
Generating reward structures on a parameterized distribution of dynamics tasks

Abe Leite1 and Eduardo J. Izquierdo1,2

1Cognitive Science Program, Indiana University Bloomington
2Luddy School of Informatics, Computing, and Engineering, Indiana University Bloomington

Corresponding email: abrahamjleite@gmail.com

Abstract

In order to make lifelike, versatile learning adaptive in the
artificial domain, one needs a very diverse set of behaviors
to learn. We propose a parameterized distribution of classic
control-style tasks with minimal information shared between
tasks. We discuss what makes a task trivial and offer a basic
metric, time in convergence, that measures triviality. We then
investigate analytic and empirical approaches to generating
reward structures for tasks based on their dynamics in order to
minimize triviality. Contrary to our expectations, populations
evolved on reward structures that incentivized the most stable
locations in state space spend the least time in convergence
as we have defined it, because of the outsized importance our
metric assigns to behavior fine-tuning in these contexts. This
work paves the way towards an understanding of which task
distributions enable the development of learning.

Introduction
Natural learning is extraordinary for its versatility. Living
organisms can learn to perform a seemingly limitless variety
of behaviors; for example, a human can learn to swim or ride
a bicycle and a three-legged dog can learn to walk again. In
the field of artificial intelligence, there has long been inter-
est in modeling the evolution and development of versatile
learning behaviors and this is now seen as a pinnacle of the
field of AI (Clune, 2019). Yet this sort of versatility is only
adaptive when learning is faced with a similarly limitless
repertoire of behaviors to confront, meaning that choosing
a good distribution of tasks is an essential step in modeling
the evolution of learning.

Related work
Computational models of “versatile behavior” include fixed
policies that are adaptive for multiple tasks, learning strate-
gies tuned for finite sets or narrow infinite distributions of
tasks, and general learning strategies that give rise to adap-
tive behavior on wholly unrelated tasks. We consider this
last type of versatility particularly interesting and pay spe-
cial attention in our review to the types of task distributions
that have given rise to these general learning strategies.

An ample body of work has approached the problem of
behavioral versatility by designing several different tasks

and training neural circuits to solve all of them. Initial
attempts to train neural networks to solve multiple tasks
involved training subnetworks on each of the tasks and
then combining the circuit (Kodjabachian and Meyer, 1998).
Izquierdo and Buhrmann (2008) demonstrated the use of
evolutionary algorithms to train the same circuit to perform
two entirely different control tasks without the need to mod-
ularize the circuit or train it sequentially. More recently,
a similar approach has been used to train recurrent neu-
ral networks (RNNs) to solve up to 20 different but related
cognitively-inspired input-output tasks (Yang et al., 2019).
In these cases, a fixed network gives rise to behavioral ver-
satility through its dynamics coupled with the environment.

Combining development of learning with a discrete se-
lection of tasks, Kirsch et al. (2019) have trained their
MetaGenRL algorithm on three complex robotics tasks, and
Miller (2020) has evolved his developmental neural net-
works on a selection of well-understood benchmark tasks in
supervised and reinforcement learning. One challenge with
using a finite set of tasks like this is that it takes a lot of work
to design each new task by hand.

In one of the earliest attempts at generating infinite task
distributions as a way to help improve the generality of so-
lutions to a problem, Hillis (1990) used parasites as the in-
spiration to co-evolve the tasks as well as the solutions to
a sorting optimization problem. More recently, similar ap-
proaches have taken on the label of adversarial learning.
For example, Wang et al. (2019) used a relatively simi-
lar co-evolutionary strategy to vary a bipedal walking task
alongside the training of the circuit. Although both co-
evolutionary and adversarial strategies generate tasks to help
improve the training of the solution, the way that they have
been used so far involves a distribution of tasks that is re-
stricted to a single, relatively narrow, domain.

An ideal approach would be to develop a task genera-
tor that is sufficiently general to contain all instances of a
problem of interest. A seminal example is the NK tunably
rugged fitness landscape generator developed by Kauffman
and Weinberger (1989). One important step in this direction
was taken recently by Oh et al. (2020), who used a broad dis-

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/isal/33/118/1929893/isal_a_00466.pdf by guest on 12 August 2021

tribution of discrete-action grid world and Markov decision
process (MDP) tasks to train their Learned Policy Gradient
(LPG) meta-learning algorithm, which achieves exception-
ally strong generalization (from these toy problems to Atari
games).

We hypothesize that the lean nature of these toy problems,
where performing well is far more about learning capabili-
ties than about environment information, is one of the great-
est reasons behind this performance. An additional powerful
benefit of LPG’s approach is that grid world and MDP tasks
are relatively well-understood, like NK landscapes but un-
like the high-dimensional benchmark tasks (including Atari
games themselves) often used in reinforcement learning.

Our approach
We have devised a parameterized distribution of tasks in the
continuous domain inspired by classic control tasks such as
the inverted pendulum task. Our aim is that one could sam-
ple a number of tasks from this distribution in order to as-
sess an agent’s single- and multi-task learning capabilities.
In doing so, one can use the distribution as a platform for
modeling the evolution or development of learning. Due to
its simplicity, this distribution may enable greater versatil-
ity within the continuous domain, like simple and tractable
grid-world tasks have in the discrete-action domain.

However, we have found that for many of the tasks that
result when one samples from this distribution indiscrim-
inately, random performance and optimal performance are
nearly indistinguishable: we consider such tasks trivial and
not useful for understanding or developing an agent’s learn-
ing capabilities. Moreover, given the wide variability of gen-
erated tasks, we could find no obvious correlation between
non-triviality and the dynamical features of sampled tasks.

In order to address this issue, we take two further steps:
first, we begin to describe non-trivial learning as a measur-
able property of a set of optimization curves, using a metric
of triviality we call time in convergence (TIC). Second, we
explore ways of manipulating the generated tasks to mini-
mize the time in convergence, fixing a set of generated dy-
namics and exploring different strategies for deterministi-
cally generating reward structures based on these dynamics.

To summarize our contributions: (1) We offer a parame-
terized distribution of classic control-style tasks in the con-
tinuous domain. It can be sampled from or even optimized
on, given an appropriate objective function for tasks. (2) We
propose an empirical metric for how non-trivial it is to solve
a task and discuss the benefits and drawbacks of this metric.
(3) We provide an early data-driven analysis of which meth-
ods of imposing a reward structure on a set of generated task
dynamics make the task as non-trivial as possible.

Reinforcement learning framework
In models of reinforcement learning, one simulates an agent
and its environment. The agent must manipulate its environ-

ment in some desired way to receive a reward, while pro-
vided with a stream of observations of the environment.

This means that an agent can be modeled by an equa-
tion mapping its current internal state S and any reward R
and observation O from the environment to its future inter-
nal state and the action A it provides to its environment:
Sagent, O,R → S′agent, A. This mapping encompasses
both learning and behavior. The behavioral portion of the
map, O → A, is often called the agent’s policy.

Similarly, the environment can be modeled by an equation
mapping its own current state and the action from the agent
to its future state, a new observation for the agent, and any
reward given to the agent: Senv, A→ S′env, O,R.

Although these tasks are traditionally called reinforce-
ment learning tasks, an agent’s policy can equally be devel-
oped via population search. A good policy for a reinforce-
ment learning task is one that results in high accumulated
reward over a number of discrete episodes, each of which
starts from its own initial conditions.

Example
Figure 1 illustrates these concepts on the classic inverted
pendulum task, in which an agent is tasked with exerting a
torque on the fulcrum of a rod pendulum in order to balance
it upright. This task has one cyclic variable, which is the
angle θ of the pendulum with respect to the horizontal axis,
and one bounded variable, which is the angular velocity ω
of the pendulum. (These types of variables will be defined
in the following section.) The angular velocity is clipped to
not exceed 8 radians/s, and normalized to the range [−1, 1].

Figure 1A illustrates the way that present states map to
future states (without input from the agent) in the pendu-
lum task. Because this is an intuitive system, we will use
it to illustrate some important types of dynamics that will
be used in the following section. Although the system has
two equilibrium points, at which its rate of change is zero,
its dynamics around these locations are quite different. In
a neighborhood of the top equilibrium point, increasing or
decreasing both θ and ω results in the state evolving away
from the point, but perturbing them in perfectly opposite di-
rections will result in the state evolving back towards the
point. The fact that this class of equilibrium point is stable
along one axis and unstable along another is why it is called
a “saddle point”. On the other hand, if one perturbs the state
away from the bottom equilibrium point, it neither returns
nor goes further away, rather orbiting the bottom in a stable
limit cycle. Because this point has an axis along which it is
not strictly stable or unstable according to its local proper-
ties, it is called a “non-hyperbolic equilibrium point”.

Figure 1B shows the task’s reward structure and an
evolved policy’s trajectory on the task. In this version of the
task, a positive reward is given when the pendulum is sta-
tionary and pointing upright, and a negative reward is given
when the pendulum is stationary and pointing down. The

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/isal/33/118/1929893/isal_a_00466.pdf by guest on 12 August 2021

Reward Structure + Trajectory

0.05 0.00 0.05
d[Reward]/dt

0 2 4 6 8 10
1

0

1

A
ct

io
n
,
b
o
u
n
d
e
d
 v

a
r. Variables over time

2.5

0.0

2.5

C
y
cl

ic
 v

a
r.

0 2 4 6 8 10
Time

0.5

0.0

0.5

R
e
w

a
rd

Action

Bounded

Cyclic

Reward

-135° -45°

0°

45°135°

Cyclic

101

B
o
u
n
d
e
d

Task dynamics when A=0
A B C

Figure 1: (A) The inverted pendulum task’s dynamics with no torque exerted. The cyclic variable θ is shown by angle with
θ = 0 at the right-hand side, and the bounded variable ω is shown by radius with ω = −1 on the inside of the ring and ω = 1
on the outside. The direction in which the system evolves is shown by the arrows; a greater rate of change is denoted by a
darker arrow. The saddle equilibrium point at (π2 , 0) is shown in green and the non-hyperbolic equilibrium point at (−π2 , 0) is
shown in black. (B) The reward structure of the task is shown in color with the greatest reward at the red and white areas and
the lowest reward at the purple and black areas. An evolved agent’s state trajectory is shown in white, beginning at the white
circle. (C) The state variables and the evolved agent’s action over the 10 second episode are shown in the top panel and the
reward over the episode is shown in the bottom panel.

agent (Figure 1C) briefly exerts a positive torque, increas-
ing the pendulum’s counterclockwise angular velocity, and
then exerts a strong negative torque to build enough clock-
wise speed to lift the pendulum to its peak. It exerts another
positive torque to slow down the pendulum when it reaches
the 9 o’clock position, then finally balances it upright with
a moderate clockwise torque. The reward increases contin-
ually once the pendulum is in the incentivized area.

Proposed task distribution
Given a set of state and action variables, we generate a dis-
tribution of dynamics tasks where each state variable’s rate
of change is a polynomial function of the state and action
variables. This is easy to compute, and polynomials up to
a fixed degree of complexity are also a relatively easy pa-
rameter space to explore. We do not impose any particular
reward structure on each task, although one can generate a
polynomial reward function with the same structure as the
rate-of-change functions. This parameter space contains the
inverted pendulum task, and we use that task to illustrate the
relation between a task’s parameters and its dynamics.

State variables
We base our environmental state variables on the types of
variables encountered in nature. Two very common non-
linearities in nature are (1) cyclic processes, such as turning
in a circle, where one will “wrap around” to one’s original

location if one moves consistently in a single direction, and
(2) bounded processes, such as running into a wall, where
one will actually stop moving if one moves consistently in a
single direction (even if one keeps walking into the wall).

We take inspiration from these natural non-linearities and
define two classes of state variables: (1) cyclic variables,
which internally range [0, 2π) but interact with other state
variables and with the agent through their sine and co-
sine, and (2) bounded variables, which we define as 1-
dimensional variables clipped to the range [−1, 1], even if
their dynamics as written would move them outside of it.

One task may have an arbitrary number of cyclic and
bounded variables, but we consider the number of variables
to be a hyperparameter rather than a parameter of each par-
ticular task. Any task within a particular parameter space
will have the same number of cyclic, bounded, and action
variables. In this paper, we will focus on tasks with one
cyclic and one bounded variable.

The cyclic variables in their aggregate are denoted C; the
individual cyclic variables are denotedC1, C2, · · · , Cn. The
aggregated bounded variables are similarly denoted B, with
individual variables denoted B1, B2, · · · , Bm.

Action variables
The agent provides real-valued actions within the range
[−1, 1] to the environment. The action variables are denoted
A as an aggregate and A1, A2, · · · , Ak individually.

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/isal/33/118/1929893/isal_a_00466.pdf by guest on 12 August 2021

Dynamics model
In our model, each state variable’s rate of change is defined
as a polynomial function of A, sin(C), cos(C), and B;
these are collectively called X . Each individual input vari-
able Xi refers to the ith variable when A, sin(C), cos(C),
andB are concatenated (in this order). Following these vari-
ables, the final element of X is defined to be 1 for computa-
tional simplicity. This means that the number of elements of
X (|X|) is |A|+ 2|C|+ |B|+ 1.

We will consider sparsely encoded polynomials. We de-
fine hyperparameters t and d to limit the complexity of the
polynomials that can be represented. Each rate of change
polynomial has up to t terms of up to degree d. This means
that the parameters for a single variable’s rate of change
are (1) the real coefficients of the polynomial k1, k2, · · · , kt
and (2) the integer indices of the factors of each term
a1,1, · · · , a1,d, · · · , at,1, · · · , at,d. The rate of change of
state variable y is then written

dy

dt
=

t∑
i=1

ki

d∏
j=1

Xai,j (1)

Terms of less than degree d include indices pointing to the
final element of X , which is by definition 1. Polynomials
with fewer than t terms include terms with 0 coefficients,
which will not affect the rate of change.

Each state variable Ci or Bi has a rate of change of this
form, meaning that the entire system’s dynamics have (|C|+
|B|)t real parameters and (|C|+ |B|)td integer parameters.

The equations are integrated by Euler integration. In this
paper, we use an integration timestep of 0.05s.

Reward model
This way of generating dynamics does not constrain one to
any particular way of defining reward. One may give the
reward variable a parameterized rate-of-change polynomial
like those of the system dynamics. In this case, the step
reward provided to the agent will be the product dR

dt (∆t).
While this has advantages should one want to co-evolve
tasks and agents, we have found this approach to produce a
concerning number of trivial tasks. Alternative approaches
to generating reward structures based on information about
the task dynamics will be discussed in the following section.

We generally expect reward to increase or decrease over
time as a function of state alone rather than state and action.
(Action is sometimes directly included in reward functions
to represent energy costs.) This lets one interpret particular
areas as low- or high-reward, and we consider it a useful
constraint, though it is not required by this framework.

Many real-world and simulated tasks, including home-
ostasis and the cart-pole task, require agents to maintain
some viability conditions at all times, with survival more
important than optimality. One may use a bounded state
variable initialized to 1 with a non-positive rate of change

to represent the agent’s viability in these tasks; only the ini-
tialization to 1 requires any modifications to our model.

Example: inverted pendulum task dynamics
The following are the equations for the inverted pendulum
task when expressed as a system of this form. There is one
cyclic variable C1, one bounded variable B1, and one action
variable A1. In this case, our polynomials include up to 2
terms of up to degree 1 each.

dC1

dt
= 8B1 (2)

dB1

dt
=

6

8
A1 −

15

8
cos(C1) (3)

These dynamics are shown with A = 0 in Figure 1A.

Example: generated task dynamics set 15
After we generated 25 sets of task dynamics for the experi-
ments described below, we selected task 15 as representative
of the range of dynamics found across the 25 tasks.

The following are the equations for task 15’s dynamics,
which use one cyclic variable, one bounded variable, and
one action variable. In this case, the polynomials include up
to 4 terms of up to degree 3 each.

dC1

dt
= 1.46A1B1cosC1 − 0.46A2

1cosC1

+ 0.90B2
1 + 1.43B2

1cosC1

(4)

dB1

dt
= 0.57A1B1−0.85A1B1−0.91sinC1−0.05A1cosC1

(5)
The resulting dynamics are shown in full in Figure 2A.

These figures are available for other tasks on request.

Reward structures
Life exists at the boundary of order and chaos, and many
biological behaviors are aimed at maintaining an improba-
ble state of order. A single neuron actively transporting ions
against their gradients and a person cleaning their room are
both making use of the fact that agency (in its many forms)
can make otherwise vanishingly improbable outcomes hap-
pen. Because biological behaviors have so much to do
with maintaining improbable states of the world, we propose
building reward structures on tasks based on the probability
of different states being encountered in the task dynamics.

One can take many approaches to understand the proba-
bility of states in an agent-environment system; we focus on
two. First, we consider analytic approaches that use the local
properties of the system dynamics to predict which points
are attractive or repulsive. Second, we consider empiri-
cal approaches that simulate the system to generate hitmaps
showing which points are most frequently encountered.

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/isal/33/118/1929893/isal_a_00466.pdf by guest on 12 August 2021

A(i) (ii) (iii) (iv) (v)

B(i) (ii) (iii) (iv) (v)

Figure 2: Task 15 dynamics (A) and hitmaps (B) across different actions (i-v). State space is shown as in Figure 1. (A) Stable,
unstable, saddle, and non-hyperbolic equilibrium points are shown in blue, red, green, and black respectively. (B) The most
frequently encountered points are shown in red and white and the least in purple and black. Note that the most frequently hit
area, by orders of magnitude, is the hotspot near (π2 ,−1), but this is hard to see because the histogram is very fine.

We discuss the broad benefits and drawbacks of these ap-
proaches and propose specific treatments to generate reward
structures that fall under the approaches. Examples of each
treatment on task dynamics set 15 are shown in Figure 5.

Analytic approaches
In analytic approaches, one analyzes equilibrium points in
state space to find whether they are locally stable, unstable,
saddle points (stable and unstable along different axes), or
non-hyperbolic (neither stable nor unstable along some axis,
often since other points on the axis are also in limit sets).

This requires locating equilibrium points in state space,
where the rate of change for all state variables is zero, and
analyzing the stability of these points by understanding how
the rate of change changes in a neighborhood of the points.

One may also find “equilibrium points” on the outer lat-
tice where all bounded variables are either -1 or +1, when
the rates of change of the bounded variables are effectively
zero because they are running into the clipping condition.
These points are located by finding all points on the outer
lattice where dCi

dt is zero for all Ci and dBi

dt is effectively
zero for all Bi. These points are considered stable along the
B axes and are classified as stable, saddle, or non-hyperbolic
according to their local behavior on the C axes.

Importantly, equilibrium points and their stability depend
on action; indeed, this is part of how agents are able to ma-
nipulate the task dynamics. In order to get a sense for what
points are attractive or repulsive overall, one can find equi-
librium points across a range of different actions and create
a combined set of equilibrium points. See Figure 2A for

examples of how equilibrium points can depend on action.
One advantage of analytic approaches is that they pro-

duce compact, understandable representations of attractive
and repulsive points in the state space. On the other hand,
local dynamics do not always tell the full story of which ar-
eas of state space are the most attractive. For example, in
Figure 2A(i), there is an unstable equilibrium point that in
fact falls within a stable limit cycle visible in Figure 2B(i).

Stable In the analytic stable treatment, a reward struc-
ture is generated by finding the equilibrium points at each
A ∈ {−1,−0.5, 0, 0.5, 1}, and assigning each equilibrium
a score according to its class: +1 for stable equilibrium
points, +0.25 for non-hyperbolic equilibrium points, -0.25
for saddle equilibrium points, and -1 for unstable equilib-
rium points. (Non-hyperbolic points are considered rela-
tively stable because they often appear when a point is adja-
cent to another limit set. A saddle point is relatively unstable
because unless one is on its stable axis, one will eventually
be repelled away from it along its unstable axis.)

Every point x in the space is then assigned a reward de-
pending on each equilibrium point’s score and distance from
the point x (where cyclic variables are treated as their em-
bedding on the circle). In particular, if the equilibrium points
are denoted {p1, p2, . . . , pn} and their scores are denoted
{s1, s2, . . . , sn}, then dR

dt at an arbitrary point x is deter-
mined by the following equation:

dR

dt
(x) =

n∑
i=1

(si)e
−d(x,pi)2 (6)

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/isal/33/118/1929893/isal_a_00466.pdf by guest on 12 August 2021

Unstable In the analytic unstable treatment, a reward
structure is generated in precisely the same way with the
opposite scores assigned to equilibrium point classes: -1 for
stable equilibrium points, -0.25 for non-hyperbolic equilib-
rium points, +0.25 for saddle equilibrium points, and +1 for
unstable equilibrium points. Note that the unstable reward
function is precisely -1 times the stable reward function.

Saddle In the analytic saddle treatment, a reward structure
is generated in the same way as the prior two treatments ex-
cept that the following scores are assigned to equilibrium
point classes: +1 for saddle equilibrium points, +0.25 for
unstable equilibrium points, -0.25 for non-hyperbolic equi-
librium points, and -1 for stable equilibrium points.

Empirical approaches
In empirical approaches, the global behavior of the system
is observed in systematically controlled conditions in or-
der to empirically infer which points in state space are the
most attractive (probable) or repulsive (improbable). This is
done by systematically sampling all combinations of initial
conditions and fixed actions to a certain resolution and then
simulating the system forward or backward in time. In this
work, a resolution of 300, 151, and 41 values is used for
each cyclic, bounded, and action variable respectively, and
each simulation is run for a period of 20s, double the length
of standard episodes, in order to better understand where the
most ultimately stable or unstable points are located.

A histogram of states hit over time is obtained and slightly
blurred to remove artifacts introduced by the sample of ini-
tial conditions. The results of this process, restricted to ac-
tions -1, -0.5, 0, 0.5, and 1, are shown in Figure 2B.

Finally, the histogram is blurred further, averaged across
actions, and processed to incentivize states in the most or
least frequently hit locations.

The advantages of these empirical approaches include that
they provide good global coverage of the space and that they
do not rely on direct mathematical knowledge of the task
dynamics. Unlike the analytic approaches, they can rec-
ognize the vicinity of stable limit cycles as attractive even
when they enclose unstable equilibrium points. The pri-
mary downside of these approaches is that they are wholly
intractable in higher dimensions.

Stable In the empirical stable treatment, the simulation is
run forwards in time. The most frequently hit locations re-
ceive the highest reward.

Antistable In the empirical antistable treatment, the sim-
ulation is run forwards in time. The most frequently hit lo-
cations receive a negative reward. This reward function is
equal to -1 times the empirical stable reward function.

Additional treatments The following treatments were
tested in our experimental setup so we are including them

to avoid selective reporting. We are not focusing our analy-
sis on them at this time:

1. In the empirical unstable treatment, the simulation is run
backwards in time – a classic method to find unstable limit
sets. The most-hit locations receive the highest reward.

2. The empirical antiunstable reward function is -1 times the
empirical unstable function.

3. In the empirical median-stability treatment, the simula-
tion is run forward in time and locations in the hitmap
are ranked by frequency. The most and least frequently
hit points are both disincentivized; rather, the points with
median frequency receive the greatest reward.

Uniform (null) approach
As well as these dynamics-based reward structures, we also
evaluate an uninformed reward structure that rewards nega-
tive values for B1 and positive values for sinC1.

Defining non-triviality
We propose the following working definition of non-trivial
learnability given a task/policy search pair: a task is non-
trivially learnable if: (1) there exists a solution that is qual-
itatively different from and significantly better than ran-
dom behavior, (2) this solution can be found by search, and
(3) this solution requires significant search to find.

It is challenging to operationalize these conditions, par-
ticularly given that it is not easy to determine the reward
magnitude for the worst and best possible policies on a task
or whether these policies are qualitatively different from a
random policy. (We hope to explore how these issues play
out given different task and policy spaces in a future work.)

For the purposes of this paper, we propose a simple met-
ric called time in convergence (TIC) that aims at capturing
conditions (1), (2), and (3) above. It is a property of a set
of optimization curves that measures how trivial it is for the
optimization strategy to find a solution for the task under
consideration, according to what proportion of the time each
curve spends above a convergence threshold.

In order to calculate time in convergence, consider n op-
timization curves. First, define “optimal performance” to
be the best performance of a streak of 5 consecutive as-
sessments seen across all n runs, and define “random per-
formance” to be the mean performance (over runs) on the
first assessment. Note that in both evolution and reinforce-
ment learning contexts, this first assessment generally re-
flects some early search rather than being fully “random”.

Normalize performance scores so that “optimal perfor-
mance” has a score of 1 and “random performance” has a
score of 0, and define a run to have “converged” when it first
surpasses a normalized score of 0.95. We can then calculate
the time in convergence metric by asking what proportion of

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/isal/33/118/1929893/isal_a_00466.pdf by guest on 12 August 2021

A B

Generation

Fi
tn

es
s

Pr
op

. C
on

ve
rg

ed

Generation

Figure 3: (A) 10 runs of an evolutionary algorithm on this
treatment yield a time in convergence of 20.7% – on aver-
age, a run spends 20.7 generations above the 95% conver-
gence threshold. (B) The proportion of runs that have con-
verged over time is shown. The area under this cumulative
histogram is equal to the time in convergence (TIC).

the full search time the average run spends in convergence.
An illustration of this calculation is shown in Figure 3.

Two situations that will result in a very low time in con-
vergence are when a single run far outperforms all other runs
and when the best-performing runs improve at a fixed linear
rate over time. These situations indeed appear highly non-
trivial. On the other hand, situations that would result in a
high reported time in convergence include cases where all
runs rapidly climb to a peak and cases where performance is
very noisy from the start, without any clear trends emerging.

Experiments
We evaluated the proposed treatments for generating reward
structures on 25 sampled sets of task dynamics over 1 cyclic,
1 bounded, and 1 action variable. The dynamics polynomi-
als had up to 4 terms of up to degree 3. Our analytic tools did
not find the equilibrium points for 6 of the 25 tasks within
an hour; these tasks were excluded from our analysis.

After the tasks and reward structures were generated, 10
evolutionary runs were performed on each condition and the
time in convergence metric was calculated on the resulting
max fitness curves. The agents were feed-forward neural
networks with layers of 3 input, 50 relu, 20 relu, and 1 tanh
units. Each of the 100 generations included 25 10-second
episodes. Our search used a population size of 200 with an
elitist fraction of 20.

In order to understand the resulting policies in the con-
text of the full policy space, we also simulated 25 random
policies from the same initial conditions we used for our ex-
periments and recorded the resulting state trajectories.

Based on our intuition that it is more difficult to maintain
improbable states, we hypothesized that time in convergence
would be lower for the analytic and empirical unstable and
antistable treatments than for the other treatments.

a. st
able

a. unsta
ble

a. sa
ddle

e. st
able

e. antist
able

e. m
ed-sta

ble

e. unsta
ble

e. antiunsta
ble

uninformed

Reward structure

0%

20%

40%

60%

80%

100%

Ti
m

e
co

nv
er

ge
d

Time converged vs reward structure

Figure 4: On 19 sampled sets of dynamics, the empirical
(31%) and analytic (42%) stable treatments result in the low-
est mean time in convergence. Of the discussed treatments,
the analytic unstable (58%) treatment results in the greatest
time in convergence.

Results
Contrary to our expectations, the empirical stable treatment
produced a lower time in convergence than any other treat-
ment, with a mean time in convergence of 31%. A two-
factor ANOVA revealed main effects of both task (p <
10−8) and reward structure treatment (p < 0.05). Figure 4
illustrates the distribution of time in convergence for each
reward structure treatment.

We found that each task dynamics/reward structure pair
resulted in different behaviors (see Figure 5 for an example
with task dynamics set 15), with the analytic unstable and
saddle treatments as well as the empirical antistable yield-
ing behaviors that followed significantly different trajecto-
ries than any of the random policies (shown in row A). How-
ever, the analytic and empirical stable treatments actually
had the least time in convergence out of all of the treatments,
in spite of following relatively in-distribution trajectories as
seen in Figure 5. For task 15, the analytic stable case had
a low TIC due to a single particularly high-performance run
that outperformed all of the others, meaning that they never
converged. The empirical stable case showed continual pro-
nounced improvement over time.

Discussion
Innovation and fine-tuning
Why do the stable reward structure treatments result in the
lowest time in convergence?

As shown in the evolution curves in Figure 5, evolving
agents to solve a reward structure for a given task results in
first a sudden leap in performance (“innovation”) and then a

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/isal/33/118/1929893/isal_a_00466.pdf by guest on 12 August 2021

“fine-tuning” phase during which the remainder of the opti-
mal fitness is gained. During the “innovation” phase, quali-
tatively different state trajectories emerge; these state trajec-
tories are then fine-tuned to travel to their destinations along
the paths of highest reward and to reach them as quickly as
possible. In the analytic unstable and empirical antistable
treatment conditions, fitness gains from innovation are large
relative to fitness gains from fine-tuning. However, when
agents evolve to solve the stable reward structures, they fol-
low more qualitatively similar trajectories to the random tra-
jectories (as seen in Figure 5), and their fitness gains from in-
novation are smaller relative to their gains from fine-tuning.

Because a greater proportion of the fitness gap between
random and optimal performance is occupied by fine-tuning
for the stable treatments, the 95% convergence threshold is
crossed only after a great deal of fine-tuning has occurred,
potentially at a very late generation. Conversely, when a
large proportion of the distance between random and opti-
mal performance is occupied by innovation, then once the
innovation has occurred, the run is considered to have con-
verged, potentially at a very early generation.

Fine-tuning is of course adaptive, and it is well worth
developing learning agents that are capable of fine-tuning.
However, innovation is the more impressive capacity, and it
is desirable to have a metric that focuses primarily on mea-
suring the development of qualitatively different behaviors
rather than fine-tuning, particularly addressing the questions
of: (1) how much innovation has taken place between ran-
dom and optimal performance and (2) how challenging was
this innovation from a search perspective?

Our primary growing edge for this work is in exploring
metrics that address these questions.

Future directions
In addition to seeking more targeted metrics of non-
triviality, future directions for this work include understand-
ing whether this distribution of low-dimensional dynamics
tasks facilitates better generalizability for continuous-action
meta-learners such as MetaGenRL, just as LPG’s lean distri-
bution of grid-world and MDP tasks facilitated dramatically
improved generalizability in the discrete-action domain.

Finally, along the same lines, this work enables co-
evolution of tasks and learners. We hope that by either usual
meta-learning or such open-ended approaches, this parame-
terized distribution of simple tasks can enable the evolution
of lifelike, versatile learning behaviors in artificial agents.

Source code
Our source code is available at: github.com/ajleite/dynatad.

Acknowledgements
We thank the reviewers for their insightful comments. This
material is based upon work supported by the National Sci-
ence Foundation under Grant No. 1845322.

Figure 5: Different reward structures generated with the
same task dynamics result in different evolved behaviors
and different evolution dynamics. The reward structures are
color-coded using the same mapping as Figure 1. Each row
represents agents evolved on a different reward treatment
over task dynamics set 15. Row (A) shows 25 randomly
sampled agent trajectories without any reward structure. The
first two columns (i-ii) depict state trajectories (white line)
beginning with two different starting conditions (white cir-
cle). The last column (iii) depicts the fitness over time of 10
evolutionary runs (light colors). A thick blue trajectory rep-
resents the average across the runs. The horizontal dashed
line represents the 95% convergence threshold. The vertical
dashed line represents the average time of convergence.

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/isal/33/118/1929893/isal_a_00466.pdf by guest on 12 August 2021

https://github.com/ajleite/dynatad

References
Clune, J. (2019). Ai-gas: Ai-generating algorithms, an alternate

paradigm for producing general artificial intelligence. arXiv
preprint arXiv:1905.10985.

Hillis, W. (1990). Co-evolving parasites improve simulated evo-
lution as an optimization procedure. Physica D: Nonlinear
Phenomena, 42(1):228–234.

Izquierdo, E. and Buhrmann, T. (2008). Analysis of a dynam-
ical recurrent neural network evolved for two qualitatively
different tasks: Walking and chemotaxis. In Bullock, S.,
Noble, J., Watson, R., and Bedau, M., editors, Proceedings
of the Eleventh International Conference on the Simulation
and Synthesis of Living Systems, pages 257–264, Cambridge,
MA. MIT PRESS.

Kauffman, S. A. and Weinberger, E. D. (1989). The nk model
of rugged fitness landscapes and its application to matura-
tion of the immune response. Journal of theoretical biology,
141(2):211–245.

Kirsch, L., van Steenkiste, S., and Schmidhuber, J. (2019). Im-
proving generalization in meta reinforcement learning using
learned objectives. arXiv preprint arXiv:1910.04098.

Kodjabachian, J. and Meyer, J.-A. (1998). Evolution and De-
velopment of Neural Controllers for Locomotion, Gradient-
Following, and Obstacle-Avoidance in Artificial Insects.
IEEE Transactions on Neural Networks, 9(5):796–812.

Miller, J. F. (2020). Evolving developmental neural networks to
solve multiple problems. In Artificial Life Conference Pro-
ceedings, pages 473–482. MIT Press.

Oh, J., Hessel, M., Czarnecki, W. M., Xu, Z., van Hasselt, H. P.,
Singh, S., and Silver, D. (2020). Discovering reinforcement
learning algorithms. Advances in Neural Information Pro-
cessing Systems, 33.

Wang, R., Lehman, J., Clune, J., and Stanley, K. O. (2019). Paired
open-ended trailblazer (POET): endlessly generating increas-
ingly complex and diverse learning environments and their
solutions. CoRR, abs/1901.01753.

Yang, G., Joglekar, M., Song, H., Newsome, W., and Wang, X.
(2019). Task representations in neural networks trained to
perform many cognitive tasks. Nature Neuroscience, page
297–306.

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/isal/33/118/1929893/isal_a_00466.pdf by guest on 12 August 2021

