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On the Self-Repair Role of Astrocytes in STDP
Enabled Unsupervised SNNs

Mehul Rastogi, Sen Lu, Nafiul Islam, Abhronil Sengupta

Abstract—Neuromorphic computing is emerging to be a dis-
ruptive computational paradigm that attempts to emulate various
facets of the underlying structure and functionalities of the brain
in the algorithm and hardware design of next-generation machine
learning platforms. This work goes beyond the focus of current
neuromorphic computing architectures on computational models
for neuron and synapse to examine other computational units
of the biological brain that might contribute to cognition and
especially self-repair. We draw inspiration and insights from
computational neuroscience regarding functionalities of glial cells
and explore their role in the fault-tolerant capacity of Spiking
Neural Networks (SNNs) trained in an unsupervised fashion using
Spike-Timing Dependent Plasticity (STDP). We characterize the
degree of self-repair that can be enabled in such networks with
varying degree of faults ranging from 50% - 90% and evaluate
our proposal on the MNIST and Fashion-MNIST datasets.

Index Terms—Spiking Neural Networks, Astrocytes, Spike-
Timing Dependent Plasticity, Unsupervised learning

I. INTRODUCTION

Neuromorphic computing has made significant strides over
the past few years - both from hardware [1]–[4] and algo-
rithmic perspective [5]–[8]. However, the quest to decode the
operation of the brain have mainly focused on spike based
information processing in the neurons and plasticity in the
synapses. Over the past few years, there has been increasing
evidence that glial cells, and in particular astrocytes, play
a crucial role in a multitude of brain functions [9]. As a
matter of fact, astrocytes represent a large proportion of the
cell population in the human brain [9]. There have been
also suggestions that complexity of astrocyte functionality
can significantly contribute to the computational power of
the human brain. Astrocytes are strategically positioned to
ensheath tens of thousands of synapses, axons and dendrites
among others, thereby having the capability to serve as a com-
munication channel between multiple components and behave
as a sensing medium for ongoing brain activity [10]. This has
led neuroscientists to conclude that astrocytes play a major
role in higher order brain functions like learning and memory,
in addition to neurons and synapses. Over the past few
years, there have been multiple studies to revise the neuron-
circuit model for describing higher order brain functions to
incorporate astrocytes as part of the neuron-glia network model
[9], [11]. These investigations clearly indicate and quantify
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that incorporating astrocyte functionality in network models
influence neuron excitability, synaptic strengthening and, in
turn, plasticity mechanisms like Short-Term Plasticity and
Long-Term Potentiation, which are important learning tools
used by neuromorphic engineers.

The key distinguishing factors of our work against prior
efforts can be summarized as follows:
(i) While recent literature reports astrocyte computational
models and their impact on fault-tolerance and synaptic learn-
ing [9], [11]–[14], the studies have been mostly confined to
small scale networks. This work is a first attempt to explore
the self-repair role of astrocytes at scale in unsupervised SNNs
in standard visual recognition tasks.
(ii) In parallel, there is a long history of implementing as-
trocyte functionality in analog and digital CMOS implemen-
tations [15]–[21]. More recently, emerging physics in post-
CMOS technologies like spintronics are also being lever-
aged to mimic glia functionalities at a one-to-one level [22].
However, the primary focus has been on a brain-emulation
perspective, i.e. implementing astrocyte computational models
with high degree of detail in the underlying hardware. We
explore the aspects of astrocyte functionality that would be
relevant to self-repair in the context of SNN based machine
learning platforms and evaluate the degree of bio-fidelity
required.
(iii) While Refs. [23], [24] discusses impact of faults in
unsupervised STDP enabled SNNs, self-repair functionality in
such networks have not been studied previously.

While neuromorphic hardware based on emerging post-
CMOS technologies [3], [25]–[28] have made significant ad-
vancements to reduce the area and power efficiency gap of
Artificial Intelligence (AI) systems, such emerging hardware
are characterized by a host of non-idealities which has greatly
limited its scalability. Our work provides motivation toward
autonomous self-repair of such faulty neuromorphic hardware
platforms. The efficacy of our proposed astrocyte enabled
self-repair process is measured by the following steps: (i)
Training SNNs using unsupervised STDP learning rules in
networks equipped with lateral inhibition and homeostasis, (ii)
Introducing “faults”1 in the trained weight maps by setting
a randomly chosen subset of the weights to zero and (iii)
Implementing self-repair by re-training the faulty network with
astrocyte functionality augmented STDP learning rules. We

1Note that “faults” are disjoint from the concept of “dropout” [29] used
in neural network training. In dropout, neurons are randomly deleted (along
with their connections) only during training to avoid overfitting. In contrast,
faults in our work refer to static non-ideal stuck at zero synaptic connections
present during both the training and inference stages.
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also compare our proposal with sole STDP based re-training
strategy and substantiate our results on the MNIST and F-
MNIST datasets.

II. MATERIALS AND METHODS

A. Astrocyte Preliminaries

In addition to astrocyte mediated meta-plasticity for learning
and memory [12], [30]–[32], there has been indication that
retrograde signalling via astrocytes probably underlie self-
repair in the brain. Computational models demonstrate that
when faults occur in synapses corresponding to a particular
neuron, indirect feedback signal (mediated through retrograde
signalling by the astrocyte via endocannabinoids, a type of
retrograde messenger) from other neurons in the network
implements repair functionality by increasing the transmission
probability across all healthy synapses for the affected neu-
ron, thereby restoring the original operation [12]. Astrocytes
modulate this synaptic transmission probability (PR) through
two feedback signalling pathways: direct and indirect, respon-
sible for synaptic depression (DSE) and potentiation (e-SP)
respectively. Multiple astrocyte computational models [12],
[30]–[32] describe the interaction of astrocytes and neurons
via the tripartite synapse where the astrocyte’s sensitivity to
2-arachidonyl glycerol (2-AG), a type of endocannabinoid, is
considered. Each time a post synaptic neuron fires, 2-AG is
released from the post synaptic dendrite and can be described
as:

d(AG)

dt
=

−AG
τAG

+ rAGδ(t− tsp) (1)

where, AG is the quantity of 2-AG, τAG is the decay rate of
2-AG, rAG is the 2-AG production rate and tsp is the time of
the post-synaptic spike.

The 2-AG binds to receptors (CB1Rs) on the astrocyte pro-
cess and instigates the generation of IP3, which subsequently
binds to IP3 receptors on the Endoplasmic Reticulum (ER) to
open channels that allow the release of Ca2+. It is this increase
in cystolic Ca2+ that causes the release of gliotransmitters
into the synaptic cleft that is ultimately responsible for the

e-SP

N1

N2

2-AGA1

2-AG(DSE)

2-AG(DSE)

(a)

e-SP

N1

N2

2-AGA1

2-AG(DSE)

(b)

Fig. 1. (a) Network with no faults, (b) Network with fault occurring in
synapse associated with neuron N2 [12]. 2-AG is local signal associated with
each synapse while e-SP is a global signal. A1 is the astrocyte.

indirect signaling. The Li-Rinzel model [33] uses three chan-
nels to describe the Ca2+ dynamics within the astrocyte: Jpump
models how Ca2+ is pumped into the ER from the cytoplasm
via the Sarco-Endoplasmic-Reticulum Ca2+-ATPase (SERCA)
pumps, Jleak describes Ca2+ leakage into the cytoplasm and
Jchan models the opening of Ca2+ channels by the mutual
gating of Ca2+ and IP3 concentrations. The Ca2+ dynamics
is thus given by:

dCa2+

dt
= Jchan + Jleak − Jpump (2)

The details of the equations and their derivations can be
obtained from Refs. [12] and [34].

The intracellular astrocytic calcium dynamics control the
glutamate release from the astrocyte which drives e-SP. This
release can be modelled by:

d(Glu)

dt
=

−Glu
τGlu

+ rGluδ(t− tCa) (3)

where, Glu is the quantity of glutamate, τGlu is the glutamate
decay rate, rGlu is the glutamate production rate and tCa is the
time of the Ca2+ threshold crossing. To model e-SP:

τeSP
d(eSP)

dt
= −eSP +meSPGlu(t) (4)

where, τeSP is the decay rate of e-SP and meSP is a scaling
factor. Eq. (4) substantiates that the level of e-SP is dependent
on the quantity of glutamate released by the astrocyte.

The released 2-AG also binds directly to pre-synpatic
CB1Rs (direct signaling). A linear relationship is assumed
between DSE and the level of 2-AG released by the post-
synaptic neuron as:

DSE = −AG ×KAG (5)

where, AG is the amount of 2-AG released by the post-synaptic
neuron and is found from Eq. (1) and KAG is a scaling factor.
The PR associated with each synapse is given by the following
equation:

PR(t) = PR(t0) + PR(t0) ×
(

DSE(t) + eSP(t)

100

)
(6)

where, PR(t0) is the initial PR of the synapses, e-SP and DSE
are given by Eq. (4) and (5) respectively. In the computational
models, the effect of DSE is local to the synapses connected
to a particular neuron whereas all the tripartite synapses con-
nected to the same astrocyte receive the same e-SP. Under no-
fault condition, the DSE and e-SP reach a dynamic equilibrium
where the PR is unchanged over time, resulting in a fixed
firing rate for the neurons. When a fault occurs, this balance
subsides and the PR changes according to Eq. (6) to restore
the firing rate to its previous value. To showcase this effect
consider for instance, Fig. 1 where a simple SNN with two
post-synaptic neurons is depicted. Let us assume that each
post-neuron receives input spikes from 10 pre-neurons. The
initial PR of the synapses were set to 0.5. Fig. 1(a) is the case
with no faults, while in Fig. 1(b), faults have occurred after
some time in 70% of the synapses associated with post-neuron
N2 (Fig. 2). Note, here “faults” imply that the synapses do not
take part in transmission of the input spikes i.e. have a PR of
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Fig. 2. Simulation results of the network in Fig. 1 using the computational
model of astrocyte mediated self-repair from [12]. Total simulation time is
400s. At 200s, faults are introduced in 70% of the synapses connected to N2.
All the synapses have PR(t0)=0.5. (a) e-SP of N1 and N2. It is the same for
both N1 and N2 since e-SP is a global function, (b) DSE of N1 and N2. It is
different for each neuron as it is dependent upon the neuron output. At 200s,
after the introduction of the faults in N2, only DSE of N2 changes, (c) PR
of different types of synapses connected to N1 and N2, and (d) Firing rate of
neurons N1 and N2.

0. This results in a drop of the firing frequency associated
with N2 while operation of N1 is not impacted. Thus, the
amount of 2-AG released by N2 decreases, which increases
DSE and in turn increases the PR of the associated synapses
of N2 where no faults have occurred. Hence, we observe in
Fig. 2(d) that the increased PR recovers the firing rate and
approaches the ideal firing frequency. Note that the degree of
self-recovery, i.e. the difference between the recovered and
ideal frequency is a function of the fault probability. The
simulation conditions and parameters for the modelling are
based on Ref. [12]. Interested readers are directed to Ref.
[12] for an extensive discussion on the astrocyte computational
model and the underlying processes governing the retrograde
signalling.

A key question that we have attempted to address in this
work is the computational complexity at which we require
to model the feedback mechanism to implement autonomous
repair in such self-learning networks. Simplifying the feedback
modelling would enable us to implement such functionalities
by efficient hardware primitives. For instance, the core func-
tionality of astrocyte self-repair occurs in conjunction with
STDP based learning in synapses. Fig. 3 shows a typical

STDP learning rule where the change in synaptic weight varies
exponentially with the spike time difference between the pre-
and post-neuron [35], according to measurements performed
in rat glutamatergic synapses [36]. Typically, the height of the
STDP weight update for potentiation/depression is constant
(A+/A−). However, astrocyte mediated self-repair suggests
that the weight update should be a function of the firing rate of
the post-neuron [35]. Assuming the fault-less expected firing
rate of the post-neuron to be fideal and the non-ideal firing
rate to be f , the synaptic weight update window height should
be a function of ∆f = fideal − f . The concept has been
explained further in Fig. 3 and is also in accordance with
Fig. 2 where the PR increase after fault introduction varies
in a non-linear fashion over time and eventually stabilizes
once the self-repaired firing frequency approaches the ideal
value. The functional dependence is assumed to be that of
a sigmoid function – indicating that as the magnitude of the
fault, i.e. deviation in the ideal firing frequency of the neuron
increases, the height of the learning window increases in
proportion to compensate for the fault [35]. Note that the term
“fault” for the machine learning workloads, described herein,
refers to synaptic weights (symbolizing PR) stuck at zero.
Therefore, with increasing amount of synaptic faults, f <<
fideal, thereby increasing the STDP learning window height
significantly. During the self-healing process, the frequency
deviation gradually reduces and thereby the re-learning rate
also becomes less pronounced and finally saturates once the
ideal frequency is reached. While our proposal is based on Ref.
[35], prior work has been explored in the context of a prototype
artificial neural network with only 4 input neurons and 4
output neurons. Extending the framework to an unsupervised
SNN based machine learning framework therefore requires
significant explorations, highlighted next.

B. Neuron Model and Synaptic Plasticity

We utilized the Leaky Integrate and Fire (LIF) spiking
neuron model in our work. The temporal LIF neuron dynamics
are described as,

τmem
∂v(t)

∂t
= −v(t) + vrest + I(t) (7)

where, v(t) is the membrane potential, τmem is the membrane
time constant, vrest is the resting potential and I(t) denotes the
total input to the neuron at time t. The weighted summation
of synaptic inputs is represented by I(t). When the neuron’s

𝐴+ =
𝐾

1 + 𝑒−∆𝑓

STDP Learning

Macro-modelling 
astrocyte functionality:

0

C
ha

ng
e 

in
 s

yn
ap

se
 w

ei
gh

t (
%

)

100

-60
0-100 100

Spike Timing (ms)

∆𝑤 =

𝐴+𝑒𝑥𝑝
−∆𝑡

𝜏+
, ∆𝑡 > 0

−𝐴−𝑒𝑥𝑝
−∆𝑡

𝜏+
, ∆𝑡 < 0

Fig. 3. In the above equations, the STDP learning window height is a non-
linear increasing function of the deviation ∆f from the ideal firing frequency
of the post-neuron.
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membrane potential crosses a threshold value, vth(t), it fires
an output spike and the membrane potential is reset to vreset.
The neuron’s membrane voltage is fixed at the reset potential
for a refractory period, δref , after it spikes during which it
does not receive any inputs.

In order to ensure that single neurons do not dominate the
firing pattern, homeostasis [6] is also implemented through
an adaptive thresholding scheme. The membrane threshold of
each neuron is given by the following temporal dynamics,

vth(t) = θ0 + θ(t)

τtheta
∂θ(t)

∂t
= −θ(t)

(8)

where, θ0 > vrest, vreset and is a constant. τtheta is the
adaptive threshold time constant. The adaptive threshold, θ(t)
is increased by a constant quantity θ+, each time the neuron
fires, and decays exponentially according to the dynamics in
Equation 8.

A trace [37] based synaptic weight update rule was used for
the online learning process [6], [23]. The pre and post-synaptic
traces are given by xpre and xpost respectively. Whenever the
pre (post) - synaptic neuron fires, the variable xpre (xpost) is
set to 1, otherwise it decays exponentially to 0 with spike trace
decay time constant, τtrace. The STDP weight update rule is
characterized by the following dynamics,

∆w =

{
ηpost ∗ xpre on post-synaptic spike
−ηpre ∗ xpost on pre-synaptic spike

(9)

where, ηpre/ηpost denote the learning rates for pre-synaptic /
post-synaptic updates respectively. The weights of the neurons
are bounded in the range of [0, wmax]. It is worth mentioning
here that the sum of the weights associated with all post-
synaptic neurons is normalized to a constant factor, wnorm
[23].

C. Network Architecture

…

Input Layer Output Layer

Dense Connection Recurrent 
Connection

…

Fig. 4. The single layer SNN architecture with lateral inhibition and
homeostasis used for unsupervised learning.

Our SNN based unsupervised machine learning framework
is based on single layer architectures inspired from cortical
microcircuits [6]. Fig. 4 shows the network connectivity
of spiking neurons utilized for pattern-recognition problems.
Such a network topology has been shown to be efficient in
several pattern-recognition problems, such as digit recognition
[6] and sparse encoding [38]. The SNN, under consideration,
has an Input Layer with the number of neurons equivalent to

the dimensionality of the input data. Input neurons generate
spikes by converting each pixel in the input image to a Poisson
spike train whose average firing frequency is proportional to
the pixel intensity. This layer connects in an all-to-all fashion
to the Output Layer through excitatory synapses. The Output
layer has nneurons LIF neurons characterized by homeostasis
functionality. It also has static (constant weights) recurrent
inhibitory synapses with weight values, wrecurrent, for lateral
inhibition to achieve soft Winner-Take-All (WTA) condition.
Each neuron in the Output Layer has an inhibitory connection
to all the neurons in that layer except itself. Trace-based STDP
mechanism is used to learn the weights of all synapses between
the Input and Output Layers. The neurons in the Output Layer
are assigned classes based on their highest response (spike
frequency) to input training patterns [6].

D. Challenges and Astrocyte Augmented STDP (A-STDP)
Learning Rule Formulation

One of the major challenges in extending the astrocyte based
macro-modelling in such self-learning networks lies in the
fact that the ideal neuron firing frequency is a function of
the specific input class the neuron responds to. This is sub-
stantiated by Fig. 5 which depicts the histogram distribution
of the ideal firing rate of the wining neuron in the fault-
less network. Further, due to sparse neural firing, the total
number of output spikes of the winning neurons over the
inference window is also small, thereby limiting the amount of
information (number of discrete levels) that can be encoded in
the frequency deviation, ∆f . This leads to the question: Can
we utilize another surrogate signal that gives us information
about the degree of self-repair occurring in the network over
time while being independent of the class of the input data?
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Fig. 5. Histogram count of the ideal firing rate of neurons responding to
digit ‘0’ versus digit ‘1’ (measured from 5000 test examples of the MNIST
dataset).

While the above challenge is related to the process of
reducing the STDP learning window over time, we observed
that using sole STDP learning or with a constant enhanced
learning rate consistently reduced the network accuracy over
time (Fig. 7). Fig. 8 also depicts that normal STDP retraining
with faulty synapses slowly loses their learnt representations
over time. Re-learning all the healthy synaptic weights uni-
formly using STDP with an enhanced learning rate should
at least result in some accuracy improvement for the initial
epochs of re-training, even if the modulation of learning
window height over time is not incorporated in the self-repair
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framework. The degradation of network accuracy starting from
the commencement of the retraining process signified that
some additional factors may have been absent in the astrocyte
functionality macro-modelling process, which is independent
from the above challenge of modulating the temporal behavior
of the STDP learning window.

In that regard, we draw inspiration from Eq. 6, where we
observe that the initial fault-free value of the PR acts as a
scaling factor for the self-repair feedback terms DSE and e-
SP. We perform a similar simulation for the network shown in
Fig. 1, with each neuron receiving input from 10 synapses.
However in this case, we set the initial PR of all of the
synapses to 0.5, except one connected to N2; for which the
initial PR was set to 0.1. In other words, 9 of the synapses
connected to N2 have a PR(t0)=0.5, while for one PR(t0)=0.1.
The lower initial PR value symbolizes a weaker connection.
The network is simulated for 400s and at 200s, the associated
PR of 8 of the synapses with higher initial PR are reduced to
0 to signify faulty condition (Fig. 6). We observe that after
the introduction of the faults, the PR of the synapses with the
higher initial PR value is enhanced greatly compared to the
one with the lower initial PR. This leads us to the conclusion
that synapses that play a greater role in postsynaptic firing
also play a greater role in the self-repair process compared to
other synapses.

Since our unsupervised SNN is characterized by analog
synaptic weights in the range of [0, wmax], we hypothesized
that this characteristic might underlie the reason for the
accuracy degradation and designed a preferential self-repair
learning rule for healthier synapses. This was found to result in
significant accuracy improvement during the retraining process
(discussed in next section). Our formulated A-STDP learning
rule formulation is therefore also guided by the following
question: Can we aggressively increase the healthy synaptic
weights during the initial learning epochs which preserves the
original representations learnt by the network?

Driven by the above observations, we formulated our As-
trocyte Augmented STDP (A-STDP) learning rule during the
self-repair process as,

∆w =

{
ηpost ∗ xpre ∗ (w/wα)

σ on post-synaptic spike
−ηpre ∗ xpost on pre-synaptic spike

(10)

where, wα represents the the weight value at the α-th per-
centile of the network and serves as the surrogate signal
to guide the retraining process. Fig. 9 depicts the tempo-
ral behavior of wα for the 98-th percentile of the weight
distribution. After faults are introduced, wα is significantly
reduced and slowly increases over time during the re-learning
process. It finally saturates off at the bounded value wmax.
The term w/wα ensures that the effective learning rate for
healthier synapses (w > wα) is much higher than the learning
rate for weaker connections (w < wα) while σ dictates the
degree of non-linearity. Since wα increases over time, the
enhanced learning process also reduces and finally stops once
wα saturates. It is worth mentioning here that wα, σ and
wmax are hyperparameters for the A-STDP learning rule. All
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Fig. 6. Simulation results of the network in Fig. 1 using the computational
model of [12] with synapses having different initial PR values. Total simu-
lation time is 400s. At 200s, faults are introduced in 8 synapses with high
initial PR connected to N2. (a) e-SP of N1 and N2, (b) DSE of N2, (c) PR
of the 3 types of synapses connected to N2 (orange: healthy synapse with
PR(t0)=0.5, green: healthy synapse with PR(t0)=0.1 and blue: faulty synapse
with PR(t0)=0.5 till 200s and PR(t0)=0 afterwards) and (d) Firing rate of
neuron N2 .
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Fig. 7. Test accuracy of a 225 neuron network on the MNIST dataset with
70% faulty connections with normal and enhanced learning rates during STDP
re-training process. Re-training with A-STDP rule is also depicted.

hyperparameter settings and simulation details are presented
in the next section.

III. RESULTS

We evaluated our proposal in the context of unsupervised
SNN training on standard image recognition benchmarks un-
der two settings: scaling in network size and scaling in network
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80% Fault Probability
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(c) Baseline Network
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Fig. 8. (a)-(d) Learnt weight patterns for 225 neuron network on the MNIST
dataset are shown. Re-training the network with sole STDP learning causes
distortion of the weight maps (50% and 80% fault cases are plotted). The red
boxes in (a) and (b) highlight how the the neurons can change association
toward a particular class during re-learning thereby forgetting their original
learnt representations. Receptive fields of all neurons undergo distortion for
the 80% fault case.
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Fig. 9. Value of wα (98-th percentile from weight distribution of the entire
network) during the self-repair process using A-STDP learning rule for a 225
neuron network on the MNIST Dataset with 80% faulty connections.

complexity. We used MNIST [39] and Fashion-MNIST [40]
datasets for our analysis. Both datasets contain 28 × 28
grayscale images of handwritten digits / fashion products
(belonging to one of 10 categories) with 60,000 training
examples and 10,000 testing examples. All experiments are
run in PyTorch framework using a single GPU with a batchsize
of 16 images. In addition to standard input pre-processing for
generating the Poisson spike train, the images in F-MNIST
dataset also undergo Sobel filtering for edge detection before
being converted to spike trains. The SNN implementation is
done using a modified version of the mini-batch processing
enabled SNN simulation framework [41] in BindsNET [42], a

PyTorch based package (Link). In addition to dataset complex-
ity scaling, we also evaluated two networks with increasing
size (225 and 400 neurons) on the MNIST dataset. For the
MNIST dataset, the baseline test accuracy of the ideal network
was 89.53% and 92.02% respectively. A 400-neuron network
was used for the F-MNIST dataset with 77.35% accuracy.
The baseline test accuracies are superior/comparable to prior
reported accuracies for unsupervised learning on both datasets.
For instance, Ref. [6] reports 87% accuracy for an STDP
trained network with 400 neurons while Ref. [43] reports the
best accuracy of 73.1% for state-of-the-art clustering methods
on the F-MNIST dataset. Table I lists the network simulation
parameters used in this work. It is worth mentioning here
that all hyperparameters were kept unchanged (from their
initial values during training) in the self-repair process. We
also kept the hyperparameters, wα and σ for the A-STDP
rule unchanged for all fault simulations. Fig. 10 shows a
typical ablation study of the hyperparameters α and σ. For
this study, we trained a 225-neuron network with 90% faults.
We divided the training set into training and validation subsets
in the ratio of 5:1 respectively through random sampling. The
two accuracy plots shown in Fig. 10 are models retrained on
the training subset and then evaluated on the new validation
set. Further hyperparameter optimizations for different fault
conditions can potentially improve the accuracy improvement
even further.
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65.0
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cu
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Fig. 10. Ablation studies for the hyperparameters (a) σ (with fixed α = 98)
and (b) α (with fixed σ = 2) in A-STDP learning rule.

The network is first trained with sole STDP learning rule for
2 epochs and the maximum test accuracy network is chosen
as the baseline model. Subsequently, faults are introduced by
randomly deleting synapses (from the Input to the Output
Layer) post-training. Each synaptic connection was assigned
a deletion probability, pdel, to decide whether the connection
would be retained in the faulty network. For this work, pdel
was varied between 0.5 - 0.9 to analyze the network and
re-train after introducing faults. Note that A-STDP learning
rule is only used during this self-repair phase. It is worth
mentioning here, that weight normalization by factor wnorm
(mentioned in Section III-B) is used before starting the re-
training process. This helps to adjust the relative magnitude
of firing threshold relative to the weights of the neurons (since
the resultant magnitude diminishes due to fault injection).

Fig. 11 shows the test classification accuracy as a function
of re-learning epochs for a 225 / 400 neuron network with
80% probability for faulty synapses. After the faults are

https://github.com/BindsNET/bindsnet
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TABLE I
SIMULATION PARAMETERS

Parameters Value
Membrane Time Constant, τmem 100ms

Spike Trace Decay Time Constant, τtrace 20ms
Resting Potential, vrest -65mV

Threshold Voltage Constant, θ0 -52mV
Membrane Reset Potential, vreset -60mV

Refractory Period, δref 5ms
Adaptive Threshold Time Constant, τtheta 107ms
Adaptive Threshold Voltage Increment, θ+ 0.05

Post-Synaptic Learning Rate, ηpost 10−2 (MNIST)
4 × 10−3 (F-MNIST)

Pre-Synaptic Learning Rate, ηpre 10−4 (MNIST)
4 × 10−5 (F-MNIST)

Normalization Factor, wnorm 78.4
No. of Excitatory Neurons, nneurons 225 / 400 (MNIST)

400 (F-MNIST)
Static Inhibitory Synaptic Weight, wrecurrent -120 (MNIST)

-250 (F-MNIST)
A-STDP Weight-Percentile Hyperparameter, α 98

A-STDP Non-Linearity Hyperparameter, σ 2
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Fig. 11. Improvement of test accuracy during re-learning is depicted as
a function of the training samples using A-STDP learning rule on the (a)
MNIST (225 and 400 neuron networks) and (b) F-MNIST datasets (400
neuron network). Mean and standard deviation of the accuracy is plotted for
80% fault simulation in the networks.

introduced, the network accuracy improves over time during
the self-repair process. The mean and standard deviation of
test accuracy from 5 independent runs are plotted in Fig.
11. Fig. 12 depicts the initial and self-repaired weight maps
of the 225 (MNIST) and 400 (F-MNIST) neuron networks,
substantiating that original learnt representations are preserved

MNIST
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Fig. 12. (a-d) Initial and self-repaired weight maps of the 225 (400) neuron
network trained on MNIST (F-MNIST) dataset corresponding to 80% fault
simulations.

during the re-learning process. Table II summarizes our results
for all networks with varying degrees of faults. The numbers
in parentheses denote the standard deviation in accuracy from
the 5 independent runs. Since sole STDP learning resulted
in accuracy degradation for most of the runs, the accuracy
is reported after 1 re-learning epoch. For some cases, some
accuracy improvement through normal STDP was also ob-
served. The maximum accuracy is reported for the A-STDP
re-training process. After repair through A-STDP, the network
is able to achieve accuracy improvement across all level of
faults, ranging from 50% - 90%. Interestingly, A-STDP is able
to repair faults even in a 90% faulty network and improve
the testing accuracy by almost 9% (5%) for the MNIST (F-
MNIST) dataset. Further, the accuracy improvement due to
A-STDP scales up with increasing degree of faults. Note that
the standard deviation of the final accuracy over 5 independent
runs is much smaller for A-STDP than normal STDP re-
training, signifying that the astrocyte enabled self-repair is
consistently stable, irrespective of the initial fault locations.

IV. DISCUSSION

The work provides proof-of-concept results toward the
development of a new generation of neuromorphic computing
platforms that are able to autonomously self-repair faulty non-
ideal hardware operation. Extending beyond just unsupervised
STDP learning, augmenting astrocyte feedback in supervised
gradient descent based training of SNNs needs to be explored
along with their implementation on neuromorphic datasets
[44]. In this work, we also focused on aspects of astrocyte
operation that would be relevant from a macro-modelling
perspective for self-repair. Further investigations on under-
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TABLE II
SELF-REPAIR RESULTS FOR A-STDP ENABLED SNNS

Network
Description

Fault
Probability

Accuracy after
fault

injection (%)

Accuracy after
weight

normalization (%)

Accuracy after
STDP

re-training (%)

Accuracy after
A-STDP

re-training (%)

Accuracy
Gain from
A-STDP

MNIST Dataset

225 Excitatory Neurons
Baseline Accuracy = 89.53%

50% 75.41 ± 2.28 83.04 ± 0.49 76.69 ± 0.98 84.06 ± 0.70 1.02
60% 70.72 ± 1.41 80.25 ± 0.70 73.85 ± 1.18 82.19 ± 0.28 1.95
70% 61.86 ± 2.03 76.06 ± 1.22 70.57 ± 0.48 79.39 ± 1.13 3.33
80% 30.42 ± 3.26 69.13 ± 0.85 67.42 ± 1.37 75.42 ± 0.48 6.29
90% 9.92 ± 0.11 56.69 ± 1.45 61.40 ± 1.38 65.57 ± 1.28 8.89

400 Excitatory Neurons
Baseline Accuracy = 92.02%

50% 79.32 ± 2.57 85.56 ± 0.24 80.96 ± 1.24 87.16 ± 0.12 1.59
60% 73.01 ± 2.15 82.61 ± 0.22 79.12 ± 1.28 85.17 ± 0.33 2.56
70% 61.20 ± 1.10 79.77 ± 0.61 77.51 ± 0.62 83.00 ± 0.40 3.22
80% 30.18 ± 2.60 73.08 ± 0.87 73.26 ± 1.16 78.68 ± 0.73 5.58
90% 9.80 ± 0.27 59.90 ± 1.16 67.80 ± 0.77 68.85 ± 0.48 8.95

Fashion-MNIST Dataset

400 Excitatory Neurons
Baseline Accuracy = 77.35%

50% 58.62 ± 1.24 73.85 ± 0.50 73.51 ± 0.30 75.88 ± 0.38 2.02
60% 39.12 ± 1.19 71.85 ± 1.36 72.23 ± 0.60 75.16 ± 0.49 3.31
70% 16.61 ± 0.69 70.21 ± 0.44 70.63 ± 0.70 73.14 ± 0.44 2.93
80% 10.00 ± 0.22 66.32 ± 0.58 68.80 ± 0.47 70.82 ± 0.57 4.51
90% 10.04 ± 0.28 60.24 ± 0.86 63.92 ± 0.77 65.49 ± 0.40 5.25

standing the role of neuroglia in neuromorphic computing can
potentially forge new directions related to synaptic learning,
temporal binding, among others.
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