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Abstract 12 
Scientific visualizations are the foundation for communicating results and findings to a variety of 13 

audiences.  As the creation of novel and large environmental datasets has grown, this has 14 

necessitated new schemes and recommendations for creating effective visualizations.  In this 15 

overview, we review the foundations of scientific visualization and considerations for 16 

visualization of large datasets within the context of the four Vs of big data (volume, variety, 17 

veracity, and velocity).  Using big datasets requires making decisions as to whether to aggregate 18 

or preserve details, approaches for grouping to enable comparisons, and considering how best to 19 

show complex data in many-dimensional space. To enable more effective visualizations, we 20 

provide several considerations regarding common decisions faced during the visualization 21 

process. These recommendations are accompanied by examples applied to existing large 22 

datasets.  While our recommendations are just that, they encourage intentionality and awareness 23 

of the choices faced when visualizing scientific datasets. 24 
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 28 

Research highlights 29 

 We discuss the challenges of visualizing large environmental datasets 30 

 We outline choices faced when creating scientific visualizations for datasets with large 31 

volume or variety 32 

 We present approaches for approaching and improving large volume or multi-33 

dimensional visualizations 34 

 We provide several examples using publicly available datasets and open code 35 

  36 



1.0 Introduction 37 
Visualization is one of the foundational mechanisms used to communicate science.  Visuals help 38 

us make sense of complex problems and interact with information (Kirsh, 2010; Liu and Stasko, 39 

2010; Scaife and Rogers, 1996).  More specifically, visuals aid in decision making (Deitrick and 40 

Edsall, 2006; Kinkeldey et al., 2014, 2017), learning (Gordin and Pea, 1995; Höffler, 2010; 41 

Höffler and Leutner, 2007; Yang et al., 2003) and science communication (Desnoyers, 2011).   42 

 43 

In the past several decades, the creation of environmental datasets skyrocketed.  This trend 44 

emerged for several reasons.  In general, large datasets are more widely available because of 45 

technological advances resulting in constantly improving computing abilities, enabling analysis 46 

and modeling to be performed at higher spatial and temporal resolutions over broader spatio-47 

temporal domains. These technological improvements contribute to growing volumes of data and 48 

shrinking costs of in situ (Alam et al., 2020; Murphy et al., 2015; Parra et al., 2018; Wickert, 49 

2014; Wickert et al., 2019) and remote sensing technologies (Zhang et al., 2019), and new (often 50 

open source) analysis tools (Gorelick et al., 2017; Vos et al., 2019). In addition to the generation 51 

of new data, support for providing public access to datasets used in publications has also 52 

increased.  The scientific community continues to show broad interest and support for 53 

reproducibility and open science (Baker, 2016; Munafò et al., 2017; Sandve et al., 2013; Stagge 54 

et al., 2019).  Journals and funding agencies are precipitating these efforts through the creation 55 

and maintenance of online repositories and requirements to store data of various types. Finally, 56 

collaboration has spurred the generation of new large datasets through model intercomparison 57 

experiments (Baroni et al., 2019; Best, 2019; Krysanova et al., 2017; Maxwell et al., 2014; Smith 58 

et al., 2004), open source coding packages (DeCicco et al., 2020; Fuka, DR et al., 2018; Slater et 59 

al., 2019; Souza, 2017), new journals aimed at publishing large and unique datasets (e.g., 60 

Scientific Data, Earth System Science Data), community-based data collection (e.g., AmeriFlux, 61 

PhenoCam), and citizen science datasets (e.g., CrowdWater, Stream Tracker).  All of this 62 

amounts to a diverse, sometimes overwhelming, and altogether impressive collection of data now 63 

at the fingertips of the earth, ecological, and environmental science and engineering 64 

communities. 65 

 66 

The acceleration of data availability entails the growth of the spatial, temporal, and uncertainty 67 

dimensions of environmental data contained in publications and presentations.  To borrow a 68 

buzzword, this means many publications are now making use of and visualizing ‘big data’.  69 

While there are numerous definitions of ‘big data’, the criteria for defining big data generally is 70 

associated with dataset size and complexity, as well as the need for advanced tools or 71 

technologies to interact with such datasets (Chang and Grady, 2019; Ward and Barker, 2013).  72 

While the line where data becomes ‘big’ is unclear, any dataset, by virtue of its volume (e.g., 73 

size), variety (e.g., different types of data or variables), veracity (e.g., uncertainty), and velocity 74 

(e.g., speed at which data is collected) may fall under the heading of ‘big data’ (Farley et al., 75 

2018).  These different attributes, termed ‘The Four V’s’ of big datasets (and introduced by IBM 76 

in the 2000s; IBM), can complicate visualizations and visualization goals (Yang and Huang, 77 

2013). 78 

 79 

Though many recommendations exist for how to best use scientific visualizations in publications 80 

and presentations (Few, 2009; Kelleher and Wagener, 2011; Rougier et al., 2014; Tufte, 2001, 81 

1990; Weissgerber et al., 2019), the growing volume and variety of data synthesized by 82 



researchers necessitates augmenting existing recommendations to consider the technical and 83 

aesthetic challenges associated with the visualization of large datasets.  As highlighted by Liu et 84 

al. (2017), there are numerous decisions to be made, especially when visualizing high-85 

dimensional datasets.  Large datasets are cumbersome and present technical challenges to data 86 

wrangling, the transformation of raw values into a form that can be leveraged to address research 87 

objectives.  Though many of general principles that were famously introduced by Edward Tufte 88 

in the 1970s and 1980s still apply to a visualization regardless of the amount of data contained 89 

within, how best to meet those recommendations as well as how to approach decision-making 90 

when creating visualizations with large datasets remains a common challenge.  Colloquially, 91 

visualizations produced over the last decade include more raw data, data points, data series, and 92 

more variables. Visualizations that move beyond 2D, into 3D and higher dimensional space, are 93 

now common.   94 

 95 

To date, there has been much attention given to computational processing, analysis, and user 96 

interfacing and interaction (Liu et al., 2017).  However, there has been much less attention given 97 

to how best to effectively convey information in visual form. To address this need, we deliver a 98 

set of approaches and recommendations, paying heed to potential pitfalls, for visualizing large 99 

environmental datasets.  Existing recommendations regarding scientific visualization generated 100 

over the last few decades serve as a sound basis for evaluating the effectiveness of any 101 

visualization. Our recommendations serve to augment these sound principles in the context of 102 

big data visuals.  Analysis and presentation of large datasets in many ways stretch the limits of 103 

traditional recommendations for visualization; therefore, our focus is specifically on visualizing 104 

large volumes and varieties of data to assist in the analysis, synthesis, and comparison of large 105 

datasets for presentation and publications.   106 

 107 

2.0 Challenges posed by large environmental datasets 108 
Large environmental datasets present major challenges when it comes to developing succinct, 109 

easily interpretable, and visually aesthetic plots.  These difficulties arise from two sources: 110 

technical challenges introduced by computational constraints when visualizing a large dataset, 111 

and the decision-making that is involved in how to best display and convey large datasets.  These 112 

challenges are best expressed when considering the major characteristics of big data, also known 113 

as the 4 Vs.  Large datasets often have large volume (many values), large variety (many types of 114 

data), and inherent (but challenging to communicate) veracity.  The fourth V, velocity, we 115 

describe in more detail in a later section; here, we interpret this fourth V to refer to the dynamic 116 

nature of many large datasets, that may often be best conveyed using animated or interactive 117 

approaches.  However, the majority of our overview focuses on static visualizations, as these are 118 

still the major currency of visual communication.  Below, we outline the major challenges 119 

introduced by three of the four Vs when it comes to approaching data visualization with large 120 

datasets that may fall into one or multiple of these categories. 121 

 122 

2.1 Challenge 1: Large datasets are (unsurprisingly) big 123 
The sheer volume of large environmental datasets introduces several considerations for 124 

visualizations, beyond posing technical challenges. While there are many examples of 125 

voluminous visualizations, there is a tension between ensuring a visualization shows broad 126 

patterns and the distribution of the data while at the same time allowing a reader to identify all of 127 

the data or the most important data.  Too often, we synthesize and remove key pieces of 128 



information through aggregation. Yet this may also be a necessary step to pursue scientific 129 

questions that span spatio-temporal scales. 130 

 131 

 132 
Figure 1: Key questions faced when creating a visualization. Within the ‘how many 133 

dimensions?’ box, the green check mark corresponds to an affirmative decision to use certain 134 

encoding attributes (e.g., 2d position, color), while a red ‘x’ box corresponds to a negative 135 

decision to not use shape as an encoding attribute. 136 

 137 

2.2 Challenge 2: Large datasets often contain variety 138 
Variety in large datasets refers to the inclusion of different types of data, categories of data, or 139 

different variables or descriptors.  A common challenge in large datasets with exceptional variety 140 

is how to best display multi-dimensional data to show broad relationships across many variables 141 

or descriptors.  Likewise, plots that highlight variety often deal with multiple categories and 142 

comparisons.  Complexity should not be avoided when creating such visualizations, though it 143 



can be challenging to walk the line between clean visuals and overcomplicated visuals when 144 

displaying datasets with large variety.  145 

 146 

 147 

2.3 Challenge 3: Large datasets are frequently used to communicate veracity 148 
Veracity is often interpreted as data uncertainty; here we broadly interpret this term to refer to all 149 

types of uncertainty, variability, and comparisons between values to determine veracity.  Plots 150 

concerned with veracity may be used to show aggregated metrics such as objective functions 151 

(Jackson et al., 2019), uncertainty, error, probabilities, or confidence.  These approaches often 152 

rely on comparison to a baseline (e.g., modeled uncertainty applied to a timeseries plot; error 153 

bars applied to bar chart or dot plot) or feature error as a derived value (e.g., boxplot or violin 154 

plot of errors; bar chart of difference from ‘true’ or zero).  Communication of veracity can be 155 

especially challenging (Spiegelhalter et al., 2011), as emphasized by the misinterpretation of 156 

common graphics used to communicate uncertainty, such as the Hurricane ‘cone of uncertainty’ 157 

(Boone et al., 2018). 158 

 159 

3.0 Decision-making for visualizing large datasets 160 
The term visualization can be ambiguous.  It may refer to a tool being used to create or generate 161 

a visualization, to the process of creating a visualization, to the analysis of data, or to a generated 162 

visual (Parsons and Sedig, 2014).  In this article, we use the term scientific visualization to refer 163 

to visual representations of datasets. 164 

 165 

In the literature, two common types of visualizations exist: glyphs and plots.  Glyphs (e.g., 166 

multidimensional icons) combine multiple encoding attributes into symbols or graphical 167 

representations (e.g., Chernoff Faces, Chernoff, 1973, or infographics).  In contrast, plots display 168 

datasets using coordinate systems.  We focus specifically on the creation of scientific 169 

visualizations as plots, though note that many of our recommendations also apply to glyphs. 170 

 171 

Generating a visualization from a large dataset introduces both technical challenges as well as 172 

several (often somewhat subjective) decisions that must be made to generate a visual display.  173 

When considering how best to approach visualization of a large dataset, there are four central 174 

questions that must be answered when creating a visualization (Figure 1): 175 

 Plot type (or the decision to use multiple plots): Which visualization(s) will you use to 176 

display your data? 177 

 Raw values or aggregation: Is aggregation needed or should viewers see raw values? 178 

 Dimensionality: How many dimensions do you need to display? 179 

 Color: Are you using color, and are you using color wisely? 180 

 181 

In the sections that follow, we present common challenges or pitfalls when using traditional 182 

visualization techniques, and considerations and recommendations for how to re-envision these 183 

plots in the context of these four key decisions.  We also envision these decisions in Figure 1 as a 184 

series of steppingstones to arriving at a final plot.  Amongst these recommendations, we qualify 185 

that this overview is by no means represents an exhaustive list of all considerations when 186 

plotting datasets, whether small or large, but serves as a starting point for thinking about 187 

visualizations in the context of large datasets. Importantly, these recommendations are not 188 



intended to be applied in isolation; instead, they are complimentary ideas that should be used to 189 

identify how visualizations of large datasets may be approached or improved. 190 

 191 

 192 
Figure 2: Examples of common multidimensional visualizations, with associated attributes that 193 

can be used to display additional dimensions, which of the 4 Vs the plotting supports, and key 194 

themes that can be communicated by each visualization.  Below each visualization, we also 195 



summarize pertinent details, and point to citations from the literature that make strong use of 196 

these visualizations.    Literature examples include: Balch et al. (2020), Blaszczak et al., (2019), 197 

Cominola et al. (2019), Dalin et al. (2012), Ge et al. (2009), Gill and Malamud (2014, 2017), 198 

Gold et al. (2019),  Hicks et al. (2019), Joseph et al. (2019), Kelleher et al. (2018), Knapp et al. 199 

(2020), Li et al., (2019), Raseman et al. (2019), Tessler et al. (2015), Tessum et al. (2019), 200 

Trimble (1999). 201 

 202 

Using these decisions as a guide, we include examples created from existing large, 203 

environmental datasets.  These include the GAGESII dataset (Falcone, 2011; Falcone et al., 204 

2010), land cover change data for Alaska, from the National Land Cover Dataset (Homer et al., 205 

2015; National Land Cover Dataset), and the Continuously Updated Digital Elevation Model 206 

dataset (Cooperative Institute for Research in Environmental Sciences (CIRES) at the University 207 

of Colorado, Boulder, 2014).  All visualizations were created within RStudio (v. 3.6.3) and code 208 

is available on Github.  209 

 210 

3.1 Choosing a plot type, encoding attributes, and overall visualization approach  211 
At a basic level, a visualization is composed of encoding attributes, scales, and coordinate 212 

systems (Wickham, 2010).  Scientific visualizations rely on the selection of encoding attributes, 213 

also known as visual encodings or visual marks.  These attributes are used to convey quantitative 214 

and qualitative information within the context of a visualization.  As summarized by Few (2009), 215 

attributes include those associated with form (e.g., length, width, orientation, size, shape, 216 

curvature, enclosure, and blur), color (hue, value, saturation, transparency), spatial position (2-d 217 

position, spatial grouping, or density) and motion (direction, path). Scales are used to encode 218 

information using attributes associated with form, size, and color. They may be quantitative (e.g., 219 

color, size) or categorical (color, shape).  Coordinate systems provide a means of assessing 220 

spatial position.  Coordinate systems may be cartesian, logarithmic (on one or multiple axes), 221 

polar (r, 𝜃), or multidimensional.  222 

 223 

These building blocks of scientific figures ultimately come together in a visualization.  While it 224 

is sometimes helpful to think about these individual pieces, perhaps more important is to 225 

consider the overall plot type, as this is one of the most crucial choices faced in the visualization 226 

of a large, multi-dimensional dataset. This decision is an inherently subjective choice but can 227 

benefit from keeping in mind the overarching plot goal or message (what is the main message 228 

you wish to convey?). This choice will ultimately determine how many dimensions you seek to 229 

encapsulate within your plot, which then will help to identify what plot types are at your 230 

disposal.   231 

 232 

Regardless of the big picture selection of a plot type, the details associated with the plot building 233 

blocks are equally important.  Within the open source programming language R, these 234 

components are often described and implemented as the ‘grammar of graphics’ (Wilkinson et al., 235 

2005; Wickham, 2010).  Though not all programming languages or tools implement a graphical 236 

grammar, the grammar introduced by Wilkinson et al. (2005) and refined by Wickham (2010) is 237 

helpful for identifying the choices faced and the refinements that can be used in the process of 238 

generating a graphic.  Such details are crucial for refining visualizations. 239 

 240 

Consideration 1: Match your plot type and encoding attributes to your key message 241 



Visualizations are built upon the selection of encoding attributes and the choices made in the 242 

selection of components of a figure.  While we are all aware of the components that are used to 243 

build a visualization, the selection of these components is a key development step in creating a 244 

visualization.  Visualizations of any type should begin with identifying a key message (aimed to 245 

be conveyed with the visualization).  From this message, we can select a particular plot type, 246 

scale, and coordinate system, built on the selection of encoding attributes to display quantitative 247 

information or qualitative groupings ( Kelleher and Wagener, 2011).  Writing out a key message 248 

or the visualization take-away can be a good place to begin, especially when parsing components 249 

of a complex visualization.  For example, does the reader need to compare groups or categories 250 

to determine the key message?  Likewise, revisiting these choices during revision of a given 251 

visualization can help to clarify the message conveyed by a particular plot. 252 

 253 

Though visualizations are unique to the dataset and creator, there are several common key 254 

messages that visualizations seek to highlight.  These include: connections between values (i.e., 255 

flow), the distribution of a dataset, data density (including spatial density), geospatial position, 256 

magnitude, outliers, part-to-whole (i.e., hierarchical or layered datasets), patterns, rankings, 257 

relationships (i.e., correlation), timeseries, and uncertainty.  These common themes may 258 

represent a starting point for designing a plot to convey a key message.  In Figure 2, we show 259 

several cartoon examples of multidimensional visualizations and highlight common key 260 

messages (or themes) that may be conveyed using each of these plots.  We do also highlight that 261 

many figures may be composed of multiple plots, aimed at showing groupings relative to the 262 

larger dataset or other groups (also called facets, Wickham, 2010) or groupings relative to 263 

subsetted data groups. 264 

 265 

We encourage visual creators to remember that there are a multitude of different approaches and 266 

types of plots that can be used to visualize data.  For inspiration, we direct you to several 267 

impressive summaries including the Visual Vocabulary (Smith et al., 2016), The Data 268 

Visualisation Catalogue (Ribecca, 2020), and The Graphic Continuum (Schwabish and Ribecca, 269 

2014).  In particular, The Graphic Continuum highlights six key plot groups: distributions, time, 270 

comparing categories, geospatial, part-to-whole, and relationships.   271 

 272 

Consideration 2: Pay heed to overall composition as you finetune your visualization 273 
As discussed above, visualizations inherently consist of many different components that must 274 

work together to tell a story.  How best to arrange these components such that they most clearly 275 

articulate a key message can be thought of as composition.  The composition of a plot includes 276 

selection of a color palette, the use of annotation through legends, direct labeling, and other 277 

words included on the visualization including the caption, and the choice of plot and how the 278 

plot is designed.  279 

 280 

Visualizations often include annotations – text or enclosures used to highlight or explain features 281 

of the visualization.  Beyond the caption, annotations are a way to use text or other visual cues to 282 

direct the eye of the reader and to aid interpretation.  Annotations also encompass the figure 283 

legend that is used to describe a qualitative and/or quantitative scale.  Ensuring a strong 284 

composition requires attention to annotations, which enhance a viewer’s understanding of a 285 

given visualization. 286 

 287 



 288 
Figure 3: Aesthetics (beyond color) that can be used in most or all plots. 289 

 290 

Composition also includes the creation of what we will call ‘mega-figures’, composed of many 291 

subplots or facets.  Though a single visualization may feature one plot, visualizations 292 

(particularly those of complex datasets) may also include a composite of many small multiples 293 

(Tufte, 1990) also known as subplots (Matlab) or facets (R).  The combination of small multiples 294 

may be used to provide additional detail regarding a component of a dataset and can be 295 

especially useful for parsing and displaying subsets of a large dataset.  In the literature, small 296 

multiples are commonly used to parse a single dataset often using a repeated coordinate system, 297 

encoding attributes, and scale but varying the data displayed, enabling visualization of high-298 

dimensional data.  However, these subplots or small multiples can also be superimposed on 299 

larger plots, to display different types of data (e.g., spatial versus temporal versus categorical) or 300 

to visualize data at different scales.  In composing a plot, we encourage readers to think beyond 301 

generating a single plot to producing an integrative visualization that may be composed of many 302 

plots and plotting elements. 303 

 304 

Consideration 3: Give thought to how you can simplify and clarify for your key message 305 



Across large environmental datasets that may exhibit large volume or variety, there are several 306 

common approaches to simplifying such visualizations that may clarify the overarching message 307 

of a particular plot: 308 

 Aggregating large volumes into simple distributions or statistics, multiple values into 309 

indices, single points into footprints  310 

 Combining multiple types of data into multidimensional plots 311 

 Highlighting outliers, certain groups of data, trends, a single observation 312 

When designing a plot, it is important to consider these options for creating a clear and concise 313 

visualization.  Finally, ensuring that key message is clear and perceivable by others is one the 314 

most important considerations when creating a visualization.  Generating a useful and effective 315 

visualization not only requires that you have in mind what the goal of your plot is, and how you 316 

want to use encoding attributes (color, shape, width/size, orientation; Few, 2009; Kelleher and 317 

Wagener, 2011) to convey key messages, but also that this key message is perceivable by others.   318 

 319 

Consideration 4: Aesthetics are important – think beyond just color 320 
Visualizations are as much science as art.  Often, we associate color with aesthetics (so much so, 321 

that we have dedicated an entire section of this overview to the discussion of color).  However, 322 

aesthetics of visualizations go far beyond color alone.  During the visualization process, give 323 

thought and attention to the details – annotations, font size, font type, legend placement, axis 324 

widths, tick mark spacing.  For publication quality graphics, many journals may have 325 

recommendations for particular font sizes or types to use and may specify the location (inside the 326 

axis or outside the axis) for tick marks.  Helvetica and Arial are often preferred fonts when 327 

creating visualizations.   328 

 329 

In addition, there are several details that can be used to improve the overall interpretation of your 330 

visualization (Figure 3).  These include enclosure (e.g., to highlight data points that meet a 331 

certain p-value), arrows (e.g., to show directional connections), annotation (e.g., to explain or 332 

label an unusual or exceptional data value or sets of data values), and transparency (e.g., when 333 

elements overlap).  Overall, attention to these small details can be used to improve the overall 334 

aesthetics of your visualization.   335 

 336 

3.2 Preserving individual values versus transformation or aggregation  337 
Often, the analysis of a large dataset begins with visualization of raw, untransformed, 338 

unaggregated data.  On the path to presentation and publications, this data is often repackaged in 339 

different ways within visualizations.  This re-packaging often includes the use of transformations 340 

and the use of aggregations.   341 

 342 

Transformations, depending on the visualization tool, may be applied to the data, to the scale, or 343 

to the coordinate system (Wickham, 2010).  When applying transformations to scales or 344 

coordinate systems, clarity and communication is key.  This requires attention to and use of tick 345 

marks, legends, and even the figure caption.  Visualizations may also rely on statistical 346 

transformations that aggregate or alter data in some way.  This includes data binning (as is done 347 

when plotting distributions or density), data jittering, data smoothing, or categorial or other 348 

groupings applied to datasets.  While transformations and aggregations are a necessary part of 349 

visualizing large datasets, they can also alter the perception of the data and the visualization.   350 

 351 



One existing tension in the visualization of large datasets is whether or not it is important to 352 

show all values in a given visualization, or whether these values should be aggregated.  This 353 

decision depends on a few factors, particularly the size of the dataset (Consideration 1) and the 354 

approach to aggregation (Consideration 2), but should also be viewed in the context of which 355 

approach produces a clear visualization that enables viewers to perceive the overarching plot 356 

message.   357 

 358 

Several plot types, including scatter plots, spatial scatter plots, and parallel coordinate plots, are 359 

used to enable readers to quantitatively perceive all values within a dataset.  Humans have a 360 

remarkable ability to lump or categorize visual information, so often preserving information 361 

while highlighting the main or macro pattern is key for effective visualization (Tufte, 1990).  As 362 

stated by Tufte (1990), “Clutter and confusion are failures of design, not attributes of 363 

information”.  364 

 365 

Yet, displaying all raw values may overwhelm or obscure trends, variation, or groups. When it 366 

comes to large datasets, showing all values may not be possible for high volume datasets (e.g., a 367 

long timeseries or for many raw values).  For these situations, aggregation is often necessary.  368 

However, it is important to keep in mind that aggregation can subsume extensive variability in 369 

raw values (which can challenge interpretation of veracity).  In this section, we highlight two 370 

considerations when making the decision regarding whether to aggregate or preserve raw data.   371 

 372 

Consideration 1: Can raw values be distinguished?  373 
Preserving the visualization of all points is particularly challenging for large datasets as the 374 

information contained in the plot may become obscured (Figure 4; Figure 5).  For instance, 375 

plotting many sites or locations, or plotting dense datasets, can produce overlapping values that 376 

may be poorly visualized. To combat this, the most commonly used strategy is to plot the shape 377 

outline with an empty interior (Figure 4a; Figure 5a).  While this strategy may be effective for 378 

intermediately sized data, the intended outcome of ensuring that all values can be visually 379 

interpreted can be difficult as the number of values to be visualized increases.  As an alternative, 380 

there are several ways to preserve visibility of all data points in figures displaying large datasets.  381 

Plotters can vary the size of attributes, transparency (e.g., Kelleher and Wagener, 2011), or create 382 

inset figures where individual points can be distinguished from one another.  However, 383 

transparency may not be a solution for displaying density across large volumes of data (Figure 384 

4b).  Plotting that does not enable the viewer to distinguish all points or values should be 385 

avoided, as this approach may obscure outliers, density, or the interpretation of overarching 386 

relationships within a dataset.   387 

 388 



 389 
Figure 4: Aggregating record lengths (years of data) and drainage areas for discharge 390 

measurement locations within the GAGESII dataset (Falcone, 2011; Falcone et al., 2010). For 391 

this large dataset that includes more than 9000 sites, using (a) using unfilled points obscures any 392 

perception of data density.  Though (b) using transparency still conveys some aspects of data 393 

density, a plot that conveys (c) a continuous bivariate distribution may be a better alternative to 394 

highlight higher and lower frequency combinations of drainage area and record length.  As an 395 

alternative to showing the density pattern in subplot (c), subplot (d) highlights the outliers – the 396 

sites with the longest record lengths across different drainage areas.  In this particular example, 397 

(d) highlights the disparity between record lengths in watersheds with very small versus large 398 

drainage areas.    399 

 400 

Preserving raw values (encoded as points or lines) can be especially useful when the goal is to 401 

highlight outliers or a particular subset of observations within a particular dataset.  From a data 402 

science perspective, outliers are often an important source of information. Using a strong color 403 

contrast, or changing size or shape, enables perception of this group or set of outliers as 404 

compared to the rest of the dataset (Figure 4d).  Such an approach can also be used with subplots 405 

or facets to highlight multiple sub-groups and to emphasize how they relate to the larger dataset.  406 

As we show in Figure 4c, aggregation can be useful for conveying where values are concentrated 407 

(such as the conclusion from Figure 4c that most streamflow records occur in moderately sized 408 

rivers with record lengths of between 30 and 60 years).  However, as shown in Figure 4d, when 409 

this information is aggregated, the individual data points are lost; instead, our plotting of outliers 410 

shows how streamflow record length varies with watershed drainage area, aiding in the 411 

conclusion that larger watersheds typically have longer record lengths. 412 

 413 

It can be especially challenging to visualize raw values when all data points are plotted along a 414 

single axis (e.g., boxplots or violin plots, parallel coordinate plots).  Jittering data values, which 415 

creates slight offsets, can be helpful when points are used as an encoding attribute.  When lines 416 



are used as an encoding attribute (e.g., parallel coordinate plots), de-cluttering strategies may 417 

include use of transparency or bundling (Raseman et al., 2019).   418 

 419 

Consideration 2: Aggregation to emphasize patterns 420 
Enabling perception of all values may not be possible for visualization of large datasets.  In this 421 

case, aggregation may be used to summarize values.  Aggregation can enter the visualization 422 

process either after a plot type is selected, prior to selecting a plot type, or as part of the iteration 423 

when selecting a plot type to use.  Approaches to data aggregation will depend on the type of 424 

data you are using and in what way you seek to aggregate.  When aggregating a dataset for 425 

visualizations, you must first decide how you would like your output data to be organized.  This 426 

requires considering how you will group your values: quantitatively or categorically.  Second, 427 

you must decide what statistic you will use to transform many values to one value within your 428 

groups.   429 

 430 

Aggregation may occur during plot creation (such as with a density-based plot, Figure 4c) but 431 

often happens prior to plot generation, with the goal of condensing data to be visualized.  In 432 

these contexts, aggregation may be used to address technical challenges encountered when trying 433 

to plot a large volume dataset, and/or may be an approach to simplify the plot itself and the 434 

overarching message (such as when summarizing spatio-temporal datasets).  In these cases, the 435 

choice of a statistic for aggregation will depend on the overall plot message.  For instance, 436 

frequency is used to highlight density.  Statistics available for aggregation include but are not 437 

limited to the frequency or count, mean, median, maximum, minimum, and variance of a dataset.  438 

During this process, decisions regarding how to group data are especially important.  Sometimes 439 

these groups may be evident within the dataset (such as countries, cities, watersheds, or species), 440 

while others may require choices.  In these instances, we encourage transparency to describe 441 

such choices and justification in the figure caption. 442 

 443 

When working with spatially distributed data, additional decisions are required during 444 

aggregation.  Aggregation requires the selection of a window or “footprint” size and shape (as 445 

we chose to do in Figure 5b).  It may be easy to assume a certain footprint size (e.g., 446 

municipalities, counties, or other geographic boundaries) or more challenging in some cases 447 

(e.g., geolocated reports of flooding, area of hurricane cover).  We note that the subject of how 448 

best to represent and visualize a footprint is also an interesting and open-ended question.  These 449 

selections can bias the interpretations gathered from a particular dataset and should be clearly 450 

indicated in the figure caption.  Similar decisions are encountered when using non-spatial, 451 

bivariate plots aimed at highlighting density as a third dimension.   Plots that aim to highlight 452 

density have commonly used transparency (e.g., Kelleher and Wagener, 2011; Raseman et al., 453 

2019), but this approach falls short for very large and/or very dense datasets (Figure 4c).  One 454 

option that can be used to visualize density in large datasets is the use of color to indicate density 455 

(Figure 4c; Figure 5c), or to show density groups that highlight the fraction of a dataset across 456 

the figure space (see example from Harrison, 2017).   457 

 458 

Consideration 3: When possible, show raw values AND aggregated information  459 
One of the most common ways to visually contextualize or compare large datasets to use a plot 460 

that shows distributions.  These types of plots represent succinct ways to summarize large 461 

volume datasets while preserving the dataset statistical properties.  Of the many plot types that 462 



exist for showing distributions, two of the most common are bar plots and box plots (Figure 6a; 463 

Krzywinski and Altman, 2014; McGill et al., 1978; Tukey, 1977).  However, there is growing 464 

evidence that shows both of these plot types can be misleading (Matejka and Fitzmaurice, 2017; 465 

Weissgerber et al., 2015).  This confusion arises because different dataset distributions may 466 

contain similar or even equivalent summary statistics. Given bar plots and box plots primarily 467 

show summary statistics – medians, interquartile ranges, and 95th and 5th percentiles for box 468 

plots, and median or mean plus standard error or confidence intervals for bar plots – two similar 469 

plots may incorrectly suggest that dataset distributions are equivalent.  This problem is even 470 

more pronounced with bar plots that use a bar to represent the mean or median of the data, and 471 

lines to indicate standard error or confidence intervals (Weissgerber et al., 2019). 472 

 473 

 474 
Figure 5: In geospatial visualizations, the ability to discern the spatial distribution of data is 475 

important for visualization. This figure uses the GAGES II dam location dataset (Falcone 2010, 476 

2011) to examine at the spatial distribution of dams across the U.S. using three different 477 

visualizations. In Panel A, all records of dams are illustrated with transparent points, this 478 

produces a cluttered figure with little available information. Panel B aggregates records of dams 479 

within a certain distance to bubbles of varying size and color. Although more detail is available 480 

in this figure, there are still areas (Southeast U.S.) that are cluttered, and it is hard to distinguish 481 

separate bubbles. Using kernel density estimation to create a heat map, data was aggregated to 482 

raster grid cells in Panel C. Although this map shows the "hottest spots" for dams in the most 483 



easily interpretable way, it does lose information on the location of dams in less dam dense 484 

areas (i.e., Colorado River). 485 

 486 

Three alternative plots for large datasets that preserve distribution shape are density plots, violin 487 

plots, and a new combined approach termed ‘raincloud plots’ (Allen, 2018; Allen et al., 2019).  488 

Density plots can be strong alternatives to boxplots when the goal of a visualization is to show 489 

volume but not variety (e.g., multiple groups).  Overlaid density plots can summarize density for 490 

a small number of groups; however, it may become hard to distinguish between groups for more 491 

than three to four categories (Wickham, 2010), depending on the degree of difference between 492 

the distributions.  As the number of series comparisons grows, subplots should be used to break 493 

out individual groups.   494 

 495 

One alternative to density plots for comparing multiple groupings with large volumes are violin 496 

plots, which are essentially mirrored density plots (Figure 6b).  The myriad of violin plot 497 

iterations also enables encoding summary statistics alongside the distribution, to preserve both 498 

types of information.  However, there is an argument to be made that violin plots may include 499 

redundant information through mirroring (Allen et al., 2019).  Raincloud plots are a different 500 

type of approach that combine visualization of the distribution showing an aggregated 501 

distribution and individual data values (Allen et al., 2019).  While these three approaches 502 

represent endmembers in the visualization of distributions, many other iterations of these types 503 

of plots exist.  For instance, one iteration is to combine a barplot and violin plot (Figure 6c; 504 

Hintze and Nelson, 1998), enabling interpretation and comparison of summary statistics and 505 

overall distribution.  In addition to the variant shown in Figure 6c, other variants include 506 

beeswarm plots (Eklund, 2016, 2015) – a re-envisioning of the dot plot (Wilkinson, 1999), and 507 

beanplots (Kampstra, 2014, 2008). 508 

 509 

One question that may arise when considering plotting distributions: if the goal of a plot is to 510 

highlight the distribution of the data, should we just be plotting the raw data?  The answer here is 511 

an emphatic “no”.  Estimating distributions and statistics from raw data is notoriously 512 

challenging (Bobko and Karren, 1979; Spence et al., 2016). 513 

 514 

3.3 Decision-making in the context of dimensionality 515 
Large datasets are often high-dimensional, either in terms of the variables they contain, or in 516 

terms of how those variables are categorically or quantitatively grouped.  Therefore, selecting the 517 

number of dimensions to display within a given plot is often challenging.  With so many 518 

potential encoding attributes to add – spatial location, shape, width/size, and color, to name a few 519 

– it is easy to overcomplicate.  At the same time, as the volume and variety of data encapsulated 520 

within scientific visualizations grows, plot complexity (in terms of dimensionality, volume of 521 

data encoded, and composition) is certainly growing.  Though simplicity should still be the 522 

ultimate goal of any visualization, this does not have to be in conflict with employing a 523 

visualization that exceeds three dimensions, that shows an exceptional volume of data, or that 524 

combines multiple subplots into a single visualization. 525 



 526 
Figure 6: Visualizing distributions enables comparisons amongst groups, such as USGS 527 

streamflow observations.  Here, we visualize distributions of daily streamflow (in mm hr-1; Oct 1 528 

2008 through Sept 30 2018) across 14 United States Geological Survey stream gages stretching 529 

from Minnesota (drainage area of 1579 km2) to Louisiana (drainage area of 2,926,687 km2).  530 

These distributions are shown as boxplots (Panel A), violin plots (Panel B), and as combined 531 

violin and boxplots (Panel C), adding more information about the distribution moving from A to 532 

C. 533 



 534 
Figure 7: Organization of and relationships between two hydrologic signatures, runoff ratio and 535 

flow duration curve (FDC) slope from the CAMELS database (Addor et al., 2017a, 2017b).  536 

These are shown (a) plotted against one another, (b) with precipitation, and (c) sorted by value 537 

and colored by HUC2 watershed.  Each point represents a watershed.  We note the major 538 

questions being asked and answered above each subplot. 539 

 540 

Consideration 1: Balance the number of dimensions you show with overall plot simplicity 541 
Decision-making surrounding the choice of a plot, the number of dimensions to display, and a 542 

key plot message are inherently linked.  Giving thought to how these pieces work together from 543 

an early stage is therefore important to creating an effective visualization.  When making 544 

decisions regarding the number of dimensions you seek to display, it is important to remember 545 

that encoding attributes inherently limit us to just a few dimensions – two continuous variables 546 

for positions on a bivariate plot, one continuous or categorical dimension for color, and/or size, 547 

and one categorical dimension for shape. Therefore, many plot types support displaying 548 

anywhere between two and five dimensions, though some plots, such as the parallel coordinate 549 

plot and the rose plot, can display many more dimensions.  However, as the old adage goes, “just 550 



because you can doesn’t mean you should”.  Additionally, the goal with any plot should be to 551 

avoid redundancy (as shown in Figure 6c – color is redundant with labeling on the x-axis).   552 

 553 

In Figure 7 and Figure 8 we explore the Catchment Attributes and Meteorology for Large-554 

Sample Studies (CAMELS; Addor et al., 2017a; Addor et al., 2017b) dataset using a series of 555 

figures moving from two-dimensional (Figure 7a, c) and three-dimensional (Figure 7b) 556 

visualizations to higher-dimensional visualizations such as parallel coordinate plots (Figure 8).  557 

In Figures 7 and 8 below, adding higher dimensions and showing variety across hydrological 558 

signatures (Figure 8) presents a clearer picture of how watershed behavior is organized across the 559 

US (Figure 8a) and to what extent behavior is similar within a larger basin (Figure 8c).  560 

However, as additional elements are added to the plot, such as shown in Figure 8b, it becomes 561 

difficult to extract useful patterns and to compare across multiple dimensions.  562 

 563 

Consideration 2: Is the number of groups or series in a single visualization manageable and 564 

discernable? 565 
While our plotting is often limited by dimensions, it is not inherently limited by quantitative or 566 

categorical groupings.  These groupings are regularly used when visualizing large datasets to 567 

emphasize comparisons between quantitative or qualitative groups.  Comparison is at the heart of 568 

understanding trends or differences in data; visualization must make comparison between groups 569 

easy to interpret (Tufte et al., 1990).  Grouping is an approach for reducing dimensionality that 570 

enables assessment of similarities and differences across dataset subsets.  When plotting large 571 

datasets, we often use grouping – with colors, symbols, or sometimes both – to show 572 

organization within a complex, multi-dimensional, and/or large volume visualizations. However, 573 

when the focus is on comparison of these different groups, it can be easy to overwhelm when the 574 

number of groups shown plotted concurrently – not side-by-side - begins to exceed three 575 

(Wickham, 2010).  In these types of plots aimed at showing many groups, all values may be 576 

plotted within the same visualization, or may be separated into subplots or insets. The latter can 577 

be an effective way to highlight a subset of the data in the context of the broader dataset.  In 578 

Figure 9, we show examples of hydrologic simulations produced from four different models and 579 

compared to observed streamflow for one watershed.  When plotted together, the timeseries are 580 

hard to distinguish from one another (Figure 9a), even on a logarithmically transformed axis 581 

(Figure 9b).  Separating each of these comparisons into subplots more clearly illuminates the 582 

periods when simulated streamflow is in agreement with observed values (Figure 9c). 583 

 584 

In line with ensuring the number of groups or series to be compared are interpretable is giving 585 

thought to how these groups are organized within a visualization.  When you must specify the 586 

order of such groups (e.g., in a heatmap, a parallel coordinate plot, or a distribution-based plot), 587 

the choice of how to order components of your plot matters.  This ordering should be done 588 

intuitively – such as from small drainage areas to large when comparing watersheds (e.g., Figure 589 

6), by magnitudes (in rank plots, Figure 7c), or potentially by mean values (in heat maps).    590 



 591 
Figure 8: Visualization of multiple hydrologic signatures from the CAMELS database (Addor et 592 

al., 2017a, 2017b) as parallel coordinate plots.  Each line represents a watershed.  These are 593 

shown as a function of precipitation for (a) six hydrologic signatures and (b) 13 hydrologic 594 

signatures.  Though color can be used to highlight patterns (a, b), it’s also useful for 595 

highlighting groups (c), such as the signature values from watersheds within the Pacific 596 

Northwest Region, shown in light blue. 597 



 598 
Figure 9: Plots of model-predicted and observed timeseries of streamflow for the Fish River 599 

(USGS Gage #01013500) shown as (a) multiple series, (b) transformed on a logarithmic scale, 600 

and (c) as subplots or facets. Modeling observations originate from Kratzert (2019) and Kratzert  601 

et al., (2019) and show results for the Variable Infitration Capacity Model (VIC), the HBV model 602 

as calibrated to an upper benchmark (HBV-UB) and lower benchmark (HBV-LB), and the 603 

Sacramento Moisture and Accounting Model (SACSMA).   604 



Consideration 3: Make complexity work for you 605 
One of the best ways to simplify large volumes and varieties of data is by using synthesis plots.  606 

Here, we define a synthesis plot as any type of plot that combines multiple graphical approaches 607 

and encoding attributes.  By this definition, many of the best visualizations today combine 608 

multiples of plot types to convey key messages.  By nature, synthesis plots are complex, 609 

summarizing multidimensional datasets with multiple encoding attributes (points, lines, color, 610 

arrows).  They may incorporate symbols, often make heavy use of color, and include strong 611 

labeling and text throughout.  Exceptional examples of such plots include circos diagrams 612 

(Figure 10a), Sankey diagrams, table-based diagrams, treemaps (Figure 10b), and ordered bar 613 

charts.  While these visualizations are complicated, what often makes them successful is that the 614 

creators give narrative to these plots (Tufte et al., 1990), through captions, labeling, and either 615 

verbal (e.g., during a presentation or described in an animation) or written descriptions (e.g., 616 

captions or manuscript or article text).  If all else fails, your caption should be able to explain 617 

your figure.  If it can’t, your figure is probably too complicated and needs revision.  Complexity 618 

does not necessarily detract from interpretability; synthesis plots represent an exceptional 619 

opportunity for visual communication.  620 

 621 

 622 
Figure 10: This figure visualizes over 1 billion pixels of land cover change from 2001 to 2011 623 

across Alaska (Homer et al., 2015; National Land Cover Dataset) using two more complex plots, 624 

a circos plot (Panel A) and a treemap (Panel B). The circos plot displays changes in land cover, 625 

with the outer circle proportion roughly corresponding to 2001 land cover, and the arrows sized 626 

to indicate changes in land cover from 2001 to 2011.  The color of these arrows corresponds to 627 

2001 land cover, with arrows pointing to the observed land cover in 2011.  In contrast, areas 628 

shown in Panel B correspond to 2011 land cover, with inset areas colored according to 2001 629 

land cover.  630 

 631 



3.4 Challenges and opportunities in the use of color 632 
Color is central to the creation of scientific visualizations. (Zeller and Rogers, 2020).  While 633 

color can mislead the reader when interpreting figures (Ware et al. 2008; Samsel et al., 2018), 634 

removing color as an encoding attribute is not always feasible. When using color, there are 635 

several approaches that can be used to make visualizations clear and easy to interpret. 636 

 637 
Table 1: Resources for creating color palettes. 638 

Resource Description 

Color Brewer, https://colorbrewer2.org Color Brewer is a great website for choosing 

color blind friendly options with both gradients 

and categorical variables. The system also has 

packages that interface with R software and 

ggplot, as well as Python through seaborn. 

Viridis, https://cran.r-

project.org/web/packages/viridis/vignettes/intro-

to-viridis.html 

Viridis is a color palette and package that 

provides a color blind and grey scale friendly 

gradients with several options of colors. The 

Viridis color palette interfaces through matplotlib 

in Python and a package in R (viridis) 

 

Cividis, https://github.com/marcosci/cividis; Cividis is an optimized version of Viridis for all 

forms of color blindness. You can find Cividis in 

a function on R called cividis as well as 

matplotlib in Python.  

 

Color Moves, 

https://sciviscolor.org/home/colormoves/ 

 

Color Moves is an interactive tool that can be 

used to tailor colorbars to datasets. 

Chroma.js Color Palette Helper, 

https://gka.github.io/palettes/ 

 

Choma.js Color Palette helper lets you select 

colors and then creates a sequential or divergent 

scheme. The great part about helper is it tells you 

how different the resulting palette is in lightness, 

saturation and hue, allowing for creation of 

unique color palettes that also are easy to 

distinguish.   

Colorgorical, http://vrl.cs.brown.edu/color Colorgorical is a tool to choose a categorical 

palette, letting the user specify the distance 

between colors for better visualization. 

 639 

Consideration 1: Use care with color-based pattern plots and color-based comparisons 640 
Color is often used in data visualization to differentiate between groups, outliers, and across 641 

scales. Although color can be useful in the right context, it is difficult to differentiate between 642 

colors of the same intensity or saturation (Samsel et al., 2018; Ware, 2008).  Additionally, 643 

assigning a scale to a color gradient or understanding how far apart two colors are on a scale are 644 

difficult for readers to interpret (i.e., gradients force the readers to do “visual math”). In this vein, 645 

using color contrast can distort the reader’s view of the data displayed when not used properly in 646 

visualization (Samsel et al., 2018). For example, in gradients of data, ratios of hues red to green 647 

https://colorbrewer2.org/
https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html
https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html
https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html
https://github.com/marcosci/cividis
https://sciviscolor.org/home/colormoves/
https://gka.github.io/palettes/
http://vrl.cs.brown.edu/color


are about equal, but hues orange to blue are about 1:2 for an equal gradient of data. This color 648 

inequality is particularly important when areas are displayed because our brains will try to bring 649 

the complementary colors into balance and misjudge the aerial extent of a color (Samsel et al., 650 

2018) and are not appropriate for displaying categorical variables (i.e., categories of vegetable 651 

should not be displayed on a white to red color gradient).  652 

 653 

When it comes to visualizations that rely on color to support interpretation, the widely used heat 654 

map is particularly difficult to assess because colors can look different depending on what colors 655 

are surrounding them (Albers, 1975). In addition, colors like red can dominate other colors, 656 

leading to interpretation that there is more or extensive red in relation to other colors (Figure 6a; 657 

often referred to as ‘contrast of extension’). Alternatively, it is difficult to compare colors with 658 

increasing distance or blank space between the colors. To top all of these issues off, color 659 

blindness is a serious limitation in interpreting figures, including but not limited to heatmaps.  660 

 661 

Because color can mislead readers, we suggest that color is used carefully and after other 662 

alternatives in big data visualization. There are many other encoding attributes that can be used 663 

for differentiation between groups or scale. Alternatives include shape, line weight, size and 664 

length. 665 

 666 

 667 
Figure 11: Color choice is an important decision in any visualization, particularly when colors 668 

will touch each other. Using the NOAA DEM dataset (CIRES, 2014), this figure displays three 669 

different color schemes to illustrate these choices along the coast of Cape Cod in Massachusetts 670 

(USA). Panel A employs a rainbow color scheme where colors vary by hue but not saturation or 671 

value. The gradient does not reflect the continuous nature of the data, and the red dominates the 672 

rest of the colors, leading viewers to overestimate the area of ocean (contrast of extension). 673 



Additionally, this color palette does not work for color-blind individuals or gray-scale printing. 674 

Panel B displays a diverging, complementary color scheme with blue and red on the opposite 675 

sides. Although this color scale is good for visualization, it might not be the most effective for 676 

displaying elevation, as the high elevations seem like hotspots of something in red. Finally, 677 

Panel C illustrates a sequential color scheme with blue colors. This palette is probably the most 678 

effective of the three for this dataset (coastal DEM), where the ocean is deep blue and the higher 679 

elevations are white. The blue colors are expected for the archetypal imagery of the ocean. 680 

 681 

Consideration 1: Is it useful to add color to highlight an overall pattern or to a distinct 682 

group of variables? 683 
Using color to convey an additional dimension within visualizations of large volumes of data can 684 

be an effective way to convey additional information.  Typically, the intent of using color in 685 

these types of visualizations is to either (1) convey an overarching pattern (e.g., Figure 4c, Figure 686 

5b, c; Figure 7b, c; Figure 8a, b) or (2) to display outliers or a categorical group (Figure 4d; 687 

Figure 8c). However, a plot that tries to convey both patterns and outliers may easily overwhelm 688 

perception of key messages or interpretation of the visualization. 689 

 690 

The major challenge to using color to visualize patterns for a large dataset is that there are many 691 

aspects of a visualization that can obscure our ability to discern a given pattern (Albers, 1975; 692 

Samsel et al., 2018).  Care should be given to ensure that all values can be distinguished.  693 

Importantly, the choice of a color bar should enable interpretation of the perceived pattern. An 694 

alternative to using color may be to use another type of differentiator (e.g., shape) that is easier to 695 

interpret. 696 

 697 

An alternative to visualizing patterns is to use color to highlight distinct groups of variables (e.g., 698 

details).  This type of visualization may be employed to identify a statistical grouping, such as 699 

outliers, a categorical grouping, such as different types of values (e.g., watersheds within the 700 

same sub-basin, Figure 8c), or a research-based outcome, such as groupings from hierarchical 701 

clustering or the like. As opposed to a typical pattern-based plot, this type of plot may simplify 702 

the number of colors being quantitatively perceived across a large volume of data. 703 

 704 

Consideration 2: When using color, choose color schemes or gradients that allow for 705 

contrast in hue, value, and saturation. 706 
Color theory represents an extensive study of how colors interact, how best to mix colors, and 707 

how best to use colors within visualizations of any kind (Albers, 1975).  The basis of color 708 

theory is the color wheel, which is used to identify colors that may work together to make visuals 709 

appealing and to provide contrast (Rhyne, 2012).  As defined by color theory, there are three 710 

aspects of color: hue (color wavelength – e.g., blue or green), saturation (depth of the color), and 711 

value (grayness of the color). These aspects of color may be used to generate a color scheme or 712 

gradient for a particular plot. 713 

 714 

Many different combinations of colors that incorporate color theory already exist.  A 715 

complementary color scheme corresponds to colors that exist on opposite sides of the color 716 

wheel. An alternative to a complementary color scheme is a split complementary color scheme, 717 

which uses a base color along with two colors on opposites sides of the first color complement 718 

(i.e., the color directly across from the base color on the color wheel). An analogous color 719 



scheme is when three colors are adjacent to each other, and a triadic color scheme is when three 720 

colors are equally spaced around the color wheel. Color schemes employing complementary 721 

color schemes as end members of a gradient are often called divergent color schemes (frequently 722 

with white or a neutral color in the middle). Schemes with colors of a similar hue or within an 723 

analogous color palette are commonly called sequential color schemes (i.e., light green, grass 724 

green, dark green). 725 

 726 

The best way to make or select a color scheme that is easier to differentiate and distinguish is to 727 

leverage the three different aspects of color: hue, saturation and value. By employing at least two 728 

aspects of color, such as saturation and value, visualizations can appear more interpretable 729 

(Ware, 2008). Likewise, combining colors of different saturation or value with changes in hue 730 

can make colors more distinguishable, particularly for viewers with color blindness.   731 

 732 

Colors appropriate for visualization are frequently difficult and overwhelming to choose. For 733 

those who may be new to the principles of color theory, there are several web-based resources to 734 

assist with selecting a gradient or categorical color scheme. Table 1 includes a list of these 735 

resources that can be used for developing a color palette.   736 

 737 

Consideration 3: Avoid rainbow color scales and limit the number of categories to enable 738 

interpretation 739 
While this recommendation is widely known, it still bears repeating.  Despite their broad 740 

proliferation, rainbow color ramps use constant saturation and value, only varying in hue 741 

(Borland and Taylor, 2007). Therefore, it is very difficult for colorblind individuals to 742 

distinguish between colors on a rainbow scale. In addition, the gradient includes all colors on the 743 

visible spectrum, making it hard for viewers to perceive which colors correspond to a positive or 744 

negative value.  This aspect also makes it challenging to interpret which part of the scale the 745 

color on the gradient represents (Borland and Taylor, 2007). To emphasize the problems with 746 

this particular color scale, we include a particularly horrific example in Figure 11a.   747 

 748 

To avoid the rainbow color scale, pick a type of contrast that best fits the visualization (Samsel et 749 

al., 2018). Cool to warm contrasts, such as blue to red or yellow, are often good for scales with 750 

gradients from low to high. Additionally, using single color gradients is a strong approach for 751 

producing easy-to-discern gradients. Humans are biased to prefer balanced gradients with either 752 

cool to warm or complementary contrast in a gradient (Albers, 1975). Limiting colors to seven 753 

categories or less helps the viewer interpret gradient or categorical color scale (e.g., Figure 5c; 754 

Figure 11).  755 

 756 

Consideration 4: Think beyond just colorblindness 757 
Colorblindness is not the only visual disability that affects the interpretation of visualizations. 758 

Low vision individuals may find it difficult to read or interpret details in a visualization. Often 759 

increasing the contrast of the colors used in the visualization or increasing font size can make the 760 

figure more accessible to those with low vision (Power and Jergensen, 2010). In addition, rasters 761 

are inaccessible to the visually impaired because the components of the figure are hard to 762 

separate (Choi et al., 2019). Often those with visual impairments will use computer reading 763 

software to get information from a manuscript. To provide more information, make sure the 764 

caption in the figure is accessible to reading programs and fully describes the graph and the 765 



results. Accessibility can be increased by considering creative choices to explain visualizations, 766 

such as by adding supplemental movies or audio that describe the study or the visualizations 767 

(Power and Jergensen, 2010). Finally, there are new frontiers opening up to make visualizations 768 

more accessible. For instance, machine learning approaches are being tested to identify 769 

individual elements of a visualization to pass to a reading software (Choi et al., 2019).  770 



Consideration 5: Use color to tell a story – go beyond ‘best practices’ for a single 772 

visualization 773 
Throughout a text – whether a manuscript, presentation, interactive video, blog post, or other 774 

published article – colors not only tell the story of one visualization but the larger narrative of the 775 

manuscript. To keep the message and narrative consistent, it is important to keep a consistent 776 

color scheme throughout, particularly for visualizations that use the same components (e.g., 777 

variables, parameters, groups). As discussed above, picking colors that are easy to distinguish, 778 

that visually represent the figure’s trends, and that can be interpreted by all audiences is the most 779 

important aspect of choosing a color palette for a presentation or manuscript.  780 

 781 

In particular, it’s important to select color palettes that do not violate or challenge cultural or 782 

archetypal expectations, and that support and correspond to the data being shown (e.g., Figure 783 

10b versus Figure 10c). For example, do not use warm colors for water or snowfall or cool colors 784 

for fire frequency. When using a dataset that is known to have an associated color palette, 785 

employ this same color scheme (e.g., Figure 11, displaying land cover data with a previously 786 

created and widely used color palette).  If choosing a color palette fills you with dread, the 787 

easiest direction is to pick an already existing color palette that is good for color blind persons 788 

and printing grey scale (i.e., viridis). There are also really fun ways to dream up color schemes, 789 

such as using movie color palettes (see twitter account @cinemapalettes or Movies in Color: 790 

https://moviesincolor.com/).  791 

 792 

4.0 From static to interactive 793 
The fourth V of big data, velocity, refers to the speed and temporal resolution at which data is 794 

collected, both of which are accelerating, and are a challenge to visualize and represent. We can 795 

work with this type of data through two methods: summarizing such information in static 796 

formats, or creative visualization techniques such as animation.  In this particular piece, we focus 797 

less on velocity as a visualization need, though note that the importance of visualizing velocity 798 

will likely continue to grow in the near future. 799 

 800 

Common approaches to visualize velocity in static formats include visualizing time using color, 801 

or grouping values and using time as an organizing dimension.  For instance, heat maps or 802 

barcode plots are commonly used to convey temporally resolute datasets at one or many 803 

locations.  Other plotting options include the use of spatial snapshots (e.g., showing temporal 804 

plots for a particular point, slice, or volume) or temporal snapshots (e.g., showing spatial plots 805 

for a particular time).  However, it can be quite challenging to convey velocity in static 806 

visualizations. 807 

 808 

At current, more and more journals offer the option to upload animations as supplementary 809 

material.  Journals are also beginning to develop visualization-based submissions (e.g., HPEye, 810 

within the journal Hydrologic Processes).  For those interested in such options, Table 2 lists 811 

https://moviesincolor.com/


several packages in R and Python that can be used for creating animations or interactive 812 

graphics. 813 

 814 

Table 2: A list of commonly used packages and libraries for R and Python that enable animation 815 

or interactive graphics. 816 

Programming Language Packages or Libraries 

R animate 

gganimate 

plotly 

googlevis 

shiny 

Python Plotly Express 

Matplotlib & seaborn 

Bokeh 

Altair 

nbinteract 

 817 

While the scientific literature largely draws on static visualizations, interactive visualizations are 818 

becoming increasingly common for science communication to a range of technical and non-819 

technical audiences.  Though the focus of our article is primarily static visualizations, we briefly 820 

summarize considerations for interactive visualizations.  Interactive visualizations can be used 821 

for a variety of purposes: they may be helpful in the data exploration phase, or may accompany 822 

peer-reviewed manuscripts. As most journals do not support interactive formats, it is important 823 

to remember that creating a static version of the figure is often necessary for a manuscript. 824 

However, such interactive visualizations are an option for supplemental or accompanying 825 

websites. 826 

 827 

Interactive graphs lead to more complexity and additional decisions. While there are many types 828 

of interactive visualizations, the most common examples involve: 1) Changing/choosing a 829 

dataset or a unit of analysis in a visualization, 2) filtering or querying a dataset in the 830 

visualization, 3) toggling visualization features such as variables or colors, 4) combining or 831 

separating visualizations, 5) interactive annotations that provide more information, and 6) 832 

zooming in and out or changing the level of detail (Wash, 2020).  Approaches to parse 833 

interactive graphic components are now being described through grammars of interaction (e.g., 834 

Vega, https://vega.github.io/vega/; Vega-Lite, https://vega.github.io/vega-lite/), which provide a 835 

framework for approaching the creation of interactive visualizations. In addition, many common 836 

scientific programming languages are facilitating the creation of interactive web apps (e.g., R 837 

Shiny, https://shiny.rstudio.com/). 838 

 839 

With these common types of interactive visualizations come pitfalls. The following are a brief 840 

list of recommendations to consider when creating interactive visualizations: 1) Ensure that the 841 

static version is explanatory, as most people will not interact with the figure; 2) Consider 842 

whether interactive features can be engaged and used on all types of devices (e.g., individual 843 

points can be difficult to interact with on touch devices); and 3) Make the interactive components 844 

of the visualization well-paced and manageable (as opposed to too cumbersome or slow) to 845 

maintain interest with your audience (Wash 2020). It is likely that the tools and 846 

https://vega.github.io/vega/


recommendations for best practices concerning interactive visualizations will continue to evolve, 847 

especially given the growing interest in the creation and use of interactive visualizations across 848 

the scientific community. 849 

 850 

5.0 Conclusions: 851 
Conveying large datasets within publications or presentations is challenging, especially when it 852 

comes to visualizing large amounts of data.  The visualization of large, complex datasets requires 853 

rethinking our common assumptions and approaches for creating plots.  In particular, when 854 

visualizing large datasets, researchers must make many decisions before arriving at a final plot.  855 

These decisions include whether to show all values or to aggregate, how to convey multiple 856 

categories or comparisons, and how to display multiple dimensions, all in succinct, easily 857 

interpretable ways.  858 

Our introductory overview provides several recommendations, such as choice of plot 859 

type, encoding attributes, and groupings, to aid in the creation of clear visualizations.  Thinking 860 

carefully about these choices can enhance visualization quality and messaging.  However, 861 

whether (or not) our recommendations apply in any particular case will ultimately depend on the 862 

overarching message conveyed by each visualization and the size and character of the associated 863 

dataset.  Though we often focus on encoding attributes and plot choice when approaching 864 

visualizations, equally important is to give narrative to our plots using notations, legends, and a 865 

clear caption.   866 

Above all, when creating plots of large datasets, iteration is key.  Be sure to ask for input 867 

along the way, ensuring that the key takeaways intended for a particular visualization are clear to 868 

others.  Scientific visualization is something that we all have very strong feelings about.  We 869 

therefore emphasize that our recommendations are just that - not hard and fast rules that should 870 

be unilaterally applied in all scenarios.  Be creative, thoughtful, and intentional with your 871 

designs, and use your best judgment along the way. 872 

 873 
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