
BEER: Blocking for Effective Entity Resolution
Sainyam Galhotra

UMass Amherst
sainyam@cs.umass.edu

Donatella Firmani
Roma Tre University

donatella.firmani@uniroma3.it

Barna Saha
UC Berkeley

barnas@berkeley.edu

Divesh Srivastava
AT&T Chief Data Office

divesh@att.com

ABSTRACT
Blocking is a key component of Entity Resolution (ER) that aims
to improve efficiency by quickly pruning out non-matching record
pairs. However, depending on the noise in the dataset and the dis-
tribution of entity cluster sizes, existing techniques can be either
(a) too aggressive, such that they help scale but can adversely affect
the ER effectiveness, or (b) too permissive, potentially harming ER
efficiency. We propose a new methodology of progressive blocking
that enables both efficient and effective ER and works across dif-
ferent entity cluster size distributions without manual fine tuning.
In this paper, we demonstrate BEER (Blocking for Effective Entity
Resolution), the first end-to-end system that leverages intermedi-
ate ER output in a feedback loop to refine the blocking result in a
data-driven fashion, thereby enabling effective entity resolution.

BEER allows the user to explore the different components of
the ER pipeline, analyze the effectiveness of alternative blocking
techniques and understand the interaction between blocking and
ER. BEER supports visualization of the different entities present in a
block, explains the change in blocking output with every round of
feedback and allows the end-user to interactively compare different
techniques. BEER has been developed as open-source software; the
code and the demonstration video are available at beer-system.
github.io.
ACM Reference Format:
Sainyam Galhotra, Donatella Firmani, Barna Saha, and Divesh Srivastava.
2021. BEER: Blocking for Effective Entity Resolution. In Proceedings of the
2021 International Conference on Management of Data (SIGMOD ’21), June
18–27, 2021, Virtual Event, China. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3448016.3452747

1 INTRODUCTION
Data integration pipelines are useful for complex tasks like knowl-
edge graph construction and de-duplication. One of the core com-
ponents of data integration is Entity Resolution (ER), which aims
to identify clusters of records that refer to the same real-world
entity [5]. ER inherently has quadratic complexity since it requires
comparing all record pairs to identify matches. This is not scalable
for large datasets, a problem that is exacerbated by the increased
availability of data from a variety of heterogeneous big data sources.
For this reason, blocking is performed as a pre-processing step
to select a sub-quadratic number of record pairs which are then

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD ’21, June 18–27, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00
https://doi.org/10.1145/3448016.3452747

Table 1: Sample records where 𝑟𝑒
𝑖
represents the i-th record

referring to entity 𝑒. The different entities in the dataset
are Chevrolet Corvette C6 (𝑐6), Chevrolet Corvette Z6 (𝑧6),
ChevroletMalibu (𝑚𝑎) andCitröenC6 (𝑐𝑖) (samemodel name
as Corvette C6 but different car). The figure shows the size
distribution of different blocks in the dataset [8].

𝑟𝑐61 : ‘chevy corvette c6’
𝑟𝑐62 : ‘chevy corvette c6 navigation’
𝑟𝑐63 : ‘chevrolet corvette c6’
𝑟𝑧61 : ‘corvette z6 navigation’
𝑟𝑚𝑎
1 : ‘chevy malibu navigation’
𝑟𝑚𝑎
3 : ‘chevrolet malibu’
𝑟𝑐𝑖1 : ‘citroen c6 navigation’

chevrolet (1717 records)
corvette (272)

malibu (187)

c6 (251)

navigation (43)
corvette ∧ c6

z6 (25)

chevy (11)

Bl
oc
k
siz
e

Blocks

compared in subsequent steps. There are a plethora of blocking
techniques that aim to group similar records into a collection of
overlapping blocks so that it suffices to compare record pairs that
belong to the same block [20]. However, depending on the distribu-
tion of entity cluster sizes in the input data set, different techniques
either prune out too many matching pairs leading to poor effec-
tiveness, or include too many non-matching pairs leading to low
efficiency. Selecting and fine-tuning blocking is an iterative process
where the blocking quality can only be evaluated on completion of
ER. We demonstrate these limitations with an example below.

Example 1.1. Consider the records in Table 1 from a cars dataset
corresponding to car models and their textual descriptions. A stan-
dard blocking strategy generally consists of three sub-tasks [20].
First, during block building it creates a separate block for each text
token 𝑡 such that all records containing 𝑡 are assigned to that block.
Second, block cleaning uses a threshold to prune out all blocks
of large size. Using a low size threshold (say < 100) prunes out
all blocks that contain 𝑟𝑐63 and 𝑟𝑐61), missing matching pairs like
(𝑟𝑐63 , 𝑟𝑐61) while using a high size threshold captures many non-
matching record pairs. Third, comparison cleaning techniques like
meta-blocking [17] also do not yield a small set of blocked candi-
dates that guarantees to capture all matching record pairs.

To cope with these shortcomings, we proposed a new method-
ology that performs blocking and ER in tandem in our previous
work [8]. Ourmethod starts with an aggressive blocking step, which
is efficient but not necessarily effective. Then it computes a limited
amount of ER results on a subset of pairs selected by the aggressive
blocking, and sends these partial (matching and non-matching)
results from the ER phase back to the blocking phase, creating a
“loop”, to improve blocking effectiveness. Blocking components use
this feedback to evaluate their quality and generate new blocks that
are expected to capture more matching record pairs. In this way,
blocking self-regulates progressively and adapts to the properties
of each dataset, with no manual configuration effort. In this paper,
we demonstrate BEER, the first end-to-end progressive ER system
that performs blocking and entity resolution in tandem. We now
demonstrate its effectiveness on the example presented in Table 1.

beer-system.github.io
beer-system.github.io
https://doi.org/10.1145/3448016.3452747
https://doi.org/10.1145/3448016.3452747
https://doi.org/10.1145/3448016.3452747

SIGMOD ’21, June 18–27, 2021, Virtual Event, China Sainyam Galhotra, Donatella Firmani, Barna Saha, and Divesh Srivastava

Entities

Feedback
Comparison CleaningBlock CleaningBlock Building Pair Matching Clustering

Records

BEER GUI

- Supports csv
files
- Allows SQL
queries on the
dataset

-Explore block
hierarchy and
its creation
criterion
- Shows changes
due to feedback

- Ranking of blocks
based on quality
- Highlights
progressive changes
due to feedback

- Visualizes Meta-
blocking graph [6]

-Visualizes matched
and unmatched
record pairs
- Allows custom
matching functions

- Uses [3] for
error correction
- Shows different
clusters of
entities
- Allows to
change feedback

- Summary of
entities
- Progressive
behavior of the
pipeline,
running time
and pipeline
statistics

Figure 1: System Architecture and key highlights of BEER’s graphical user interface.

Example 1.2. The feedback from the ER phase is used by BEER
to create a new block ‘corvette ∧ c6’ containing records present in
both blocks ‘corvette’ and ‘c6’. This block is much smaller than its
two constituents and has only Corvette C6 cars. Additionally, BEER
estimates block quality and discourages the pruning of the block
‘malibu’ as it contains the majority of the Chevrolet Malibu cars
and prunes out smaller blocks like ‘navigation’ that do not contain
any matching pair.

In this demo, the attendees will first-hand understand the impact
of blocking and ER on each other and observe the effectiveness of
BEER to resolve entities efficiently. The participants will be able to
customize different blocking techniques, pairwise matching func-
tions and the feedback set in each iteration.
Related work. Blocking techniques have been studied for many
decades. However, all prior techniques [1, 3, 10, 11, 13–15, 17,
17, 19, 20, 23] (including the advanced meta-blocking based tech-
niques [1, 3, 17, 19, 20, 23]) have considered blocking as a pre-
processing step and suffered from the effectiveness and efficiency
trade-off [20]. Recent studies have also shown that all these meth-
ods require careful fine-tuning of parameters to yield high perfor-
mance [20]. BEER presents the first progressive ER technique that
performs blocking and pairwise matching in tandem and demon-
strates superior performance as compared to prior techniques.
Among existing systems, Magellan [12] presents a framework to
define blocking and ER rules but does not consider the interaction
between them. JedAI [18, 21] and SystemER [22] explain different
pairwise matching algorithms but do not focus on using feedback
to improve the blocking components of the ER pipeline.

We now provide a solution sketch (Section 2) and a detailed
outline of our demonstration (Section 3).

2 SYSTEM OVERVIEW
Figure 1 presents the overall system architecture along with the
corresponding visualization of BEER’s graphical user interface. BEER
supports csv files containing textual description of the records. We
first describe the blocking component of BEER and then discuss the
pair matching and clustering algorithms.
Block Building takes the records as input and returns a collection
of blocks, by assigning each record to multiple blocks. One of the

most commonly used techniques, standard blocking [15, 20] creates
a separate block for each token 𝑡 in the records such that all records
that contain 𝑡 are assigned to it. In order to tolerate spelling errors,
q-gram blocking [10] considers character-level q-grams instead
of entire tokens. Sorted neighborhood [11] sorts all the records
according to multiple sort orders, for example, a sorting of tokens
for each attribute in the dataset. It then slides a window of tokens
over each ordering and creates a new block corresponding to all
tokens present in the window. This new block contains all records
that contain any of the tokens in the window.

All these strategies construct many large blocks that contain
a lot of non-matching record pairs. To ensure effectiveness, BEER
constructs an intersection block hierarchy comprising of multiple
levels of blocks. The first level of the hierarchy contains blocks
generated by one of the prior block building techniques. Blocks in
the 𝑖th level (𝑖 > 1) consist of the intersection of 𝑖 distinct blocks in
the first level. These blocks are referred to as refined blocks that are
subsets of the intersecting parent blocks. Note that not all refined
blocks may be useful and BEER tests a correlation condition between
parent blocks to decide if the refined block should be generated.

Example 2.1. Consider our cars example and the blocks corre-
sponding to tokens ‘corvette’ and ‘c6’, namely 𝐵corvette, and 𝐵c6. A
sample block in the second level of the hierarchy is 𝐵𝑐𝑜𝑟𝑣𝑒𝑡𝑡𝑒 ∩ 𝐵𝑐6.
This block contains the records having the two tokens ‘corvette’
and ‘c6’, thus obtaining a cleaner block than the original ones.

Intuitively, the intersection blocks are more refined and more
likely to contain matching record pairs than their parents. The
correlation criterion captures the co-occurrence of blocks in the
dataset to generate refined blocks. BEER employs efficient data
structures to generate these blocks in𝑂 (𝑛) running time [8] (where
𝑛 denotes the number of records in the dataset) as opposed to𝑂 (𝑛2)
running time for naive techniques.
Block cleaning takes the block collection as input and returns a
subset by pruning blocks that may contain too many non-matching
record pairs. Block cleaning is typically performed by assigning
each block a score and then pruning the ones with low score. Tra-
ditional strategies include TF-IDF [5, 16] based scoring which as-
signs scores inversely proportional to the block size, prioritizing
smaller blocks over larger ones. However, such scoring techniques
do not capture the block quality and are suited only for datasets

BEER: Blocking for Effective Entity Resolution SIGMOD ’21, June 18–27, 2021, Virtual Event, China

1

2
User can configure blocking
parameters like block cleaning
threshold, meta-blocking similarity
function, etc.

User can select which subsample to
consider for visualization using
SQL query or manually unselect
rows.

6

Figure 2: Input screen for BEER with dataset statistics, distribution of clusters and SQL query option.

that contain very few matching pairs. BEER’s block scoring method
distinguishes informative blocks based on their ability to capture
records from a single cluster.

Specifically, the scoring algorithm of BEER prioritizes blocks
having the following properties. (a) High fraction of matching pairs
estimated from the matching probability of record pairs within the
block; and (b) Fewer number of clusters (especially larger clusters)
measured as entropy of the cluster distribution within the block.
Lower entropy values indicate the representativeness towards a
particular cluster as opposed to higher entropy values which imply
the presence of many fragmented clusters. The block scores are
estimated from similarity of record pairs which converges to the
ground truth scores with feedback.
Comparison Cleaning takes the set of all intra-block record pairs
as input and identifies a subset as the final set of candidates us-
ing meta-blocking techniques [17]. It constructs a graph over the
records such that any pair of records that shares a block are con-
nected by an edge. Each edge is then assigned a weight (that cap-
tures the likelihood of being a match) using strategies like number
of common blocks or weighted jaccard similarity of the record pair.
All low weight edges are pruned and the remaining edges are con-
sidered as candidates for pair matching and clustering components
of the pipeline. In addition to the blocking graph, it outputs simi-
larity of every record pair that is used by the subsequent stages to
prioritize pairwise comparisons.
PairMatching andClustering takes the similarity of record pairs
as input and generates a prioritization for the matching algorithm.
BEER allows the user to select one of the recent progressive ER
techniques [6, 24, 25] which prioritize record pairs corresponding
to entities that contain a large number of records, thereby boosting
the progressiveness of the ER procedure. In the pre-loaded datasets,
BEER uses a random forest classifier trained using active learning
to label every pair as matching or non-matching. In the absence of
training data, BEER provides the functionality to use pre-defined
similarity based rules or manually input new matching rules in
first order logic. BEER employs the random graph toolkit [7] to

ensure robustness of the pipeline and convert the output of pairwise
comparisons into a set of clusters.
Feedback. As soon as the pair matching component of the pipeline
processes 1% of the newly blocked pairs, the feedback set of iden-
tified matching and non-matching pairs is sent back to blocking.
This feedback is then incorporated by blocking to update its inter-
section hierarchy and quality based scores which in turn change
the set of blocked pairs. To ensure efficiency of block building and
scoring components, BEER leverages the union-find data structure
to maintain the clusters of records referring to different entities and
generates a random sample of records from each block to quickly
estimate block scores.

3 DEMONSTRATION OVERVIEW
We demonstrate BEER on the cars dataset where the user can
change the blocking configuration to simulate 60 pipelines (com-
prising 5 block building methods, 2 block cleaning, 2 comparison
cleaning and 3 pair matching and clustering methods).
Step 1 (Select input dataset): First, the user selects an input
dataset used to perform entity resolution. We present a SQL query
option, where the user can input a query to sub-sample the data
for subsequent analysis. Figure 2 shows an example SQL output for
records that contain the token ‘corvette’.
Step 2 (Choose blocking functions and ER algorithm): The
user selects the blocking and pair matching methods from the
presented suite of techniques. We allow the user to configure the
different components of the pipeline. In this scenario, the user picks
standard token based blocking [20] and hybrid ER algorithm [6].
Step 3 (Generate blocks and corresponding set of pairs
compared): The user clicks ‘Run ER’ and BEER visualizes the dif-
ferent blocks and corresponding ER output. Figure 3(a) shows the
intersection block hierarchy where each block size is proportional
to the number of records present and the color of a block indicates
its estimated block score (red denotes 0 and blue denotes 1). The
subset blocks are shown inside the parent block, for example, the

SIGMOD ’21, June 18–27, 2021, Virtual Event, China Sainyam Galhotra, Donatella Firmani, Barna Saha, and Divesh Srivastava

(b) Technique Comparison

Configuration of two techniques to
be compared

3

5 Progressive F-score vs Queries
Comparison of pairs
compared by two algorithms

(a) ER and blocking comparison

User can click on each block to
zoom into its children

7

Comparison
of block
hierarchies

Overall Performance statistics of
two techniques

4

8

Feedback
Progress

Figure 3: (a) Comparison of blocking and corresponding set of pairs compared. The left panel shows the block hierarchywhere
block size is proportional to the number of records present and color is proportional to its score. The right panel shows the
set of compared pairs with the green and red edges corresponding to matching and non-matching pairs, respectively. The
feedback slider allows the user to observe the change in block hierarchy and scores for different iterations of feedback. (b)
Visual comparison of different blocking techniqueswhere ‘Technique 1’ uses feedback and ‘Technique 2’ does not use feedback.

block corresponding to ‘corvette c6’ is placed inside the block cor-
responding to ‘corvette’. The user can interact by zooming into the
hierarchy and clicking on individual blocks, BEER shows a word
cloud of the tokens shared by records in the block. The right panel
of Figure 3(a) shows the compared record pairs where green edges
denote matching and red edges denote non-matching pairs (Records
with the same color refer to the same entity). In this dataset, the
block scores show that many large blocks have high score while
many small blocks have low score.
Step 4 (Feedback set selection): The user can change the feed-
back progress slider (Figure 3(a)) to inspect the change in blocks
and their scores at any iteration. This helps to demonstrate the
impact of feedback at any iteration through the process.
Step 5 (Blocking Updates): For any feedback iteration, BEER
shows the newly constructed blocks, change in scores and blocking
graph (shown as a separate window on clicking ‘Inspect feedback’).
Step 6 (Summarization): The output summary tab (Figure 2)
shows the overall statistics of the pipeline (running time, F-score,
number of blocks, progressive behavior).
Step 7 (Pipeline comparison): BEER presents a comparative
analysis between two different parameter settings for the user to
compare effectiveness, efficiency, blocking graphs and ER progres-
siveness. Figure 3(b) compares the benefit of using feedback over

naive blocking, where Technique 1 uses feedback but Technique 2
does not. This comparison visualizes the difference in blocking and
ER components of the two pipelines along with a summarization
of overall performance. The block hierarchy visual shows that feed-
back based scoring assigns higher scores to some of the larger blocks
while Technique 2 assigns scores inversely proportional to size. Sim-
ilarly, the two different graphs for pairs compared show that the
second technique requires more comparisons and has explored
more non-matching edges than Technique 1. The plot labelled 8
compares the progressive behavior of these techniques.
Demonstration Engagement After our guided demonstration,
participants will be able to plug their own datasets into BEER.
We will also provide four pre-loaded datasets (i) camera [2] (ii)
citations [9] (iii) songs [4], and (iv) cars [8] as these datasets
have varied levels of noise and cluster size distributions. Through
this demonstration, we will showcase how BEER can effectively
leverage feedback from the ER phase to boost the effectiveness of
the end-to-end pipeline.

ACKNOWLEDGEMENTS
This work is supported partly by NSF 1652303, 1909046, and HDR
TRIPODS 1934846 grants, and an Alfred P. Sloan Fellowship.

BEER: Blocking for Effective Entity Resolution SIGMOD ’21, June 18–27, 2021, Virtual Event, China

REFERENCES
[1] Mikhail Bilenko, Beena Kamath, and Raymond J Mooney. Adaptive blocking:

Learning to scale up record linkage. In ICDM, 2006.
[2] Valter Crescenzi, Andrea De Angelis, Donatella Firmani, Maurizio Mazzei, Paolo

Merialdo, Federico Piai, and Divesh Srivastava. Alaska: A flexible benchmark for
data integration tasks, 2021.

[3] Guilherme dal Bianco, Marcos André Gonçalves, and Denio Duarte. Bloss: Effec-
tive meta-blocking with almost no effort. Information Systems, 75, 2018.

[4] Sanjib Das, Paul Suganthan GC, AnHai Doan, Jeffrey F Naughton, Ganesh Krish-
nan, Rohit Deep, Esteban Arcaute, Vijay Raghavendra, and Youngchoon Park.
Falcon: Scaling up hands-off crowdsourced entity matching to build cloud ser-
vices. In SIGMOD, 2017.

[5] Ahmed K Elmagarmid, Panagiotis G Ipeirotis, and Vassilios S Verykios. Duplicate
record detection: A survey. IEEE TKDE, 19(1), 2007.

[6] Donatella Firmani, Barna Saha, and Divesh Srivastava. Online entity resolution
using an oracle. PVLDB, 9(5), 2016.

[7] Sainyam Galhotra, Donatella Firmani, Barna Saha, and Divesh Srivastava. Robust
entity resolution using random graphs. In SIGMOD, 2018.

[8] Sainyam Galhotra, Donatella Firmani, Barna Saha, and Divesh Srivastava. Effi-
cient and effective er with progressive blocking. Accepted VLDB journal, 2021.

[9] Chaitanya Gokhale, Sanjib Das, AnHai Doan, Jeffrey F Naughton, Narasimhan
Rampalli, Jude Shavlik, and Xiaojin Zhu. Corleone: hands-off crowdsourcing for
entity matching. In SIGMOD, 2014.

[10] Luis Gravano, Panagiotis G Ipeirotis, Hosagrahar Visvesvaraya Jagadish, Nick
Koudas, Shanmugauelayut Muthukrishnan, and Divesh Srivastava. Approximate
string joins in a database (almost) for free. In PVLDB, pages 491–500, 2001.

[11] Mauricio A Hernández and Salvatore J Stolfo. The merge/purge problem for
large databases. In ACM Sigmod Record, volume 24, pages 127–138. ACM, 1995.

[12] Pradap Konda, Sanjib Das, Paul Suganthan GC, AnHai Doan, Adel Ardalan,
Jeffrey R Ballard, Han Li, Fatemah Panahi, , et al. Magellan: Toward building
entity matching management systems. PVLDB, 9(12):1197–1208, 2016.

[13] Andrew McCallum, Kamal Nigam, and Lyle H Ungar. Efficient clustering of
high-dimensional data sets with application to reference matching. In KDD,

pages 169–178, 2000.
[14] N McNeill, Hakan Kardes, and Andrew Borthwick. Dynamic record blocking:

efficient linking of massive databases in mapreduce. Citeseer, 2012.
[15] George Papadakis, George Alexiou, George Papastefanatos, and Georgia Koutrika.

Schema-agnostic vs schema-based configurations for blocking methods on ho-
mogeneous data. PVLDB, 9(4):312–323, 2015.

[16] George Papadakis, Ekaterini Ioannou, Themis Palpanas, Claudia Niederee, and
Wolfgang Nejdl. A blocking framework for entity resolution in highly heteroge-
neous information spaces. IEEE TKDE, 25(12):2665–2682, 2012.

[17] George Papadakis, Georgia Koutrika, Themis Palpanas, and Wolfgang Nejdl.
Meta-blocking: Taking entity resolutionto the next level. IEEE TKDE, 26(8):1946–
1960, 2013.

[18] George Papadakis, George Mandilaras, Luca Gagliardelli, Giovanni Simonini,
Emmanouil Thanos, George Giannakopoulos, Sonia Bergamaschi, Themis Pal-
panas, and Manolis Koubarakis. Three-dimensional entity resolution with jedai.
Information Systems, 93:101565, 2020.

[19] George Papadakis, George Papastefanatos, and Georgia Koutrika. Supervised
meta-blocking. PVLDB, 7(14):1929–1940, 2014.

[20] George Papadakis, Jonathan Svirsky, Avigdor Gal, and Themis Palpanas. Compar-
ative analysis of approximate blocking techniques for entity resolution. PVLDB,
9(9):684–695, 2016.

[21] George Papadakis, Leonidas Tsekouras, Emmanouil Thanos, George Gian-
nakopoulos, Themis Palpanas, and Manolis Koubarakis. The return of jedai:
end-to-end entity resolution for structured and semi-structured data. PVLDB,
11(12):1950–1953, 2018.

[22] Kun Qian, Lucian Popa, and Prithviraj Sen. Systemer: a human-in-the-loop
system for explainable entity resolution. PVLDB, 12(12):1794–1797, 2019.

[23] Giovanni Simonini, Sonia Bergamaschi, and HV Jagadish. Blast: a loosely schema-
aware meta-blocking approach for entity resolution. PVLDB, 9(12), 2016.

[24] Norases Vesdapunt, Kedar Bellare, and Nilesh Dalvi. Crowdsourcing algorithms
for entity resolution. PVLDB, 7(12):1071–1082, 2014.

[25] Jiannan Wang, Guoliang Li, Tim Kraska, Michael J Franklin, and Jianhua Feng.
Leveraging transitive relations for crowdsourced joins. In SIGMOD, 2013.

	Abstract
	1 Introduction
	2 System Overview
	3 Demonstration Overview
	References

