2020 IEEE International Conference on Big Data (Big Data) | 978-1-7281-6251-5/20/$31.00 ©2020 IEEE | DOI: 10.1109/BigData50022.2020.9378179

2020 IEEE International Conference on Big Data (Big Data)

A Shared Memory Cache Layer across Multiple
Executors in Apache Spark

Wei Rang
Department of Computer Science
UNC at Charlotte
Charlotte, USA
wrang @uncc.edu

Abstract—Memory caches are being widely adopted in today’s
data-intensive computing frameworks to maximize the benefit
of in-memory access. Various memory architectures, designs
and management algorithms have been well explored so that
application performance can witness speedup by orders of mag-
nitude. For example, Apache Spark provides intermediate data
consistency in memory between computation tasks, eliminating
a significant amount of disk I/Os and dramatically reducing
data processing times. However, the memory space of individual
executors is isolated so far in vanilla Spark and apparently
inefficient given the fact that these memory demands of different
executors vary a lot over tasks, jobs and applications. In this
work, we propose a new shared in-Memory cache layer, i.e.,
iMlayer, among these parallel executors, which are co-hosted on
the same slave machine in Apache Spark. It aims to improve
the overall hit rate of data blocks by caching and evicting
these blocks uniformly across multiple executors. The critical
insight of iMlayer is to develop a novel eviction strategy to
efficiently manage the shared cache space among executors to
maximize the cache hit rate as well as application performance.
We evaluate iMlayer based on the three representative workloads
from HiBench. Our results demonstrate that iMlayer with the
new eviction strategy improves the cache hit rate by 45%, 16%
and 27 %, effectively reducing the overall job runtime 47 %, 43%
and 38% compared to vanilla Spark, respectively.

Index Terms—Memory Ultilization, Cache Layer, Eviction Pol-
icy, Re-reference Distance, Multiple Executors, Apache Spark

I. INTRODUCTION

Memory plays a pivotal role in many popular distributed
in-memory computing frameworks, such as Spark [1]. In
such systems, frequent I/O operations can be significantly
reduced so that application performance would be sped up by
orders of magnitude via caching input and intermediate data
into a specific memory space. To guarantee proper memory
utilization, a well-designed management strategy is essential
for these in-memory computing frameworks, especially with
increasing memory resources in cluster nodes. Accordingly,
many memory allocation strategies [2] have been adopted
in data-parallel frameworks. For example, a huge amount of
memory is preferred for a single executor on Apache Spark
cluster in order to cache more intermediate data. In-memory
computation is a significant feature of Spark platform so that
computation efficiency could be further improved by avoiding
frequent I/O operations between memory space and local disk.
However, a large memory space assignment always increases

978-1-7281-6251-5/20/$31.00 ©2020 IEEE 4717

Donglin Yang
Department of Computer Science
UNC at Charlotte
Charlotte, USA
dyang33 @uncc.edu

Dazhao Cheng
Department of Computer Science
UNC at Charlotte
Charlotte, USA
dazhao.cheng@uncc.edu

Garbage Collections (GC) overhead for the JVM based in-
memory computing framework, i.e., Spark [3]. Given the
fact that the execution process has to be paused when it is
suffering from GC operations, setting a large memory space
for individual executors is not always beneficial and should
be avoided. It indicates a larger memory may not always
guarantee a better performance due to frequent GC operations.

Another alternative solution is increasing the parallelism
of task execution in such systems. It may deploy multiple
executors on the same machine so that each of them will be
allocated with a relatively smaller memory space. Although
smaller memory may not cache as much data as larger ones
do, this method can effectively decrease GC times, which has
been widely applied in many systems [4] [5]. Such deployment
of multiple executors also makes parallel granularity higher
than the case of a single executor, which indeed accelerates
the processing speed. However, the challenge is to design a
fine-grained allocation policy as each executor’s input data
sets are not identical.. Furthermore, the memory demand in
different computing stages of a process varies a lot over
time. These two factors result in memory utilization imbalance
among executors (i.e., tasks). Thus, we aim to fill in this gap
by caching and managing intermediate data across multiple
executors to improve and balance memory utilization.

In this work, we propose a new shared in-Memory cache
layer, i.e., iMlayer, among these parallel executors which are
co-hosted on the same slave machine in Apache Spark. The
critical insight of iMlayer is to develop a novel eviction strat-
egy, Next Re-reference Distance (NRD), to efficiently manage
the shared cache space, i.e., iMCache, across executors to max-
imize overall cache hit rate as well as application performance.
Specifically, this paper makes the following contribution:

o« We empirically study the time-varying and imbalanced
memory utilization when slave machines in Apache Spark
are hosting multiple executors. We further investigate
the performance impacts by applying different caching
management policies.

o We design a shared memory cache space (i.e., iMCache),
which is deployed between on-heap memory and local
disk, to cache and manage intermediate data across mul-
tiple executors so that I/O operations can be decreased.
Specifically, we propose a novel cache eviction policy

Authorized licensed use limited to: Wuhan University. Downloaded on August 12,2021 at 08:52:54 UTC from IEEE Xplore. Restrictions apply.

Executor 1 ——
Executor 2 --—-—-—

40 50 60 70 80
Elapsed Time (Second)

90 100

(a) Kmeans

20
Elapsed Time (Second)

(b) SVD

Executor 1 —— QE, 500 Executor 1 ——
Executor 2 ------ = 0 Executor 2 -----
30 40 50 60 40 50 60 70 80 90 100

Elapsed Time (Second)
(c) PageRank

Fig. 1. Imbalanced real-time memory utilization between two executors running the same workloads.

named Next Re-reference Distance (NRD) to achieve
effective cache eviction management in iMCache layer.

o We evaluate iMlayer based on the three representative
workloads from HiBench [6]. Our results demonstrate
that iMlayer with NRD eviction strategy improves the
cache hit rate by 45%, 16% and 27%, effectively reducing
the overall job runtime 47%, 43% and 38% compared to
vanilla Spark, respectively.

The rest of this paper is organized as follows. Section II
gives background and motivations. Section III describes the
detailed system design and embedded eviction policy. Sec-
tion IV presents experimental results. Section V reviews
related work. Section VI concludes the paper.

II. MOTIVATION

To quantify memory utilization with multiple executors
under various heap sizes and their respective impacts on
performance, we conducted an empirical study with workloads
from HiBench [6], a comprehensive benchmark suite. Spark-
on-YARN mode is applied to flexibly configure executor
numbers, CPU cores and memory sizes when running different
workloads. We use Spark version 2.2 and Hadoop version
2.8.0 in the experiments. The default Least Recent Used (LRU)
eviction policy is adapted for cache management.

1) Imbalanced Memory Utilization: Figure 1 depicts the
memory usage traces of Kmeans, SV D and PankRage
under Case #2 in Table I, especially imbalanced memory
utilization reflected by gaps between trace lines. Figure 1(a)
shows the memory usages of two executors for Kmeans
fluctuate over time and dynamically exist gaps between them.
In the case of SV D, the memory demand increases very fast
right after the workload starts running and then stays in a
relatively stable memory usage status. The reason is SV D’s
CPU-bound property requires less amount of memory storing
data but more CPU resources. Moreover, we find there are
consistent gaps between the two executors after 20, seconds.
The above observations demonstrate that (1) memory demands
are dynamic over time; (2) memory usages between the two
executors are imbalanced (shown as gaps between two lines).
In particular, Figurel(c) shows PankRage has a couple of
peaks and valleys due to the suffering of GCs. These collapses
between different executors result in low utilization and are
detrimental to workload performance.

TABLE I
RESOURCE CONFIGURATIONS

Case | #Executor | #Core | Memory Total Resource
#1 1 8 8 GB 8 Cores & 8 GB
#2 2 4 4 GB 8 Cores & 8 GB
#3 4 2 2 GB 8 Cores & 8 GB
#4 8 1 1 GB 8 Cores & 8 GB

250 300

Y200 _.250

] < 200

g

= S 100

S so % 50

© o

Kmeans SVD PageRank
Case #1 mmm Case #3 E=9
Case #2 === Case #4

(b) Job runtime

64 128 256 512 1024
Off-heap Memory Sizes (MB)
(a) Runtime with Sizes

Fig. 2. Figure (a) shows the runtime impact with different shared off-heap
memory sizes. Figure (b) shows impact of parallelism in terms of job runtime.

Figure 2(a) depicts the job runtime achieved under different
shared off-heap memory size configurations with two execu-
tors deployment model. It is obvious that the runtime decreases
with the growth of the off-heap memory at the beginning stage,
and the best performance comes with 256MB configuration.
However, the performance dropped when the memory size is
over 256MB, the reason behind this phenomenon laid on the
fact that larger memory comes with more GC activities [3]
leading to a longer runtime. This observation demonstrates
a reasonable amount of shared memory can benefit the ap-
plication performance while oversharing memory may incur
performance degradation.

2) Impact of Parallelism: In our experiment, 8§ CPU cores
and 8GB memory were configured as the total available
resource on each slave node to simulate a mainstream config-
uration. As shown in Table I, we set up 4 resource allocation
cases. Figure 2(b) shows the runtimes of workloads (K'means,
SV D and PageRank) under different resource allocation
cases, i.e., with different execution parallelism. The results
demonstrate the number of executors indeed has a significant
influence on application performance. On one hand, allocating
all resource to only one executor cannot guarantee the best
performance compared to the model of running multiple
executors. On the other hand, too many executors also may
hurt the overall job runtime. Figure 2(b) also shows the
best performance is achieved in Case #3, #2 and #3 for

478

Authorized licensed use limited to: Wuhan University. Downloaded on August 12,2021 at 08:52:54 UTC from IEEE Xplore. Restrictions apply.

Kmeans, SV D and PageRank, respectively. It demonstrates
that running multiple executors on a single slave node is
necessary and beneficial, especially when the memory size
of individual machines keeps growing recently.

III. SYSTEM DESIGN

A. Architecture Overview

Master Worker 1
Driver Executor 1
v m
Iy Block iMonitor <—
5 2 Manager .
-4
=1
z é‘- § On-heap Memory
o & = -
s = s
=| |Z 5 2
=] 2 & g
AR Executor 2 i} =
z W@ ,‘ = 0
N »n = Block . =
E 212 8 M. iMonitor «—
&g g g anager .)
o | |4
EIRE 2] On-heap Memory
ARERI IR
CANEAIRIES-
= e =
Fi
= .
:
H

Worker N

Executor 1

Executor 2 ‘

Fig. 3. System architecture of iMlayer.

Unlike the default memory management strategy in Apache
Spark, iMlayer allows multiple executors on a single node to
share specific off-heap memory space with each other. It aims
to improve the hit rate of intermediate data blocks by caching
and evicting data uniformly across multiple executors on the
same hosting machine. Figure 3 shows the overall architecture
of iMlayer.

o iMCache is a cache memory space donated from in-
dividual executors and replaces the isolated off-heap
memory region exclusive to each executor in vanilla
Spark architecture. It is responsible for recording every
data block’s reference information, i.e., Next Re-reference
Distance (NRD), which denotes blocks’ re-referring pos-
sibilities in the future.

o iManager is responsible for managing the data blocks
cached in iMCache with a unified caching and evicting
operation. By leveraging global data referring informa-
tion, it evicts less possibly used data and makes more
free space for the coming blocks in order to guarantee a
higher overall hit rate.

e tMonitor is running on each executor and responsible
for maintaining the block information belongs to the
individual executor, e.g., owner’s executorID, storage
location and reference statistics. It periodically reports
the data block’s location in iMCache to the original
BlockManager.

B. Memory Sharing Policy in iMCache

Figure 4 depicts that iMlayer integrates these isolated ex-
ecutors via sharing the off-heap memory spaces from multiple

479

Executor

L
[ovres] oreas
[
y isoli!xted V
#2 On-heap ﬁ./Off—heap
)
RN 7
NN

Fig. 4. Memory sharing among multiple executors.

Memory

Eviction Policies:

SN

1. I-LRU (Default)
2. S-LRU (Naive)
3. Any better?

?;&L

L=

executors. By default, each Spark executor is allocated with
exclusive on-heap and off-heap memory space, respectively.
LRU policy is applied to manage the data eviction in isolation.
When multiple executors (e.g., Executor #1 and #2 in Figure 4)
are deployed on a single node, the computational behaviors
of different executors may not be identical so that the data
access demand can vary a lot over time. For example, the
left two graphs show data reference tendency, where x-axis
represents the timeline and y-axis depicts dynamic data block
access rates. In this case, such isolated memory management
of individual executors could not always provide a good
performance due to its management strategy.

To tackle this problem, we separate the original on-heap and
off-heap memory space, and then combine off-heap memory
segments from different executors together as a unified cache
space (i.e., iMCache as shown in Figure 4), so that executors
can share iMCache with each other. Then iMCache has to
employ an efficient cache management policy to guarantee
memory usage flexibility with multiple executors.

C. Memory Allocation of iMCache

We adopt a fuzzy model with multiple inputs and single
output (MISO) to predict the off-heap memory size of each
executor should denote. It is based on the relationship in-
vestigation of task completion time, total memory allocation
and number of executors. The fuzzy model is often used to
capture the complex relationship between resource allocation
and a job’s fine-grained execution progress. Given the periodic
and repeatable feature of workloads, we design an off-line
fuzzy model based on workloads’ historical running logs. We
formulate a fuzzy model as:

yi(t) = Ri(r(t% €m, S(t)’ f(t))

This formula describes the relationship between input variables
and output variable. The input variables are as following: 7 (t)
is the total memory allocation, e,, represents the number of
executors deployed on a single node, the memory size of each
executor should denote is expressed as s(t) and the regression
vector is £(t). The output y;(¢) is the average task completion
time for each job. As many Spark applications have predictable
structure in terms of computation and communication, iMlayer
predicts the s(t) for a specific job based on monitoring the
similar job’s previous runs [7].

To obtain the above model, some necessary parameters,
ie., y(t),r(t),em,s(t) are first parsed from the workload’s

Authorized licensed use limited to: Wuhan University. Downloaded on August 12,2021 at 08:52:54 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Cache Donation
Input: app_type, app_log
Output: ;M Cache: memory size in terms of s(t)
1: // Building Fuzzy Model
2: function CALOPTMEM (app_type, app_log)
3: /I Abstract parameters y(t),r(t), e, s(t)
mem_para = parse(app_log)
//Build Fuzzy model
R; = bldfuzzy(mem_para)
/1 Get s(t) of each executor running specific workload
based on relation model R
s(t) = getSharedMem(app_type, R)
9: set iM Cache according to s(t)
10: set cache_mem = allocMem(s(t))
11: end function

4
S:
6
7

®

historical logs. A pattern model is built (as shown in Line 3-
6 in Algorithm 1) to describe the relationship among those
parameters following the proposed fuzzy model. In particular,
different workloads may follow various patterns so that we use
R to maintain all possible relation models. When a workload
is deployed, our architecture decides the memory size that
each executor should denote based on its type and performance
model. After getting the parameter s(¢) for each executor, the
size of iMCache is determined, which is shown by Line 4-10
in Algorithm 1.

D. Eviction Policy in iManager

Given the fact that the memory reference behaviors of Spark
applications vary dramatically by different stages, jobs and
applications, the naive cache eviction policy (i.e., LRU) may
not guarantee a good and stable performance. As the shared
cache memory space is typically much larger than the default
exclusive memory of each executor, we propose a new eviction
policy based on the next re-reference distance, which concept
is adopted in [8] [9].

1) Next Re-reference Distance (NRD): We first introduce
a metric, i.e., Next Re-reference Distance (NRD), to predict
the possibility of a cache data block to be referenced again.
Moreover, M-bit per cache block is used to denote one of
its 2 possible Next Re-reference Distance. NRD of each
data block cached in iMCache dynamically gets updated once
a block reference operation is requested. An NRD of zero
implies that a cache block is predicted to be re-referenced in
the near future while NRD of saturation (i.e., 2-1) means
that a cache block is supposed to be re-referenced in a
longer future. Quantitatively, data blocks with small NRDs are
supposed to be re-referenced sooner than blocks with larger
NRDs.

The key role of NRD is to prevent blocks with longer re-
reference distance from occupying the limited cache space
for too long time. Without any historical or external block
reference information, NRD of each block is calculated by
statical prediction. Since always assigning a 0 or 2" NRD
to newly inserted data block could not guarantee robustness

480

across all block reference sequences. If the newly inserted data
block is assigned with a O NRD, its re-reference distance will
be updated so frequently that NRD fails to describe the real re-
reference sequence. Oppositely, set newly data block’s NRD to
be 2" causing longer cache occupation. So we assign the NRD
of newly inserted data block to be 2™-1, which value could
guarantee the freshness of data blocks in cache. Additionally,
always assigning 2-1 instead if 2" brings more time to learn
and improve the re-reference distance prediction.

RDD Meta-data Data
Block 0 % |
—
Block 1 M=2 Block N
.
: 0 O+*0
_ 1| Next
0 1
Block N 1 o 2 Re-reference
BlockN+1 1 14 3 Distance

Fig. 5. NRD based data structure of an RDD block.

An eviction strategy in terms of NRD is implemented in
iMCache. Figure 5 depicts an example of the data structure of
an NRD based RDD. Each RDD contains several data blocks.
A data block is highlighted to illustrate its components. For
each data block shown in this example, it mainly has two parts:
Meta-data is used to describe attributes of data block while
Data contains the real contents of each block. In particular,
the shadowed section belongs to the meta-data part is a 2-bit
(M=2) marker. We use this section to denote four (22 = 4)
possible situations of NRD (0, 1, 2 and 3). As is mentioned
above, the NRD of each newly inserted data block is set to be
3, which is denoted as // in the marker section of Meta-data
part. Its metric gets decreased if this block is just re-referred.
When cache space is full, data blocks with large NRD (3 in
this example) is the victim to be evicted while blocks whose
NRD being 0 are highly kept in the cache space.

1V. EVALUATION

A. Experiment Setup

The evaluation testbed consists of 9 nodes, each of which
has Intel Xeon(R) CPU E5-2630v4@2.20GHz x 20 and 64GB
DDR4 RAM, running Ubuntu 16.04 LTS operating system
with kernel version 4.0, Scala 2.10.0, and Hadoop YARN 2.8.0
for cluster management. One node serves as the master, and all
the other 8 nodes serve as slaves. These nodes are connected
with Gigabit Ethernet. To test our prototype, we use three
workloads from the HiBench big data benchmarking suite [6].
We run each workload 5 times to get an average performance
so that accuracy could be guaranteed. We compare our method
with the following two representative approaches. (1) I-LRU
(Isolated Least Recently Used): the default management policy
adopted by Spark, and merely evicting blocks based on the last
time they are referenced. (2) S-LRU (Shared Least Recently
Used): we introduce the iMCache and use LRU in this shared

Authorized licensed use limited to: Wuhan University. Downloaded on August 12,2021 at 08:52:54 UTC from IEEE Xplore. Restrictions apply.

=

Hit Rate
© o oo
N D O ®
Hit Rate

=

Hit Rate
o o o o
N D O ®

o

o

5 10 15 20 25 30 35 40 0 5
Elapsed Time (seconds)

10 15

(a) Kmeans

Elapsed Time (seconds)

(b) SVD

o
© "

20 25 30 35 40

5 10 15 20 25 30 35
Elapsed Time (seconds)

(c) PageRank

40

Fig. 6. Hit rate traces under the three eviction policies with different workloads.

Spark/LRU B iMlayer/NRD B
iMlayer/LRU B

=N W
o o

Overhead (MB)

Kmeans SVD

PageRank
I-LRU B S-LIRUE NRD B

o

Kmeans SVD PageRank

(a) Hit rates. (b) Memory overhead.

Fig. 7. (a) shows hit rates among different eviction policies. (b) plots memory
overhead of vanilla Spark and iMlayer.

memory space. In contrast, our proposed eviction policy (i.e.,
NRD) that takes NRD into consideration when managing
cached blocks. Unless otherwise noted, all experiments were
conducted on resource allocation of Case #2: two executors are
deployed on the same worker node, each executor is allocated
with 4 CPU cores and 4GB exclusive memory.

B. Improvement on Block Hit Rate

Figure 6 depicts the hit rate variation tendency within a
typical period (0s-40s) at runtime. The results show that
hit rates from different architectures keep increasing at the
beginning stage due to more requested data blocks cached
in memory. However, the hit rate decreases occasionally in
later stages when the cache memory space is full and cache
miss occurs. In this case, the eviction policy should evict
several unnecessary blocks in order to load required ones,
which explain the rise of hit rate in each curve. Figure 6
further demonstrates that iMlayer outperforms vanilla Spark
by achieving higher hit rate and decreasing fluctuations in
workloads’ tendency. Similar to activities shown in average
hit rate(illustrated in Figure 6(a)), hit rate changes of Kmeans
and PageRank (plotted in Figure 6(a) and (c) respectively) are
more obvious than SVD’s changes (shown in Figure 6(b)).

Figure 7(a)) compares the average hit rates achieved by
different cases. iMlayer with NRD obtains average 45%, 16%
and 27% improvements respectively on these workloads com-
pared to the vanilla Spark with default LRU. The results also
demonstrate that iMlayer with LRU achieves 19%, 5% and 6%
enhancements compared to the vanilla Spark architecture. A
shared cache layer can effectively improve cached blocks hit
rate by managing blocks uniformly, as it takes all executors’
demands into consideration when evicting cached blocks.

481

Kmeans SVD PageRank Kmeans SVD PageRank
Spark/I-LRU ® Spark/NRD & 4GB ® 12GB = 20GB m 28GB m
iMlayer/S-LRU B iMlayer/NRD O 8GB B 16GB [J 24GB = 32GB ®

(b) iMCache Sizes.

Fig. 8. Performance impacts under different eviction policies and iMCache
sizes.

(a) Eviction Policies.

C. Improvement on Job Runtime

Figure 8(a) shows job runtimes of three chosen workloads
under various cases. In general, our work deployed with NRD
achieves the best performance by obtaining 47%, 43% and
38% improvements compared to vanilla Spark with LRU for
all above workloads. Particularly, vanilla Spark deployed with
NRD outperforms it adopts LRU (Spark/I-LRU) with about
43%, 32% and 33% improvements respectively. It demon-
strates that NRD eviction policy can dramatically improve the
job level performance by efficiently managing the data blocks
in limited memory space. When applying naive LRU policy in
iMCache, it (i.e., S-LRU) outperforms vanilla Spark with LRU
about 16%, 23% and 9% in job runtime. It further demon-
strates the memory sharing policy can effectively improve job
level performance by uniformly managing blocks.

Figure 8(b) investigates the performance impact of iMlayer
with various iMcache sizes. In this experiment, we setup
8 cases with various iMCache sizes range from 4GB to
32GB. Moreover, NRD is adopted for cache management.
In Figure 8(b), three workloads display similar performance
behaviors in terms of the cache size impact. When iMcache
size is small (e.g., 4GB, 8GB and 12GB), workloads’ runtime
is longer because small memory size could not cache enough
data blocks so that more frequent I/O operations occurred
between memory and local disk. In particular, note that these
job runtimes start to drop down if the shared memory sizes
are over-provisioned because too large memory size may lead
to more GC operations.

D. Overhead Analysis

To analyze the overhead of iMlayer, we conduct experiments
to measure the memory space consumptions in the eviction
policy process while applying different approaches, i.e., vanilla
Spark with LRU, iMlayer with LRU and iMlayer with NRD,

Authorized licensed use limited to: Wuhan University. Downloaded on August 12,2021 at 08:52:54 UTC from IEEE Xplore. Restrictions apply.

respectively. All these relevant processes are running on java
virtual machine. We assign 4GB memory resources to each
executor, which follows the practice experiences by existing
works [10]. Figure 7(b) demonstrates that the memory over-
heads caused by different eviction processes are far less than
typical executor’s memory sizes (i.e., 1GB to 24GB [10]). The
overheads of eviction processes deployed in iMlayer are a little
higher than vanilla Spark with LRU. The reason is that more
information about performance metrics has to be maintained
for the shared cache management and NRD needs an extra
memory space to record NRD of each data block. In particular,
the average memory overheads caused by iMlayer with LRU
and NRD are about 10% and 20% more than vanilla Spark
with LRU, respectively, which are negligible to the whole
system-level memory resource. Considering the performance
improvement achieved by iMlayer, such memory overhead is
an acceptable trade-off between space and time consumption.

V. RELATED WORKS

Memory management is a well-studied research topic while
the application’s performance has been widely improved by
various memory strategies [8] [9] [11]. Spark is a typical in-
memory computing platform, its performance can be improved
by increasing execution parallelism. However, this strategy
may introduce additional overheads by GC and I/O operations.
Thus, many works focus on optimizing the deployment model
of multiple executors/JVMs in Spark. Emerging JVM tech-
nologies such as heap ballooning [12] provides mechanisms
to release committed memory from the virtual heap space.
Tungsten [13] proposes a method to change memory manage-
ment of JVM from on-heap to off-heap space. However, it
is difficult to decide how much memory should be allocated
to each executor and which data blocks are supposed to be
evicted if any memory tension occurs. In contrast, iMlayer
aims to build the same-functional shared memory layer for
the local executors on the same slave machine, which offers a
convenient way to manage cached data without a centralized
server to save and synchronize data location information.

Moirai [14] focuses on cloud resource allocation with
performance isolation in terms of requests per time window
while Ginseng [15] is for memory pricing and auctioning
cloud platforms. These works only focus on pricing memory
resources for applications that have a specific shared cache
memory server running on VMs. In contrast, iMlayer enables
multiple executors to share a dedicated cache space and
ensures a higher hit rate via a novel cache eviction policy,
i.e., NRD. Moreover, our work focuses on managing the
local memory resource on each slave machine, which is more
scalable for most distributed systems.

VI. CONCLUSION

In this work, we propose a new shared in-memory cache
layer, i.e., iMlayer, among parallel executors co-hosted on
the same slave machine. It aims to improve the overall hit
rate of data blocks by uniformly caching and evicting blocks
across multiple executors. The key insight of iMlayer is a

482

novel eviction strategy to efficiently manage iMCache among
executors to maximize cache hit rate as well as application
performance. By leveraging global data referring information,
iMlayer evicts less possibly used data and makes more free
space for coming blocks. The experimental results demonstrate
that iMlayer with the new eviction strategy improves the cache
hit rate by 45%, 16% and 27%, and effectively reduces the
overall job runtime 47%, 43% and 38% compared to vanilla
Spark, respectively.

VII. ACKNOWLEDGMENT

This work was supported by the NSF grants CCF-1908843
and CNS-2008265.

REFERENCES

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets.” HotCloud, vol. 10, no.
10-10, p. 95, 2010.

Z. Liu and T. E. Ng, “Leaky buffer: A novel abstraction for relieving
memory pressure from cluster data processing frameworks,” [EEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 1, pp.
128-140, 2017.

T. Brecht, E. Arjomandi, C. Li, and H. Pham, “Controlling garbage
collection and heap growth to reduce the execution time of java
applications,” in ACM Sigplan Notices, vol. 36, no. 11. ACM, 2001.
H.-N. VieBmann, A. éinkarovs, and S.-B. Scholz, “Extended memory
reuse: An optimisation for reducing memory allocations,” in Proceedings
of the 30th Symposium on Implementation and Application of Functional
Languages, 2018, pp. 107-118.

L. Xu, M. Li, L. Zhang, A. R. Butt, Y. Wang, and Z. Z. Hu, “Memtune:
Dynamic memory management for in-memory data analytic platforms,”
in 2016 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS). 1EEE, 2016, pp. 383-392.

S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The hibench bench-
mark suite: Characterization of the mapreduce-based data analysis,” in
Data Engineering Workshops (ICDEW), 2010 IEEE 26th International
Conference on. 1EEE, 2010, pp. 41-51.

A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca,
“Jockey: guaranteed job latency in data parallel clusters,” in Proceedings
of the 7th ACM european conference on Computer Systems. ACM,
2012, pp. 99-112.

A. Barai, G. Chennupati, N. Santhi, A.-H. A. Badawy, and S. Eidenbenz,
“Modeling shared cache performance of openmp programs using reuse
distance,” arXiv preprint arXiv:1907.12666, 2019.

Y. Yuan, Y. Shen, W. Li, D. Yu, L. Yan, and Y. Wang, “Pr-Iru: A novel
buffer replacement algorithm based on the probability of reference for
flash memory,” IEEE Access, vol. 5, pp. 12626-12634, 2017.

D. S. Berger, R. K. Sitaraman, and M. Harchol-Balter, “Adaptsize:
Orchestrating the hot object memory cache in a content delivery net-
work,” in 14th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 17), 2017.

D. Yang, W. Rang, D. Cheng, Y. Wang, J. Tian, and D. Tao, “Elastic
executor provisioning for iterative workloads on apache spark,” in 2079
IEEE International Conference on Big Data (Big Data). 1EEE, 2019,
pp. 413-422.

N. Bobroff, P. Westerink, and L. Fong, “Active control of memory for
java virtual machines and applications.” in ICAC, 2014, pp. 97-103.
“Project tungsten: Bringing apache spark closer to
bare metal,” https://databricks.com/blog/2015/04/28/
project-tungsten-bringing- spark-closer-to-bare-metal.html.

I. Stefanovici, E. Thereska, G. O’Shea, B. Schroeder, H. Ballani,
T. Karagiannis, A. Rowstron, and T. Talpey, “Software-defined caching:
Managing caches in multi-tenant data centers,” in Proceedings of the
Sixth ACM Symposium on Cloud Computing. ACM, 2015.

0. Agmon Ben-Yehuda, E. Posener, M. Ben-Yehuda, A. Schuster, and
A. Mu’alem, “Ginseng: Market-driven memory allocation,” in ACM
SIGPLAN Notices, vol. 49, no. 7. ACM, 2014, pp. 41-52.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

Authorized licensed use limited to: Wuhan University. Downloaded on August 12,2021 at 08:52:54 UTC from IEEE Xplore. Restrictions apply.

