13. Assume that u, dgu, Dru € H> and Q € H*, & € H () N C! we
have

1
(R, uDRrQ)33| S a7 (lullps + 10pullye + IDrullys) 1191155,

(6. uDRE) s S @2 (Ilullgs + [13pulls + 11 Druells) (1l ) + o 21E ).
Moreover, for allu, Dru € X = H> @ W>® and Q € H3,& € H3(y) NCL, we have
Q. uDpQR)3p5] S a2 (llullx + || Drullx)) 121155,
(€, uDg& )y | S ™2 (lullx +11Drullx)) (€] 330 + ' 11E 1)

The proof follows from the argument in the proof of Proposition 7.12 and that in
the earlier arXiv version of [11]. Here, the proof is easier since the data is more regular
(than H?), i.e.H> or H> (), and then the estimate of several nonlinear terms can be
done by applying L°° estimate on one term. To estimate the mixed derivative terms, e.g.
(D% Dgé, D% Dg(uDgé) V), we apply the L2(R, L>(B)) x L®(R, L*(B)) argument
similar to that in the proof of Proposition 7.12.

The following result is a simple >, H> (1) generalization of another transport esti-
mate in the earlier arXiv version of [11].

Proposition 7.14. Let H3(p) be either H3 or H3(Y). For all g € H3(p), u with
|IDul| Lo < oo fori <3 and || Dy DjdgullLe < oo fori+ j <2, we have

(g, uDRE w3yl S @ 2 Y IDRullex + ) 1IDRDydgull=)ligllis .
0<i<3 i+j<2

The proof follows simply from applying L°° estimate on the u term and integration by
parts.
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7.3. A new estimate of the transport term and the estimate of v,&. In this subsection, we
establish a new estimate of the transport term which is necessary to close the nonlinear
estimate and estimate ||vy&||y3 which is not covered by Proposition 7.12.

Proposition 7.15. Let U be a solution of (7.1). Suppose that g, 2 € H>, & € H> () N
C'. We have

1 _
8 Gag PRV e8| S 2012115118154

(& RYDgE) 1| S a1 (133 + 2 11E 1)

s —— D
sin(28)
If one apply Proposition 7.13 with u = %, [|Dgully3 in the upper bound cannot
be bounded by |[[€2]]43.

Proof. Denote u = Sil)#fﬂ). The estimate of the transport term is similar to that

in Proposition 7.12 except that we need to perform integration by parts for the
terms (D3g, uD? Dgg) in the estimate. We focus on a typical and difficult term

(Dfe Dgé, DlzeuDész) to see why we can improve the estimate in Proposition 7.13.
Other terms can be estimated similarly.

For this term, it suffices to estimate the L2 norm of DlzeuDéS wzl /2 Recall Yr=WP
with W, P defined in (7.9). We have

1/2
1DRuDREV *ll2 < | DRuW (| 2 Loy 1 DFE P2 oo 12y = A - B.

The term A can be bounded by Coz_l/2||u||H3, which is further bounded by
Ca_3/2||QIIH3 using Proposition 7.3. The term B is bounded by C|[§]l33y- It 18
similar to the argument in the proof of Proposition 7.12 and we omit the detail. O

Finally, we estimate the nonlinear term v, & in the n equation (5.1).

Proposition 7.16. Let W, U be a solution of (7.1) with source term 2, Q, respectively,
and V(W) be the operator which is related to v, and is to be defined in (8.6). Assume
that € € H3(y) NC', Q € H3. We have

IVIC9)E N S o 21111y (@ 11 ller + El I ),
Vi@l < o' P 1E s y)-

The difficulty lies in that H3(yr) is weaker than H> (see Lemma 6.4). We can not
apply Proposition 7.12 directly to estimate v, & . We need to use a key fact that vy vanishes
onf = 0.

Proof. We use the formula of Vi (W) (8.8) to be derived

(7.11)

Vi(W) = a(l +2cos® B)DrWY — a DrDgV¥ — DgW, + 2,
+sin*(B)d5 W, + o cos®(B) D ¥
2 A(W) +a? cos’(B) DR W.

where ¥, = W — %LIQ(Q). We first consider the second inequality in (7.11).
Notice that V;(¥) vanishes on B = 0. More precisely, Proposition 7.8 implies
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sin(8) ™12V (W) € W, Applying the product rule in 7> norm in Proposition 7.12,
Lemma 6.4 and then Proposition 7.8, we yield

IVICDE I3 S a2 [sin(B) T 2Vi(0) sl sin(B) € [lgps < o' 21133y

Next, we consider the first inequality in (7.11). From Proposition 7.3, we know that
sin(B)~1/2A(W) € H3. Applying Propositions 7.12, 7.3 and Lemma 6.4, we derive

IAWE g S o™ 2IAW) sin(B) ™2 1y 118 sin(B) 2 llpp gy S @ V211 11E 130y

Finally, we focus on the term g = OtZD%e W in Vi (¥). We consider the third derivative
terms D3 (Dlze\ll -£) with D3 = D% Dé, i+j =3inthe H3 estimate since other terms are

easier. If D3 = D;e’ we need to estimate the L2 norm of D%(g&)(pll/z. Since @1 =< VY,
the estimate follows from the argument in the proof of Proposition 7.12 and we obtain

1/2
1D3(@*D3WE)e, 2113 < & 2IR133 (1€ 13 () + 2 1IEN ).

Otherwise, we need to estimate the L?> norm of DzDﬂ(g . S)(pzl/ 2 with D? =
Die Dé, i + j =2 (note that Dg commutes with D). We rewrite Dg(g&) as follows

Dg(g§) = dpg(sin(2B)&) + gDp& = sin(2B)*/*pg(sin(28)'/*¢)
+sin(28) /4 (sin(28) ~1/?g) sin(28)/* Djé.

Notice that sin(28)/4¢> < @1, ¥1. Using the idea in the discussion of Lemma 6.4 and
expanding the {? norm, one can verify easily that

ID*(Dp(g€))ps 1112 < 11sin(2B) g - sin(2B)/*& 152
+||sin(2B) "2 g sin(2B)!/* D |12

Applying the H? version of the product rule in Proposition 7.12 (it is given in [11]),
Proposition 7.3 to g = aleze\IJ, and Lemma 6.4, we obtain

1/2 _ . .
ID*(Dg(g6)es 1112 < a2 sin(28) /2058 172 sin(2B) /*€ |12
+a 2| sin(28) "2 g 13| sin(28) /4 D |12
< @211 € g3 (g -

Combining the estimates of A(W) and erD%Q\IJ completes the proof. O

8. Nonlinear Stability

In this section, we complete the estimates of the remaining terms R3 in Corollary 6.3
and in (6.11),(6.14),(6.15). We will prove the following for the energy E3 in (6.3) and
E(§, 00)

1 _
~—F3< —EEg+ca1/2(E§+a||g||gl)+Ca 32(E3 +a'?E]| o) + Ca’ Es,
(8.1)
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1d
5 EE 00)? < —E(§,00)* + ClE|lo1 (@2 Ex + al|E]| 1)

+ClIElor (@ ES + a7 Es|IE]|01) + Ca® E (€, 00), (8.2)

for any initial perturbation €2, n, & with E3(2, n, &) < +ooand E(§, 00) < +00, where

E(&,00) & (|IE11% + 192 DpEl|2, + pallgn DrEIZ)? (8.3)

for some absolute constants pu4. E(§, 00) is equivalent to ||&||-1 (6.5) once we determine
the absolute constants ft4.
The major step is the linear stability that gives the damping term (— % +C oe)ES and

(—14+Ca)E (&, 00)?. We have already established the linear stability in Corollary 6.3 and
estimates (6.11), (6.14), (6.15). The remaining terms R3 in Corollary 6.3 and in (6.11),
(6.14), (6.15) contribute other terms in (8.1)—(8.2). We will further construct an energy
E%(Q, n, &) 2 aE(E, 00)2 + E%(Q, n, &) and these remaining terms are relatively small

at the threshold E = O («?). Then we can close the nonlinear estimate.

We will first derive several formulas for later use in Sect. 8.1. Then we estimate
the remaining terms mentioned above. In Sects. 8.2 and 8.3, we will apply the product
rules obtained in Sect. 7.2 to estimate the transport terms and nonlinear terms and then
complete the estimate (8.1). We will derive the C! estimate (8.2) in Sect. 8.5 and prove
finite time blowup in Sect. 8.6. We remark that estimates similar to the C I estimates (8.2)
are not required in [11] since there is no swirl.

Notations Throughout this section, x is the radial cutoff function in Lemma A.4. We

use V.., W, to denote the lower order terms in W, W, i.e.

sin(Z,B)le(Q)’ 0,20 sin(28)
T T

U, 2 Q- L12(Q). (8.4)

W, and W enjoys the elliptic estimate in Proposition 7.1 and W, W, satisfy Proposi-
tion 7.8.

8.1. Formulas of the velocity and related terms. In this subsection, we derive the for-
mulas of the velocity in terms of the stream function in the (R, ) coordinates to be
used later and then collect the remaining terms to be estimated in the nonlinear stability
analysis.

Denote

u=UW), vE VW), uy 2 U1 (), uy 2 U2(V), vy £ Vi(V), vy = Va(P).
(8.5)

The formula of U, V interms of W are given in (2.10). We also collect them below. Using
(2.9)—(2.10), Dg = ROg, rd, = aDpg and the incompressible condition uy +vy, =0,
we compute
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U(W) = —2rsin Y — ar sin BDrWY — r cos BogW,
V(W) =2rcos BY +ar cos BDRWY — rsin BogV,
1
Ui (W) = —Eoﬂ sin(2B) D3V — %sin(2ﬁ)DRlIJ — cos(2B)dp W

in(2
— wcos(2B)ds DR + Sm(Tﬁ)agxy,

Uy(W) = a(—1 — 25sin* B)DrY — aDrDg¥ — Dpg¥ — 2W (8.6)
— o’ sin*(B) Dz W — cos*(B)dz W,
Vi(W) = a(l +2cos® B)DrY — aDrDgW — DgW +2W
+ o cos*(B) DR W + sin*(B) a5 W,
Va(W) = =U1(W).
Recall ¥ = %le(ﬂ) + W,. For the terms not involving the R-derivative,

e.g. ¥, dg¥, we compute the contributions from the leading order part of W, i.e.
S—H;T(iﬂ) L12(2), and W, separately,

2r cos(B) ) ) A
UW) = —TL]Z(Q) —2r sin(B)Wy — ar sin BDRWY — r cos BogW, =
—ﬁgﬁhmm+wumx
2r sin(f)
V) = TLIZ(Q) +2r cos B, + ar cos BDrW
— rsin BogW, £ ML (Q) + V (¥, W)
e T (8.7)

2
Uy (V) = —%le(ﬁ) - % sin(2B) DRW — %‘sin(zﬁ)DRqJ — cos(2B)dp W,

—acos(2B)dgDrW¥

in(2 2
S MG a2 @)+ Ul (W, W),
2 T

2
Vo(W) = =U (W) = ELH(Q) — Ui (W, W,).
The first term in the formulas of U, V, Uj, V> is the leading order term. Observe that
—Dgsin(28) — 2sin(2B) — cos*(B)dj sin(2B) = 0,
—Dgsin(2B) +2sin(28) + sinz(ﬂ)8§ sin(28) = 0.

For the terms not involving the R-derivative in U (W), V1 (W) (8.6), the contributions
from sin(28) L12(2) cancel each other. Hence, we have

Ur(W) = a(—1 —25sin®> B)DrW — aDrDp¥ — DpW, — 2V,
— o?sin®(B) DR W — cos’(B)d5 W,

Vi(W) = (1 +2cos® B)DrW — a DrDgW — DgW, + 2,
+ 0o cos®(B) Dy W + sin*(B) 35 W,

(8.8)
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We decompose U, V in (8.7)—(8.8) so that we can apply the elliptic estimate in Propo-
sitions 7.3, 7.8 to U (W, W,,), V (¥, W), U1 (¥, W), Vo (W, W,), U (W), Vi (V).
Recall the formula of u - V in (2.12)
u-V= —(OtRaﬂ‘lJ)aR + (2w +O{R8R\I’)aﬂ.

Since ¥ = Sir;T(#le(Q) + Wy, Dg = sin(2p)dg, we have

2cos(2pB) 2 2V, +aDRpW
u-V=(————L12(R) —adpW)Dr+(—L12()+ —————)Dg
b4 To sin(28)
2
£ ﬂ_aLl2(Q)Dﬂ +7 (), (3.9)
2 2 2¥ DRV
T(Q) 2 —MLQ(Q)DR — adgWyDpg + ﬂl)ﬂ-
b4 sin(2p)

Using (4.9), we have %le(ﬁ) 3 and

— 1+R

3 _
n-V=——Dg+7T(Q).
" 1+R p )

Recall the formulations (5.5)—(5.7) and their equivalence (5.12). We use the notations
(8.5) to rewrite uy, uy and so on, and the above computations to expand the remaining
terms R in (5.5)—(5.7). R consists of three parts: the lower order terms in the linearized
equation (denote as P), the error term F (4.10) and the nonlinear term N (5.2). The
formula of P is given below

Po = (=3aDr — T(Q)Q+ (acyDr — (u- V)R,

Py = (=3aDg = T()n + (@cuDr = (- V)il = (U1(¥) + ——)
2 - _
= U1V + — L2 ()7 = (Vi(P)E + Vi(¥)8), (8.10)
P = (—3aDg — T(Q))§ + (acy,Dr — (0 V))& + (= Vo (V) + )k

2 - -
+(=V2(¥) + — L1a ()5 — (U2(V)i + U2 (¥)m).

We remark that P is the difference between the linear part of (5.1) and (5.5)—(5.7).

Recall ¢, = —1,¢; = . +3 and Q,7 in (4.8). Notice that ¢; = 1,Q, =
%ﬁ, Ne = %"‘ﬁ, ' = cos(B)* is a solution of (3.2) and 2, n satisfy

Q=Q.I'B), 1=nT(B), < [ %ds = %. Hence, we have

3
1+R

DrQL=7¢C,Q2+1, Dprij=20,2+ .
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Hence, we can simplify Fgq, F, in (4.10) as

_ _ _ 3 _ _
Fog=(-3aDgr —u-V)Q, F,;= (—m —U(¥)n —Vi(W)é§ +(—3aDg —u- V)p,
(8.11)

where we have used the notations in (8.5) for uy, uy, vy, vy.

Recall the definition of the H3, H3 (¢) inner product in (6.19) and the remaining
terms R3 in (6.3),(6.20). See also the full expression of the weighted H 3 energy E3
(6.16) related to R3 Clearly, we have

81
R3 = (Ra, Quo) + (Ry, no) + Ele(Q)(ONRQ, sin2B)R™") + (Ra, Q)gp3
+<R;7, T])’HS + (Rg, S>H3(w) (812)

We remark that (-, -) in the first three terms is the L2 inner product defined in (1.4). We
assume that Q,n € H3,Q € L*(¢),n € L*>(¥), € € H3(¥), € € C'. We will choose
initial perturbations €2, n, & in these classes. In Sect. 8.2, we estimate the transport terms
in the last three terms in R3. In Sect. 8.3, we estimate the nonlinear terms in the last
three terms in R3. In Sect. 8.4, we estimate the first three terms in R 3.

8.2. Analysis of the transport terms in P, N, F. In this subsection, we estimate the
transport terms in P, N and F in H3 or H3(1p) norm. Our main tools in this and the
next few subsections are the product rules, the elliptic estimates obtained in Sect. 7 and
Lemma A.4 on L1,(€2). The reader should pay attention to the subtle cancellation near
R = 0 in the estimates in Sects. 8.2.3, 8.2.4.

8.2.1. Transport terms I : (—3aDpg — T(Q))g in P We estimate

I = ((=3Dg = T(Q)Q, gl I = [(=3Dr = T( Q). )25,
I3 = [{(=3aDg = T(Q)E, £y y -

Recall 7() in (8.9)

) 2 cos(2
3aDg +T(Q) = 3aDg — 2S5
T

L12(Q)Dg — adgWyDp + WUy +aDRW)Dg.

sin(28)

Applying Proposition 7.8 to estimate the above coefficients, then Proposition 7.13 to the
Dg transport terms and Proposition 7.14 to the Dg transport terms yield

1/2 2 1/2 2 1/2 2
L Sa PR, b SaPlnlGs B Sa'ZEl7s .
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8.2.2. Transportterm 11 : —aciROrg — (u-V)g in N (5.2) We are going to estimate

[((maciDr — (0- V)2, Q)p2|,  [((maciDr — (- V))n, n)pel,
[((maciDr — (- V))E, &)qp2yl-

Recall ac; = —%le(ﬂ)(O) in (4.11) and the computation about u - V in (8.9)

2(1 — @) 2 cos(2pB)
(—aciDr — (u-V)) = (Tle(Q)(O) + Tle(Q) +adgWy) DR

2W, aDpWY
. + — )Dg.
sin(28)  sin(28)

2
— (—L12(2) +
To

For the first two Dpg transport terms, we apply Proposition 7.14 and Lemma A.4 to

estimate ||D’I‘QL12(Q)||Loo for k < 3. For the third, fourth ((%le(ﬁ))Dﬁ) and fifth

( Siﬁ(%)D ) transport terms, we apply Proposition 7.13, Proposition 7.3 to dg Wy, qu('—gﬁ)

and (A.10) in Lemma A.4 to L1, (£€2). For the last transport term, we use Proposition 7.15.
Hence, we derive

—-3/2 3 -3/2 2
1L S a2l 1Ll S a7 2IQlslnl .

3] S a7 21Q11p (16 s+ P11Een?.

The largest term is %ng(Q)Dﬁ, which leads to @ ~3/2 in the upper bound.

8.2.3. Transport term Il : (ac,Drp — (u-V))g in P Next, we estimate
llacw DR — (- V)Rlps,  NlacwDr — (- V)illys,  lacoDr = (- V)El 33y

Recall that > contains a singular weight (1;—5)4. We use the explicit form I'(8) =

cos(B)% and a careful calculation to cancel the singular weight R~ near R = 0.Using
the formula for ¢, in (4.11) and the computation in (8.9), we have

2 cos(28)
b4

2 2
(acoDR — (u-V))g = (‘;LIZ(Q)(O)DR + L12(82) DR — Ele(Q)Dﬂ) 8

+ (@dpgWs DR — (sin(28)) " 2Ws + DR W)Dpg)g 2 1(g) + 11 (g).
(8.13)

Denote O = L12(2) — xL12(£2)(0). We use L2(2) = O + xL12(2)(0) to rewrite
1(g)

2 1 2
I'=—Lia()O0)(=Drg +cosh)x Drg — —xDpg) + —Q(cos2f)Drg

1
D) & 1+ b (8.14)

Using (5.22) and the formula of g = Q, 7in (4.8), we have

DgT" = —2asin(B)T, Dpg = —2asin>(B)g.



Finite Time Blowup of 2D Boussinesq Equations

It follows that

2
I = ;le(Q)(O)(—DRg +c0s(2B) x Drg +2sin*(B) xg)

2
= ;le(Q)(O)(—(l — X)Drg +2sin*(B) x (—Drg +8)). (8.15)

Since the smooth cutoff function x satisfies I — x(R) = 0 for R < 1. I; vanishes
quadratically near R = 0. For (g, H3(p)) = (Q, H), (m, H3) or (€, H3(¥)), applying
Lemma A.6to g = 2, 1, (A.26) in Lemma A.8 to g = & and using a direct calculation
yield

1330y S [L12QO)AIA = 30817530y + [I1DRE — &ll143())
S alLi(@2)(O0)] S al|Llys,

where we have used (A.9) in Lemma A.4 in the last inequality. B
Recall Q = L12(2) — xL12(2)(0) and I, I1(g) in (8.13), (8.14). For g = €, 1,
applying the product estimate in Proposition 7.12, we get

1L(gllre < a7 21101l ([IDRElWws.e + @ [ Dpgllps.ce) S al/?[12]15,
()13 S @ V2|13 (@] Drg s + 1Dpgllns.c) S a¥[12] 13,

where we have applied Proposition 7.3 to W, Lemma A.4 to Q and Proposition A.7 to
g = Q, 7. For g = &, applying Proposition 7.12 yields

L@ 0y S a” 2110l @' ? (1 DREler + 1 DRE 343y
+a' 2| Dgllct + 11DgEllpp ) S a2 11Q1s,
T E) 330y S @ 21111343 (@21 DRE ] et + ]I DRE |33y
+a' 2| Dgéller + 11 DgEllrgyy) S o' 21121124,
where we have used Lemma A.8 to estimate the norm of &. Hence, we prove
lloecw D — (1 - V)Qlpgs + llacwDr — (- V))ifllpgs + llatcwDr — - V)El 33y
S al1Qllyp.
8.2.4. Transport term 1V: (=3aDgr — a - V)g in Fq, Fn’ Fg We will prove for
(8. H}(p)) = (2, H?), (7. H?), (€, H> ()
I(=3aDg — - V)gllps) S . (8.16)

From (4.9), we have %le(ﬁ) (0) = 3. Hence, we can apply the decomposition in
(8.13)—(8.14) to (—3aDgr —u - V)g to get

(—3aDg—u-V)g=11(g) + () +11(g), 11(g) = (xdpgW.Dg
— (sin(2B8)) ' W, + DR W) Dy)g

2 . _ 1 (8.17)
Ii(g) = ;Lu(Q)(O)( Dgrg +cos(2B) xDrg aXDﬂg),
2 _ 1
I(g) = —Q(cos(2B)Drg — —Dgg),
T o

4 The estimate of I (8), I1(£) can be improved to o3/ 2| |L2] |H3 but we do not need this extra smallness
here.
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where O = L12(2) — xL12(2)(0). Notice that the computation (8.15) still holds for
g§=15,n

2 _
I(g) = ;le(Q)(O)(—(l — x)Drg +2sin*(B)x (—Drg + ).

Recall L12(Q) = %. Notice that (1 — x)Dgrg, Drg — g, OQDgrg, QDpgg vanish

quadratically near R = 0. Applying Lemma A.6 to g = €, 77 and using a direct calcu-
lation yield

L@l S alLia(@)0)] S @, 1@y < o

Since £ already vanishes quadratically near R = 0, using Lemma A.8 for £ and a direct
calculation give

NG Elrpp) S @l @O)] S e 1LE) g S o>

For I1(g) with g = Q, 77, we apply Propositions 7.9, 7.7 and the triangle inequality
to yield

(1+ R)? 1+R
111(g)l3s3 SIITH(g)IIWaoo S R

1+R
R

(1+ R)?

R
(1+ R)?
R

a0p Wy lyys.ol| Drglhys.~

+1| (sin(28)) "' W, + a DR W) ||| Dggllyse < o,

where we have applied Proposition 7.8 to W, W, and Proposition A.7 to g = Q, 7.
For 11(&), we use Propositions 7.12, 7.8 and Lemma A.8 to get

T E) gy S 2 110p Wallyysio (@2 DRENl et + el DRE |33 y)
+a2||(sin(28) T QW + aDRW)|yys.0 (2] Dgé |1
+1DpE gy S o2

8.3. Nonlinear forcing terms in P, N, F. The estimates in this subsection are obtained
by applying the product estimates in Sect. 7.2 directly. The reader should pay attention
to the cancellation near R = 0 in the estimates in Sect. 8.3.2.

8.3.1. Nonlinear forcing term in Py, P: We are going to estimate

L=l — (U (W) +

2 _
T R)TI — (U1(¥) + 5L12(Q))HIIH3,
L= [|[Vi(®)E + Vi (W&,
2 _
1 R)E + (=2 (V) + Ele(Q))EIIH3(¢),

1L =|Ux(W)n+ UZ(‘IJ)77||H3(W)'

11 = ||(—=Va(¥) +
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From (4.9), 2 L15(Q) = 2. Recall the formula of U;, V; in (8.7)~(8.8). Applying

Propositions 7.8, 7.3, we obtain
- 2 - - 2 - _
U1 (W) + Ele(Q)IIWs,oo == Va(¥) + Ele(Q)Ilws,oo Sa, [[U2(W)]lpse S a,

2 2
Ul(W) + — L2l =11 = Va(¥) + — L12(D s S 121154
NU1W) + — Lia(D)llps = [ = Va() + — L1a(D)lysee S 11821303

NU2(W)35 S 11821343
(8.18)

Applying Proposition 7.12, Lemma A.7 to 7 and Lemma A.8 to £, we yield

I < a2l + o7 V211 il wsee < a21mlls + 1192017),
11 S ol 2@ P lIEler + 1€l ) + o 1R (@ 2 1E e + 1E 243 (y)
SalZ@ g ller + 11ENlrp ) + @2 1Q |,

where we have used Lemma A.8 in the last inequality. Using Lemma 6.4 and Proposi-
tion 7.12, we derive

1L S U2 (W) + Us(@)7llps S o2 U1QU 13 17 lypys.co
HU2(0) [|yys.colnl13) < @ 21921194 + 111343
For I, we use Proposition 7.16 and Lemma A.8 to obtain
L S o' 2IElrpep) + o 2RIe @ 2 E e + 1E g ) S o E gy
+32(|Q343.
8.3.2. Nonlinear forcing term in N (5.2): c,2, (2cy, — Ur(W))n — V1(W)E&, 2c, —

Vo (W)€ — Uy (W)n Recall the formula of Uy, V5 in (8.7). We use the following decom-
position

2 2
V(W) =U1(¥) = U1(¥)+ —L12(R) — —L1p(2) =1+11.
T To
Applying Proposition 7.3 to I and Lemma A.4 to /1, we obtain
IV2()[x = 1UI()Ix S [ 1l3s +a L2 @)]Ix S o Q. (8.19)
Applying Propositions 7.12, 7.3, we get
UL ()l S a2 111 lnllze, 1V2(W)E gy S @ 2112136 (€l )
+a' 2] |en).
Applying Proposition 7.16 to V1 &, Proposition 7.12 and Lemma 6.4 to U, n yields
= VieWElle S a 2121511 ) + a2 Ee).
= U () nllag gy S NU2(nllags S @™ V2111 0]l
Finally, from (4.11), (A.9), the scalar c,, satisfies |c,| < adife] |443. Hence, we obtain
lewQllze S a5 lewnllis S a QeI lcot sy,
S a IRl 1E 2 ) -
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8.3.3. Nonlinear forcing terms in F Recall that we have estimated the transport term
(=3aDgr—uV)gin Fq, Fy, F¢ in (8.16). The remaining terms in F,, and F; (see (4.10),
(8.11)) are

3 - - - - - - _
I = (—m —Ui(W)n —Vi(W§, 11 = (2c, — Va(W)§ — Ua(W)n — DRE,
(8.20)

where we have used —ac;Dr = —Dg — 3aDp since ¢; = é +3 (4.8). From (4.9), we
Eave %le(ﬁ) = %. Using U;, V; in (8.7)—(8.8), 11 (4.8) and Proposition 7.8, we
ave

(1+R)? _
nlhyys.co S .

1+R - 1+R -
IIT(U1(‘IJ)+ Niws.e S @, IITUz(‘D)IIWs,ooSa, Il

1+R

Applying the embedding in Proposition 7.9 and then the algebra property of YW>* in
Proposition 7.7 to n and the above estimates, we get

3 - - -
(=177 = Vi@l S &, 110Dl S 10 ille S e,

where we have used (6.18) in the second inequality. Applying the product estimates in
Propositions 7.12, 7.16, Proposition 7.8 to V2 (W) and Lemma A.8 to &, we yield

_ 3 - 3 _ _
12(®) = Tkl S @2 a@ PliEler + 1E ) S @,
IViCE g S @' PlE sy S o2

For the remaining part in /1, we simply use ¢, = —1 and Lemma A.8 to get

11260 — DREl33(y) + || Ellrp gy S .

1+R
Therefore, combining the formula of F in (4.10), (8.11), the estimate (8.16) and the
above estimates of 1, 11, we prove

Fallys S o 1Flle Se. |Fllppy) S o (8.21)

8.4. Analysis of the remaining terms in 'R3. It remains to estimate

81
(Ra. Qpo). (Ry. n¥0), 7 —L12(E)(0) (R, sin(2B)R™"), (8.22)

in R3 (8.12). Recall the definition of ¢q, ¥ in Definition 5.32 and ¢ in Definition 5.2.
Note that ¥o(R, B) grows linearly for large R. Clearly, we have

i<(1+R)3 (1+R* 3

- —R) B~ 2 v + v

00 < o1, wo=3RF<ﬂ>—‘+ ‘2
~ 32 R4 2 RS 2

16

Since the weights ¢o, ¥o,2, R~ !sin(2B) are much weaker than the weights @1, the esti-
mates of

81
(R, Qo). (Ry,n0,2), ELH(Q)(O)(RQ, sin2B)R™")
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follows from the same argument as that in the last two sections and a similar bound can
be derived. It remains to estimate (R, nRT(B)~1). Compared to ¢1, RT'(8)~! is much
less singular in R and B. We focus on how to control the growing factor R. We use the
decay estimate of 7 in Lemma A.6 and £ in Lemma A.8. In particular, fori + j <7 we
have

DR DYl Sl + R)72, |DRDIEI S 18] S o?(1+ R)“sin(B) ™. (8.23)

Recall the decomposition of R, in (8.10) and the error 17“,, defined in (8.11). We
use argument similar to that in the last subsection to estimate ||F,7(RF(,8)_1)1/ 2|2, A
typical term in Fn can be estimated as follows

oo pm/2 o
/ / Vi(9)’E2RT(8) ' dRAP
0 0

oo pr/2
< a? / / a*(1+R)*sin(B) " **RT(B) 'dRdp < S ot
0 0

where we have applied Proposition 7.8 to estimate V;(¥) and used @ < % (we will

choose « sufficiently small). Similarly, we have ||Fn(RF (,3)_1)1/ 2||% < o*. Hence,
using the Cauchy—Schwarz inequality, we get

[(Fy, nRT(B) ) S 11Ey(RT(B) D211l n(RT(B) ") 2112 < & l1nwry* 112 S o2 Es,

where we have used (6.20) to derive the last inequality.

Recall P, in (8.10), N, in (5.2) and the formula of u - V in (8.9). We use integration
by parts and then a L> estimate to estimate the transport terms in P, N,. A typical
term in these transport terms can be estimated as follows

2 2
(——L12(Q2)Dgn, nRT )| = |(=—L12(2)dp(sin(2B) 1), n?R)|
TX T

o IL12(2)||ool In(RT~H1/2113

1/2

S
-1 1/2 2 —1 3
Soa 1 linyy 7 1; S o ES,

where we haveused I'(8) = cos(B)¢, | sin(2ﬂ)8,31"(;3)_1 | < F(,B)_1 in the firstinequal-
ity, Lemma A.4 in the second inequality and (6.20) in the last inequality.
For the nonlinear terms related to n, i.e. (2c, — U1 (W))n in Ny, (5.2) and — (U1 (V) +

%)n in P, (8.10), we also apply a L estimate. For example, we have

(e — Ui (¥)n, nRT(B) )| S 112¢0 — Ui (W) 2ol Invry 113

-1 1/2,2 —1 -3
<o Qlplnv* I3 S o ES,

where we have used (8.19) and |¢,,| = % IL12(2)(0)] < a 1|9 |743 (see Lemma A.4)
in the last inequality. _ B
For the terms related to 77, § in P, (8.10),1.e. (U1(W) + %le(ﬂ))ﬁ, Vi(W)&), they

can be estimated easily by using the fast decay of £, 77 (8.23).
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Finally, for the terms related to &, i.e. Vi (W)& in N, (5.2) and V; (V)£ in (8.10), we
get
[(VI(®)E, nRT 1) + (Vi (W), nRT )|
< ln RVPDTV2 211 RYZ sin @) /4| Lo (1| Vi (9) sin(2B) /4T 12| 12
+]IVi (W) sin2B) AT 12 12)
1/2 = . _ . _
<o 12 1E ) (1VI () sin@2B) ™/ 1 2 +11Vi (¥) 5in(28) ™72 12)
< E3(125sin2B) 2|2 + |12sin(2B) 7?1 ;2) S E3(a + E3),
where we have applied Lemma 7.10 in the second inequality, the weighted L? (with
weight sin(28)7 7,0 = %) version of Proposition 7.3 in the third inequality and a

direct computation using (4.8) in the last inequality.
Combining the estimates of F;, P,, N;, we have

|(Ry, nRT™NY| < a2 E3 + «'?E3 + o E;.

8.4.1. Completing the H> and H3(1,D) estimates From (6.21), we can use E3 to bound
1135 5 [l 111133 ¢y Combining the estimates in the last few subsections, we
prove

<ol 2B +allgl)2) + a2 (Es + a2 [E o0 + o Es,

where E3 is defined in (6.3). Combining Corollary 6.3 and the above estimates, we prove
(8.1).

8.5. Remaining terms in the C! estimate of €. Recall that we perform L estimates of
& and its derivatives in Sect. 6.3. In this subsection, we complete the estimate of the
remaining terms in these estimates and derive (8.2). We group together the remaining
terms in (6.11), (6.14), (6.15), which remain to be estimated. They can be bounded by

1&ller(I1ller + [1E2ller + [ Feller + [INollen), (1€l 11[¢1 DR, A2)E oo,
1€lIc11¢2Dp, Al lloo,  lacrllpr DRENT,  [162DpE ool A1 (d2 — 1) - Dpéllpoe.

8.5.1. Analysis of 21, E2, N, Recall 21, E2, N, in (6.7), (6.8),(6.10)

3 _ _ _ _
1= (1— —Va(W))§, Er=—-Va(W)& +cy(26 — RIRE)
+ R

+ (acwROg — (u- V)E — (U2 (V)7 + U (¥)n),
Ny = (2 — Va(W))E — U (W),

[1]

where we have used Vo (V) = vy, Up(W) = u, (8.5). Recall (4.9), (4.11), (8.4). We
have

2 - 3 2 sin(28)
—L12(R2) = ——, ¢, = ——L12(2)(0), ¥, =¥ — L12(2).
T 1+R T T
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Then we obtain Vo (V) — 1+R —U (W, W,,) (see (8.7)) .

For the transport term (ac,Dg — (u - V))&, we use the decomposition (8.13)—
(8.14) with g = &. Then each term in &y, 82, N, depends only on L2(2), ¥, n, &
and their approximate steady state, e.g. V>(¥). To estimate the C' norm of the product
in E1, E2, N,, using Proposition 7.6, we only need to estimate the C ! norm of each
single term.

For the terms dependingon ¥, W, e.g. Vg(\D)—lle(Q) (see (8.7)—(8.8)), we apply

Proposition 7.3 and Lemma 7.11 to obtain the C I estimate. For the terms depending on
W, W, we apply Propositions 7.8 and 7.6 to estimate the C! norm.

For the terms depending on L12(£2), we use (A.10) in Lemma A .4 to estimate the C 1
norm.

The slightly difficult term is V2(W¥). Using the formula of V,(W) in (8.7), (8.8),
Propositions 7.3, and Lemmas 7.11, A.4, we get

2 2 —1/2 , —1
IV2(W)ller S 1V2(P) — Ele(Q)Ilcl + 5||L12(9)|Ic1 S (@ +o)||€2]]ys

S o124
(8.24)

Usmg (A.23)—(A.24) in Lemma A.8 and Lemma A.6, we have ||.§||Cl + ||DR§||C1
2 liller < . From (4.9), we know ||L12(R)||¢1 < a. Therefore, we get

E1ller S alléller, 1Ealler < @?(19Q0155 + a2 nllys,

NIt S a It 119113 + o 120156101745

The largest term in E; is given by (U2 (V)7 + Uz(\IJ)n), which leads to the above upper
bound.

8.5.2. Analysis of Fr Recall Fz and @i - V defined in (4.10) and (8.9)

Fz = (2¢p — V2(¥))E — Ua(W)§) — a¢ RIRE — (- V)E,

_ 2 cos(2 £, 2 2V, +aDgp¥

For & terms, we use ||D’ D’EHCl < a2 + j < 2 from (A.23)—(A.24) in Lemma A.8.

For other terms, we use ||n| |c1 S o from Lemma A.6 and apply the strategy in the last
subsection to estimate the C! norm . We get

)DgE.

" 2
||F§||Cl 50[ .

8.5.3. [ll¢2Dg, A21 oo, |1[@1 DR, A21€||lc Recall A defined in (6.12). Using (8.9),
we have

2 - 2
A2 (&) =EL12(Q)D,3$ +(T(Q)+T()§ = Ele(Q)DﬂS

) _
- cos(2B)(L12(2) + L12(2)) Dré

2W, + a DRV + 2V, + a DR W
sin(28)

— a(dp Wy + 05 W,) DRE + Dgé

£(H\Dg + HyDg + H3Dg + HyDp)E.
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Recall ¢1, ¢, definedin (6.4). For D = Dg, Dg and ¢ = ¢1, ¢, adirect computation
yields

9~ 'Dg| < 1. (8.25)

Let H D be a term in the above formula of A, and (D, ¢) = (Dg, ¢1) or (Dg, ¢). Using

(8.25) and the C! norm defined in (6.5) to control the L* norm of 9 DH, ¢ D&, Dé, H,
we obtain

[¢D, HD)é| = |¢DH - D& — HD¢ - DE| < ||H||c1]1E]|c1
+1|H|| 197 Dl o< ||¢ DE|IL S || Hllet1E] e -

Applying the strategy in Sect. 8.5.1 to estimate the C! norm of W, W, L5(Q) terms,
we get

—1 1/2 2
Hiller S o 1Qls,  1Haller S1Qls +o,  [[Hsller S o' 72|15 + o,
|Haller < o V2)|1Q1ps + .

The largest term is oe_lle(Q) in Hy, which is estimated by (A.10) in Lemma A.4 and
using DgLi>(£2) = 0.
Combining the above estimates, we conclude that

I[DR, A2l lloos 1IIDg, A2lE oo S NIEller (@™ 1R135 + ).

8.5.4. Analysis of |acy|, || A1 (¢2 — 1) - Dg&||p~ Using (4.11) and (A.9) in Lemma A .4,
we obtain

lac)| < Ca™ | L12(2)(0)] < Ca™ |13,

Using the formulas of ¢, A; in (6.4), (6.12), we get

|¢2_1«41 (¢ — D] = |¢2_1((1 +3a +ac))DR + Dg)(Rsin(2p)%) /49|

1+R
<ol L143 Ca)(Rsin2f)H) 140 < L (14304 ca c
< ¢, (E( +3a +acy) + Ca)(Rsin(28)™) _E( +3a+ Ca '[|Q[3) + Ca,

where we have used Dg(Rsin(2p)*)~1/40 = —L(Rsin(2B)%)~1/4, |Dg(R sin
(28)%)~1/49| < «|(R sin(28)%)~1/40| in the first inequality. Therefore, we get

1
[IA1(p2 — 1) - Dgéllree =< (7o tCa+ Ca™1Q13)p2 Dpé || Lox.
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8.5.5. Completing the C! estimates From (6.21), we can use E3z to further bound
20335 Il 11 33 (- Plugging all the above estimates of the remaining terms
in (6.11), (6.14), (6.15), we prove

1d _ _
Mnsuios—2||s||§o+C||.§||c1<oe”2E3+a||$||c1+a VEZ + a7 E5 18] 01)
+ Ca?||£ ] 0o,
2 1 2
192D 115 < — 2 = 2)li¢2 Dgéll
+C|Eller (@ P E3 + al|E||or + @ ES + a7 E3|E]|o1)
+ Ca?| |2 DE oo,

1d

mnmmsni@ < — 2|11 DRE|% + 3111 DRE oo (192 D oo + 1€ [00)
+C||Ellc1 (@2 E5 + al|E]|er + @ ES + o Es[E]|01)
+ Ca’||p1 DRE||co-

Hence, for some absolute constant 114, €.g. t4 = %, the energy defined in (8.3) satisfies
(8.2).

1d
2 dt

8.6. Finite time blowup with finite energy velocity field.

8.6.1. The bootstrap argument Now, we construct the energy
E(Q,n,&) = (E3(Q,n,6)* +aE(E, 00))'/. (8.26)
Adding the estimates (8.1) and « x(8.2), we have

1d 1
EEEZ(Q, n, £) < —EEZ +Ka'?E* + Ka3?E3 + KoE, (8.27)

for some universal constant K, where we have used the fact that E (&, oo) is equivalent
to ||&]|c1 since 4 is an absolute constant. We know that there exists a small absolute

constant ¢ < ﬁ and K, such that, forany ¢ < 1 and E = K.a?, we have

1
— EE2 +Ka'?E?2+ Ka3?E3 + Ka®’E < 0. (8.28)

If E(Q('7 0)7 77('7 O)v S('a O)) < K*az’ we haVe
E(Q(1), n(1), £(1)) < Kya?, (8.29)

for all time ¢+ > 0, where we have used the time-dependent normalization condition
(4.11) for ¢, (t), c;(t). Applying Lemma A.4 to L12(£2)(0) and Lemma 7.11 to €2, n, we
derive

2
lco ()] = —=|L12()(0)] < Ca™'[|Ql33 < Ca™'E < Koa,
T

lct(D)] = [———L12(2)(0)] < Ca™"E < Ko,
o T

12 oo + 0]l < CE < Ca® < Koo min(||Q [z [[7]][2).

1|z < Ca™V?E < Koo/,
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where we have used ||Q||z, ||7]|r~ > Ca according to (4.8) and Lemma A.1 in the
last inequality, and K9 > 0 is some absolute constant. We further take

3r  K? 1

= mi , , , , 8.30
Qo =M@l Gk Ak 16(Ke+ DY (830
where K¢ is the constantdefined in Lemma A.11. Fora < «g,usingc, = —1,¢; = $+3
and the formula of , 77 in (4.8), we further yield
> +c ! +C +3
— = <CptCy<—=, C+C >—+3,
5/4

182+ Qoo =< I82f[Loe = o, I+ 7l < [l < [[E]lzee = Sa

8.6.2. Finite time blowup For Holder initial data, the local well-posedness of the solu-
tions follows from the argument in [3] for the 2D Boussinesq equations. The Beale-Kato-
Majda type blowup criterion still applies to the Boussinesq equations in the specified
domain. The time integral of ||V8|| > controls the breakdown of the solutions in the
2D Boussinesq equations [3]. We will control this quantity and show that there exists

Ty such that fOTO [IVO(-, 5)||oods = oo in the 2D Boussinesq equations. The solutions
remain in the same regularity class as that of the initial data before the blowup time. In
particular, the velocity field is in C'** before the blowup time.

Let x() : [0,00) — [0, 1] be a smooth cutoff function, such that x(R) = 1
for R < 1 and x(R) = 0 for R > 2. We choose perturbation Q2 = (x(R/A) —
DR, (R, B)=(x(R/A)— 1)6 and n = 6y, & = 0, can be obtained accordingly, where
] (x, y) is recovered from 0, by integration (A.20). Obviously, 2, n,& = 0 for R < A.
Using Lemma A.11 for 2,7n,& and ¢ < o (see (8.30)), we obtain that these initial
perturbations satisfy E(£2(0), n(0),£(0)) < 2K 102 < Kya? for sufficiently large
A. We remark that the initial perturbation is of size C o>/? even for extremely large A
because & does not decay in the C! norm for large R. It is important to add a small weight
a in E(&, co) when we define the final energy in (8.26). B

In particular, the initial data 2+ Q2 = x (R/A)2 (recall (R, B) = w(x, y)),0+6 =
x (R/))60 have compact support and thus we have finite energy ||u + ul|;> < +o0, ||6 +
9_||L2 < +00. ¢y (1), c(t) are determined by (4.11).

Denote by wpy, 0,5y the corresponding solutions in the original Boussinesq equation
(2.1)—(2.2), which are related to the rescaled variables w, 6 via the rescaling formula
4.1), (4.3)

Wphy (X, (1)) = Cop (1) + @) (Ci(v) 'x, 1),
Opny(x, (7)) = Co(r) 1O +0)(Ci(v) " 'x, 1),

Cy(t) =exp (/f Co(s) + Ewds) , Ci(t) =exp <— /T ci(s)+ Elds) ,
0 0

t(t) = /T Cy,(t)dr.
0
(8.32)

We remark that the scaling parameters in (4.3) become (c,, + Cy, ¢; + ¢;). Denote

. t(t)
M(r) & f V6 pny (5)] | 52ds.
0
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Using a change of variable s = #(p) and 3, (6 +0) = (n + 1), 9y(0 +0) = (£ + &),
we obtain

T

M (z) =f0 ||V9phy(t(p))||Loon(P)dp=/O Co(p) ™ (1 + D ()]
+I(& +&)(p)L=)dp,

where we have used the formula (8.32) and Ce_l(p)Cl_l(p) = Ca,(p)_2 according to
(4.3),(4.4) in the second equality. Using the bootstrap estimates (8.31) and Lemma A.8
about &, we obtain

M(t) < « / C,(p) ldp.
0

Using (8.31) and (8.32), we have e 37/2 < C,(p) < e P/?. Therefore, we obtain
M(t) < +00 VT < +00 and

o0 o0 T o0
/ M(t)dt > Coe/ / ep/zdpdr =00, f(0) < / e_p/zdp < +00.
0 o Jo 0

Denote T* = t(00). Applying the BKM type blowup criterion in [3], we obtain that
the solutions remain in the same regularity class as that of the initial data before T*
and develop a finite time singularity at 7*. Similarly, by rescaling the time variable, we
prove that ||@ppy|| and [[VO,py || blowup at T*.

Remark 8.1. The crucial nonlinear estimate (8.27) and a priori estimate (8.29), i.e. the
bootstrap estimate for small perturbation, offer strong control on the perturbation and
the exact solution before the blowup time. In particular, it allows us to truncate the far
field of the approximate steady state, which leads to a small perturbation only, to obtain
initial data with finite energy.

8.6.3. Convergence to the self-similar solution Taking the time derivative of (5.1), using
the a priori estimate (8.29) for the small perturbation and analysis similar to that in
the previous section, we can further perform H? estimates on ;, ;, H>(y/) and L™
estimates on &;. In particular, following the argument in our previous joint work with
Huang [7], we can further obtain that there exists an exact self-similar solution 240, 700 €
H3, £ € H3(w) N L°°, such that the solution of the dynamic rescaling equation with
initial data constructed in Sect. 8.6.2 converges to (2, oo, £x0) €Xponentially fast. The
convergence is in the 2 norm for the variables , 1 and both 2 (1) and L> norm for
the variable &.

Using the a-priori estimate (8.29) and Lemma A.8, we have | |E+E()] lor < Ca/? for
all time in the dynamic rescaling equation. Using Lemma A.13, we know that the space
C! (the weighted C' space) can be embedded continuously into the standard Holder space
C%/%0_ Therefore, the C! estimate of £ + £ implies that & + £(r) € C%/0 with uniform
Holder norm. Since & + £() converges to £ in L°°, we have &y, € Cco/40, Finally,
using the same argument, the fact that Qq, 700 € H> and the embedding H> < C! in
Lemma 7.11, we conclude Qoo oo, &oo € C/40.

Notice that ¢; +¢; > % from (8.31). Thus, the self-similar blowup is focusing. This
completes the proof of Theorem 1.1.
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9. Finite Time Blowup of 3D Axisymmetric Euler Equations with Solid Boundary

In this section, we prove Theorem 1.2. We first review the setup of the problem. In
Sect. 9.1, we reformulate the 3D Euler equations and discuss the connection between
the 3D Euler and 2D Boussinesq; see e.g. [32]. In Sect. 9.2, we establish the elliptic
estimates. In Sect. 9.3, we will construct initial data and control the support of the
solution under some bootstrap assumptions. With these estimates, the rest of the proof
follows essentially the nonlinear stability analysis of the 2D Boussinesq equations and
is sketched in the same subsection.

Notations In this section, we use x, x2, x3 to denote the Cartesian coordinates in R3,

and
r=./x}+x3, z=ux3, O = arctan(x/x1) 9.1)

to denote the cylindrical coordinates. The reader should not confuse r with the radial
variable in the 2D Boussinesq.

Let u be the axi-symmetric velocity and @ = V x u be the vorticity vector. In the
cylindrical coordinates, we have the following representation

u(r, z) = u' (r, 20e, +u’ (r, D)eg +u*(r, 2)e;, @ = o' (1, 2)€, + @’ (r, 2)eg + (1, 2)e,

where e,, eg and e, are the standard orthonormal vectors defining the cylindrical coor-
dinates,

X1 X2 X2 X1
&= =0 e=(——0" e=(00D"
r r r r
andr = ,/xlz +x§ and 7z = x3.
We study the 3D axisymmetric Euler equations in a cylinder D = {(r,z) : r €
[0, 1],z € T}, T = R/(2Z) that is periodic in z. The equations are given below:
0 0 0 1
0y + 1 rul) + ) = 0, 8"+ (o), 4 () = 0 ((ru)?),
r r r r
9.2)

The radial and axial components of the velocity can be recovered from the Biot—Savart
law

1 I : -
=@t O+ 0V + S =0, W=y, =Yg 93

N | o=

with a no-flow boundary condition on the solid boundary r = 1

v(l,z) =0 (9.4)

and a periodic boundary condition in z.
We consider solution w? with odd symmetry in z, which is preserved by the equations
dynamically. Then v is also odd in z. Moreover, since v is 2-periodic in z, we obtain

V(r,2k—1)=0. forall k e Z (9.5)

This setup of the problem is essentially the same as that in [30,31].
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Equation (9.3) is equivalent to —A(x} sin(¥)) = wsin(}), where ¢ = arctan(x,/x1)
and A is the Laplace operator in R3. We further assume that o’ € C%(D) with support
away from r = 0. It follows o’ sin(9) € C¥(D). Note that the cylinder Dy 21{r2):
r € [0,1],2k — 1 < z < 2l — 1} satisfies the exterior sphere condition. Under the
boundary condition (9.4)—(9.5), using Theorems 4.3, 4.6 in [17] we obtain a unique
solution v/ sin® € C>%(Dy;) N C(Dy,) for any k < [, k, I € Z. This further implies
the existence and the uniqueness of solution of (9.3)—(9.5).

Due to the periodicity in z direction, it suffices to consider the equations in the first
period D1 = {(r, z) : r € [0, 1], |z] < 1}. We have the following pointwise estimate on
¥, which will be used to estimate ¥ away from the supp(w?) in Sect. 9.2.

Lemma 9.1. Let 1/~/ be a solution of (9.3)—(9.4), and ’ € C*(Dy) for some o > 0 be
odd in z with supp(@?) N Dy C {(r,2) : (r = D2 +2> < 1/4}. For ; <r < 1,]z| < 1,
we have

U (r, 2)| 5/

o i 20I(1+ 1og((r = 7 + (2 = 2D )ridridzr.
D,

If the domain of the equation (9.3) is R>, the estimate is straightforward by using the
Green function. For the domain we consider, the Green function would be complicated.
The proof is based on comparing 1} sin(¢}) with the solutions of —A (¥ sin(¥)) =
S (r, 2)sin(P) in R3, where f+ are some functions related to o?. We defer the proof to
Appendix A.7.

If the initial data u? of (9.2)—(9.4) is non-negative, u’ remains non-negative before
the blowup, if it exists. Then, u? can be uniquely determined by (). We introduce the
following variables

62 au"?, o=0ao/r (9.6)

We reformulate (9.2)—(9.4) as

3 . - . s - 1~
0 +u"0, +u0, =0, 3d+u & +u‘d, = 0,
| | r 9.7)
_(82+—8r+82__)&:r&)v 1}(1’Z):0? ur:_&z’ MZ:—IZ'F'KZ,”.
" T2 r

9.1. Dynamic rescaling formulation. We introduce new coordinates (x, y) centered at
r = 1, z = 0 and its related polar coordinates

x=C®)7 'z, y=U=-nC@)", p=\x2+)y2 B=arctan(y/x), R=p"
(9.8)

where C;(7) is defined below (9.11). The reader should not confuse p with the notations

for the weights, and the relation R = p%* with R = r% in the 2D Boussinesq. By

definition, we have

1=Cx, r=1-Ct)y=1-C/(t)psin(B). (9.9)
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We consider the following dynamic rescaling formulation centered atr =1,z =0
0(x,y, 1) = Co()0(1 = Ci(D)y, Ci(D)x, 1(1)),
w(x,y, 1) = Cu(t)a(l — Ci(7)y, Ci(T)x, (1)), (9.10)
Y(x,y. 1) = Co(DC1(T) P (1 — Ci(x)y, Ci(0)x, 1(T)),
where C;(1), Cy(1), Co(), t(7) are given by Cy = C; ' (0)C2(0) exp ([ co(s)d7),

T

Co(t) = Cu(0) exp (/T Cw(S)df) , Ci(r) = G (0) exp (/ —CI(S)dS) ;
0 0

. 9.11)
t(f)=/ Co(r)dr,
0

and the rescaling parameter ¢;(7), co(7), ¢, (7) satisfies cg(t) = ¢;(1) + 2¢, (7). We
remark that Cy(t) is determined by C;, C,, via Cg = CC%C l_l. We have this relation
due to the same reason as that of (4.4). We choose (r, z) = (1, 0) as the center of the
above transform since the singular solution is concentrated near this point. We have

0<y< Cl_l, x| < Cl_1 since r € [0, 1], |z] < 1. We have a minus sign for 9,
3,0 = —CoCl(T)By, dyw = —CoCi(T)dp, By = —CoCi(T) 'Y

Let (6, @) be a solutions of (9.7). It is easy to show that w, 6 satisty

1
O +cix- VO + (—u")0y +u“0y = co0, w;+cX-Vo+ (—u oy +u‘w, = comw+ —Ox.
r

The Biot—Savart law in (9.7) depends on the rescaling parameter C;, T

1 1 1
— (O + D)W+ —Crdy Y + r—ZC%w =ro. W00 =Y W0x) =GOV -y,

where r = 1 — C;(7)y (9.9). We introduce u = u®, v = —u’. Then, we can further
simplify

O+ (c)x+u-V)0 =cpb, w;+(cx+u-Viow=0,+——
1 1
= @ux+ )Y + - Cidyy + r—chw =ro,
1
M(X’Y)=—1/fy+;cll/f’ UZWx’
(9.12)

with boundary condition ¥ (x, 0) = 0. If C; is extremely small, we expect that the above
equations are essentially the same as the dynamic rescaling formulation (4.2) of the
Boussinesq equations. We look for solutions of (9.12) with the following symmetry

CU(X,)’)Z—CU(—X,}’)’ 9()5,}’)29(—)5,)7)

Obviously, the equations preserve these symmetries and thus it suffices to solve (9.12)
on x, y > 0 with boundary condition v (x, 0) = ¥ (y, 0) = 0 for the elliptic equation.
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9.2. The elliptic estimates. In this section, we use the ideas in Sect. 1.3.2 to estimate
the time-dependent elliptic equation in (9.12). We first estimate ¢ away from supp(w).
In Sect. 9.2.1, we outline the estimates. In the remaining subsections, we localize the
elliptic equation and establish the 743 elliptic estimates.

Under the polar coordinates (9.8) p = /x2 + y2, B = arctan(y/x), we reformulate
(9.12) as

1 1 C . C; cos(B) C?
— ppV — ;apw— paﬂﬂxp+7s1n(ﬁ)apzp+7 v+ ¥ =ro.

(9.13)

Recall R = p* from (9.8). Denote

1
V(R, B) = ;l/f(p, B). QR,B)=wlp.B), n(R,p)=()(p,B),
E(R, B) = (6))(p, ). 9.14)
Since we rescale the cylinder Dy = {(r,z) : r < 1, |z|] < 1}, the domain for (x, y)
is
Dy £{(x,y): x| =¢; " yelo, ¢ ' 9.15)
We focus on the sector p < Cl_l, or equivalently R < C, %, and B € [0, w/2] due

to the symmetry of the solutions. Notice that pd, = ¢ RIg = aDg. It is easy to verify
that (9.13) is equivalent to

— @’ R?OgpW — (4 + @) RORWY — dpg ¥ — 4W

C2 2 (9.16)

P
v =rQ.
rZ

Cip .
+ T(sm(ﬁ)(2 +aDg)W¥ +cos(B)igV) +

We keep the notation p = R'/* r = 1 — C;p sin(B) to simplify the formulation. The
boundary condition of W is given by (in the sector R < C; %)

V(R,0) =V(R,7/2) =0. (9.17)

Definition 9.2. We define the size of support of (6, w) of (9.12)
S(t) = essinf{p : O(x,y,7) =0, w(x, y, 7) = 0 for x> + y> > p?}.

Obviously, the support of €2, n defined in (9.14) is § (7)*. After rescaling the spatial
variable, the support of (6, @) of (9.7) satisfies

supp A (1 (7)), supp &(1(t)) C {(r,2) : ((r — 1)* +22)1/? < Ci(v)S(7)}.

We will construct initial data of (9.12) with compact support S(0) < 400 and use the
idea described in Sect. 1.3.1 to prove that C;(7)S(7) remains sufficiently small for all
T > 0.
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Remark 9.3. There are several small parameters o, C;(7), C;(t)S(7) in the following
estimates. We will choose « to be small. For most estimates, the constants are independent
of C; (7). We will choose C;(0) to be much smaller than « at the final step. This allows us
to prove that C;(t), C;(t)S(7), (C;(7)S(r))* are very small. One can regard C;(t) =~ 0.
Recall the relation (9.9) about r. In the support of the solution, we have r = 1 —
Cipsin(B) ~ 1. We treat the error terms in these approximations as small perturbations.

Recall the L? inner product defined in (1.4). Using the estimate in Lemma 9.1, we
obtain in the following Lemma that the L2 norm of W away from the support of the
solution is small. It will be used later to localize(9.16).

Lemma 9.4. Suppose that the assumptions in Lemma 9.1 hold true. Let S(t) be the
support size of w(t), 0(t). Assume C;(t)S(1) < %. Forany M > (25(7))%, we have

W1y <r<cp-«lliz S CM) - |1Q]]2, C(M) 2 (1+|log(C;MY*))SM~V¥||Q|,2.

The proof follows from the estimate in Lemma 9.1, the Cauchy—Schwarz inequality
and a direct calculation, which is standard. We refer it to the arXiv version of this paper
[6]. We will choose M so that C(M) is small, e.g. C(M) < 1or C(M) < 371/« If we
use an estimate similar to Proposition 7.3 and then restrictitto M < R < (2C;)™%, the
constant in the upper bound is &~ !, which is not sufficient for our purpose.

Remark 9.5. We restrict the domain of the integral D; to R < (2C;)™%, which is
equivalent to p < (2C)~! due to (9.8), so that D; is in D, (9.15). We impose
R > M > (25(1))* so that D; is away from the support of the solution. Since
S(t), Ci(t) are the variables defined in (x, y) coordinates, when we pass to (R, )
coordinates, we have a o power for these variables, e.g. (S(7))%, (C;(7))“.

9.2.1. Outline of the estimates 1In Sect.9.2.2, we use (9.16) to derive the elliptic equation
(9.20) for x & with some cutoff function x. The equation is similar to (7.1) in the 2D
Boussinesq and has an extra error term Z, . We first establish the L? estimate of x W in
the same Sect. 9.2.2. To estimate the terms involving derivatives of yx, e.g. D% xV, we
use Lemma 9.4. The L? estimate enables us to estimate the error term Z x- The advantage
of localizing (9.16) is that x W can be treated as a solution of the elliptic equation (7.1)
in RY. Then, in Sect. 9.2.3, we apply the H* version of the key elliptic estimate in
Proposition 7.3 recursively to x; W with x; that has smaller support, and establish the
higher order elliptic estimates.

9.2.2. Localizing the elliptic equation We will take advantage of the fact that C;(t)S(7)
can be extremely small and localize the elliptic equation. Firstly, we assume that
Ci(t)S(r) < %. Recall the relation (9.9) about . Then we have r = 1 — C;p sin(8) >
3 -1 <.

Let x1(-) : [0,00) — [0, 1] be a smooth cutoff function, such that y;(R) = 1 for
R <1, x1(R) =0for R > 2and (Dgrxi)*> < xi. This assumption can be satisfied if
X1 = x02 where xq is another smooth cutoff function. Denote x; (R) = x1(R/A). Itis
easy to verify that

(Drx)? = (R/Arx1(R/A)? S x1(R/A) = xa(R),  IDYxil S Licr<an,
(9.18)
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for k < 5, where we have used the property |D%e X1l < x1 in the first inequality. Denote
At this moment, we just simplify x; as x. Observe that R?dgg + Rog = D%e and

rQy = (1 - Cipsin(B))Ry = 2y — Cpsin(f)Qy,. aDr(x¥)
=aDrxV +ayxDrV, (9.19)
a@’Dy(x V) = &’y DRW +2aDgx - a DRWY + o’ Dy x V.
Multiplying x on both sides of (9.16), and using (9.19) and a direct calculation yield

— @’ DRV, —daDrWy — dppWy — 4V, = Q, +Zy, Zy=Z1+ 7o+ 73,

(9.20)
with boundary condition (9.17), where Z1, Z> and Z3 are given below
Cip, . C?p?
Z) = —7(51n(,3)(2\llx +aDgrWy) +cos(B)ogWy) — r—zllfx,
Cysi 9.21
Zy = SMBP kW — @Dy +4aDry)¥ — 22Dy Dpw, D)
r

Z3 = —Cipsin(B)2,.

Recallthat R = p*,r =1 —C;y = 1 — C;p sin(g) from (9.8), (9.9) and L2 (f)(0)
from (2.16). Next, we derive L12(Zy, )(0). It will be used in Sect. 9.2.3 when we apply
Proposition 7.3.

Firstly, for sufficiently smooth 2, W with €2 vanishing at least linear near R = 0,
we show that L12(Z,,)(0) is independent of the cutoff radial A for A > (S(z))“. From
A > (S(1)% we have Q = Q- x, = Q,,. For any ¢ > 0, using integration by parts,
we get

(0pp Wy +4W,, sin2B)R Mg=) = (—4W, +4W,, sin2B)R 1z=,) =0,
(@>D%W, +4aDrY,, sin2B)R™") = (a?dr(DrW,) +4adr¥,, sin(28))
/2
= —4a / (0, B) sin(2B)dB.
0

Note that ¥ may not vanish at R = 0. Since p = R'/* vanishes at R = 0, it is
easy to see that Z, vanishes at R = 0. Therefore, integrating both sides of (9.20)

with sin(28)R~'1 R>¢, and then using the above computations and taking ¢ — 0, for
A > (S(1)¥%), we have

/2
L12(Z,,)(0) = —L12(£2)(0) +4oc/0 (0, B)sin(2B)dp. (9.22)

Next, we perform L? estimate for W, . It will be used later to estimate Z, in (9.20).

Lemma 9.6. There exists ap > 0 such that if o < ap, C;S < 4_1/“_1,f0rk = %Cl_“,
the solution of (9.20) satisfies

2 2 2 2 -1 2
a”|IDRWy, 172 + el Wy, 172 +alldgWy, 1172 S o 119217,
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Firstly, we have A = }TCI_“ > §%and Q, = Qyx, = Q. We impose C;§ < 41/l
so that & > (25)% and C(M) < Ca~!in Lemma 9.4 with M = A. At this step, this
bound is good enough for us to treat Z; in (9.20)—(9.21) as perturbation. In the following

estimates, we treat the small factor C; in Z, approximately equal to zero and r ~ 1. See
also Remark 9.3.

Proof. We simplify x; as x. Multiplying (9.20) by W, and using integration by parts,
we get

4o — o?
) 2 2 2 2
I'= o |ROR Wy llp2 + —— (W ll2 + 19p Wy lI2 — HIWyllLs 9.23)
= (Q, qjx) + <Z1 + Z3, q”x) + <Z2, qj)()-
Using the Fourier series expansion with basis {sin(2nf)},>1, one can verify that

10p W 1172 = 4]|1Wy |2,

which is sharp with equality when W, = sin(28). Therefore, multiplying the above
inequality by 1 — ¢ and then applying it to the left hand side of (9.23) yields

2o — o2 o
I >a?||DpW, |13, + ———||W, |12, + —||05W, | |2, > a?||DpY, ||
> o [[DRrWy |7, + 5 I XIIL2+4II,3 xll72 = o7 [[DRWy |72
o 2 o 2
+§|I\IJXIIL2+ZII8,3\IJXIIL2,

where we have used o < 1.
Within the support of x = x,, we have R < 2X. By assumption, we have A =
él—tCZ_ “ > 4%§% Tt follows that

Ciplr=y. = CR¥ 1g<yy < (207 =27 So?, |log(Cire)| Sa~!, 25 <al/e,
(9.24)
The Z;, Z3 terms (9.21) contain the small factor C;p. Since r~! <1, we get
1Z1112 S @21y |12 + e DRy |l 2 + 1105y |1 12) S @™ 212 S o212,
123112 S @?11Q11 2 S 1Rz
We perform integration by parts for the last term —2a2Dg x DrW in Z (9.21)

—20*(Drx DrWY, Wy) = —a*(Rx Drx, 0r¥?) = «*((RxDr))r, ¥?)
= a*((Drx)* + xDix + xDrx, ¥?).

Using the above identity, (9.18) for |D];e x| and (9.24), we obtain
(Z2, W) S (@ + )| Whicg<nill]2 S @l Whcrenills S @llW L <p=iacpyell72s

where we have used 21 < (2C;) ¢ in the last inequality. Since (25)* < A and S A1/ <
1 (see (9.24)), we apply Lemma 9.4 with M = X and (9.24) to get

(Za, Wy)| < a1+ [Tog(CAY) DA (SA™Y™2IQI17, S o I3,

~Y
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Plugging the estimates of Z1, Z, Z3 and ||W,||;2 < o~ /212 into (9.23) and then
using the Cauchy—Schwarz inequality, we prove

I<Ca™'21'2)|Q|Ip2 + Ca - T+ Ca |12,
Now we choose
oy = min((2C)~1, 471, (9.25)

Then fora < ap, wehave Ca < % Solving the above inequality yields I < o~ !||Q] |iz.
O

9.2.3. Localized H?> estimates Notice that the elliptic equation (9.20) is localized to
R < 2\ < %C l_“, which is away from the boundary of the rescaled domain D =

[0,C, 1] x[—-C 1—1 ,C l_l ]. Therefore, W, canbe treated as a solution of (9.20) in the whole
space R > 0, B € [0, w /2] with source term €2, + Z,. We can apply Proposition 7.3 to
improve the elliptic estimate in Lemma 9.6. In this estimate, we need to further estimate
Qy +Zy and L12(2y +Zy).

The termin Z, (9.20),(9.21) either has a small factor C;p ~ 0 (see Remark 9.3), or is
localizedto A < R < 2A due to the factor (Dg x )k , where A is the parameter in the cutoff
function x (R/X). To show that the second type of term is small, we use Lemma 9.4 and
interpolation. Using the smallness of these variables and Lemmas 9.4 and 9.6, we can
treat Z, as a small perturbation. Since p = RY*and Dgyx = Ofor|R| < 1, the singular

k
weight W = (HR—I,S), k = 1, 2 is treated approximately as 1 in the following estimates

of terms involving p, Dg x.

Proposition 9.7. Let V be the solution of (9.16) and W = (1;1,3)k fork = 1or2 If
@ <ar(9.25), (S <a -8Vl forn = §C;% we have

@?||R*Orr Wy, W[ 12 + || RORg Wy, W]| 2
sin(28)

oy L)+ X1L12(Zy )OO W2 S NIQWI 2,

+[10pp (W, —

where Z, is defined in (9.20),(9.21) and x; is the cutoff function. Moreover, for v >
(8(1))%, L12(Z,,)(0) does not depend on v and satisfies

1+R

L12(Z,)(0)] = |L12(Z,)(0)] < 4" aa~" + min(a, (8/7C,8)!/%))||12 2.

(9.26)

Remark 9.8. Let x;, be the cutoff function in Lemma 9.6. We choose A = éC % 80
that x,, = 1 in supp(x,). This allows us to apply Lemma 9.6 to estimate various
terms in supp(x,). We use L12(Zy, )(0) to correct W so that W,, — %(LIZ(Q) —
x1L12(Zy;)(0)) vanishes near R = 0. Choosing small C;S, « later, we use (9.26) to
show that L1>(Z,,)(0) is very small.

Proof. Step 1. We apply the elliptic estimate in Proposition 7.3 in the weighted L? case,
which can be proved using the same argument in [11], to obtain

I 2 6?||RPORRW,, W||2 + || RORE Y, W[ 12

. (9.27)
sin(2p) (L12(2, + Z) W2 N 1§82y + Z) W2

+119pp(Wy, — o
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Under the assumption C;§ < a8~ 12—l we have 285% < %Cl_o‘ = A. Thus, Q, =
x.2=Q. Recall Z, =Z1+Z>+Z3in(9.21)and p = RY®_ Within the support of yx,
we have

CipW = CRY*2(1+ R)? < cen)l/* <471/, (9.28)
We can apply Lemma 9.6 to estimate the L2(W?) norm of Z;
NZiWl2 S UCipW il (1% 112 + | DR Wy 2 + 18y l112) S 474 1€l 2.
(9.29)
Estimate of Z3 defined in (9.21) is trivial
1Z3Wll2 S 47VNRl 2. (9.30)

Recall Z; defined in (9.21). Notice that the support of Z, liesin A < R < 2A due to

the Dg x term. Within this annulus, we get W < 1. Due to the smallness of C;p from
(9.28), we have

NZ2Wll2 S @l $L<gr<onll2 +a?[|[Drx DR 2. 9.3
Using A = %Cl_“ and C;S < a8~ /2~ we obtain
|log(C;A %) = |1og(8 V)| <!, sa Ve =8Yocs <a. (9.32)
Since A > (25(7))*, applying Lemma 9.4 with M = X and (9.32) to C(M), we get
W zr=lle S @ '8Y4CiSIIQl1 2 S 11912, (9.33)
Applying Lemma 9.6 to DV, , and using (9.31), (9.33), we yield
1Z2W1I2 S allQll2 + e 21912 S o' 21911 (9.34)
Plugging (9.29)—(9.34) into (9.27) and using 4 Veg=1 < 1, we prove
LSS Wle S QWIIL2, (9.35)

Step 2: Smallness of Z,. We use interpolation and the smallness of ||W 1 <gr<2x ]2
(9.33) to refine the estimate of Z» in (9.34). The refinement is used to estimate the term
a 'Lix(Z x) in 1 (9.27), and is important to prove (9.26). Using integration by parts,
we obtain

J 2|’ Drx DrY||5 = a*(R(Dgx)*Dr¥, dgW)

(9.36)
= —a*(dr(R(Drx)*)DrY, W) — a*(R(Drx)*dr DR ¥, W).

Using (9.18), we get |ar(R(Drx))| S |DrXIli<r<21, (DrRX)> < xlizr<2:-
Using the Cauchy—Schwarz inequality, we yield

J S @ ||Drx DRV |2 + || x DR W1 12) W <r<aill 2. (9.37)

We further estimate o2 | | x D%elll ||;2. Using |D%X | < 1h<r<2x and (9.19), we obtain

2 2 ) 2 2
|l xaDr¥ll2 S al|lDRWyll2 + || Drx DR |12 + || W1 <r<2illz2.
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By definition, we have a?||Drx DrW||;2 = J!/2. Using (9.27),(9.35).,(9.33), we
obtain

. De¥ | S QW+ T2+ (| S IQW]) + V2. (9.38)
Plugging «?||Dg x D V| lj2 = J1/2  the first inequality in (9.33) and the estimate (9.38)
in (9.37), we establish
J S AU 1QW L+ I 1814 e s S eI+ [1QW )84 CSIQW | 2.

The above inequality is a quadratic inequality on B = J1/2/||S2W| | : B? S A(B+
1), A = a8/%C;S < a, which implies B < A'/2. Thus, we prove

J12 < Q2@Ve syl 2 1Qw|; 2.

Combining the above estimate of J and (9.31)—(9.32), we yield

1ZoWll,2 < 8208 + a2 (8/C19) VA 1QW|| 2

(9.39)
< min(a, 8/2C;HVH|1QW]| 2.

Using Lemma A.4, (9.29), (9.30) and (9.39), we establish

IL12(Zx) = x1L12(Zy )OYWII 2 SNZy Wllp2 S IZ1+ Zo + Z3) W2 S el QW] 2,
(9.40)

where we have used 4~ /%! < a. Combining (9.27), (9.35) and (9.40), we complete
the proof of the first estimate. We remark that we only need the bound ||ZoW]|;2 <
a||2W |2 from (9.39) in this estimate.

Step 3: Estimate of L>(Z,,)(0). Note that the previous estimates hold true for the

weights W = W; = U;’,f)k with k = 1 or 2. Recall Z,, = Z; + Z> + Z3 (9.20). Using
Lemma A.4, (9.29), (9.30) and (9.39), we prove

1
IL12(Z, )OOV SN Zyy Will2 SI(Z1+ Zo+ Z3)W] |2 < (47w !
+min(a, 8Y/7C1)Y2)1QW1||,2,

which is (9.26). Using (9.22), we yield that L12(Z,,) is independent of v for v > S(7)“.
O

Proposition 9.9. Suppose that W is the solution of (9.16) and Q € H>. Ifa < a3 (9.25),
A= 2_13Cl_a, CiS <a- (23 Vel then we have

sin(28)

@?||R*ORR Wy, |73 + || RORE Wy, 1743 + 11055 (W, — o=

+ X1 L12(Zy, )O3 S 11211943,
1+R

(L12(£2)

1
|L12(Zy,)(0)] S 37«2

72

We need to further estimate Moreover, L12(Zy,)(0) does not depend on v for v >

(S(2))*.
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The small factor 3=/ will be used later to absorb ¥ for several k € Z,, i.e.
3= 1/ay—k <k 1. The estimate of L12(Z,, )(0) follows from (9.26). The proof of the first
inequality follows from the idea discussed at the beginning of Sect. 9.2.3 and estimates
similar to the Step 1 in the proof of Proposition 9.7. Suppose that €2 has size 1. Using the
smallness of C;, C;S (see Remark 9.3), Lemma 9.4 and Proposition 9.7, formally, we
get that C;pS2 has size 0, C;p7 ¥, has size ~ 0 for 7 = dg, Dg or Id, oezDRX DrV¥
has size «?a~! = @ and DIICQX‘I’ has size ~ 0. Hence, Z,, é(LIZ(Zx) —x1L12(Z,)(0))
have size less than «, 1, respectively, which enables us to treat them as perturbation.

Moreover, the terms Zy, Z> in Z, (9.20) have derivatives whose orders are lower than
D%\I’X, aé\lfx. The term Z3 = —Cjpsin(B)S2 in (9.21) does not involve ¥ and its
estimate is trivial. These allow us to use induction to establish higher order estimates.

Denote Wy, . = Wy, — 2B (1 15 (Q)+x1L12(Zy,)(0)). Tosimplify our discussions,
we introduce some notations for different elliptic estimates. Recall ’H’." defined in (7.3)
and H® = L?(¢1). For some weight W, differential operator 7 = Dl]gDée and constant
wu, we denote by P( VT/, T, u,a, Cr, ¥, Q) the following elliptic estimate for the solution
W of (9.17)

~ 1 ~ 1 ~ 1 ;
WP T DRy, W2y +al|TDRigWy, W2 o+ ||T05Wy, « W22 S [1DRQlp + 112174,
9.41)

where A = uC;® is the parameter for the cutoff function. We put D;Q in the

upper bound since Dg commutes with the elliptic operator Lo (7.1), which was

observed in [11]. The upper bound controls the D/J3 derivatives of D%Q. We simplify

P(VNV, T, m,a,C,W¥, Q) as P(VNV, T, ).

Recall the weights ¢; (5.2) and the > norm (7.3). Denote Py = P( (1;{5)4 J1d, 273,

Prsj = Plp1. (D), 27477, 0 < j <3, Psyj = P2, (D) D, 27%70),0 < j <2,
Pes+j = Plgn, (DR)jD/%’ 2710y =01, Pio = Plea, D%, 271,
(9.42)

We establish P; in an increasing order by induction. In other words, we first establish
(9.41) for T being Dy derivatives, then for 7 including one Dg derivatives, and so on.
Estimate P is established in Proposition 9.7, and it serves as the base case. This order
of estimates has been used in [11]. The support of the cutoff function in P; satisfies

xD =1 in supp(x ") Usupp(), xP 2 x1(R/QTC ). (9.43)

Hence, to prove P,, we can apply P,/ < n — 1. The 1> elliptic estimate follows
from all P;.

Proof. We demonstrate the ideas in the induction by mainly proving the L?(¢) elliptic
estimate Pj. To establish P,,,n > 1, in step I, we use the P, version of the elliptic
estimates in Proposition 7.3 with source term €2 + Z,, which can be proved by the
argument in [11]. We simplify x ™ as x. In the case of n = 1, using the P; elliptic
estimates (or the Lz(gol) estimates), we obtain
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1/2 1/2
@2||R20rr Y, 01 % |12 + | |RORg W, 01 || 12

1. 1/2 1/2

+110ps (Wy, — (1) ™" sin@B)(L12(R + Z)) - 012Nl S 11 + Z)ey 112
(9.44)

In step 11, we apply Lemma A.4 to the L1,(-) terms and the elliptic estimate we have

obtained, i.e. P;,i < n — 1, to control the Z, terms. Inthe case of n = 1,P;,i <n—1
is Po, which has been established in Proposition 9.7. Our goal is to establish

1Zor "z S 110 Plle. (945)
sin(2B)
g (= == L12(Z) = 1aLi2Z)O)) ) *llp2 S 111 Pl (946)

in the case of n = 1, and similar estimates in the case of n > 1.

Recall Z, = Z1+Z>+Z3 and (9.21). By triangle inequality, it suffices to establish the
above estimates for Z; separately. Note that Z3 in (9.21) does not involve W and contains
the small factor C; p (see (9.48) below). The above estimates (and similar estimates in the
case of n > 1) for Z3 are straightforward by applying Lemma A .4 to estimate the L5 (-)
term. The above estimates (and similar estimates appeared in the proof of P,,n > 1)
for Z1, Z, are established by the following substeps.

Firstly, Z1, Z, defined in (9.21) only contain the first order derivative Dg, dg of
W, , which are lower order than the leading terms D% v,, 8/% W, in (9.20). Hence, we
can apply the previous elliptic estimates, e.g. Py or Proposition 9.7 for n = 1, to
estimate the norm of higher order derivatives of Z, Z, or the norm of Z;, Z, with more
singular weight. To estimate the W terms in Z1, Z; that do not involve Dg derivative,
e.g. 3V, , ¥, , we decompose W, into

in(2 in(2
SNCP) (@) + 0L (Z)0)), W, 2 SN2

A
v, . =W, —
X X To To

(L12(82) + x1L12(Z,)(0)).
(9.47)

We apply the elliptic estimates to estimate W, ,, Lemma A.4 and Proposition 9.7 for

L12(Z,)(0) to estimate W, ». Formally, compared to 2, ¥, , and W, ;> have size 1, a L
respectively.
Secondly, Z; and Z; contain small factors. For Z; (9.21), since A = CC,” ¢ for

C € [2713,274], in supp(x), we get a small factor
Cipx < 1g<0Cip < i)Y <871 54 ot (9.48)

for any k € Z,. For Z, defined in (9.21), the first term in Z; also contains the small
factor C; p, the second and the fourth terms contains a small factor & and the third term
contains «. These small factors cancel the factor @' in W, 2 in (9.47). In the case of

n = 1, we estimate typical terms, Cl,or_laﬁ\I’X, aDgrxW¥,in Z, (9.21). Denote

1 + R)?
W:L'
R2

Recall 91 = (f(B)W)?, f(B) = sin(2p) /%, 0 = 155 (5.2). Using

R, BYf Bll2ep) S ISR, PllLep) S 10p8(R, 2y & =Wy, W,

(9.49)
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p = RY% Dryx =0for |R| < 1, Proposition 9.7 and Lemma A.4, we get

1/2
1C1or oWy, 12 < @®110p Wy flI2 < a*18gs Wy 112 S @PlIQWIL S o IIpr/ 22,

le:Drx W, %112 < allDrxWfll2 S allDrxdpWil S - o~ IQWI <[220, 2.

where we have used (9.43) with / = 0 so that we can apply Proposition 9.7 to estimate
DprxdgW. Other terms in Z, can be estimated similarly. We prove (9.45). Estimates
similar to (9.45) in the case of n > 1 are proved similarly.

Thirdly, we consider (9.46) and similar estimates appeared in the proof of P, with
n > 1, which are more difficult to prove since they contain o~ !. Recall g1, ¢ in (5.32)
and W in (9.49). Using Lemma A.4 and (A.12) inits proof, forany p,/ > Oandg = 1, 2,
we obtain

n(2 )
1D} Dhap 2o ’3 (L12(Z1 + Z2) — x1L12(Z1 + Z2) ()" [12
Sa! Z 1D} (21 + Z) W] (9.50)
i<max(/—1,0)

We need to further estimate the right hand side. The most difficult term in Z, Z»
(9.20),(9.21) is a Dg x ¥, since other terms contain smaller factors o?, C;p and their
weighted Sobolev norm can be bounded by «(] |D%Q||Hp + ||€2]|%¢r) using the same
argument as that in Step 2. Formally, W has size 1 compared to €2. Exploiting the factor
Dgx, we show that @ Dg x W has size o. .

To estimate ozD’R(DRX\IJ), we have two types of terms /; = oeD’R“X\IJ and /; =

a D}y DI with j,m > 1and j+m = i+1.Note that | log(C;A1/*)| < o', SA—1/ <
213/2C; S < a. Applying Lemma 9.4 with M = A to D' x W, we get

laDF W WIla < [laDF x W2 < |2 (9.51)

When i = 0, we do not have [; ;. Recall i < max(/ — 1,0) in the summation in
(9.50). Thus, in the case of n = 1, combining (9.50) and (9.51) implies (9.46). The same
argument applies to the case of [ < 1.

It remains to estimate /; ,, with j, m > 1, in the case of [ > 2. Recall L»(-) from

(2.16), W, > from (9.47) and x = x ™. Since supp(D x) = {An < R < 2X,}is away
from supp(£2) U supp(x1) C {R < S%} (see (9.43)), we get

; sin(28)
D’ RXDRY  y = Dpx -

/2
(= [ o2 prsin@p)dp + DF 1 Lia(Zym) ) =0

T

Thus, we can subtract the singular term from D{e X D%‘\I!
D’ X DR = D’ RXDR W — W, ) 5). (9.52)

Formally, compared to €2, D’ XD’”\IJ has size 1. In the summation in (9.50), we have
i<l-1. Smcej+m_z+1andj >1,wegetm =i+1—j <[—1.By definition
(9.42), the weighted Dg D% elliptic estimates appear in P,, if n > [ and [ < 3. Thus,
using the elliptic estimate P, (m <[ — 1 < n — 1) in the induction hypothesis, i.e.
T = D", W = ¢; in (9.41), we yield
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lla D x D (W =W o D)Wl S @l D (W yim — Wy )Wl S a(I1 DRl + 1121170,
(9.53)

where H° = L?(¢;). Combining (9.50)-(9.53), we establish the P, version of (9.46)
for Z| + Z5.
Therefore, combining (9.44)—(9.46), we obtain the L2(<p1) elliptic estimate, i.e. Pj.
Repeating this argument, we can obtain the P;,2 <[ < 10 and H3 elliptic estimates.
Note that the assumption on A, Cy, S, i.e. C;S < «o - (213)_1/“_1, implies A > S¢
and

4—1/0la—1 5 3—1/(1’ (81/aClS)1/2 S ((210)-1/0{)1/2 S 3—1/(1.

Since the estimate (9.26) in Proposition 9.7 does not depend on A as longas A > (S(7)),
using (9.26) and the above calculation, we establish the desired estimate on L12(Z,, )(0).
O

Remark 9.10. The term D{e x DRV can also be estimated using an argument similar to
that in the Step 2 of the proof of Proposition 9.7. We find the above approach simpler.

Recall Q in (4.8). We have a result similar to Proposition 7.8.

Proposition 9.11. Let Wy (1) be the solution of (9.16) with source term Qo = Qx (R/v).
Ifa <ap(9.25), A = 2_13Cl_0‘, C;S < a3~ Ve=l 2y < )\ then we have

+ R
aof| D3y, XA||W500+C¥|| RARg Yo, |lyys.eo

(/3)

1+R -
+ IITaﬂﬂ(‘Po,m - (L12(Q0) + x1L12(Z ) O)) [0 S @,

- 1
|IL12(Z,,)(0)] S 37 @,

where Zxx associated to Wy is defined in (9.20),(9.21). Moreover, le(zxu)(O) does not
depend on | for u > (S(t))* and enjoys the above estimate for le(ZX,\).

Remark 9.12. Although Q¢ = Qy, is time-independent, the equation (9.3) is not and
Wy (1) depends on how we rescale the space. The factor 2v is the support size of Q. We
impose A > 2v so that x;, = 1 in the support of €.

The proof follows from the argument in the proof of Propositions 7.8, 9.7 and 9.9.

9.3. Nonlinear stability. We apply the nonlinear stability analysis of the 2D Boussinesq
equations to prove Theorem 1.2. In Sect. 9.3.1, we impose the bootstrap assumption on
the support size. In Sect. 9.3.2, we construct the approximate steady state and impose the
normalization conditions, which are small perturbations to those in the 2D Boussinesq.
In Sect. 9.3.3, we estimate the terms in the 3D Euler (9.12) that are different from the 2D
Boussinesq (4.6). These terms contain factors that are much smaller than « and we treat
them as perturbations. In Sect. 9.3.4, we generalize the nonlinear stability estimates in
the 2D Boussinesq to the 3D Euler. In Sect. 9.3.5, we use the ideas described in Sect. 1.3.1
to control the growth of the support. In Sect. 9.3.6, we prove finite time blowup.
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9.3.1. Bootstrap assumption on the support size Recall o defined in (9.25) in
Lemma 9.6. We first require @ < a2. We impose the first bootstrap assumption: for
t > 0, we have

C(t) max(S(1), S(0)) < a - 2'3)~a"1 2 K (a). (9.54)

Under the above Bootstrap assumption, the support of w, 6 in Dy does not touch the
symmetry axis and z = %1, and the assumption in Proposition 9.9 is satisfied. We will
choose C;(0) at the final step, which guarantees the smallness in (9.54).

9.3.2. Approximate steady state and the normalization condition Since the rescaled
domain Dj (9.15) is bounded, we construct approximate steady state with bounded

support. We localize 2, 6 defined in (4.8) to construct the approximate steady state for
(9.12)

Q2 Q2 b= X0 = xuxJ(@@), (9.55)

where x, = x1(R/v) and we have applied the integral operator J(f) in Lemma A.11.
We use g to denote €2 in the (x, y) coordinates. Clearly, the support size of €2, 0y is
2v. Using the computation in (A.44), we have

o = 0 (xu0) = acos”(B)Drxy - J() + xuil.  Ev(R. B) = 0,(x,0)
= asin(B) cos(B) Drxv - J (1) + XuE, (9.56)

Let Wy(¢) be the solution of (9.20) with source term (. Applying Lemma A.11 and
the analysis in its proof, we know that Qg, 7o, & enjoys the same estimates as that of
Q, 77, £ in Lemmas A.6 and A.8.

We need to adjust the time-dependent normalization condition for ¢, (¢), ¢;(¢). Firstly,
we choose the time-dependent cutoff radial A(¢) = 2-B(Ci(1)~ according to Propo-
sition 9.9.

Define Z XA 0) (t) according to (9.21), or equivalently (9.22), with W = Uo(1), Q = Qo
and x = xx(0). It does not depend on the cutoff radial as long as A(0) > (2v)*, where
2v is the size of support of (. We use the following conditions

_ 2 _ - . 1
o) = —1 = —L12(Q0 — Q+ Z 0 )0) &(t) = — +3
T o

l_azL(s‘z Q+7, )0)
o ma 12090 X0 '

(9.57)

We remark that ¢, (t), ¢;(¢) is time-dependent. Without the Z term, the above con-
ditions for c,, ¢; are the same as that in (4.8) with a correction due to the difference
between the profiles (2, 7) in (4.8) and o, 7o in (9.55)—(9.56). For this difference, we
use (4.11) to correct ¢, Cj.

For any perturbation €2(#), we use the following conditions for c,,(t), ¢;(t)

1l -«

2
Colt) = ———L12(Q0) + Zy,, D)), (1) = Co(1). (9.58)

Without the Z term, the above conditions for c,,(t), ¢;(¢) are the same as that in (4.11).
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We add the Z terms in (9.57), (9.58) since the behavior of W, which is the solution
of (9.16), is characterized by L12(€2 + Z,)(0) for R close to 0 according to the elliptic
estimate in Proposition 9.9. For the 2D Boussinesq equation, we use L12(£2)(0) to
determine c,,, ¢; since it also characterizes the behavior of ¥ near R = 0 according to
Proposition 7.3.

We choose the above conditions so that the error of the approximate steady state
vanishes quadratically in R near R = 0 and that the update of Q(7), n(t)(w, 6;) in
equation (9.12) also vanishes quadratically in R near R = 0 if the initial perturbation
Q(-,0),n(,0) (Bx(0)) vanishes quadratically. We also determine ¢,,, ¢; in (4.8) and
Cw, €7 in (4.11) based on this principle.

Remark 9.13. We will choose v to be very large, relative to a~!. Therefore, we treat
Qo ~ Q,0) ~ 6. Due to the small factor 3-1/¢ in Propositions 9.9, 9.11, we treat
L12(Z,)(0), L12(Z )(0) ~ 0. From Remark 9.3 and the bootstrap assumption (9.54),
we also have C; = 0, C;S =~ 0, r & 1. We treat the error terms in these approximations
as perturbation.

9.3.3. Estimate of the lower order terms The equations (9.12) are slightly different from
(4.6) for the Boussinesq systems. We show how to estimate their differences. Suppose
that w(¢), 6(¢) are the perturbations and the support size of @y + w (1), 90 + Q(t) is S (t)

X

the support of w, 6, we have p < S(¢),r = 1 —Cip s1n(,8) € [3/4,1]. We get

1—r?

| |S1—r<Cip<CS@t) <a@P) Vel (9.59)

which is extremely small compared to «. Since p = R/, the factor C;p, 1 — r* vanish
high order in R near R = 0. Hence, 1:—4’49x is a smooth (near R = 0) small error term.

For the term 1C;y in u = —y + 2C;y defined in (9.12). Under the (R, B)
coordinates, it becomes %(p\P(R, B)). Compared to —vr, = —(pzllf)y in (2.10),
%(p\IJ(R , B)) vanishes on B = 0, w/2 and contains a small smooth factor C;p =
C;R'/* within the support of w, 6.

The last difference is the elliptic estimate between Propositions 7.3 and 9.9. Notice
that in (9.12), we only use W(R, B) for (R, B) within the support of w, 6. We have
Wy, (R, B) = W(R, B) for A(1) = 2713C;%, R < S(1). Finally, x1L12(Zy,,,)(0) in
Proposition 9.9 only affects the equation near R = 0. Since “TRQ e L2, using the
estimate in Proposition 9.9, we get

_ - _ _ 1+R
1L12(Zy, 0)(0)] = |L12(Zy,, ) (0)] S 371/, mmammm53ww?¢mm,
(9.60)

where we have used A(t) > (S())% due to (9.54) to obtain the first identity, and used
(4.8),(9.55) and ||~ R G Qoll;2 < « to obtain the first inequality. The terms in (9.60) are
treated as small terms with amplitude close to 0.

Using the argument in Sect. 8, we can estimate these lower order terms in H3, H3( )
or C! norm accordingly and obtain a small constant in the estimate bounded by C(1 +
a )3~ Y* + C;S), where k, C > 0 are some absolute constant.
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9.3.4. Nonlinear stability Notice that the domain D; (9.15) of the dynamic rescaling
equation is bounded and is different from R3. We cannot apply directly the estimates in
Sects. 5-8 because in these estimates, we linearize the equations around , 77, £ which
are defined globally.

We consider the system of 6y, 6, @ obtained from (9.12) and then linearize it around
the approximate steady state Qo, o, 50, Cw, €1 constructed in Sect. 9.3.2 to obtain a sys-
tem similar to (5.5)—(5.7) for the perturbation (€2, n, &) with Q, 1, &, ﬁ (= %le(ﬁ))
replaced by Qo. 70, &0, %le(ﬁo). We also put the lower order terms discussed in
Sect. 9.3.3 into the remaining terms R, Ry, Re.

According to Lemma A.11, we know that S_Zo, no, 50 converges to Q, ﬁ,§ in the
H3, H3 (¢) norm as v — oo (v is the cutoff radial in (9.55)). Moreover, we can easily
generalize the >, 3 () convergence to the higher order convergence. We choose the
same weights and the same energy norm as that in Sects. 5-8. Then for sufficient large v,
due to these convergence results, under the bootstrap assumption (9.54), we can obtain
the following >, H3 () estimates similar to that in Corollary 6.3

1d

1
Ed_E3(Q n,&) < (—— + Ca)E3 +R3,

where E3, R3 are defined in (6.3). We have a slightly weaker estimate (% < %) due to
the small difference between (Qo, 7o, &) and (22, 7, &).

Remark 9.14. The choice of v is independent of C;(0). We will choose initial data with
the size of the support S(0) > 2v. Though S(0) > v is large, we choose C;(0) small
enough at the final step and verify (9.54).

Recall the equation (6.9) for the 2D Boussinesq equation in the C! estimate of &.
The dampmg partin (6.9)is (=2 — 3% R )&. For the 3D Euler equation, it is replaced by
(—2— —L 12(£20))E. For sufficient large v, using the convergence results, we can obtain
estlmates similar to (6.11), (6 14), (6.15) with slightly larger constants, e.g. —2, 3 are
replaced by —2 + 100, 3+ 100

There exists a large absolute constant v, such that for v > v, v satisfies the above
requirements, and we have

2 - _ 1
—L1h(Q2—Q —_— .61
|7m 12( 0)(0)] < 100 (9.61)

To estimate the 7> norm of R, R, and H3 (), C! norms of Re, we apply the estimates
in Sect. 8 and the argument in Sect. 9.3.3. Therefore, for v > vg, under the bootstrap
assumption, we obtain the following nonlinear estimate for compactly supported pertur-
bations (r), n(¢), £(¢) around (2, 7o, £), which is similar to (8.27),

1d 1

——E*(Q2,n,8) <— —E*+C@@'?E*+a3?E} + &*E)

2dt 13 (9.62)
+C(a, Ci(1), SO)E*+E + EY),

where the energy E is defined in (8.26). The last term is from the estimates of the
_ 4
6r, 119, and C e, C1(1), S(t)) =

C(l+a )@V + Ci(1)S(1))), for some universal constant C. Under the bootstrap
assumption 9.54, we further obtain

Cla, Ci(1), S(1) < (1 +a )37 Ve < o, (9.63)
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Combining (9.62), (9.63), we obtain that there exist oz with O~ < o3 < o (g 18
the constant in (9.25) in Lemma 9.6) and an absolute constant K > 0, such that if
E(©2(0),7n(0),£0)) < K o2, under the bootstrap assumption 9.54, we have

E(Q1), n(), (1)) < Ka?. (9.64)

Recall ¢y, ¢1, Cy, ¢; defined in (9.57), (9.58). Using (9.60), (9.61), |L12(2)(0)| <
12173 < E < o, we obtain

1 1 1
ICow +Co+ 1] < — +C3 V4 Ca, 40 >—+3— —c3 Vet _ .
100 o 100«

We further choose a4 with 0 < a4 < a3, such that for o < oy,

3 +c ! +c 3 (9.65)
— =< < —= > —. .
> Co TCy 5’ Cl T (] dor

9.3.5. Growth of the support Recall Definition 9.2 of S(7). Finally, we use the idea in
Sect. 1.3.1 to estimate the growth of the support S(7) of the solutions w + @q, 6 + 6.
Denote

W) =u@) +a@), V(@) = W) + V@), a@) = c(t) +¢.

Applying (2.9)—(2.10) and (2.12) to U, we can rewrite the transport term u - V in
(9.12) as

o~ o~ o~ C o~ o~
G-V = (0,5 + Cr D)y + 0,50, = (LB oG RO T
r
o~ o~ C o~
+20 + aRog® — PP G
r

where p = R!/% r = 1 — C;p sin(B). The above formula is different from (2.12) due
to the extra term Cir~ 11#8 Notice that ¢;x - V becomes ozclRaR under the (R, B)
coordinates. For a point which is inside the support of w + @, 6 + 6 and has coordinates
(R(1)), (B(1)), its trajectory under the flow (¢;x + 1) - V is governed by

LRty = @R () + LELDLD SEW) o GiRiry, (1)) — aR(NIFTR(), BO)),

dt r (1)
(9.66)

where the relation between ¢;(r), C;(t) is given in (9.11).

Lemma 9.15. Under the assumption of Propositions 9.9, 9.11 and that Q € H>3, for
R < 8(¢), we have

I(1+ RYHW(R, B) + (1 + RV W (R, B)|
Sa QI+ 1 SaLEQ@), n(), () + 1.
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Recall the weights ¢; in Definition 5.2 for the > norm (7.3). Denote by H3 the
modified > space with radial weight % in the > space replaced by ”TR. The H3
version of the elliptic estimates in Proposition 9.9 can be obtained by the same argument.
Since Qo + 2 is in H> space (Qq vanishes linearly near R = 0), applying the H3 elliptic
estimate to W —A@ and L12(Zy)(0), where ¥ = 3P (1,1, (Q) + x{ L12(Z,)(0)), and
Lemma A.4 to W,, we obtain

1981135 <

~

a R+ Qollis Sa Qe + 1 Sa T EQ@). n(0), ) + 1.
Applying the argument in the proof of Lemma 7.10, we establish the decay estimate.
Now we assume that the initial data satisfies E(£2(0), n(0), £(0)) < K «2. Under the
bootstrap assumption (9.54), we have a priori estimates (9.64), (9.65).
Plugging the bootstrap assumption 9.54, (9.64) and Lemma 9.15 in (9.66), we derive

d ~ -1 2/3 ~ 2/3
T R(#) <acR(t)+ Ca(x™ "E+1DR(@)”° <aciR(t) + CaR(t)”°,

where we have used C;(1)p(t) < C;(t)S(t) < 1,r~' < 1. From the formula of C;(z),
we know %Cz (t) = —¢;(t)C;(r). Multiplying C/ (1) on both sides, we get

d
T CIR() = CaCFR*3(t) = Ca(CFR)*PCi(1)*/3.

From the a priori estimate (9.65) and the formula of C; in (9.11), we know Cj*(7) <
C7(0) exp(— %). Then solving this ODE, we yield

o0
(CFRN'? < (Cl0)* SO + Ca / ¢ 0 exp(—g)db < C1(0)*(S(0)*/ + Car).
0

Taking the supremum over (R(¢), B(¢)) within the support of €2, 6, we prove

Ci(1)S() = Cla, S(0)C1(0). (9.67)

9.3.6. Finite time blowup For fixed o < a4, v > vy, we choose zero initial perturbation
Q(0) =0,7n(0) =0, &) = 0. Then the initial data is (£2g, 8y) defined in (9.55) which
has compact support with support size S(0) = 2v. We choose initial rescaling C;(0) such
that C(«, S(0))C;(0) < K()/2, where K () is defined in (9.54). Using the a priori
estimates (9.64), (9.65) and (9.67), we know that the bootstrap assumption in (9.54) can
be continued. Thus these estimates hold true for all time. B

Since —% < Cpt+Cyp < —% ((9.65)) and the solutions w, 6 are close to @y, 6y for all
time in the dynamic rescaling equation, using the argument in Sect. 8.6 and the BKM
blowup criterion in [2], we prove that the solutions remain in the same regularity class
as that of the initial data before T* < +o0o and develop a finite time singularity at 7,
where T* = 1(00) = [;~ Co(v)dT < +00.

Since 6y + 0(¢) > 0 and the support of w, 0 is away from the axis, we can recover
u?, @? from 6, w via (9.6), (9.10). Due to the regularity on ug, wg and the fact that in
D1, they are supported near (r, z) = (1, 0), the solutions have finite energy in Dj.
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10. Concluding Remarks

We have proved finite time blowup of the 2D Boussinesq and the 3D axisymmetric
Euler equations with solid boundary and large swirl using C“ initial data with small
a for (w, V) in the case of the 2D Boussinesq equations and for (@?, V(u?)?) in the
case of the 3D Euler equations, respectively. For the 2D Boussinesq, the singularity is
asymptotically self-similar. In particular, we showed that the velocity field is in C1¢
and has finite energy.

The results presented in this paper can be generalized to prove finite time singularity
of some related problems. First of all, the proof of Theorem 1.2 with minor modifications
on Lemma 9.1 implies similar results for the 3D Euler equatlons in a bounded domain
D with smooth boundary and the following properties: D is symmetric with respect to
the plane z = 0, and satisfies D N {(r,2) : |z| < e} = {(r,z) : r € [0, 1], |z|] < &} for
some ¢ > 0. Formally, D is a cylinder near z = 0. Secondly, almost the same analysis
can be applied to prove finite time blowup of the 3D axisymmetric Euler equations in a
domain outside the cylinder {(r, z) : r > 1, z € R}. The proof is easier since the domain
is away from the symmetry axis and the term —%1} + %21} in L1 is of lower order (
rl<1).

Thirdly, our method of analysis can be applied to prove the finite time blowup of the
following modified 2D Boussinesq equation on the whole space for C“ initial data w, )QC
with small o:

w+u-Vo=0/x, 6,+u-V0=0, u=V(—A)w.

The above modified Boussinesq equations with a simplified Biot—Savart law have been
studied in [18,27]. Note that the above equations are a closed system for w, 6 /x. We can
derive the corresponding dynamic rescaling formulation for the above system and refor-
mulate problem using the (R, B) variables. We consider the equations for the variable
Q(R,B) = w(x,y),n(R, B) = (0/x)(x, y). The approximate steady state for Q, 7 is
similar to (4.8) with cos(8)® replaced by (sin(28))%/?, which is C%/? globally on R?.
Moreover, the scaling parameters are ¢; = —, ¢, = —1. The leading order part of the
linearized operator of this system is exactly the same as that in (5.5)—(5.6). The same
analysis in Sects. 5—8 applies to the above system and the proof is much easier since the
6y variable appeared in (5.5)—(5.7) is not present in this system.

We would like to point out that the results presented in this paper do not provide a
full justification of the finite time singularity of the 3D axisymmetric Euler equations
with solid boundary considered in [30,31]. The method of analysis presented here relies
heavily on the assumption that the initial velocity field is in C-% with a small o. Under this
assumption, several important nonlocal terms in the perturbation analysis can be made
arbitrarily small by choosing a sufficiently small «. For smooth initial data considered
in [30,31], it is almost impossible to obtain an analytic expression of an approximate
steady state with a small residual error for the dynamic rescaling equations. Even if
we use a numerically constructed approximate steady state, there are several essential
difficulties in proving nonlinear stability of this approximate steady state. In particular,
the most difficult part is to control the nonlocal terms in the linear stability analysis. The
standard energy estimates are simply too crude to control the nonlocal terms.

Recently, in collaborator with De Huang, we have been able to prove the finite time
self-similar singularity of the HL model with CZ° initial data by using the method of
analysis presented in [7] and a computer assisted analysis. We are now working to extend
this computer assisted analysis to prove the finite time self-similar singularity of the 2D
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Boussinesq and 3D axisymmetric Euler equations in the presence of boundary with
smooth initial data in the same setting as that considered in [30,31]. We will report these
results in a forthcoming paper.
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Appendix A.

In Appendix A.1, we estimate I"(8) and the constant ¢ appeared in the approximate pro-
file (4.8). In Appendix A.2, we perform the derivations and establish several inequalities
in the linear stability analysis in Sect. 5.6. In Appendix A.3, we derive the singular term
(7.5) in the elliptic estimates. In Appendix A.4, we will establish several estimates of
L17(£2) that are used frequently in the nonlinear stability analysis. Notice that we only
have the formula of 7 = 6, in (4.8). We need to recover 0, & = Q_y from 7 via inte-
gration. Yet, we do not have a simple formula to perform integration. Alternatively, we
derive useful estimates for £ in Appendix A.5. Some estimates of €2, 1 are also obtained
there. In Appendix A.6, we show that the truncation of the approximate steady state
would contribute only to a small perturbation under the norm we use, and we prove
Lemma 9.1. In Appendix A.7, we prove Lemma 9.1. In Appendix A.8, we study the toy
model introduced in [11].

A.1. Estimates of ' (B) and the constant c.
Lemma A.1. For x € [0, 1], the following estimate holds uniformly for » > 1/10,

(1 — Xt < ; (A1)
Consequently, for B € [0, 7/2],2 > X > 1/10, we have

[(D(B) — D(in2A)*| S [(cos® (B) — D(cos(BN*] S @,

and

2 2 (72 _
‘c— ;‘ = );/0 (T'(B) — 1)sm(2ﬂ)d,3‘ <2a.

Proof. Using change of a variable t = x*, it suffices to show that for ¢ € [0, 1], (1 —
Nt < +. Notice that A > 1/10 and ¢t < 1. Using Young’s inequality, we derive

2 AN 144 /K
“—=1)+ 2t
(1 — s = % = e < ; (%) _« ( ) ) §
K

il

> =

1+ 24 A\A+k
K

which implies (A.1). The remaining inequalities in the Lemma follows directly from
(A.1). O
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A.2. Computations in the linear stability analysis. We perform the derivations and estab-
lish several inequalities in the linear stability analysis in Sect. 5.6.

The calculations and estimates presented below can also be verified using Mathe-
matica® since we have simple and explicit formulas.

A.2.1. Derivations of (5.35) Recall the formulas of ¥, ¢g in (5.32). A direct calculation
yields

(R. (1;5)3)R _a ;5)3>Sm(2ﬂ)

( 2RI 3R 24 1) _a 25)3) sin(2p)

1
E(RQDO)R — @ =

9 |
- —(2R—3 + SR 43R+ 5) sin(28).

Denote g = A(R)F(ﬁ)_l. For the coefficient in the 5 integral in (5.35), we have

3
1+R

= (3RAGRDR+(-2+

1
E(Rl//O)R"'(_Z"' Yo

3
1+ R

JAR)T (B~ 2 (L +1DT (B

Note that A(R) = % (“;{fﬁ + % (125)4) (5.32). A direct calculation implies

3 /(0+R)? 30+R*
I =— + —
32 R3 2 R2 ),

3 1 + R)? 1+R)3 1+R)3 1+ R)*
_3 3(+)—3(+)+6(+)—3(+)
32 R3 R4 R? R3

_ 3 (1+R)2(3R 3(1+R)+6(1+R)R>—3(1+R)’R)
32 R*
3(1 + R)? 3
=~ (-3—3R+3R
gi (73 T3RR3R,
3 3 /. (1+R?® _(1+R)?
I11=|-2+ — (2 +3
1+R) 32 R4 R3
—3(1+R)2( 2—2R+3)2+3R(1+R))
~ 32R4 ’
1+11—3(1+R)2( 3—3R+3R*+(1 —2R)(2+3R +3R%)
- 32R4
3 2
=R 4R 3R 3RY),
32R*

The above calculations imply (5.35).

> The Mathematica code for these calculations can be found via the link https://www.dropbox.com/s/
y6vfhxi3pa8okvr/Calpha_calculations.nb?d1=0.
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A.2.2. Derivations of (5.40) From (4.8), we know

ﬁ—RaRﬁ_(1+R)3( 6R 6 LR 18R )_ 3R
7 ~ 6R \(1+R)? (1+R)3 (1+R)*)  1+R’
Using the above identity, (5.32) and ¢, = —%le(ﬂ)(O) (4.11), we can compute
i} _ 7—ROgin9a, 5 31+R
(1 — RIrMYoco = Tg;(R + 53 R2 )C(u
27¢ R 5 31+R
S R (o 2Ry
8 1+ R 2 R?
. (270{ 1 N 8la 1) —2L (Q)(0)
“\8c U+R)RZ " 16¢c R/ ma P
_( 27 1 81 I)L @)0)
"\ 4zc(1+RRZ  8rc R/ ’

which implies (5.40).

A.2.3. Derivation of the ODE (5.41) for L1>(£2)(0) Multiplying sin(28)/R on both
sides of (5.5) and then integrating (5.5), we derive

%LIZ(Q)(O) —_ <R8RQ, Smgﬁ)> — L1a(2)(0) + cw<§2 — RORS, Smgﬂ)>

The first term vanishes by an integration by parts argument. Using (4.8) and (4.11), we
can compute the third term

- - sin(2B)\ _ « o /2 6R?  sin(2B)
cw<Q—R8RQ, - >_;cwf0 /0 e R

To /Oo 6R IR
= —(C, _—
2 “Jy (1+R)3

1 o0
= 3rac, <—(1 +R7 (14 R)_2> ‘0

3ra
= o = S3L(R)0).

It follows that

<77’ sin(2,8)> B <3 sin(2)

sin(2,3)>
R (1+R)R’ '

d
——L12(82)(0) = —4L12()(0) + R

dt Dﬁ9> " <RQ’

Multiplying 2= L15(£2)(0) to the both sides, we derive (5.41).

dmc
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A.2.4. Computations of the integrals in (5.43) A simple calculation implies that for
any k > 2

/OO(1+R)_de— ! /oo R dR—/oo !
0 k=1 Jy A+R* T Jy (1+ Rk

1 1

For the integral in 8, we get

/2 T /2 /2 T
/ (1—2sin(2B8))%dB = = — 4 / sin(2B)dp + 4 / (sin(2B))%dB = =
0 2 0 0 2

T 3
—4+4. — = — —4,
4 2

Using (A.2) with k£ = 4 and the above calculation, we can compute

R 1 2sin(2 ’
H(1+R)2R( ~ 2sin( ﬁ))H2
| e "1~ 2sinpyras = LT~
= —dR - — 2sin =—(— —4).
0 (1+R)4 0 6 2
For A in (5.40), we apply the Cauchy—Schwarz inequality directly to yield
27 1
= ra@ol )
1= = L @O
= @O (1+R)3>1/2< c )
= 12 T TRe (1+R)3’ (1+ R)2R*

Using (A.2), we can calculate

2 /2 oS | 5, T
. = 1dg - +R) dR = —
H (1+R)3/2 (1+R)R? Hz /0 p fo ( ) 8

A.2.5. Estimates of D(2), D(n) and the proof of (5.51) We introduce

L 3(1+R)? ) 3
Dl(n):—W(1+4R+3R +3RY),
Dy(n) & 3R_3+3(1+R)2+ 3R N 1(1+R)4+3(1+R)3
240 16 8 RZ  4(1+R) 16 6 RS 8 R* )

Recall D(2), D(n) in (5.50) and the weights ¢, Yo defined in (5.32). By definition,
D(n) = D1(mT(B)~' + Da(n). Thus, (5.51) is equivalent to

) 1 _ 1
Sin2B)D(2) = =0, Di(NT(B) "+ Dy(n) < —gvo (A.3)
To prove the first inequality, it suffices to prove

1+R _ (1+R)?
3R —  6R3

b

9 1 4
D(Q) = —2R — ER_Z — 3R - 3+ §R_3 +6R +
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which is equivalent to proving
(—2+4—L+ l)R‘3 +(—2 +6+1)R_2+(—3+1+ l)R‘1 +(—=+ -+ l) <0.
3 6 2 2 3 2
It is further equivalent to

1 13
——R342R2_- R 1<y,
2 6

which is valid since 2,/ % X % > 2. Hence, we prove the first inequality in (A.3).
For the second inequality in (A.3), firstly, we use I'(B8)D>(n) < Dy(n) (I'(B) =

cos*(B) (4.8)) to obtain
D3(n) = Di(n) + D2(mT(B) < Di(n) + Da(n)
3 (1+ R)?
~ 16 {_ 2R*
4R 1(1+R* 30+R)?3
+ — + - .
T+R 6 R 8 R4 }

Recall the definition of ¥ in (5.32). Multiplying both sides of the second inequality
in (A.3) by I'(88), we obtain that the inequality is equivalent to

(1+ R)?

2 3 -3
(I1+4R+3R“+3R)+R " +2 72 (A4)

pay < 2 (LLA+RY 3 A+ R (A5)
=76 \"8 " R 6 R ) '
We split the negative term in the upper bound of D3(7) in (A.4) as follows
(1+R)2 5
(1+4R+3R +3R)
2R4
(1+R)2 ) 5
— {(1+R)+(3R)+R(1+R) +R(2—2R+2R )}
(1+R)? 30+R? A+R* (A+R321—-R+R?Y
- 2R4 2 R? 2R3 R3 '

It follows that

(1+R)? 1 3 A+R* [/ 1 1 1(1+R?* (A+R*1—-R+RY
D3(77)_ -+ )+ S+t |+3 -
16 R4 2 8 R3 2 6 2 R? R3
1 4R 3 1(1+R® 1(0+R* 10+R?> A+R(A+R> 1 4R
+— + =—4q—= - = = — — .
R3 1+R 16| 8 R4 3 R3 2 R? R3 R3 1+R
Observe that

1(1+R)* 1(1+R)2 3 (1+R)*
R + — —
3 R3 2 R2 16 R3
( 7(1+R)4 1(1+R)2>< 3(1+R)4

8 R 2 R 16 R3
(1+R)A+R> 1 4R 1
- R3 "Bt er IR
4R 1 (R-1)? _

t—— = — ————— <0,
1+R R2  (1+R)



Finite Time Blowup of 2D Boussinesq Equations

(1+R)?

where we have used % > % X 4 > 1/2 to derive the first inequality. Therefore,
we prove (A.5), which further implies the second inequality in (A.3).

A.3. Derivation of the singular term (7.5) in the elliptic estimates. Suppose that W is

the solution of (7.1). Consider ¥ = W + G sin(28). Notice that if « = 0, sin(2) is the
kernel of the operator L in (7.1) (it is self-adjoint if « = 0). We have

Lo(U) = Q+ Ly(Gsin2B)) = Q — (@ R*0rG + a(a +4)RIRG) sin(2).

We look for G(R) that satisfies G(R) — 0 as R — +o0o and L (¥) is orthogonal to
sin(28):

/2
0= / sin(2B) (2 — (> R%*9rr G + a(a + 4)RIgG) sin(2B))dp
0
for every R, which implies

4
@*R*IrrG + (o + HRIRG = —Q, (A.6)

b4
where Q.(R) = [7/> Q(R, B) sin(28)dp and we have used [7/*sin>(28)dp = T The
above ODE is first order with respect to g G and can be solved explicitly. Multiplying

4+a
the integrating factor O% R™2*"4" to both sides and then integrating from O to R yield

4t 4 (R 4
R« 9rG = —— Qu(t)te™ " dt.
a“m Jo

Imposing the vanishing condition G(R) — 0 as R — +o0, we yield

4 [ e [° 4
G = ——= s« Qe "drds.
oa-mT JR 0

Using integration by parts, we further derive

1 [ _a [f 4 L[ Qu(s)
G=— ds(s™ @) Qu(t)tedtds = ——
o JR 0 o JR N

ds

1 4 (R 4
——R @ Qu(s)se ™ ds.
(e %% 0

Using the above formula and the notation L12(€2) (2.16), we derive (7.5).

A.4. Estimates of L12(£2). Recall I:1~2(Q) = L12(€2) — L12(€2)(0). We have the follow-
ing important cancellation between L17(€2) and €.

Lemma A.2. For k € [3/2,4] and any A > 0, we have

i k=11 -
in(2B)QL(Q). RF) = — ’L Q)R :
(sin(2B8)2L12(£2) ) 7 12(£2) 2R

(sin(2B)Q2 + AL12(2))%, RF) = (R (sin(28))?, Q%) — (k — Dr  (A])

2

T - _ 2
= 23| Lp@re|
2 L2(R)
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Proof. From the definition of Zlg(a))(R) in (5.8), we know that it does not depend on
B and

/2 N
fo Q(s. B) sin(2B)dB = —(OrL12(R)R.

Using integration by parts, we obtain

(sin2B)QL12(RQ), R7F) = fo (—@RL12(R)HR)L12(R*dR

k=1 [ 2 p—k
= —— L12(2)"RdR,
2 Jo

which is exactly the first identity in (A.7). The second identity in (A.7) is a direct
consequence of (L%Z(Q), R~ = %||L12(Q)R_k/2||i2(m and the first identity. 0O
To estimate 1:12(52) g in L;, we use the following simple Lemma.

Lemma A.3. Let g be some function depending on Q, i, & and ¢ be some weights. We
have

. _ /2
L@ 0) S IR Lo@IBa|| [ Re2R pror prag

(DYLia(@)g%. ¢) S IR D',

T2y
R R R, B)d
| e pror pras|
(A.8)

for k > 1, provided that the upper bound is well-defined, where Dg = ROR.

Proof. The first inequality follows directly from that L>($2) does not dependent on f.
Recall the definition of L1,(€2) in (5.8) and Dr = ROg. Notice that for k > 1, we have

5 /2
D&L1x(Q) = —/ DYIQ(R, B) sin2p)dB.
0

Using the Cauchy—Schwarz inequality, we prove

B o0 /2 i1 /2
(DRL12(2))%g%, ¢) = fo (( /0 D 'Q(R, B)sin(2B)dp)* fo gzwdﬂ> dR

00 /2 /2
< / ( f (DE19)%dB)( / edf)dR
0 0 0

/2
<R~ ]| [ Kok pas

L®(R)
O

Lemma A.4. Let x (-) : [0, 00) — [0, 1] be a smooth cutoff function, suchthat x (R) = 1
for R < 1land x(R) =0for R > 2. Fork = 1,2, we have
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1+R - B B (1 + R)?
L@l S 11—z, NL@R™ + R, S 19572,
(1+ R)k (1+ R)*
HL12(2)112 S 11212, R (L12(2) — L12(S0)0))0) 25y S 7R Q2.
(A.9)

provided that the right hand side is bounded. Moreover, if @ € H3, then for 0 < k <
3,0 <[ <2, we have

IL12(2) — L12(2)(0) |13 + [IDR(L12(S2) — L12(2)(0))) 135 < 11213,
D% L12(2)lo0 + || D (L12(2) — xL12(2) (0N loo < 11213,
1(1+ R)dr DY L12(2)loc + ||(1 + R)R D (L12(22) — x L12(2)(0)]loo S 11211943,
L 12()1Ix + [IDRL12(D)]1x S 11211543,
(A.10)
where X = H? @ W™ is defined in (7.7).

Remark A.5. We subtract x L12(€2)(0) near R = 0 since L,(2) does not vanishes at
R =0.

Proof. Recall L12(2) in (2.16) and le(Q) in (5.8). Using the Cauchy—Schwarz and
the Hardy inequality, we get

1 1+R 1
L2~ S (182, rl S = S2lle2ll L2y S l——SallL2,

1+R

1 - © 1 . RaR | ~
I|ﬁL12(Q)|IL2(R) SA ﬁL%Z(Q)dR 5‘/0 W(SRle(Q))ZdR 5 <QZ’ R_21>’
(A.11)

forl =1, %, 2, which implies the first two inequalities in (A.9). For k = 1, 2, observe
that

(1+ R)F (1+ R)F .
RE (L12(2) — L12(S0)0) 0128y S IITLu(SZ)xlleue)

(1+ R)k
+ | G Li2(2)(1 = )0l 2w

1 - (1+ R)*
< Hﬁle(Q)HLZ(R) +[1L12(2)|| 2 () S I RE 2 + 11L12(SD) 2R

where we have used (A.11) in the last inequality. Denote €2, = 0”/ 2 Qdp. From (2.16),

we know

Q. (S
le(Q)(R)=/ Sl

0
1
dsS = / K(R, S$)Q2.(85dS, K(R,S) = —1p<s.
R S 0 S =

The L? boundedness of L5 is standard. Notice that K is homogeneous of degree —1,
ie. K(AR,1S) = A~'K (R, S) for » > 0. Using change of a variable S = Rz , we get

o

|
L12(Q)(R)=/ EK(LZ)Q*(RZ)Rdzzf K(1,2)Q«(Rz)dz.
0 0
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Then, the Minkowski inequality implies

(o¢] (0] )
L1212 sfo K(l,z>||s2*(Rz>||Lz<R)dzsfo K(1,2)z7'?||1Ql12dz
= ||9||sz 2 dz 19l .
z>1
We complete the proof of (A.9). Notice that DrL12(2) = —,, ||D X2 <1 for
1 <k < 4 and D,3L12(S2) = 0, Dgx = 0. Using that sin(28)77 in the weight

@1 = sin(2B)~° (1+R) is integrable in the f direction and (A.9), we yield

I(L12(R) — L1a (@O0, 1112 + 1D (L12(2) — L1a (@0 )¢; 1112
(1+ )2 (1+R)?
2

SI(L12(2) — L12(2)(0) %)

12 + 1D (L12(R2) — L12(2)(0)x) 2
(1+R)2 _ (1+R)2 (1+ R)?
Slie 22 + 11D Qe 12 + L2 @ Ol D x 5 Ip2
(1+ R)? _ (1+R)2
Sl 2 + 11D '@ 2 S 1Rl
(A.12)

which implies the first estimate in (A.10). From the definition of L1,(€2) in (2.16), we
have DrL12(2) = L12(Dg€2). Notice that |DII‘Q)((R)| < 1. Using (A.9), we prove for
k<3

IDR L1212 + | L12(R)O0)] - || D x Iz S 19143,

which implies the second estimate in (A.10). Similarly, since BRDI Lp(R2) =

OrL12(DLQ) = —R™'DLQ(R), where Qu(R) = [77* Q(R, B)dp, and that [ < 2,
we have

— — 1/2 — 1/2
19r DR L1a( @Iz = 1R DQulloe(ry S IR Dull 55 [19r (R DRI
S 1191,

which along with the second estimate in (A.10) and |9 D rXL12(2)(0)] S [L12(2)(0)] S
[|€2]]743 completes the proof of the third estimate in (A. 10)

Since x L12(€2)(0) does not depend on g, we apply the first two estimates in (A.10)
to yield

IDRL12()x < [|DR(L12(R) — x L12(R)O))] I3 + [ D x L12(2)(0)[yys.0
S Q1 + [Li()O)] S 1121943

fori = 0, 1. We complete the proof of (A.10). O

A.5. Estimate of the approximate self-similar solution. In appendix A.5.1, we estimate
some norm of €2, 17 using the explicit formulas. For £, it is given by an integration of 7
that does not have an explicit formula. We estimates &, its derivatives and some norm in
Sect. A.5.2.
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A.5.1. Estimate of Q, 7 Recall the formula of Q, 77 in (4.8). A simple calculation yields

- a3RT(B) _  a6RT(B) - - a6RT(B) _ __ « I18R’T(B)
Q= a1 caery BT PR = R T PRI = TR
(A.13)

Without specification, in later sections, we assume that R > 0, 8 € [0, 7 /2].

Lemma A.6. The following results apply to any k < 3,0 <i+ j < 3,j # 1. (a) For
f=Q,7,Q— DrQ, 77 — Dgij, we have

DhfIS o IDRD,fI S asin(B)f. (A.14)
(b) Let @; be the weights defined in (5.14). For g = Q, 1], we have

/2 /2 ) .
f R*(Dgg)’p1dp < o’ f R*(DyD}e)’pdf S o, (A5)
0 0
uniformly in R and

(Dl (g — Drg)? 1) S a2, (DLD)(g — Drg) ¢2) S, (A16)

Proof. Recall Dg = sin(28)0dg, Dgr = ROg. Using I'(B) = cos(B)“*, (5.22) and a direct
calculation gives

DIFE) Sasn@r@). Dh—r <K p Ko &
p ~ ’ Ra+RrR)ym' ~ Q+ R’ Ra+mrRym' '~ Q+R)m
(A.17)

forl < j<5,0<i<5andm = 2,3, 4. Combining these estimates and the formulas
in (A.13) implies (A.14). As a result, we have the following pointwise estimates for
g=Qorn

Dkl S8 S el B) g D} Dhgl S asin(B)g < o sin(AT(B)

+R)? (1+R)?’
Dk (¢ — Dre)| S ¢ — Drg S« R (ﬂ) ,ID Df<g Dgg)l
. , R’T'(B)
< _ < 2 NS
Sasin(B)(g — Drg) S a” sin(B) 1+ R)3’

fork <3,i+j <3,j # 0, where we have used ¢ ~ % in Lemma A.1. Recall ¢; in
Definition 5.2.

o1 21+ R)4 ~4sin(2B) 7%, @ £ (1+R)*R*sin(2p) 7.

Notice that for o = 100’ y=1+ 10, we have

/2
f T(B)*sin(2B)°dp < 1,
0

/2

/2
/ o’ sin(B)°T(B)% sin(28) "V dB < o? / cos(B)?21=9/1048 < .
0 0

Combining the pointwise estimates, the estimates of the angular integral and a simple
calculation then gives (A.15), (A.16). O
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Recall the W norm in (7.6). We have
Proposition A.7. It holds true that T'(B), 2, 7 € W with

(1 + R)? (1 + R)?

Shwree + ll—F—nllwr S,

IEBlwre S 1,

1D 0 + [ Dpiillprce S .

Proof. The proof follows directly from the calculation A.17 and sin(8)I" () sin (2;6)_“/ 3
<l1l. O

A.5.2. Estimates of € Recall that the approximate self-similar profile 7 (4.8) is given
by

6w x¥

5 _rR oy 6R ooy
Ox)(x,y) =n(R,0) = ————=cos (13)_7(1+(x2+y2)a/2)3'

¢ (1+R)3

(A.18)

We also use n(x, y) to denote the above expression. Throughout this section, we use the
following notation

R=(x2+yH)%?, B=arctan(y/x), S=(%+y)*?, 1 =arctan(y/z),
(A.19)

where z will be used in the integral. 0(x,y), E(R,0) = éy (x, y) can be obtained from
i1(x, y) (or 6) as follows

X X
9=Z;Mawﬂ,$:ﬂy=ﬁ ny(z, y)dz, (A.20)
where we have used (0, y) = 0. Observe that
6a 30ly (22 + y2)a/2za
c Y2422 (1+ (22 +yH)e/2)s

1 3ayz (2 4+yH)e? Sz y) = 1 3asin(27) S _
T2 @y T T s

ﬁy(& )’) = -

(A21)

where we have used the notation S, t defined in (A.19). Hence, we get

ézzfx_gg 3ay (22 + y2)¥/2 . ‘/xl(_3agm2ﬂsﬁ)d
0 0

¢ Vr2 0+ @+ 2p T 2 2(1+9)
(A.22)

These integrals cannot be calculated explicitly for general o. We have the following
estimates for &.
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Lemma A.8. Assume that 0 < o <
we have

o55- For R =0, €[0,7/2land 0 <i+j <5,
IDRDjE| < —€. IDYD}GE — Rogb)| S —E, (A23)
2(x? 2ya/2 o 1+
&1 < a(x2+y2) 5 4 3min(l,—1 )
(1 + (x2+ y2)2/2) (1 + y2) yl+a
< (X2R2 Sina(ﬁ) 1 COSOH-l(ﬁ)
STxR\ P (14 Rsin%(B))3 pzr/4 (1+R)3 )’

- - 1+R =
—ESa’cos(B), Eller S ”+T(1 + (Rsin2p)*) ®)E||1~ Sa?,  (A24)

where || - |1 is defined in (6.5). Let 1, Y2 be the weights defined in (5.14). We have

7/2 S
| R nds < o (A2)
0
uniformly in R, and
(DR DJGE — RORE)?, i) S, ((DRDRE, vn) S (B2 n) S o, (A26)

where (D%Dé, Vi) represents (Di , ) for0 <i <5, and (D%Dg, Yo) fori+j <

5.j=1.
Remark A.9. Using (A.22), we have —&€ > 0 for R > 0, B € [0, 7/2].

We have several commutator estimates which enable us to exchange the derivative
and integration in (A.22) so that we can estimate Die Déé easily.
Recall the relation between 0y, dy and dg, dg in (2.9). We have the following relation

1
Dr = Rog = —(x9, +yd,), Dp =sin(2B)ds = 2yd, — 2a sin>(8) Dx.
o
(A.27)

The firstrelation holds because R = r%, Rop = ér d,, and the second relation is obtained

by multiplying 9, = waDR + “’iﬂaﬁ by y and then using y/r = sin(B), x/r =
cos(B).

Lemma A.10. Suppose that (0, y) = 0 for any y. Denote

|
1(F)x y) = /0 S (A28)
We have
DRI(f)(x,y) = [(Dsf)(x,y), (A.29)
DgI(f)(x,y) — [(D: f)(x,y) = —2asin®(B) - [(Ds f) +2al (sin*(z) Ds f),
(A.30)

where R, B3, S, T are defined in (A.19), provided that f is sufficiently smooth.
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Proof. Notice that yd, commutes with the z integral. From (A.27), it suffices to prove

X0 I (f)(x,y) = 1(z0.f).

A directly calculation yields
1
1)) =3[ F D) = f0x),
0

|
1(z0, f)(x,y) :./0 E-zazf(z,y)dz = f(x,y).

It follows (A.29). Using the fact that both yd, and Rdg commute with the z integral and
the formula of Dg (A.27) twice, we derive

DgI(f)(x.y) = (2ydy — 2asin”(B)DR)I(f) = I(2ydy f) — 2 sin®(B) (Ds f)
= I(D: f +2asin*(t) Ds f) — 2asin*(B)(Ds f) = 1(Dr f)
+2al (sin’(t)Ds f) — 20 sin?(B)I (Ds f).
(A.30) follows by rearranging the above identity. O
Next, we prove Lemma A.8.

Proof of Lemma A.8. Step 1. Recall Dg = Rdg, Dg = sin(2f8)dg. First, we show that

n(z, y)dz < =& (A31)

o X1
DL D%E|l < f—' 2
|DpDgé| S o A Zsm( T)1+s

forO <i+j <5.Using I'(B) = cos(B)%,(5.22) and a direct calculation yields

, R? R? . .
l < 1 < . i . < .
‘DR(I +R)4‘ ~ (1 +R)4? |DﬂF(:8)| ~ (XSIH(,B)F(IB), |Dﬂ Sln(2ﬁ)| =~ Sln(ZIB)
(A.32)
fori < 5. Denote
5.71) = X sin2 I AN s
f(8,7) = S5 sin@e) i = = - sinCON @ e (A33)

We remark that f = —zn,(z, y) according to (A.21). Obviously, f(S, r) > 0. Using
the above estimates, we get

IDXDIfI < f (A34)

fori + j < 5. Notice that (A.22) implies £ = —1(f) and that 7(-) (A.28) is a positive
linear operator for x > 0. We further derive

[1(DsDL D] < I(DSDLf) S 1(f) (A35)
fori + j < 5. Using (A.29) and the above estimates, we yield

|DRE| = DRI = [I(DL )] S T(f).
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For other derivatives D% Dé with j > 1,7+ j < 5, we estimate Déé, which is repre-
sentative. Using (A.30), we have

D3 =D31(f) = Dy (I(DT f) = 2asin2(B) - I(Ds f) +2al(Ds f sinz(t)))
=1(D? f) — 2asin®(B) - 1(DsDr (f)) + 2 (sin(7) Ds D f)
+ Dy <—2a sin2(B) - I(DSf)) +Dg (Zal(DSf sinz(r))> — i+ D+ T3+ Jy+ s,

For Ji, J2, J3, we simply use sin? (B), sin?(7) < 1 and (A.35) to obtain
I, Do, J3 STADRDLFD S T(f) (A.36)

for (i, j) = (0,2), (1, 1), (1, 1) respectively. For Jy, if Dg acts on sinz(,B), we obtain
aDg (sin? (B))-1(Ds f), which can be bounded as before using (A.35). For the remaining
parts in J4 and Js5, Dg acts on I (-) and we can use (A.30) again to obtain several terms.
Each term can be bounded using (A.35) and an argument similar to (A.36). The estimates

of other derivatives D%D/]g can be done similarly. We omit these estimates. Since the
right hand side of (A.31)is 21 (f) = —3& = —&, the above estimates imply (A.31).
Step 2. The estimate (A.31) can be generalized to i + j < 6 easily. Hence, we get
| D, D} (3€ — Rogé)| < |DRDRE| + DR DLE| S =&,

forany i + j <5, which proves (A.23).
Step 3: Pointwise estimate. In this step, we prove (A.24). From (A.22), we know that
the first inequality in (A.24) is equivalent to

/x y Z(x(y2+z2)a/2 . < (x2+y2)a/2 y(x e x1+ot
0 ¥ 22 (L4 02+ 2023~ (T4 (4 yD)e2) (1+ y9)3 Lyl )

2,2 2.2 t
For z € [0, x], we have z° + y= < x“ + y~. Since 1

we yield

is increasing with respect to ¢ > 0,

(y2 +Z2)a/2 (y2 +x2)a/2

L+ (2 +22)%2 ™ 1+ (y2 +x2)2/2’

Therefore, it suffices to prove

A X y Za - yoz x1+a
J(x, = d i 1, )
(x.7) /0 V2422 (1+ (2 + 22223 %~ (14 yo)3 mm( y““)
(A.37)

Case 1 : x <1+ y Observe that

_ 1 X yZ(x g yot ;{ 1 p
J = a3 2, 242 = a3 7at,
(I+y%) Jo y+z (I+y%)? Jo 1+1

where we have used change of a variable z = yr to derive the identity. Since « < 1/10,
we get

vt S vt 5 xle
/ 1+t2dt§f 1+t2dt§1, / 1+t2dt§/ t*dr < T
0 0 0 0 y




J. Chen, T. Y. Hou

Combining the above estimates, we prove (A.37) for x < 1+ y.
Case 2 : x > 1+ y Firstly, we have

1+y y 7
J(x,y) = d
() /0 VA2 (L 2+ ey ts

X y Z(x N
+ dz = J1+ ).
/1+y Y2422 (L+ (y2 +2H)%/2)?

We apply the result in Case 1 to estimate J;

o

Jleyyy <2 (1+y)”°‘)< N

)3 min 1’ l+a . a3’
(1+y%) y (1+y%)
For J,, we have

X o X t—2a 00
J </ LZ—a,’z = y_z‘”/} dt < y—2af 1720724y
- 1+yy2+22z30‘ Ly 1442 ™ Lty
5

y

—1-2 _
<y (1Y Ty oy
~ y I+ A+y)B3eA+y)l-o ™~ 1 +y)3

where we have used change of a variable z = yr to derive the first identity. Noting that
x >y in this case. We conclude

yot yot x1+a
Jx,y ) =1+ < < min|( 1, — |} .
(1+ ya)3 (1+ ya)3 y1+oz

Combining the above two cases, we prove (A.37), which implies the first inequality in
(A.24).
Finally, we prove the second inequality in (A.24). Using the notation (A.19), we have

2, 2\a/2 R
2, 2\a)? (x +y9) B ¢ b
R—(X +)7) ’ 1+(x2+y2)0‘/2_1+R’ y _RSln (13)9

¥ Rsin®(B)

(1+y*)3 (14 Rsin%(B))3"

For x < y, we have B > /4, 1 <sin(8), x>+ y?> < y?. Hence,

yoz x1+o{ - ya x1+ot _ Rsin“(,B) . COSHa(ﬁ) - RCOS1+a(,3)
(1 + ya)3 yl+a ~ (1 + (xz + y2)a/2)3 y1+oc (1 + R)3 Sinlﬂx(ﬁ) ~ (1 + R)3

Combining the above identity and the estimate, we prove the second inequality in (A.24).
The last inequality in (A.24) follows directly from (A.23) and the first two inequalities
in (A.24).

Step 4: Estimates of the integral Now, we are in a position to prove (A.25) and (A.26).
We are going to prove

0[4

TR (A.38)

/2
fo E(R, Byyndp <

Clearly, (A.25) and (A.26) follow from the above estimate and (A.23).
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Notice that ¥; defined in (5.14) satisfies

1+ R)*
vivn £ o sing) 7 cos(py . (A39)

where y = 1+ f‘—o, o= %.90. Using (A.24), 1 + Rsin*(B) > (1 + R) sin“(B), we yield

/2 4R4 /4 : 20(([3)
) 2 7 @ sSin
(1+R) /0 EPvdp < (4 R s {/0 TR s Ve
/2 COSZa+2
+/n/4 a+ Ry }

o*R* (1+R)*
~ (1+RY R*

/4
{ / sin(B)™* sin(B) ™ cos(B) Y
0

/2
+ / cos(B)*H* sin(B) ~° cos(ﬂ)_ydﬁ}
/4

/4 /2
<ot ( / sin(B) " *dB + / cos(ﬁ)2+2“_”dﬁ> <ot
0

/4

where we have used o < 101W’ da+o < %, 2+4+2a —y > 1, toderive the last inequality
which does not depend on « for o < ﬁ. It follows (A.38). O

A.6. Other Lemmas. We use the following Lemma to construct small perturbation.

Lemma A.11. Let x (+) : [0, 00) — [0, 1] be a smooth cutoff function, such that x (R) =
1 for R < 1and x(R) =0 for R > 2. Denote

(R = X (R/N), o= 6.2, M=8:000), & =208000). (A40)
where 0 is obtained in (A.20). We have
AETOO 1€ — Q3 + 1A+ R — Dlggs + 115 — Ellr
=0, limjic0lld —&ller < Kioa®, (A41)
where K19 > 0 is some absolute constant. In particular, we also have

im L3,(Q25 — 2)(0) + (25 — )%, @o) + (1 — D, ¥o) =0.  (A.42)

We need a Lemma similar to Lemma A.10.

Lemma A.12. Supposethat (0, y) = Oforanyy. Denote J(f)(x, y) = % f(f f(z, y)dz.
We have

DrJ(f)(x,y) = J(Dsf)(x,y),
DgJ(f)(x,y) = J(D: f)(x,y) = =2asin*(B) - J(Dg f) + 2aJ (sin*(v) Ds f),
where R, B, S, T are defined in (A.19), provided that f is sufficiently smooth.

The first identity follows from a direct calculation and the proof of the second is similar
to that in Lemma A.10. We omit the proof.
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Proof of Lemma A.11. Step 1: Estimate of 6. Using (A.20) and the operator J in
Lemma A.12, we get g = J(i7). We have the following estimate for

. .0 S B 1 [* B
DD} = DDy S S =+ [ iGondzSh a4y

for 0 < i+ j < 5. The proof of the first inequality follows from Lemma A.12 and the
argument in the proof of (A.31). The proof of the second inequality is similar to that of
(A.37) by considering x < 1 +y and x > 1+ y. We omit the proof. B

Step 2: Estimate of 1, — 1, &, — &. Recall n, = 9,(x10), &x = 9y(x»10) and the
formula of 9y, 9y (2.9). A direct calculation yields

cos(B)
p

sin(B)

Drx -0+ (x. — Dij = acos*(B) Drxs - J () + (x5 — D1,

m(R, p) —n=«a

Dgyy -0+ (5. — DE = asin(B) cos(B)Drys. - J (i) + (x5 — DE,
(A.44)

é)»(RnB)_é =o

where we have used 8,60 = 7, 8y9_ =&, (rcos(B))”10 = %8_ = J(n). From (A.40), we
have

Dgx. =0, |Dgxsl = (R/MIx (R/MI S 1.
Similarly, we have
Dl S 1, (A.45)

for k = 1, 2, 3, 4. Notice that dg x5, (x5, — 1) = 0 for R < A. From the formula of 5
and (A.26) in Lemma A.8, we know (x; — 1)(1 + R)7j € H?> (77 decays R~ for large R)
and & € H3(1p). Using the estimates of J (1) in (A.43), we also have (x1 — 1)J(n) €
HCH? (). Therefore, applying (A.44), (A.45) to x; and the Dominated Convergence
Theorem yields

Tim [[(1+ R = Dl = 0. lim (15— &llpgs(y) = 0.
Similarly, we have
lim (1€, = QI = 0.
Using (A.43), (A.45) and the fact that n decays for large R (see (4.8)), we have
Tim; . 0| | sin(B) cos(B) Dr x5 - J ()lle1 = 0.
Using (A.23)—(A.24) in Lemma A.8 and (A.45), we conclude

G — DEle2 S o

We complete the proof of (A.41).

Recall that the 7> norm is stronger than L2(¢1). Using Lemma A.4 for L12(2)(0),
the fact that g < @1, Yo < (14 R)¢y (see Definition 5.2, 5.7) and the limit obtained in
(A.41), we prove (A.42). O
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Let C#0 be the standard Holder space. Recall the C! norm defined in (6.5). We have
the following embedding.

Lemma A.13. Suppose that f € C'(R, B) and f(R,w/2) =0 for R > 0. We have
1l g =< Callfllc

for some constant C,, depending on a only.

Proof. Recall the relation between the Cartesian coordinates (x, y) and the polar coor-

dinates (r, B8), (R, B). Since f vanishes on the axis 8 = % It suffices to prove that
f is Holder in ]R%r + Let (R, B1), (R2, B2) be arbitrary two different points in R2

++°

ie. Ri,Ry = 0,B1. 2 € [0,7/2], and rj = R’ r, = R)*. Without loss of

generality, we assume R; < Ro, B1 < pB2 and [|f||c1 = 1. From (6.5), we have
|1 < 1L, 10rf] < 137> 10pf1 < RY*sin(28)*/497!. Using

sin2B)*/ 071 < (sin(B) 7+ cos()* 07 < (BT + (/2 — pTT

and the estimates of the derivatives, we obtain

B2 i B2 o T a«_
F R, BD) = f(R1, B2 sfﬁ 05f (R1, B)IdB < CR; /ﬂ (657 + G —pB")ap
1l a o T o T o
< CaRPP (B0 — B + (5 = B0 — (5 — )

L «
< CoR B2 — 1],

Ry R 1
| f(R1, B2) — f(R2, Bo)l S/ |3Rf(R,,32)|dRS/ ——dR
R, R, 1+R
1+R
—log — 2 < (Ry — RV,

1+ R

where we have used log ﬂﬁf <log(l+ Ry — Ry) and log(1 + x) < x40 for x > 0in

the last inequality. The distance d between two points is

d? = (r1 cos(B1) — rp cos(B2))? + (r1 sin(B1) — ry sin(By))?
= (r1 —r2)? +2r1r2(1 — cos(B1 — B2))

1
= |R)/* — R +4R]/* R} sin(5 (81 = P)” = CalIR) = Ry + R18) — o),

where we have used Ry < R in the last inequality. Using the triangle inequality and
the above estimates, we conclude | f (R1, B1) — f(R2, B2)| < Cyd®™. 0O

A.7. Proof of Lemma 9.1.

Proof of Lemma 9.1. We simplify »? as w and denote by # = arctan(x,/x1) the angular
variable. Recall the cylinder Dy = {(r,z) : r € [0, 1], |z| < 1}. We extend w1, ;)ep,
to R3 as follows :

we(r,7) = w(r,z)for (r,z) € D1, we(r,z) =0for(r,z) ¢ D;. (A.46)
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Note that w, is only supported in D1, which is different from w. Denote

1 1 1
a)j:=maX(:|:we,0), £=_3rr_;ar_azz+r_2, A=arr+;ar+8zz+r_28ﬁ1},
1 oo o0 21 in(® ,
Vil D) = / / / sin(¥)w+(r1, 21) ridridzydo.
4t Jo  J-ooJo 2,92, .2 . 172
((z —z)"+ro+ry — 2s1n(z9)rr1)

(A.47)

where A is the Laplace operator in R? in cylindrical coordinates. Clearly, 1+ solve the
Poisson equation in R3: —AGIin() ¥4 (r, 2)) = w+(r, z) sin(¥), which can be verified
easily using the Green function of —A. Since w4+ > 0, using the above formula and

sin(?) _ sin(¥) > 0 for © € [0, ], we get
((z—z])2+r2+r12—2sin(ﬂ)rrl)l/z ((z—zl)2+r2+r12+2sin(ﬂ)rrl)l/2 B 0.7l :

Y+ = 0.
Let ¢ be a solution of (9.3)—(9.4). By definition of £, we have

— A sin(®)) = sin(3) LY = wsin(D).

Consider the domain D{ = {(r,z,9) : r € [0, 1], |z| < 1,9 € [0, 7]}, which is a half
of the cylinder D;. Next, we compare 1} sin(¢) and v, sin(¢%) in D} using the maximal
principle for the Laplace operator A.

Recall from (A.46) that w, = win D7 C Dy.For (r, z, ¥) € D7, wehavesin(¢) > 0
and

— A((Y — ¥y) sin(®)) = (0 — wy) sin(d) < 0. (A.48)

On the boundary of 3 DY, we have ¢ € {0, 7}, r = 1 or z € {—1, 1}. The boundary
related to ¥ € {0, 7} is {(r,z,0) : r € [0,1],|z] < 1,9 = 0, m}, or equivalently
{(x,y,2) : |x] <1,y =0, |z|] < 1}inthe Cartesian coordinates. It contains the symme-
try axis r = 0. Recall that v/ is odd and 2-periodic in z. We obtain (9.5) ¥ (r, &1) = 0.
Recall the boundary condition (9.4) 1}(1, z) = 0 and the fact that ¥* is nonnegative.
We have

(U —yy)sin(®) =0 for © €{0, 7}, (U —vy)sin@®) <0 for r=1orze{—1,1},

where we have used sin(?%) > 0 in D]. Applying the maximal principle to (A.48) in
the bouniled domain Dy, we yield (Y (r,2) — ¥4 (r, 2)) sin(®) <0 i{l D7¥, which further
implies ¥ (r, z) < Y4(r, z) forr <1, |z| < 1. Similarly, we have v + v > 0. Hence

Wl <y +y_.
Recall from (A.46),(A.47) that supp(w+) C supp(w) N D; and the assumption
supp(w) N D1 C {(r,z) : (r — D2 +72 < 1/4} in Lemma 9.1. Thus, for r > zlt’

(r1, z1) in the support of w4 and || < m, we have r; > % and

2

(z—2z1)? +r2 +r] —2cos()rr

= (2 =22+ (r =) +4sin*(@/2rr < (2 — 20 + (r —r)?) 2+ [9])°
We have similar estimate with cos(?) replaced by sin(#}). Using this estimate and inte-

grating the ¥ variable in the integral about /1 in (A.47), we complete the proof. O

Remark A.14. The above proof can also be established in the Cartesian coordinates,
which is essentially the same up to change of variables.
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A.8. A toy model for 2D Boussinesq. We consider the toy model introduced in [11]
— (1A (1), —x2A (1)) - Vo = 910,

_ (X1)\(f), —)CZ)\()/‘)) . VO = 0’ )L(t) — / yiy2

P —roy,ndy,

where 910 = 0x,60. This model can be derived from the 2D Boussinesq equations by
approximating the velocity (u, v) by uy, (0, 0, ¢) - (x1, —x2) and rescale the solution by
a constant. We assume that w is odd in x; and x;, and 6 is even in x; and odd in x;. We
show that for initial data wg, V€y € CZ (IR), the solution exists globally. We follow the
argument in [11]. Without loss of generality, we assume supp(d;16p) C [—1, 112 Using
the derivation in [11], we get

051,72 1) = (1B (O31, ) f w(s)ds, () 2 exp( / A(s)ds),

_ ! N ¥y
— =4 p)dsJ@®), J({)= 7 (0100) ((r)y1, =2 )dy dys.
0 o Jo [l M(l‘)
(A.49)

Next, we estimate J (7). Denote 6 (x1, x2) = 0p(x1, x2) — 0p(0, x2). Clearly, we have
0160 = 0160. We simplify w(r) as p. Since (316p)(uy1, y—z) = /L_lal(@o(,uyl, y—z)),
supp(916p) = supp(d16p) C [—1, 1]%, using integration by parts and 9 y|1|y42 =

2 2
-3 .
%, we yield

J = _1/ / y|1|y42 O(M(I)yl,—)>dy1dy2
1

u(t)

S oy o wm

=u / —90(1,—)dyz
0 (/Fz+y2)2

_ 295 =3y -
— 1/ / 2| 5 6o (uyl,—)dyldyz—J1+Jz

Since y € C¥, 6y(0, x2) = 0 and Gy(x1, 0) = 0, we have |Gp(x1, x2)| < |x1|*|x2].
It follows

00 -1 00 2
|1l SM_I/ &yzdy _2/ X __dr<u?
0 (u2+yp? u 0 (1+z2)?

-1 2 2 —1
o (* (3 = 3)7) o (* - -
12l S 2/0 (um)“/o |2 Tylﬁ L |dyady1 5 u 2/0 (uyD)*yy 'y S w2

Plugging the above estimates in (A.49), we obtain

[ - t
2| < n 2/ 1(s)ds.
% 0

Thus, © remains bounded for all time. Formula (A.49) implies that the solution exists
globally.
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