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Abstract

Motile organisms actively detect environmental signals and migrate to a preferable environ-
ment. Especially, small animals convert subtle spatial difference in sensory input into orien-
tation behavioral output for directly steering toward a destination, but the neural
mechanisms underlying steering behavior remain elusive. Here, we analyze a C. elegans
thermotactic behavior in which a small number of neurons are shown to mediate steering
toward a destination temperature. We construct a neuroanatomical model and use an evolu-
tionary algorithm to find configurations of the model that reproduce empirical thermotactic
behavior. We find that, in all the evolved models, steering curvature are modulated by tem-
porally persistent thermal signals sensed beyond the time scale of sinusoidal locomotion of
C. elegans. Persistent rise in temperature decreases steering curvature resulting in straight
movement of model worms, whereas fall in temperature increases curvature resulting in
crooked movement. This relation between temperature change and steering curvature
reproduces the empirical thermotactic migration up thermal gradients and steering bias
toward higher temperature. Further, spectrum decomposition of neural activities in model
worms show that thermal signals are transmitted from a sensory neuron to motor neurons
on the longer time scale than sinusoidal locomotion of C. elegans. Our results suggest that
employments of temporally persistent sensory signals enable small animals to steer toward
a destination in natural environment with variable, noisy, and subtle cues.

Author summary

A free-living nematode Caenorhabditis elegans memorizes an environmental temperature
and steers toward the remembered temperature on a thermal gradient. How does the C.
elegans nervous system, consisting of 302 neurons, achieve the thermotactic steering
behavior? Here, we address this question through neuroanatomical modeling and simula-
tion analyses. We find that persistent thermal input modulates steering curvature of
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model worms; worms run straight when they move up to a destination temperature,
whereas run crookedly when move away from the destination. As a result, worms steer
toward the destination temperature as observed in experiments. Our analysis also shows
that persistent thermal signals are transmitted from a thermosensory neuron to dorsal
and ventral neck motor neurons, regulating the balance of dorsoventral muscle contrac-
tions of model worms and generating steering behavior. This study indicates that C. ele-
gans can steer toward a destination temperature without processing acute thermal input
that informs to which direction it should steer. Such indirect mechanism of steering
behavior is potentially employed in other motile organisms.

Introduction

Animals sense environmental signals and navigate to a preferable environment [1,2]. Even
when the distribution of signal is not known in advance, animals move around and detect a
spatial signal gradient, enabling adjustments of moving direction for navigation. Such an
active sampling of environmental signals is an essential component of the spatial navigation
strategy for small animals, since it is difficult to detect a difference of signal intensity through
multiple sensory organs placed on their tiny body [3,4].

With only a 1-mm-long body, the nematode Caenorhabditis elegans can sense and navigate
gradients of gustatory, olfactory, and thermal signals [5-7]. During navigation, C. elegans
makes gradual adjustments of its moving direction to steer upward/downward in a gradient
[5,8,9]. Recent studies suggest a neural mechanism of steering behavior; worms could adjust
the amplitude of head swings by sampling the difference of signal intensity through their own
dorsoventral sinusoidal motion [10,11]. Supporting this hypothesis, oscillatory activity of pre-
motor interneurons and motor neurons, which synchronizes with dorsoventral head swings,
are modified upon the application of a favorable olfactory signal [12-14]. Further, optogenetic
manipulation of a series of neurons only when the animal swings their head to dorsal or ven-
tral side generates steering behavior to one direction [13,15,16]. However, during behavioral
assays of freely moving animals, the difference of signal intensity sensed through head swings
and resulting neural responses should be much more subtle. Especially in thermotaxis assays
(Fig 1A-1C), temperature difference along one head swing is less than 0.01°C on a linear ther-
mal gradient of 0.5°C/cm [7], which mimics natural thermal gradients in the upper few centi-
meters of soil [17]. Therefore, a novel mechanism potentially underlies steering behavior in
such shallower signal gradients, albeit there had been no alternative hypotheses.

Here, we show that thermal inputs sensed not through head swings but through forward
movement of C. elegans can generate steering behavior, leading worms to preferred tempera-
ture. To examine how the steering behavior is regulated during thermotaxis, we construct a
neuroanatomically-grounded model with a set of neurons shown to mediate thermotactic
steering behavior [9]. Thermal input sensed by the model worm was converted to the activity
of a thermosensory neuron AFD through an empirical response property [18]; inter- and
motor neurons were mathematically modeled as passive isopotential nodes with simple first
order nonlinear dynamics [19,20]; and curving rates of locomotion were assumed to be pro-
portional to the difference in activities of dorsoventral neck motor neurons. The unknown
electrophysiological parameters of the model, including the sign and strength of the connec-
tions, were optimized by running a large set of evolutionary searches [21] so as to reproduce
the empirical thermotactic behavior [9]. We found that in all the ensemble models obtained
through evolutionary searches, steering curvature of model worms were modulated by the
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Fig 1. Evaluation of C. elegans thermotactic behavior. (A) Worms cultivated at 20°C migrate toward the cultivation temperature when placed on a plate with a
thermal gradient [7]. (B) Representative thermotactic migration of approximately 120 worms that was recorded by a Multi-Worm Tracker [42]. (C) The time
course of TTX indices (right panel) calculated using the described equation (left panel) and averaged within the assays (n = 12) [9]. (D) Classification and definition
of C. elegans behavioral components used in this study. Turning and steering are classified as previously proposed [9]. (E) Frequency plot of the omega turns (left
panel) and plot of the curving bias ¢ (right panel) representing the averages as a function of the entry direction 6 (upper panels) [9]. ¢ is defined as +¥ if biased
toward higher temperature and - if biased toward lower temperature. (F) Schematic structure of the thermotactic simulation based on experimental data.
Worm’s state was defined by its position (x, y) and moving direction relative to the vector pointing to the warm side (6). We updated the states of the worm every
second according to the experimentally observed data: the frequencies and the exit directions (®) of turning, the curving biases (¢), and the locomotion speeds (v),
all of which were applied as functions of 6, temperature, and time (see Materials and Methods). The displacements during the individual turning (4x, Ay) were also
employed when updating the states of the worm. (G) The time course of TTX indices in experiments (black line) and simulations (colored lines) in which the data
of turning or steering was replaced with the data of the corresponding component obtained in the experiments without thermal gradients [9]. In the individual
simulation, we iterated assays 100 times, each with 100 animals, and the TTX indices were averaged within the assays. Error bars indicate SEM.

https://doi.org/10.1371/journal.pcbi.1007916.9001

thermal input at the temporal scale of forward movements rather than the scale of head swings.
Temperature rises through forward movements decreased steering curvature resulting in
straight movement, whereas temperature falls increased curvature resulting in crooked move-
ment. Our simulation analysis demonstrated that the observed relationship between tempera-
ture change and steering curvature can reproduce the empirical steering bias and thermotactic
migration. Further, spectrum decomposition of neural activities in model worms showed that
the dynamics of temperature signal was transmitted from a sensory neuron to motor neurons
on a longer time scale than head swings. Our results suggest that the persistent signals sensed

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1007916  January 8, 2021 3/21


https://doi.org/10.1371/journal.pcbi.1007916.g001
https://doi.org/10.1371/journal.pcbi.1007916

PLOS COMPUTATIONAL BIOLOGY Persistent thermal input controls steering behavior in Caenorhabiditis elegans

through forward movement allow worms to adjust their moving direction toward a preferable
environment, without knowing the specific steering direction during each head swing.

Results
Neuroanatomical models reproduce thermotactic steering behavior

C. elegans is known to navigate using a series of stereotyped movements: turning and steering
[5,8,22] (Fig 1D). During thermotaxis assays (Fig 1A-1C), worms bias the frequency of turns
according to their moving direction (Fig 1E), thereby migrating indirectly to a destination
temperature. Worms also bias their curving rate (Fig 1E), thereby steering to a destination. A
recent study conducted thermotactic simulation [9] in which states of worms were defined by
their position in the assay plate (x, ¥) and their moving direction relative to the vector pointing
to the warm side of the plate (0) (Fig 1E and 1F). At every step, the model worms were decided
whether to perform turning or steering according to empirically observed probabilities. When
turning, the next moving direction 6 was provided based on empirical exit directions (D);
when steering, the next 8 was provided based on empirical curving bias (¢). By conducting the
simulations in which worms perform either biased turning or steering, the contribution of
each of the strategies to the thermotactic migration were estimated [9] (Fig 1G).

To investigate how the nervous system implement the steering behavior during thermo-
taxis, we constructed a neuroanatomically-grounded model with a set of neurons shown to be
involved in thermotactic steering behavior [9] (Fig 2A). In the model, thermal input sensed by
a model worm was converted to the activity of a thermosensory neuron AFD through an
empirical response property [18] (Eq 1), and inter- and motor neurons were mathematically
modeled as passive isopotential nodes with simple first order nonlinear dynamics [19,20] (Eq
3). When model worms perform steering in the thermotactic simulation, the next moving
direction 6 was provided based on curving bias ¢ calculated via the model circuit (Fig 2A and
2B and Eqs 6-9). The unknown parameters of the model were evolved using a genetic algo-
rithm [21]; a large set of evolutionary searches were performed so that the thermotactic migra-
tion and steering behavior of model worms reproduced the empirical data (Fig 2C) (see
Materials and Methods). Across 200 evolutionary searches, we obtained 8 independent param-
eter sets having a fitness score of at least 0.6 (Figs 3A and S1B). Although we did not find
prominent common characteristics among the 8 sets of connection weights (Figs 3B and S1C
and S1 Table), individual models reproduced the time course of TTX index and the curving
bias observed in experiments (Figs 3C and S1D). Further, empirical impairments of curving
bias in cell-ablated worms [9] were also reproduced in all the 8 models (S1E Fig). These results
support that our models can serve as platforms to investigate how the neural circuit generates
steering behavior during thermotaxis.

Thermal input on the temporal scale of forward movement modulates
steering curvature

Since there is no common characteristics among the connection weights of the models (Figs
3B and S1C), we first assessed whether there exist common profiles of steering behavior under
simplified simulation settings. Temperature of assay plates was set as constant, and model
worms were set not to perform turning. As shown in Fig 4A, the curvature ¥ of model worm’s
trajectory was larger as the temperature of plates was higher. This positive relation between
absolute temperature and steering curvature was observed in all the 8 parameter sets, though
the magnitudes of curvature were diverse (S5A Fig). However, when the parameters were
evolved in the simulation in which the response property of AFD was replaced with that of
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Fig 2. Thermotactic simulation for building a neuroanatomical model. (A) Neuroanatomical model that generates bias in steering behavior during positive
thermotaxis [9], including thermosensory neurons (triangles), interneurons (hexagons), and head motor neurons (circles). Black thin arrows indicate chemical
synapses, and black undirected lines with round endings gap junctions. An oscillatory component CPG is added to generate dorsoventral body undulation of C.
elegans. (B) Schematic structure of the thermotactic simulation for searching parameters in the model with an evolution algorithm. Worm’s state was defined by its
position (x, y) and moving direction (6). We updated the states of the model worm every 0.1 second in two ways: according to the empirical data or via the
neuroanatomical model for steering behavior. In the former case, frequencies, exit directions (®), and displacements (Ax, Ay) during turning were applied as functions
of 6, temperature, and time. In the latter case, activity of AFD (y;) was estimated by empirically determined response property r [18], activity of inter- and motor
neurons (y,_¢) were calculated with simple first order nonlinear dynamics [40], and the magnitude of curving biases (¢) was calculated proportionally to the difference
in activities of dorsal and ventral neck motor neurons (ys and ys). Red parameters in the equations were optimized in evolutionary searches (see Materials and
Methods). (C) Formula for the fitness value in evolutionary searches. TTX index and curving bias from the model/data-based simulations (red lines) were subtracted
from the index in the data-based simulations (blue line in left panel) or the bias in the experiment (black line in meddle panel), respectively. The differences were
summed up, normalized, and multiplied with each other to generate a total fitness value.

https://doi.org/10.1371/journal.pcbi.1007916.g002

another sensory neuron [23] (S2 Fig), the curvature ¥ of the model worms was smaller as the
temperature of plates was higher (S5B Fig). These results show that the relation between abso-
lute temperature and steering curvature is not critical for reproducing the thermotactic
behavior.

We next examined whether steering curvature are affected by derivatives of temperature.
The model worms were exposed to temperature changes that mimic those sensed by the freely
moving worms on a thermal gradient. One type of temperature change is at the temporal scale
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of head swings of worms (Fig 4B). Due to their dorsoventral movement, worms sense sinusoi-
dal changes in temperature of 1/4.2 Hz (Eq 5) with a maximum amplitude of 0.01°C on a lin-
ear thermal gradient of 0.5°C/cm [24]. Although the sensory neuron AFD in the models
responded to the sinusoidal thermal input (S6 Fig), steering curvatures of the model worms
were not different from those at the constant temperatures (Fig 4A and 4B). The other type of
temperature change is at the temporal scale of forward movement of worms (Fig 4C). When
moving straight up (or down) a thermal gradient of 0.5°C/cm without turning nor steering,
worms sense a monotonic temperature rise (or fall) of 0.01°C/sec. We found that, within the
range 18-20°C, temperature rises decreased steering curvature of the model worms compared
with those at a constant temperature, whereas temperature falls increased curvature within the
range 16-20°C. This relation between persistent changes in temperature and steering curva-
ture 'V was observed in all the 8 parameter sets (S7A Fig) and in the 4 parameter sets (S7B Fig)
obtained with the different AFD response property (S2 Fig). Also, we additionally evolved
moving velocity of model worms (v) and wave period of a pattern generator CPG (tosc) (S3
Fig; see Materials and Methods) and confirmed that the same relation between temperature
changes and steering curvature ¥ was observed in different vales of v and tosc (S7C Fig). Fur-
ther, when the parameters were evolved so that the model worms migrate down a thermal gra-
dient [9] (S4 Fig), the opposite relation between temperature changes and ‘¥ was observed; the
curvature of the model worms was larger (or smaller) as the temperature rises (or falls) (S7D
Fig). These analyses suggest that thermal input during the worm’s forward movement, not
during the worm’s head swings, modulates the curvature of locomotion, thereby steering to
preferred temperature.
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Fig 4. Temperature change on the temporal scale of forward movement modulates curvature in locomotion. (A) Trajectory of the model worms that were set not
to perform turning on the constant temperatures ranging from 14 to 20°C (right panels). The steering curvature ¥ of trajectories is calculated and plotted against
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temperature (left panels). (B) Steering curvature ¥ under temperature change on the temporal scale of head swings (upper panels). Worms are assumed to be moving
perpendicularly to a thermal gradient with their dorsal side heading toward warmer side (red lines) or colder side (blue lines). ¥ under these conditions were
compared with those at the constant temperature (black lines). In the lower panels, red, blue, and black lines are overlapping. (C) Steering curvature ¥ under
temperature change on the temporal scale of forward movement (upper panel). Worms are assumed to be moving straight up a thermal gradient (red lines) or down a
thermal gradient (blue lines). ¥ under these conditions were compared with those at the constant temperature (black lines). The simulation results with
representative parameter sets (#67 and #190) are shown.

https://doi.org/10.1371/journal.pchi.1007916.9g004

Thermotactic behavior is generated without directed biases in steering

The temperature changes employed in Fig 4B and 4C correspond to those sensed by worms
moving perpendicularly or in parallel to a thermal gradient, in which the moving direction 0
(Fig 1E) is equal to 90° or 0°/180°, respectively. We further examined steering curvature ¥
under other 0 and represented the profiles of ¥ as functions of 0 and temperature (Fig 5A).
The positive relation between 6 and ¥ was observed in all the 8 parameter sets (S8A Fig).

To assess whether the curvature profiles in Fig 5A can generate thermotactic migration and
curving biases, we conducted another thermotactic simulation in which curving bias of model
worms are decided not via the neuroanatomical model but based on the curvature profiles
(Fig 5B). When model worms perform steering, the amplitude of curving bias (|¢|) is decided
based on the profiles in Fig 5A, and the direction of steering (that is whether to steer higher or
lower temperature direction) is randomly determined. Thus, the model worms lack the oppor-
tunity to bias steering consistently toward warmer or cooler directions. Nevertheless, we found
that the simulations reproduced thermotactic migrations toward warmer direction and gener-
ated curving bias toward higher temperature (Figs 5C and S8B). This analysis demonstrates
that the modulation of steering curvature upon thermal input on the temporal scale of forward
movement (Figs 4C and 5A) can generate thermotactic behavior.

Higher activity of a thermosensory neuron induces straight movement of
worms

The observation that steering curvature ‘¥’ is dependent on temperature and moving direction 0
(Fig 5A) implies the dependence of ¥ on activity of a thermosensory neuron AFD (y,), since
AFD encodes both absolute temperature and the differential of temperature [9,18,25]. To inves-
tigate this relation, we examined ¥ of model worms under another simplified simulation set-
ting. AFD activity y, was fixed at constant value within the range in which model worms
experience during the thermotactic simulations, and model worms were set not to perform
turning. As shown in Fig 6, the curvature ¥ of model worm’s trajectory was smaller as y; was
higher. This negative relation was observed in all the 8 parameter sets, though some traces were
non-monotonic (#39 and #124) (S9A Fig). Notably, in 4 of 8 parameter sets (#67, #88, #109 and
#184), ¥ took the minimum values at specific y;. The conversion from negative to positive rela-
tion was accompanied by the conversion of running direction from clockwise to counterclock-
wise, or vice versa (S9B Fig). Overall, AFD activity y; experienced by model worms during the
thermotactic simulations covered the range in which ¥ showed dynamic decrease upon
increase of y; and the values in which ¥ took the minimum (S9A Fig). These results suggest
that thermal input sensed by AFD is efficiently transformed to regulate steering curvature, gen-
erating the curvature profiles (Fig 5A) and leading to thermotactic behavior (Fig 5C).

Steering curvature is embedded in activity of motor neurons on a longer
time scale than head swings

The next question to ask is how thermal input sensed by AFD is transmitted to inter- and
motor neurons (Fig 2A) to generate steering behavior. Correlation analysis and information-
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Fig 5. Profiles of steering curvature reproduce thermotactic behavior. (A) Steering curvature ¥ were calculated and plotted against temperature and moving
direction 6. (B) Schematic structure of the thermotactic simulation based on the profile of steering curvature shown in (A). We updated the states of the worm every 1
second according to the empirical data for turning [9] or via the profile of steering curvature ‘¥, in which curving bias ¢ were calculated by multiplying random signs
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https://doi.org/10.1371/journal.pcbi.1007916.9005

theoretic analysis (see Materials and Methods) revealed that the dynamics of AFD activity y; is
naively transmitted to amphid interneurons AIB, AIY, and AIZ (Fig 7A and 7B), in which
transmission valences are consistent with connection valences (Fig 3B). By contrast, since
oscillatory input from a central pattern generator (CPG) evokes oscillatory activity in dorsal/
ventral motor neurons (ys and ys) (Fig 2A) we did not observe a significant relation (linear or
non-linear) between y, and ys/y, (Fig 7B). However, y; and steering curvature ¥ showed simi-
lar relation with that observed in the simplified simulation (Fig 6). Since curving rates of
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Fig 6. Activity of a thermosensory neuron AFD designates steering curvature of locomotion. Trajectory of the model worms on the fixed AFD activity y, (right
panels). The steering curvature ‘¥ of trajectories is calculated and plotted against y; (left panels). The simulation results with representative parameter sets (#67 and
#190) are shown.

https://doi.org/10.1371/journal.pcbi.1007916.9006
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Fig 7. Activity of a thermosensory neuron and interneurons shows strong correlations. (A) Representative trajectory of a model worm (upper panel) generated
through the neuroanatomical model with a representative parameter set (#67). The time series of temperature sensed by the worm, activity of individual neurons (y; ),
and steering curvature of locomotion (V) are represented in lower panels. (B) Scatter plots of AFD activity y; versus activity of other neurons y,_¢ or steering curvature
Y obtained from 100 model worms. Correlation coefficients (R) and mutual information (I) among the time series are measured (see Materials and Methods) and
plotted in the panels.

https://doi.org/10.1371/journal.pcbi.1007916.9007

model worms are calculated from ys and ys (Eq 6), these motor neurons somehow transmit
upstream information into steering curvature.

To extract the components from ys and ys in which the dynamics of y; and ¥ are embed-
ded, we performed singular spectrum analysis (SSA). SSA decomposes time-series data into
the left eigenvector (U) that corresponds to eigen-time-series (singular spectrum) and the
right eigenvector (V) that represents the magnitude of each of the singular spectrum (Fig 8A;
see Materials and Methods). SSA on the time courses of y5 and y, (Figs 7A and 8B) revealed
that the variables in V whose corresponding singular spectrum in U is constant within a 4-sec
time window exhibited the strongest correlation (R) and mutual information (I) with AFD
activity y; among other variables (Fig 8C). These variables of constant singular spectrum also
exhibited the strongest R and I with steering curvature ¥ (Fig 8D). This tendency was
observed in all the 8 parameter sets (S10C Fig), in the 4 parameter sets obtained with the dif-
ferent AFD response property (S10A and S10C Fig), and in the 3 parameter sets with different
vales of the worm’s velocity and the wave period of CPG (S10B and S10C Fig). To further con-
firm the significance of non-oscillatory activity for executing steering behavior, we added a dif-
ferent time scales of noise component to the model circuits (S11A Fig) and assessed the effect
on thermotactic simulations. As shown in S11B Fig, the applications of noise that oscillates
with close frequency to that of CPG showed little or no impairments in the profiles of curving
bias, whereas the applications of noise with slower oscillation impaired or diminished the
curving bias toward higher temperature. These analyses indicate that the transmission of activ-
ity from sensory to motor neurons on the longer time scale than head swings of worms is cru-
cial for thermotactic steering behavior.
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Fig 7A. The first four singular spectrums U;_, and their magnitude V;_, are shown. (C) Scatter plots of AFD activity (y;) versus each variable in V;_, obtained from
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and mutual information (I) among the time series are measured and plotted in the panels. The simulation result with a representative parameter set (#67) is shown.

https://doi.org/10.1371/journal.pcbi.1007916.g008

Discussion

In this study, we constructed a C. elegans neuroanatomically-grounded model with a set of
neurons that have been shown to mediate its thermotactic steering behavior (Figs 1-3 and 7).
Simplified simulation analyses demonstrated that thermal input sensed not through head
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swings but through forward movement of the model worms adjusts their steering curvature,
thereby orienting to the preferred temperature (Figs 4-6). Singular spectrum analysis on gen-
erated neural activity data revealed that thermal input is transmitted from sensory to motor
neurons over a longer time scale than dorsoventral head swings of the model worms (Fig 8).

Previous studies on C. elegans steering behavior have proposed that the adjustment of head
swing amplitude during dorsoventral sinusoidal locomotion of C. elegans leads to direct navi-
gation to a destination [10,11]. This type of orientation behavior is categorized as klinotaxis
[1,26], and its implementation has been supported by neuroimaging [12-14], optogenetic
experiments [13,15,16], and modeling studies in which neuroanatomical models were built to
reproduce empirical chemotactic steering behavior [19,27]. By contrast, in this study, thermo-
tactic steering behavior relied on the adjustment of steering curvature during forward locomo-
tion (Fig 4), leading to indirect navigation to the destination temperature (Fig 5). This type of
orientation behavior is categorized as klinokinesis [1,26], and klinokinetic implementation of
steering is a potentially novel strategy for C. elegans, which has not been recognized previously.
An advantage of klinokinetic steering is the reliability in environments with faint and noisy sti-
muli [28]. C. elegans lives in soil, where the temperature depends on the depth from soil sur-
face, and the thermal gradient is assumed to be uniformly distributed with 0.5°C/cm [17].
Thermal input sensed through C. elegans head swings in such environment is estimated to
vary £0.01°C, with a low signal-to-noise ratio. Therefore, the longer time integration of ther-
mal input might be necessary for executing steering behavior. By contrast, for larger animals
such as Drosophila larva, thermal input sensed through its head casting can be sufficient for
execute klinotactic thermotactic steering [29,30].

Further, it is possible that C. elegans chemotactic steering behavior is also implemented kli-
nokinetically. Although previous studies of neuroimaging [12-14] and optogenetics [13,15,16]
show that worms could adjust the amplitude of head swings and thus klinotactically steer, the
possibility of klinokinetic steering has not been tested. The implementation of klinokinetic
steering during thermotaxis and chemotaxis is potentially verified in assays in which thermal/
chemical stimuli are applied temporally, and worm behavior is monitored simultaneously, as
performed in Fig 4. By comparing steering curvature of worms under the application of sinu-
soidal or monotonic chemical/thermal stimuli, we could speculate which type of sensory input
is more directly transformed to steering behavior. However, the application of sinusoidal sti-
muli with small amplitude and high frequency is still difficult to be achieved experimentally.
Modeling studies are therefore crucial for investigating small animal behavior.

While our study proposed that monotonic thermal input during forward movement are
responsible for steering up/down thermal gradients (i.e. positive/negative thermotaxis) (Figs 4
and S7), we predict that oscillatory thermal input during sinusoidal locomotion can be
employed for moving isothermally at around worm’s cultivation temperature (i.e. isothermal
tracking) [7,9]. A previous study showed that the amplitude of head swings during isothermal
tracking were modulated not only by spatial but also temporal thermal gradients [24]. Also in
chemical gradients, worms are reported to show horizontal locomotion along the edge of
chemical distributions (i.e. surfing) [31]. Future implementation of isothermal tracking and
surfing into neuroanatomical models will reveal the role of oscillatory sensory input during
sinusoidal locomotion of C. elegans.

Neural activity data generated from the models underwent a decomposition analysis, called
singular spectrum analysis (SSA) (Fig 8). Unlike other decomposition methods, such as short-
time Fourier transform (STF) or continuous wavelet transform (CWT), SSA is a nonparamet-
ric decomposition of time series data [32,33] which does not assume temporal stationarity and
spatial consistency within a multivariate system [34]. SSA decomposes time series into a sum
of singular spectrums (U), which represent eigen-time-series, and time series vectors (V),
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which represent the magnitude of each of the singular spectrum (Fig 8A). SSA was originally
employed for denoising and extracting essential dynamics from measured data, especially geo-
physical time series [35-37]. A recent study utilized SSA for linear representation of nonlinear
dynamics in chaotic systems [38]. Also, by investigating singular spectrums, SSA can be
applied for change-point detection in time series [39]. In this study, we decomposed activity of
the head motor neurons DMN/VMN and found that the magnitude of not oscillatory but con-
stant spectrums exhibited the most evident relations with activity of the sensory neuron AFD
and steering curvature ¥ of the model worms (Fig 8C and 8D). Since DMN and VMN receive
out of phase sinusoidal input from a pattern generator CPG (Fig 2A), their singular spectrums
were mostly sinusoidal (Figs 7A and 8B), which can be also extracted by STF or CWT. How-
ever, for example, the fourth spectrum of DMN in S10B Fig cannot be represented in these
two methods. Most importantly, the dynamics that corresponds to constant spectrums cannot
be naturally extracted by STF and CWT. Since the nervous system is temporally non-station-
ary and spatially inconsistent, SSA is potentially a powerful method for decomposing and
understanding neural dynamics.

Materials and methods
Neuroanatomical modeling

Mathematical model of a neural circuit for regulating steering behavior (Fig 2A) was con-
structed based on previous studies [19,20], consisting of 7 neurons/components. Thermosen-
sory neuron AFD (neuron ID i = 1) was modeled as a node with the response property r that
was identified previously [18] (S2A Fig). The response of AFD to temperature T was obtained
by linear convolution of input with r:

o= [ re=omre)ds (1)

t—100

where y represents the membrane potential (or neural response) at time ¢ relative to the resting
potential (thus y can assume positive and negative values). The Hill function

(T - Tthr)n
WT)=q K+ (T-T,)
0 T < T,

AT >T,,
(2)

represents the operating range of AFD, where Ty, is the threshold temperature, K, is the disso-
ciation constant, and 7 is the Hill coefficient.

Interneurons and motor neurons (i = 2—6) were modeled as passive isopotential nodes with
simple first order nonlinear dynamics [40]:

dy, i -
d); =y + Z] W]-,-O'(y]- + ﬁ]) + kzlgki(yk - yi) (3)
= -

T

where 7is a time-constant, § is a bias term that shifts the range of sensitivity of the output func-
tion, wj; is a strength of the chemical synapse from neuron j to neuron i, and gi; is a conduc-
tance between neuron k and neuron i. The first sum term is the input from the chemical
synapses which were modeled as sigmoidal functions
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of presynaptic voltage, and the second sum term is the input from the gap junctions which
were modeled as non-rectifying conductances between two neurons.
The dorsal and ventral neck motor neurons receive out of phase input from an oscillatory

component CPG (i =7):
. [ 2nt
() = sin2%) 5

with tosc = 4.2 sec, which models dorsoventral body undulation of C. elegans on agar plates
[41]. The curving rate y deg/sec was calculated proportionally to the difference in activities of
dorsal and ventral neck motor neurons (i = 5, 6):

lﬂ = WNM]{U()’s + ﬁs) - U(yu + Bo)} (6)

where wy,y; is the strength of the connection from motor neurons to muscles. The circuit was
simulated using the Euler method with a time step of 0.1.

Thermotactic simulation

Thermotactic behavior was simulated with experimental data (Fig 1E and 1F) [9,42,43], com-
bined with neuroanatomical models (Fig 2A and 2B) or profiles of steering curvature (Fig 5A
and 5B). For each simulation, 100 worms were run sequentially. Worms were considered as
dimensionless points in a 13.6 cm (x axis) x 9.6 cm (y axis) plate, with a linear thermal gradient
from 14 to 20°C or 20 to 26°C along the x axis. Worms started from the center of a plate, while
y coordinates and initial directions were randomized. For every 1 second or 0.1 second, indi-
vidual model worms were decided whether to undergo an omega turn, a shallow turn, a rever-
sal, a reversal turn, or a curve (Fig 1D). Event probabilities of each behavioral component were
defined according to the experimental data of turning frequencies [9]. When model worms
were decided to do any turns, the next positions (x, y) and moving direction 6 were deter-
mined according to the experimental data of probability distributions of the exit direction ®
after the individual turns [9]:

dx = Ax dt
dy =Aydt (7)
0=

where (Ax, Ay) are the average displacements during the individual turns.

When model worms were decided to do a curve, the curving bias ¢ was obtained in differ-
ent ways depending on simulation types. In Fig 1F, ¢ was obtained from the experimentally
obtained profile (Fig 1E). In Fig 2B, the neuroanatomical model was employed to decide ¢.
Since moving direction 0 is described relative to the vector pointing to the warm side of the
plate (Fig 1E), curving rates y (Eq 6) determine the change in 6 differently depending on the
dorsoventral direction DV of the model worms:

do = DV x  dt (8)

where DV = +1 (or —1) if the dorsal (or ventral) side of a model worm is toward the cold direc-
tion. Therefore, curving bias ¢ was calculated as

do
p=—5=-DVxy (9)
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In Fig 5B, ¢ was equal to +'¥ whose sign was randomly determined in every step. In all the
cases, the next positions (x, y) were determined together with the moving velocity v mm/sec:

{ dx = vcos(6 + ¢)dt

(10)
dy = vsin(0 + ¢)dt

with v = 0.2 (or 0.3) mm/sec, which approximates the locomotion speed on a thermal gradient
of 0.5°C/cm whose temperature at the center is 17°C (or 23°C) [9].

Every experimental data was applied as a function of moving direction 6. Besides, different
data set were applied depending on whether worms were on the fraction 1-2, the fraction 3-6,
or the fraction 7-8 of a thermotaxis plate (Fig 1C), and 0-10 min, 10-20 min, or 20-30 min of
a simulation. If a worm reaches the plate border, it was set to do specular reflection.

Evolution algorithm

Parameters of the neuroanatomical model were optimized by applying a genetic algorithm
[21]. We optimized the following 23 parameters (ranges are shown in brackets) [44]: bias
terms /3 that shift sensitivity range of inter- and motor neurons (Eq 3) [-15, 15], weights of
chemical synapses w (Eq 3) [-15, 15], conductances of gap junctions g (Eq 3) [0, 3], weight of
neuromuscular junction wyy; (Eq 6) [0, 90], and terms that determine response property of a
thermosensory neuron (Eq 2): Ty, [14, 26], K; [10, 000], and # [1, 10]. In S3 Fig, we further
optimized 2 more parameters: moving velocity v of model worms (Eq 10) [0.01, 1] and wave
period tpsc of a pattern generator CPG (Eq 5) [0.5, 50]. The optimization algorithm was run
for populations of 96 independent parameter sets. Each time the algorithm was run, individu-
als were initialized by random selection. Populations were evolved for 300 generations. At the
end of a run, the parameters of the best performing individual were stored for later analysis.
The algorithm was run 200 times yielding 200 distinct model networks for Figs 3 and S1, 100
times yielding 100 models for S2 Fig, 200 times yielding 200 models for S3 Fig, and 100 times
yielding 100 models for S4 Fig.

Fitness of the model was evaluated based on thermotactic simulation (Fig 2B) in which the
states of simulated animals were sequentially determined based on experimental data and
neuroanatomical model (Eqs 1-10), yielding the time series of TTX index (Fig 1C) and the
gross profile of curving bias ¢ (Fig 1E). The TTX index was compared with those from data-
based thermotactic simulation (Fig 1F and 1G), and the profile of curving bias was compared
with that from experiment (Fig 1E). The fitness value was calculated as formalized in Fig 2C.
For simplicity, negative values were set to zero.

Behavioral analysis

Time series of the positions (x, y) of simulated worms were analyzed following a previous
study [9]. A mean filter within a moving 4.2 sec temporal window was applied to eliminate
oscillatory components and estimate the trajectory of worm’s centroid. For each frame, we
defined the moving direction 6 as the vectors from the current centroid to the following cen-
troid (1 sec after), and calculated the steering curvature ‘¥’ by the angle between the previous
moving direction (1 sec before) and the current moving direction (Fig 1E). Curving bias ¢ was
defined as ¥ if the worm was steering toward higher temperature and -V if steering toward
lower temperature. When yielding the profile of ¢ as in Fig 2C or plotting ‘¥ against other val-
ues as in Fig 7B, the frames of +4.2 sec within which the worm is performing turning behavior
(Fig 1D) were eliminated from the analyses.
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Decomposition analysis

Time series of neural activity data y,(f) (i = 5,6) underwent singular spectrum analysis (SSA)
[32,33]. In SSA, we construct a Hankel matrix (H) from 1-d time series data:

yi(t) yi(tpfcﬁ])
He| 2o (1)
yilty) - il

where p is the length of time series, and q is the length of time windows (Fig 8A). The matrix
H then underwent singular value decomposition (SVD):

H=UzV" (12)

where the left eigenvector U represents the feature vector of time-series, namely singular spec-
trum, and the right eigenvector V represents the magnitude of each of the singular spectrum.

Information theoretic analysis

Relations among time series of neural activity data y;(t), magnitudes of singular spectrum
Vj(t), and steering curvature ‘P'(¢) were assessed by measuring mutual information (Figs 7B
and 8C and 8D) [45]. Mutual information is a measure of the dependence between two vari-
ables and quantifies the amount by which a measurement on one of the variables reduces our
uncertainty about the other. Calculation of mutual information was performed as previously
described [27]. The discrete probability distributions of time-series data were estimated over a
fine grid of 50 bins and by a kernel density estimation technique known as average shifted his-
tograms [46], with 12 shifts along each dimension. Mutual information can measure a non-lin-
ear relation between variables, while Pearson’s correlation coefficient measures a linear
relation.

Quantification

Experimental data are expressed as mean + SEM. Simulation data are expressed as mean.

Supporting information

S1 Fig. Thermotactic behavior is reproduced by a variety of neuroanatomical models. (A)
32 independent parameter sets having a fitness score of at least 0.5, including 8 parameter sets
having a fitness score of at least 0.6 (B) are plotted in parameter spaces as black dots and red
dots, respectively. The parameter subspaces are the space defined by principal components of
6 bias terms that shift sensitivity range of inter- and motor neurons (leftmost panel), the space
defined by principal components of 12 connection weights of chemical/electrical synapses
(second left panel), the plane defined by a connection weight from a pattern generator to
motor neurons and a connection weight of neuromuscular junction (second right panel), and
the space defined by 3 terms that determine response property of a thermosensory neuron
(rightmost panel). Individual parameter sets were assigned numbers (#) from 1 to 200. For the
8 good models, the circuit diagram (C), the time course of TTX index, and the profile of curv-
ing bias (D) are plotted. In the circuit diagrams, thickness of each connection is represented
proportionally to its connection weight. All the 8 models reproduced empirical impairments
of curving bias upon ablating individual interneurons AIB, AIY, and AIZ (E).

(TIF)
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S2 Fig. Thermotactic behavior is reproduced with a different response property of a sen-
sory neuron. We performed 100 evolutionary searches in which the response property of AFD
[18] was replaced with that of another sensory neuron AWC [23] (A), and 4 independent
parameter sets having a fitness score of at least 0.5 were obtained (B). Individual parameter
sets were assigned numbers (#) from 201 to 300. For the 4 good models, the circuit diagram
(C), the time course of TTX index, and the profile of curving bias (D) are plotted. In the circuit
diagrams, thickness of each connection is represented proportionally to its connection weight.
(TIF)

S3 Fig. Specific magnitude of worm’s velocity is preferred for reproducing thermotactic
behavior. We performed 200 evolutionary searches in which moving velocity of model worms
(v) and wave period of a pattern generator CPG (tosc) were evolved, and 68 independent
parameter sets having a fitness score of at least 0.5 were obtained (A and B). Individual param-
eter sets were assigned numbers (#) from 301 to 500. For the 3 representative models (red dots
in (A)), the circuit diagram (C), the time course of TTX index, and the profile of curving bias
(D) are plotted. In the circuit diagrams, thickness of each connection is represented propor-
tionally to its connection weight.

(TIF)

S4 Fig. Negative thermotactic behavior is also reproduced by a variety of neuroanatomical
models. We performed 100 evolutionary searches in which the parameters were evolved to
reproduce negative thermotactic behavior (A), and 8 independent parameter sets having a fit-
ness scores of at least 0.6 were obtained (B). Individual parameter sets were assigned numbers
(#) from 501 to 600. For the 8 good models, the circuit diagram (C), the time course of TTX
index, and the profile of curving bias (D) are plotted. In the circuit diagrams, thickness of each
connection is represented proportionally to its connection weight.

(TTF)

S5 Fig. Relation between temperature and steering curvature of model worms. Steering
curvature ¥ of the model worms were measured under the simplified simulation in which
temperature of assay plates was set as constant (ranging from 14 to 20°C or from 20 to 26°C),
and model worms were set not to perform turning. The parameter sets evolved through differ-
ent evolutionary searches were employed for the simulation, and steering curvature ¥ of the
individual model worms are plotted against temperature: (A) for S1 Fig, (B) for S2 Fig, (C) for
S3 Fig, and (D) for S4 Fig.

(TIF)

S6 Fig. AFD responds to both temperature changes on the temporal scale of head swings
and forward movement. (A) Activity of AFD (red line) under temperature changes on the
temporal scale of head swings (black line). Worms are assumed to be moving perpendicularly
to a thermal gradient with their dorsal side heading toward warmer side. (B) Activity of AFD
(red line) under temperature changes on the temporal scale of forward movement (black line).
Worms are assumed to be moving straight up a thermal gradient. The simulation results with
representative parameter sets (#67 and #190) are shown.

(TIF)

S7 Fig. Temperature change on the temporal scale of forward movement modulates steer-
ing curvature of locomotion. Steering curvature ‘¥’ of the model worms were measured under
temperature change on the temporal scale of head swings (left panels) and of forward move-
ment (right panels). In the left panels, worms are assumed to be moving perpendicularly to a
thermal gradient with their dorsal side heading toward warmer side (red lines) or colder side
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(blue lines). In the right panels, worms are assumed to be moving straight up a thermal gradi-
ent (red lines) or down a thermal gradient (blue lines). ¥ under these conditions were com-
pared with those at the constant temperature (black lines). The parameter sets evolved through
different evolutionary searches were employed for the simulation: (A) for S1 Fig, (B) for S2
Fig, (C) for S3 Fig, and (D) for S4 Fig.

(TIF)

S8 Fig. Profiles of steering curvature reproduce thermotactic behavior. (A) Steering curva-
ture ¥ were calculated and plotted against temperature and moving direction 6. (B) Plots of
the time course of TTX index (left panels) and the profile of curving bias ¢ (right panels) in
experiments (black lines) and simulations (red lines) in which the states of the worm are
updated according to the empirical data for turning and to the profile in (A) for steering.
(TIF)

S9 Fig. Activity of a thermosensory neuron AFD modulates curving rates and circulating
direction of locomotion. (A) Steering curvature ¥ of the model worms were measured under
the simplified simulation in which AFD activity y, of the model circuits was fixed at the con-
stant values, and model worms were set not to perform turning. (B) Trajectories of the model
worm with representative parameter set (#88) on the fixed AFD activities.

(TTF)

$10 Fig. Dynamics of constant singular spectrum of motor neuron activity show stronger
correlation with a thermosensory neuron activity and steering curvature. (A and B) Upper
panels are time series of temperature sensed by the model worms evolved in S2(A) Fig and S3
(B) Fig, activity of individual neurons y,_g, steering curvature ¥ of locomotion, first four sin-
gular spectrums U, _, of dorsal motor neuron activity ys decomposed by singular spectrum
analysis, and their magnitude V;_,. Scatter plots of each variable in V;_4 versus AFD activity y;
or steering curvature ‘¥ are shown in lower panels, where correlation coefficients R and mutual
information I among the time series are measured and plotted. (C) Plots of R and I measured
among variable in V;_, versus AFD activity y; and steering curvature ¥ in all the 15 good/rep-
resentative models evolved in S1-S3 Figs.

(TIF)

S11 Fig. Application of oscillatory noise component to the model circuits impairs thermo-
tactic steering behavior. (A) A different time scales of noise component are added in the repre-
sentative model circuits. The noise component is set to transmit oscillatory input to either ATY
or DMN, and the wave period of the oscillation was changed from that of DV head bending
(tosc) to 10 times longer value. (B) Profiles of curving bias ¢ of the model worms under the
applications of the oscillatory noise component to AIY (upper panels) or DMN (lower panels).
(TIF)

S1 Table. Parameters and values optimized in evolutionary searches. Values of 23 (or 25)
parameters in the 23 good/representative models evolved in S1-S4 Figs are listed.
(TIF)
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