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Abstract

Scientific visualizations are the foundation for communicating results and findings to a variety of
audiences. As the creation of novel and large environmental datasets has grown, this has
necessitated new schemes and recommendations for creating effective visualizations. In this
overview, we review the foundations of scientific visualization and considerations for
visualization of large datasets within the context of the four Vs of big data (volume, variety,
veracity, and velocity). Using big datasets requires making decisions as to whether to aggregate
or preserve details, approaches for grouping to enable comparisons, and considering how best to
show complex data in many-dimensional space. To enable more effective visualizations, we
provide several considerations regarding common decisions faced during the visualization
process. These recommendations are accompanied by examples applied to existing large
datasets. While our recommendations are just that, they encourage intentionality and awareness
of the choices faced when visualizing scientific datasets.

Keywords: scientific visualization, visual communication, plots, graphics, multidimensional,
visual analytics

Research highlights
e We discuss the challenges of visualizing large environmental datasets
e We outline choices faced when creating scientific visualizations for datasets with large
volume or variety
e We present approaches for approaching and improving large volume or multi-
dimensional visualizations
e We provide several examples using publicly available datasets and open code
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1.0 Introduction

Visualization is one of the foundational mechanisms used to communicate science. Visuals help
us make sense of complex problems and interact with information (Kirsh, 2010; Liu and Stasko,
2010; Scaife and Rogers, 1996). More specifically, visuals aid in decision making (Deitrick and
Edsall, 2006; Kinkeldey et al., 2014, 2017), learning (Gordin and Pea, 1995; Hoffler, 2010;
Hoffler and Leutner, 2007; Yang et al., 2003) and science communication (Desnoyers, 2011).

In the past several decades, the creation of environmental datasets skyrocketed. This trend
emerged for several reasons. In general, large datasets are more widely available because of
technological advances resulting in constantly improving computing abilities, enabling analysis
and modeling to be performed at higher spatial and temporal resolutions over broader spatio-
temporal domains. These technological improvements contribute to growing volumes of data and
shrinking costs of in situ (Alam et al., 2020; Murphy et al., 2015; Parra et al., 2018; Wickert,
2014; Wickert et al., 2019) and remote sensing technologies (Zhang et al., 2019), and new (often
open source) analysis tools (Gorelick et al., 2017; Vos et al., 2019). In addition to the generation
of new data, support for providing public access to datasets used in publications has also
increased. The scientific community continues to show broad interest and support for
reproducibility and open science (Baker, 2016; Munafo et al., 2017; Sandve et al., 2013; Stagge
et al., 2019). Journals and funding agencies are precipitating these efforts through the creation
and maintenance of online repositories and requirements to store data of various types. Finally,
collaboration has spurred the generation of new large datasets through model intercomparison
experiments (Baroni et al., 2019; Best, 2019; Krysanova et al., 2017; Maxwell et al., 2014; Smith
et al., 2004), open source coding packages (DeCicco et al., 2020; Fuka, DR et al., 2018; Slater et
al., 2019; Souza, 2017), new journals aimed at publishing large and unique datasets (e.g.,
Scientific Data, Earth System Science Data), community-based data collection (e.g., AmeriFlux,
PhenoCam), and citizen science datasets (e.g., CrowdWater, Stream Tracker). All of this
amounts to a diverse, sometimes overwhelming, and altogether impressive collection of data now
at the fingertips of the earth, ecological, and environmental science and engineering
communities.

The acceleration of data availability entails the growth of the spatial, temporal, and uncertainty
dimensions of environmental data contained in publications and presentations. To borrow a
buzzword, this means many publications are now making use of and visualizing ‘big data’.
While there are numerous definitions of ‘big data’, the criteria for defining big data generally is
associated with dataset size and complexity, as well as the need for advanced tools or
technologies to interact with such datasets (Chang and Grady, 2019; Ward and Barker, 2013).
While the line where data becomes ‘big’ is unclear, any dataset, by virtue of its volume (e.g.,
size), variety (e.g., different types of data or variables), veracity (e.g., uncertainty), and velocity
(e.g., speed at which data is collected) may fall under the heading of ‘big data’ (Farley et al.,
2018). These different attributes, termed ‘The Four V’s’ of big datasets (and introduced by IBM
in the 2000s; IBM), can complicate visualizations and visualization goals (Yang and Huang,
2013).

Though many recommendations exist for how to best use scientific visualizations in publications
and presentations (Few, 2009; Kelleher and Wagener, 2011; Rougier et al., 2014; Tufte, 2001,
1990; Weissgerber et al., 2019), the growing volume and variety of data synthesized by
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researchers necessitates augmenting existing recommendations to consider the technical and
aesthetic challenges associated with the visualization of large datasets. As highlighted by Liu et
al. (2017), there are numerous decisions to be made, especially when visualizing high-
dimensional datasets. Large datasets are cumbersome and present technical challenges to data
wrangling, the transformation of raw values into a form that can be leveraged to address research
objectives. Though many of general principles that were famously introduced by Edward Tufte
in the 1970s and 1980s still apply to a visualization regardless of the amount of data contained
within, how best to meet those recommendations as well as how to approach decision-making
when creating visualizations with large datasets remains a common challenge. Colloquially,
visualizations produced over the last decade include more raw data, data points, data series, and
more variables. Visualizations that move beyond 2D, into 3D and higher dimensional space, are
now common.

To date, there has been much attention given to computational processing, analysis, and user
interfacing and interaction (Liu et al., 2017). However, there has been much less attention given
to how best to effectively convey information in visual form. To address this need, we deliver a
set of approaches and recommendations, paying heed to potential pitfalls, for visualizing large
environmental datasets. Existing recommendations regarding scientific visualization generated
over the last few decades serve as a sound basis for evaluating the effectiveness of any
visualization. Our recommendations serve to augment these sound principles in the context of
big data visuals. Analysis and presentation of large datasets in many ways stretch the limits of
traditional recommendations for visualization; therefore, our focus is specifically on visualizing
large volumes and varieties of data to assist in the analysis, synthesis, and comparison of large
datasets for presentation and publications.

2.0 Challenges posed by large environmental datasets

Large environmental datasets present major challenges when it comes to developing succinct,
easily interpretable, and visually aesthetic plots. These difficulties arise from two sources:
technical challenges introduced by computational constraints when visualizing a large dataset,
and the decision-making that is involved in how to best display and convey large datasets. These
challenges are best expressed when considering the major characteristics of big data, also known
as the 4 Vs. Large datasets often have large volume (many values), large variety (many types of
data), and inherent (but challenging to communicate) veracity. The fourth V, velocity, we
describe in more detail in a later section; here, we interpret this fourth V to refer to the dynamic
nature of many large datasets, that may often be best conveyed using animated or interactive
approaches. However, the majority of our overview focuses on static visualizations, as these are
still the major currency of visual communication. Below, we outline the major challenges
introduced by three of the four Vs when it comes to approaching data visualization with large
datasets that may fall into one or multiple of these categories.

2.1 Challenge 1: Large datasets are (unsurprisingly) big
The sheer volume of large environmental datasets introduces several considerations for
visualizations, beyond posing technical challenges. While there are many examples of
voluminous visualizations, there is a tension between ensuring a visualization shows broad
patterns and the distribution of the data while at the same time allowing a reader to identify all of
the data or the most important data. Too often, we synthesize and remove key pieces of
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information through aggregation. Yet this may also be a necessary step to pursue scientific
questions that span spatio-temporal scales.

What plot type?

Plot Type & Message
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Figure 1: Key questions faced when creating a visualization. Within the ‘how many
dimensions?’ box, the green check mark corresponds to an affirmative decision to use certain
encoding attributes (e.g., 2d position, color), while a red x’ box corresponds to a negative
decision to not use shape as an encoding attribute.

2.2 Challenge 2: Large datasets often contain variety
Variety in large datasets refers to the inclusion of different types of data, categories of data, or
different variables or descriptors. A common challenge in large datasets with exceptional variety
is how to best display multi-dimensional data to show broad relationships across many variables
or descriptors. Likewise, plots that highlight variety often deal with multiple categories and
comparisons. Complexity should not be avoided when creating such visualizations, though it
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can be challenging to walk the line between clean visuals and overcomplicated visuals when
displaying datasets with large variety.

2.3 Challenge 3: Large datasets are frequently used to communicate veracity
Veracity is often interpreted as data uncertainty; here we broadly interpret this term to refer to all
types of uncertainty, variability, and comparisons between values to determine veracity. Plots
concerned with veracity may be used to show aggregated metrics such as objective functions
(Jackson et al., 2019), uncertainty, error, probabilities, or confidence. These approaches often
rely on comparison to a baseline (e.g., modeled uncertainty applied to a timeseries plot; error
bars applied to bar chart or dot plot) or feature error as a derived value (e.g., boxplot or violin
plot of errors; bar chart of difference from ‘true’ or zero). Communication of veracity can be
especially challenging (Spiegelhalter et al., 2011), as emphasized by the misinterpretation of
common graphics used to communicate uncertainty, such as the Hurricane ‘cone of uncertainty’
(Boone et al., 2018).

3.0 Decision-making for visualizing large datasets

The term visualization can be ambiguous. It may refer to a tool being used to create or generate
a visualization, to the process of creating a visualization, to the analysis of data, or to a generated
visual (Parsons and Sedig, 2014). In this article, we use the term scientific visualization to refer
to visual representations of datasets.

In the literature, two common types of visualizations exist: glyphs and plots. Glyphs (e.g.,
multidimensional icons) combine multiple encoding attributes into symbols or graphical
representations (e.g., Chernoff Faces, Chernoff, 1973, or infographics). In contrast, plots display
datasets using coordinate systems. We focus specifically on the creation of scientific
visualizations as plots, though note that many of our recommendations also apply to glyphs.

Generating a visualization from a large dataset introduces both technical challenges as well as
several (often somewhat subjective) decisions that must be made to generate a visual display.
When considering how best to approach visualization of a large dataset, there are four central
questions that must be answered when creating a visualization (Figure 1):

e Plot type (or the decision to use multiple plots): Which visualization(s) will you use to

display your data?

e Raw values or aggregation: Is aggregation needed or should viewers see raw values?

e Dimensionality: How many dimensions do you need to display?

e Color: Are you using color, and are you using color wisely?

In the sections that follow, we present common challenges or pitfalls when using traditional
visualization techniques, and considerations and recommendations for how to re-envision these
plots in the context of these four key decisions. We also envision these decisions in Figure 1 as a
series of steppingstones to arriving at a final plot. Amongst these recommendations, we qualify
that this overview is by no means represents an exhaustive list of all considerations when
plotting datasets, whether small or large, but serves as a starting point for thinking about
visualizations in the context of large datasets. Importantly, these recommendations are not
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intended to be applied in isolation; instead, they are complimentary ideas that should be used to
identify how visualizations of large datasets may be approached or improved.
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Figure 2: Examples of common multidimensional visualizations, with associated attributes that
can be used to display additional dimensions, which of the 4 Vs the plotting supports, and key
themes that can be communicated by each visualization. Below each visualization, we also
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summarize pertinent details, and point to citations from the literature that make strong use of
these visualizations. Literature examples include: Balch et al. (2020), Blaszczak et al., (2019),
Cominola et al. (2019), Dalin et al. (2012), Ge et al. (2009), Gill and Malamud (2014, 2017),
Gold et al. (2019), Hicks et al. (2019), Joseph et al. (2019), Kelleher et al. (2018), Knapp et al.
(2020), Li et al., (2019), Raseman et al. (2019), Tessler et al. (2015), Tessum et al. (2019),
Trimble (1999).

Using these decisions as a guide, we include examples created from existing large,
environmental datasets. These include the GAGESII dataset (Falcone, 2011; Falcone et al.,
2010), land cover change data for Alaska, from the National Land Cover Dataset (Homer et al.,
2015; National Land Cover Dataset), and the Continuously Updated Digital Elevation Model
dataset (Cooperative Institute for Research in Environmental Sciences (CIRES) at the University
of Colorado, Boulder, 2014). All visualizations were created within RStudio (v. 3.6.3) and code
is available on Github.

3.1 Choosing a plot type, encoding attributes, and overall visualization approach
At a basic level, a visualization is composed of encoding attributes, scales, and coordinate
systems (Wickham, 2010). Scientific visualizations rely on the selection of encoding attributes,
also known as visual encodings or visual marks. These attributes are used to convey quantitative
and qualitative information within the context of a visualization. As summarized by Few (2009),
attributes include those associated with form (e.g., length, width, orientation, size, shape,
curvature, enclosure, and blur), color (hue, value, saturation, transparency), spatial position (2-d
position, spatial grouping, or density) and motion (direction, path). Scales are used to encode
information using attributes associated with form, size, and color. They may be quantitative (e.g.,
color, size) or categorical (color, shape). Coordinate systems provide a means of assessing
spatial position. Coordinate systems may be cartesian, logarithmic (on one or multiple axes),
polar (r, ), or multidimensional.

These building blocks of scientific figures ultimately come together in a visualization. While it
is sometimes helpful to think about these individual pieces, perhaps more important is to
consider the overall plot type, as this is one of the most crucial choices faced in the visualization
of a large, multi-dimensional dataset. This decision is an inherently subjective choice but can
benefit from keeping in mind the overarching plot goal or message (what is the main message
you wish to convey?). This choice will ultimately determine how many dimensions you seek to
encapsulate within your plot, which then will help to identify what plot types are at your
disposal.

Regardless of the big picture selection of a plot type, the details associated with the plot building
blocks are equally important. Within the open source programming language R, these
components are often described and implemented as the ‘grammar of graphics’ (Wilkinson et al.,
2005; Wickham, 2010). Though not all programming languages or tools implement a graphical
grammar, the grammar introduced by Wilkinson et al. (2005) and refined by Wickham (2010) is
helpful for identifying the choices faced and the refinements that can be used in the process of
generating a graphic. Such details are crucial for refining visualizations.

Consideration 1: Match your plot type and encoding attributes to your key message
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Visualizations are built upon the selection of encoding attributes and the choices made in the
selection of components of a figure. While we are all aware of the components that are used to
build a visualization, the selection of these components is a key development step in creating a
visualization. Visualizations of any type should begin with identifying a key message (aimed to
be conveyed with the visualization). From this message, we can select a particular plot type,
scale, and coordinate system, built on the selection of encoding attributes to display quantitative
information or qualitative groupings ( Kelleher and Wagener, 2011). Writing out a key message
or the visualization take-away can be a good place to begin, especially when parsing components
of'a complex visualization. For example, does the reader need to compare groups or categories
to determine the key message? Likewise, revisiting these choices during revision of a given
visualization can help to clarify the message conveyed by a particular plot.

Though visualizations are unique to the dataset and creator, there are several common key
messages that visualizations seek to highlight. These include: connections between values (i.e.,
flow), the distribution of a dataset, data density (including spatial density), geospatial position,
magnitude, outliers, part-to-whole (i.e., hierarchical or layered datasets), patterns, rankings,
relationships (i.e., correlation), timeseries, and uncertainty. These common themes may
represent a starting point for designing a plot to convey a key message. In Figure 2, we show
several cartoon examples of multidimensional visualizations and highlight common key
messages (or themes) that may be conveyed using each of these plots. We do also highlight that
many figures may be composed of multiple plots, aimed at showing groupings relative to the
larger dataset or other groups (also called facets, Wickham, 2010) or groupings relative to
subsetted data groups.

We encourage visual creators to remember that there are a multitude of different approaches and
types of plots that can be used to visualize data. For inspiration, we direct you to several
impressive summaries including the Visual Vocabulary (Smith et al., 2016), The Data
Visualisation Catalogue (Ribecca, 2020), and The Graphic Continuum (Schwabish and Ribecca,
2014). In particular, The Graphic Continuum highlights six key plot groups: distributions, time,
comparing categories, geospatial, part-to-whole, and relationships.

Consideration 2: Pay heed to overall composition as you finetune your visualization

As discussed above, visualizations inherently consist of many different components that must
work together to tell a story. How best to arrange these components such that they most clearly
articulate a key message can be thought of as composition. The composition of a plot includes
selection of a color palette, the use of annotation through legends, direct labeling, and other
words included on the visualization including the caption, and the choice of plot and how the
plot is designed.

Visualizations often include annotations — text or enclosures used to highlight or explain features
of the visualization. Beyond the caption, annotations are a way to use text or other visual cues to
direct the eye of the reader and to aid interpretation. Annotations also encompass the figure
legend that is used to describe a qualitative and/or quantitative scale. Ensuring a strong
composition requires attention to annotations, which enhance a viewer’s understanding of a
given visualization.
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Figure 3: Aesthetics (beyond color) that can be used in most or all plots.

Composition also includes the creation of what we will call ‘mega-figures’, composed of many
subplots or facets. Though a single visualization may feature one plot, visualizations
(particularly those of complex datasets) may also include a composite of many small multiples
(Tufte, 1990) also known as subplots (Matlab) or facets (R). The combination of small multiples
may be used to provide additional detail regarding a component of a dataset and can be
especially useful for parsing and displaying subsets of a large dataset. In the literature, small
multiples are commonly used to parse a single dataset often using a repeated coordinate system,
encoding attributes, and scale but varying the data displayed, enabling visualization of high-
dimensional data. However, these subplots or small multiples can also be superimposed on
larger plots, to display different types of data (e.g., spatial versus temporal versus categorical) or
to visualize data at different scales. In composing a plot, we encourage readers to think beyond
generating a single plot to producing an integrative visualization that may be composed of many
plots and plotting elements.

Consideration 3: Give thought to how you can simplify and clarify for your key message
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Across large environmental datasets that may exhibit large volume or variety, there are several
common approaches to simplifying such visualizations that may clarify the overarching message
of a particular plot:

e Aggregating large volumes into simple distributions or statistics, multiple values into

indices, single points into footprints

e Combining multiple types of data into multidimensional plots

e Highlighting outliers, certain groups of data, trends, a single observation
When designing a plot, it is important to consider these options for creating a clear and concise
visualization. Finally, ensuring that key message is clear and perceivable by others is one the
most important considerations when creating a visualization. Generating a useful and effective
visualization not only requires that you have in mind what the goal of your plot is, and how you
want to use encoding attributes (color, shape, width/size, orientation; Few, 2009; Kelleher and
Wagener, 2011) to convey key messages, but also that this key message is perceivable by others.

Consideration 4: Aesthetics are important — think beyond just color

Visualizations are as much science as art. Often, we associate color with aesthetics (so much so,
that we have dedicated an entire section of this overview to the discussion of color). However,
aesthetics of visualizations go far beyond color alone. During the visualization process, give
thought and attention to the details — annotations, font size, font type, legend placement, axis
widths, tick mark spacing. For publication quality graphics, many journals may have
recommendations for particular font sizes or types to use and may specify the location (inside the
axis or outside the axis) for tick marks. Helvetica and Arial are often preferred fonts when
creating visualizations.

In addition, there are several details that can be used to improve the overall interpretation of your
visualization (Figure 3). These include enclosure (e.g., to highlight data points that meet a
certain p-value), arrows (e.g., to show directional connections), annotation (e.g., to explain or
label an unusual or exceptional data value or sets of data values), and transparency (e.g., when
elements overlap). Overall, attention to these small details can be used to improve the overall
aesthetics of your visualization.

3.2 Preserving individual values versus transformation or aggregation
Often, the analysis of a large dataset begins with visualization of raw, untransformed,
unaggregated data. On the path to presentation and publications, this data is often repackaged in
different ways within visualizations. This re-packaging often includes the use of transformations
and the use of aggregations.

Transformations, depending on the visualization tool, may be applied to the data, to the scale, or
to the coordinate system (Wickham, 2010). When applying transformations to scales or
coordinate systems, clarity and communication is key. This requires attention to and use of tick
marks, legends, and even the figure caption. Visualizations may also rely on statistical
transformations that aggregate or alter data in some way. This includes data binning (as is done
when plotting distributions or density), data jittering, data smoothing, or categorial or other
groupings applied to datasets. While transformations and aggregations are a necessary part of
visualizing large datasets, they can also alter the perception of the data and the visualization.
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One existing tension in the visualization of large datasets is whether or not it is important to
show all values in a given visualization, or whether these values should be aggregated. This
decision depends on a few factors, particularly the size of the dataset (Consideration 1) and the
approach to aggregation (Consideration 2), but should also be viewed in the context of which
approach produces a clear visualization that enables viewers to perceive the overarching plot
message.

Several plot types, including scatter plots, spatial scatter plots, and parallel coordinate plots, are
used to enable readers to quantitatively perceive all values within a dataset. Humans have a
remarkable ability to lump or categorize visual information, so often preserving information
while highlighting the main or macro pattern is key for effective visualization (Tufte, 1990). As
stated by Tufte (1990), “Clutter and confusion are failures of design, not attributes of
information”.

Yet, displaying all raw values may overwhelm or obscure trends, variation, or groups. When it
comes to large datasets, showing all values may not be possible for high volume datasets (e.g., a
long timeseries or for many raw values). For these situations, aggregation is often necessary.
However, it is important to keep in mind that aggregation can subsume extensive variability in
raw values (which can challenge interpretation of veracity). In this section, we highlight two
considerations when making the decision regarding whether to aggregate or preserve raw data.

Consideration 1: Can raw values be distinguished?

Preserving the visualization of all points is particularly challenging for large datasets as the
information contained in the plot may become obscured (Figure 4; Figure 5). For instance,
plotting many sites or locations, or plotting dense datasets, can produce overlapping values that
may be poorly visualized. To combat this, the most commonly used strategy is to plot the shape
outline with an empty interior (Figure 4a; Figure 5a). While this strategy may be effective for
intermediately sized data, the intended outcome of ensuring that all values can be visually
interpreted can be difficult as the number of values to be visualized increases. As an alternative,
there are several ways to preserve visibility of all data points in figures displaying large datasets.
Plotters can vary the size of attributes, transparency (e.g., Kelleher and Wagener, 2011), or create
inset figures where individual points can be distinguished from one another. However,
transparency may not be a solution for displaying density across large volumes of data (Figure
4b). Plotting that does not enable the viewer to distinguish all points or values should be
avoided, as this approach may obscure outliers, density, or the interpretation of overarching
relationships within a dataset.
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Figure 4: Aggregating record lengths (years of data) and drainage areas for discharge
measurement locations within the GAGESII dataset (Falcone, 2011; Falcone et al., 2010). For
this large dataset that includes more than 9000 sites, using (a) using unfilled points obscures any
perception of data density. Though (b) using transparency still conveys some aspects of data
density, a plot that conveys (c) a continuous bivariate distribution may be a better alternative to
highlight higher and lower frequency combinations of drainage area and record length. As an
alternative to showing the density pattern in subplot (c), subplot (d) highlights the outliers — the
sites with the longest record lengths across different drainage areas. In this particular example,
(d) highlights the disparity between record lengths in watersheds with very small versus large
drainage areas.

Preserving raw values (encoded as points or lines) can be especially useful when the goal is to
highlight outliers or a particular subset of observations within a particular dataset. From a data
science perspective, outliers are often an important source of information. Using a strong color
contrast, or changing size or shape, enables perception of this group or set of outliers as
compared to the rest of the dataset (Figure 4d). Such an approach can also be used with subplots
or facets to highlight multiple sub-groups and to emphasize how they relate to the larger dataset.
As we show in Figure 4c, aggregation can be useful for conveying where values are concentrated
(such as the conclusion from Figure 4c that most streamflow records occur in moderately sized
rivers with record lengths of between 30 and 60 years). However, as shown in Figure 4d, when
this information is aggregated, the individual data points are lost; instead, our plotting of outliers
shows how streamflow record length varies with watershed drainage area, aiding in the
conclusion that larger watersheds typically have longer record lengths.

It can be especially challenging to visualize raw values when all data points are plotted along a
single axis (e.g., boxplots or violin plots, parallel coordinate plots). Jittering data values, which
creates slight offsets, can be helpful when points are used as an encoding attribute. When lines
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are used as an encoding attribute (e.g., parallel coordinate plots), de-cluttering strategies may
include use of transparency or bundling (Raseman et al., 2019).

Consideration 2: Aggregation to emphasize patterns

Enabling perception of all values may not be possible for visualization of large datasets. In this
case, aggregation may be used to summarize values. Aggregation can enter the visualization
process either after a plot type is selected, prior to selecting a plot type, or as part of the iteration
when selecting a plot type to use. Approaches to data aggregation will depend on the type of
data you are using and in what way you seek to aggregate. When aggregating a dataset for
visualizations, you must first decide how you would like your output data to be organized. This
requires considering how you will group your values: quantitatively or categorically. Second,
you must decide what statistic you will use to transform many values to one value within your
groups.

Aggregation may occur during plot creation (such as with a density-based plot, Figure 4c) but
often happens prior to plot generation, with the goal of condensing data to be visualized. In
these contexts, aggregation may be used to address technical challenges encountered when trying
to plot a large volume dataset, and/or may be an approach to simplify the plot itself and the
overarching message (such as when summarizing spatio-temporal datasets). In these cases, the
choice of a statistic for aggregation will depend on the overall plot message. For instance,
frequency is used to highlight density. Statistics available for aggregation include but are not
limited to the frequency or count, mean, median, maximum, minimum, and variance of a dataset.
During this process, decisions regarding how to group data are especially important. Sometimes
these groups may be evident within the dataset (such as countries, cities, watersheds, or species),
while others may require choices. In these instances, we encourage transparency to describe
such choices and justification in the figure caption.

When working with spatially distributed data, additional decisions are required during
aggregation. Aggregation requires the selection of a window or “footprint” size and shape (as
we chose to do in Figure 5b). It may be easy to assume a certain footprint size (e.g.,
municipalities, counties, or other geographic boundaries) or more challenging in some cases
(e.g., geolocated reports of flooding, area of hurricane cover). We note that the subject of how
best to represent and visualize a footprint is also an interesting and open-ended question. These
selections can bias the interpretations gathered from a particular dataset and should be clearly
indicated in the figure caption. Similar decisions are encountered when using non-spatial,
bivariate plots aimed at highlighting density as a third dimension. Plots that aim to highlight
density have commonly used transparency (e.g., Kelleher and Wagener, 2011; Raseman et al.,
2019), but this approach falls short for very large and/or very dense datasets (Figure 4c). One
option that can be used to visualize density in large datasets is the use of color to indicate density
(Figure 4c; Figure 5c¢), or to show density groups that highlight the fraction of a dataset across
the figure space (see example from Harrison, 2017).

Consideration 3: When possible, show raw values AND aggregated information

One of the most common ways to visually contextualize or compare large datasets to use a plot
that shows distributions. These types of plots represent succinct ways to summarize large
volume datasets while preserving the dataset statistical properties. Of the many plot types that
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exist for showing distributions, two of the most common are bar plots and box plots (Figure 6a;
Krzywinski and Altman, 2014; McGill et al., 1978; Tukey, 1977). However, there is growing
evidence that shows both of these plot types can be misleading (Matejka and Fitzmaurice, 2017;
Weissgerber et al., 2015). This confusion arises because different dataset distributions may
contain similar or even equivalent summary statistics. Given bar plots and box plots primarily
show summary statistics — medians, interquartile ranges, and 95" and 5" percentiles for box
plots, and median or mean plus standard error or confidence intervals for bar plots — two similar
plots may incorrectly suggest that dataset distributions are equivalent. This problem is even
more pronounced with bar plots that use a bar to represent the mean or median of the data, and
lines to indicate standard error or confidence intervals (Weissgerber et al., 2019).

(A)

Record Location
(o]

Number of Dams
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Number of Dams
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1,000 to 2,000
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Figure 5: In geospatial visualizations, the ability to discern the spatial distribution of data is
important for visualization. This figure uses the GAGES Il dam location dataset (Falcone 2010,
2011) to examine at the spatial distribution of dams across the U.S. using three different
visualizations. In Panel A, all records of dams are illustrated with transparent points, this
produces a cluttered figure with little available information. Panel B aggregates records of dams
within a certain distance to bubbles of varying size and color. Although more detail is available
in this figure, there are still areas (Southeast U.S.) that are cluttered, and it is hard to distinguish
separate bubbles. Using kernel density estimation to create a heat map, data was aggregated to
raster grid cells in Panel C. Although this map shows the "hottest spots"” for dams in the most
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easily interpretable way, it does lose information on the location of dams in less dam dense
areas (i.e., Colorado River).

Three alternative plots for large datasets that preserve distribution shape are density plots, violin
plots, and a new combined approach termed ‘raincloud plots’ (Allen, 2018; Allen et al., 2019).
Density plots can be strong alternatives to boxplots when the goal of a visualization is to show
volume but not variety (e.g., multiple groups). Overlaid density plots can summarize density for
a small number of groups; however, it may become hard to distinguish between groups for more
than three to four categories (Wickham, 2010), depending on the degree of difference between
the distributions. As the number of series comparisons grows, subplots should be used to break
out individual groups.

One alternative to density plots for comparing multiple groupings with large volumes are violin
plots, which are essentially mirrored density plots (Figure 6b). The myriad of violin plot
iterations also enables encoding summary statistics alongside the distribution, to preserve both
types of information. However, there is an argument to be made that violin plots may include
redundant information through mirroring (Allen et al., 2019). Raincloud plots are a different
type of approach that combine visualization of the distribution showing an aggregated
distribution and individual data values (Allen et al., 2019). While these three approaches
represent endmembers in the visualization of distributions, many other iterations of these types
of plots exist. For instance, one iteration is to combine a barplot and violin plot (Figure 6¢;
Hintze and Nelson, 1998), enabling interpretation and comparison of summary statistics and
overall distribution. In addition to the variant shown in Figure 6¢, other variants include
beeswarm plots (Eklund, 2016, 2015) — a re-envisioning of the dot plot (Wilkinson, 1999), and
beanplots (Kampstra, 2014, 2008).

One question that may arise when considering plotting distributions: if the goal of a plot is to
highlight the distribution of the data, should we just be plotting the raw data? The answer here is
an emphatic “no”. Estimating distributions and statistics from raw data is notoriously
challenging (Bobko and Karren, 1979; Spence et al., 2016).

3.3 Decision-making in the context of dimensionality
Large datasets are often high-dimensional, either in terms of the variables they contain, or in
terms of how those variables are categorically or quantitatively grouped. Therefore, selecting the
number of dimensions to display within a given plot is often challenging. With so many
potential encoding attributes to add — spatial location, shape, width/size, and color, to name a few
— it is easy to overcomplicate. At the same time, as the volume and variety of data encapsulated
within scientific visualizations grows, plot complexity (in terms of dimensionality, volume of
data encoded, and composition) is certainly growing. Though simplicity should still be the
ultimate goal of any visualization, this does not have to be in conflict with employing a
visualization that exceeds three dimensions, that shows an exceptional volume of data, or that
combines multiple subplots into a single visualization.



526
527

528
529
530
531
532
533

=

-
-
-
-

1
-
I
Al

Streamflow mm hr™'
=

N

iy
Sl
_m_

5200510 5211000 5267000 5331000 5344500 5378500 5420500 7010000 7020500 7022000 7032000 7289000 7374000 7374525
USGS Gage Number

C

<>
<
<
>
<
<>
<
_<>

Streamflow mm hr
IS

N

o
<>
Mt

5200510 5211000 5267000 5331000 5344500 5378500 5420500 7010000 7020500 7022000 7032000 7289000 7374000 7374525
USGS Gage Number

0

O
%

<>
-

%

1

8

9

N

5200510 5211000 5267000 5331000 5344500 5378500 5420500 7010000 7020500 7022000 7032000 7289000 7374000 7374525
USGS Gage Number

g

>

&>
S
O%

%

5200510 5211000 5267000 5331000 5344500 5378500 5420500 7010000 7020500 7022000 7032000 7289000 7374000 7374525
USGS Gage Number

Figure 6: Visualizing distributions enables comparisons amongst groups, such as USGS
streamflow observations. Here, we visualize distributions of daily streamflow (in mm hr!; Oct 1
2008 through Sept 30 2018) across 14 United States Geological Survey stream gages stretching
from Minnesota (drainage area of 1579 km?) to Louisiana (drainage area of 2,926,687 km?).
These distributions are shown as boxplots (Panel A), violin plots (Panel B), and as combined
violin and boxplots (Panel C), adding more information about the distribution moving from A to
C.
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535  Figure 7: Organization of and relationships between two hydrologic signatures, runoff ratio and
536  flow duration curve (FDC) slope from the CAMELS database (Addor et al., 2017a, 2017b).

537  These are shown (a) plotted against one another, (b) with precipitation, and (c) sorted by value
538  and colored by HUC2 watershed. Each point represents a watershed. We note the major

539  questions being asked and answered above each subplot.

540

541  Consideration 1: Balance the number of dimensions you show with overall plot simplicity
542  Decision-making surrounding the choice of a plot, the number of dimensions to display, and a
543  key plot message are inherently linked. Giving thought to how these pieces work together from
544  an early stage is therefore important to creating an effective visualization. When making

545  decisions regarding the number of dimensions you seek to display, it is important to remember
546  that encoding attributes inherently limit us to just a few dimensions — two continuous variables
547  for positions on a bivariate plot, one continuous or categorical dimension for color, and/or size,
548  and one categorical dimension for shape. Therefore, many plot types support displaying

549  anywhere between two and five dimensions, though some plots, such as the parallel coordinate
550  plot and the rose plot, can display many more dimensions. However, as the old adage goes, “just
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because you can doesn’t mean you should”. Additionally, the goal with any plot should be to
avoid redundancy (as shown in Figure 6¢ — color is redundant with labeling on the x-axis).

In Figure 7 and Figure 8 we explore the Catchment Attributes and Meteorology for Large-
Sample Studies (CAMELS; Addor et al., 2017a; Addor et al., 2017b) dataset using a series of
figures moving from two-dimensional (Figure 7a, c¢) and three-dimensional (Figure 7b)
visualizations to higher-dimensional visualizations such as parallel coordinate plots (Figure 8).

In Figures 7 and 8 below, adding higher dimensions and showing variety across hydrological
signatures (Figure 8) presents a clearer picture of how watershed behavior is organized across the
US (Figure 8a) and to what extent behavior is similar within a larger basin (Figure 8c).

However, as additional elements are added to the plot, such as shown in Figure 8b, it becomes
difficult to extract useful patterns and to compare across multiple dimensions.

Consideration 2: Is the number of groups or series in a single visualization manageable and
discernable?

While our plotting is often limited by dimensions, it is not inherently limited by quantitative or
categorical groupings. These groupings are regularly used when visualizing large datasets to
emphasize comparisons between quantitative or qualitative groups. Comparison is at the heart of
understanding trends or differences in data; visualization must make comparison between groups
easy to interpret (Tufte et al., 1990). Grouping is an approach for reducing dimensionality that
enables assessment of similarities and differences across dataset subsets. When plotting large
datasets, we often use grouping — with colors, symbols, or sometimes both — to show
organization within a complex, multi-dimensional, and/or large volume visualizations. However,
when the focus is on comparison of these different groups, it can be easy to overwhelm when the
number of groups shown plotted concurrently — not side-by-side - begins to exceed three
(Wickham, 2010). In these types of plots aimed at showing many groups, all values may be
plotted within the same visualization, or may be separated into subplots or insets. The latter can
be an effective way to highlight a subset of the data in the context of the broader dataset. In
Figure 9, we show examples of hydrologic simulations produced from four different models and
compared to observed streamflow for one watershed. When plotted together, the timeseries are
hard to distinguish from one another (Figure 9a), even on a logarithmically transformed axis
(Figure 9b). Separating each of these comparisons into subplots more clearly illuminates the
periods when simulated streamflow is in agreement with observed values (Figure 9c).

In line with ensuring the number of groups or series to be compared are interpretable is giving
thought to how these groups are organized within a visualization. When you must specify the
order of such groups (e.g., in a heatmap, a parallel coordinate plot, or a distribution-based plot),
the choice of how to order components of your plot matters. This ordering should be done
intuitively — such as from small drainage areas to large when comparing watersheds (e.g., Figure
6), by magnitudes (in rank plots, Figure 7c), or potentially by mean values (in heat maps).
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Figure 8: Visualization of multiple hydrologic signatures from the CAMELS database (Addor et
al., 2017a, 2017b) as parallel coordinate plots. Each line represents a watershed. These are
shown as a function of precipitation for (a) six hydrologic signatures and (b) 13 hydrologic
signatures. Though color can be used to highlight patterns (a, b), it’s also useful for
highlighting groups (c), such as the signature values from watersheds within the Pacific
Northwest Region, shown in light blue.



5

g 1
“E 10 ! — Observed
E [l vIC
§ | g HBV-LB
E ° ' | ; i HBV-UB
% I ,\ ki? i :ls : — SACSMA
ll l |
) i J\,Jg fond
1995 2000
(b)
10.00
8 T
T4 T “.k’l ‘f\lﬁ ' !h." ' Iﬂ,l — Observed
£ LT TR | v
3 ' h\. i \,E . \\: g HBV-LB
E 010 . \d b i HBV-UB
o i — SACSMA
w
0.01
1990 1995 2000
(c)
VIC HBV-LB
5 3
E 10 J ‘ ‘ “é 10 ‘
E } E . ‘
_g ; ] ] | 5 F |
E 5 ” Lo ] E 5 | | ] !
: :‘JW : 1|'U’|1
) ‘ ol @ ’J"J\J‘,"H
o ’\ ‘ J{ Wy “W Wb | 7 SR O
1990 1995 2000 1990 1995 200
LBV-UB SACSMA
5 3
E 10 4 *‘é 10
E E
ER :
ERInEs | e
Il RANRERAE
in J | &
0 w \‘l\ l‘ \.J M \Nl\«r ""w'“‘("ﬂ 0
598 1990 1995 2000 1990 1995 200
599  Figure 9: Plots of model-predicted and observed timeseries of streamflow for the Fish River
600  (USGS Gage #01013500) shown as (a) multiple series, (b) transformed on a logarithmic scale,
601  and (c) as subplots or facets. Modeling observations originate from Kratzert (2019) and Kratzert
602  etal, (2019) and show results for the Variable Infitration Capacity Model (VIC), the HBV model
603  as calibrated to an upper benchmark (HBV-UB) and lower benchmark (HBV-LB), and the
604  Sacramento Moisture and Accounting Model (SACSMA).
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Consideration 3: Make complexity work for you

One of the best ways to simplify large volumes and varieties of data is by using synthesis plots.
Here, we define a synthesis plot as any type of plot that combines multiple graphical approaches
and encoding attributes. By this definition, many of the best visualizations today combine
multiples of plot types to convey key messages. By nature, synthesis plots are complex,
summarizing multidimensional datasets with multiple encoding attributes (points, lines, color,
arrows). They may incorporate symbols, often make heavy use of color, and include strong
labeling and text throughout. Exceptional examples of such plots include circos diagrams
(Figure 10a), Sankey diagrams, table-based diagrams, treemaps (Figure 10b), and ordered bar
charts. While these visualizations are complicated, what often makes them successful is that the
creators give narrative to these plots (Tufte et al., 1990), through captions, labeling, and either
verbal (e.g., during a presentation or described in an animation) or written descriptions (e.g.,
captions or manuscript or article text). If all else fails, your caption should be able to explain
your figure. Ifit can’t, your figure is probably too complicated and needs revision. Complexity
does not necessarily detract from interpretability; synthesis plots represent an exceptional
opportunity for visual communication.

(A)

Land use (Class and Value)
B Open Water (11)
Perennial lce/Snow (12)
Developed, Open Space (21)
Developed, Low Intensity (22)
B Developed, Medium Intensity (23)
B Developed, High Intensity (24)
Barren Land (31)
I Deciduous Forest (41)
B Evergreen Forest (42)
(B) v Mixed Forest (43)
I Dwarf Scrub (51)
Shrub/Scrub (52)

I
- Grassland/Herbaceous (71)

Sedge/Herbaceous (72)
—— . Moss (74)

PastureHay (81)
B Cultivated Crops (82)
Woody Wetlands (90)
I Emergent Herbaceous Wetlands (95)

Figure 10: This figure visualizes over 1 billion pixels of land cover change from 2001 to 2011
across Alaska (Homer et al., 2015; National Land Cover Dataset) using two more complex plots,
a circos plot (Panel A) and a treemap (Panel B). The circos plot displays changes in land cover,
with the outer circle proportion roughly corresponding to 2001 land cover, and the arrows sized
to indicate changes in land cover from 2001 to 2011. The color of these arrows corresponds to
2001 land cover, with arrows pointing to the observed land cover in 2011. In contrast, areas

shown in Panel B correspond to 2011 land cover, with inset areas colored according to 2001
land cover.
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3.4 Challenges and opportunities in the use of color
Color is central to the creation of scientific visualizations. (Zeller and Rogers, 2020). While
color can mislead the reader when interpreting figures (Ware et al. 2008; Samsel et al., 2018),
removing color as an encoding attribute is not always feasible. When using color, there are
several approaches that can be used to make visualizations clear and easy to interpret.

Table 1: Resources for creating color palettes.

Resource

Description

Color Brewer, https://colorbrewer2.org

Color Brewer is a great website for choosing
color blind friendly options with both gradients
and categorical variables. The system also has
packages that interface with R software and
ggplot, as well as Python through seaborn.

Viridis, https://cran.r-
project.org/web/packages/viridis/vignettes/intro-

to-viridis.html

Viridis is a color palette and package that
provides a color blind and grey scale friendly
gradients with several options of colors. The
Viridis color palette interfaces through matplotlib
in Python and a package in R (viridis)

Cividis, https://github.com/marcosci/cividis;

Cividis is an optimized version of Viridis for all
forms of color blindness. You can find Cividis in
a function on R called cividis as well as
matplotlib in Python.

Color Moves,
https://sciviscolor.org/home/colormoves/

Color Moves is an interactive tool that can be
used to tailor colorbars to datasets.

Chroma.js Color Palette Helper,
https://gka.github.io/palettes/

Choma.js Color Palette helper lets you select
colors and then creates a sequential or divergent
scheme. The great part about helper is it tells you
how different the resulting palette is in lightness,
saturation and hue, allowing for creation of
unique color palettes that also are easy to
distinguish.

Colorgorical, http://vrl.cs.brown.edu/color

Colorgorical is a tool to choose a categorical
palette, letting the user specify the distance
between colors for better visualization.

Consideration 1: Use care with color-based pattern plots and color-based comparisons
Color is often used in data visualization to differentiate between groups, outliers, and across
scales. Although color can be useful in the right context, it is difficult to differentiate between
colors of the same intensity or saturation (Samsel et al., 2018; Ware, 2008). Additionally,
assigning a scale to a color gradient or understanding how far apart two colors are on a scale are
difficult for readers to interpret (i.e., gradients force the readers to do “visual math™). In this vein,
using color contrast can distort the reader’s view of the data displayed when not used properly in
visualization (Samsel et al., 2018). For example, in gradients of data, ratios of hues red to green
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are about equal, but hues orange to blue are about 1:2 for an equal gradient of data. This color
inequality is particularly important when areas are displayed because our brains will try to bring
the complementary colors into balance and misjudge the aerial extent of a color (Samsel et al.,
2018) and are not appropriate for displaying categorical variables (i.e., categories of vegetable
should not be displayed on a white to red color gradient).

When it comes to visualizations that rely on color to support interpretation, the widely used heat
map is particularly difficult to assess because colors can look different depending on what colors
are surrounding them (Albers, 1975). In addition, colors like red can dominate other colors,
leading to interpretation that there is more or extensive red in relation to other colors (Figure 6a;
often referred to as ‘contrast of extension’). Alternatively, it is difficult to compare colors with
increasing distance or blank space between the colors. To top all of these issues off, color
blindness is a serious limitation in interpreting figures, including but not limited to heatmaps.

Because color can mislead readers, we suggest that color is used carefully and after other
alternatives in big data visualization. There are many other encoding attributes that can be used
for differentiation between groups or scale. Alternatives include shape, line weight, size and
length.

Meters above Sea Level Meters above Sea Level Meters above Sea Level

W -5t0 -5t 0
0to1 Oto1
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15 to 40
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Figure 11: Color choice is an important decision in any visualization, particularly when colors
will touch each other. Using the NOAA DEM dataset (CIRES, 2014), this figure displays three
different color schemes to illustrate these choices along the coast of Cape Cod in Massachusetts
(USA). Panel A employs a rainbow color scheme where colors vary by hue but not saturation or
value. The gradient does not reflect the continuous nature of the data, and the red dominates the
rest of the colors, leading viewers to overestimate the area of ocean (contrast of extension).
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Additionally, this color palette does not work for color-blind individuals or gray-scale printing.
Panel B displays a diverging, complementary color scheme with blue and red on the opposite
sides. Although this color scale is good for visualization, it might not be the most effective for
displaying elevation, as the high elevations seem like hotspots of something in red. Finally,
Panel C illustrates a sequential color scheme with blue colors. This palette is probably the most
effective of the three for this dataset (coastal DEM), where the ocean is deep blue and the higher
elevations are white. The blue colors are expected for the archetypal imagery of the ocean.

Consideration 1: Is it useful to add color to highlight an overall pattern or to a distinct
group of variables?

Using color to convey an additional dimension within visualizations of large volumes of data can
be an effective way to convey additional information. Typically, the intent of using color in
these types of visualizations is to either (1) convey an overarching pattern (e.g., Figure 4c, Figure
5b, ¢; Figure 7b, c; Figure 8a, b) or (2) to display outliers or a categorical group (Figure 4d;
Figure 8c). However, a plot that tries to convey both patterns and outliers may easily overwhelm
perception of key messages or interpretation of the visualization.

The major challenge to using color to visualize patterns for a large dataset is that there are many
aspects of a visualization that can obscure our ability to discern a given pattern (Albers, 1975;
Samsel et al., 2018). Care should be given to ensure that all values can be distinguished.
Importantly, the choice of a color bar should enable interpretation of the perceived pattern. An
alternative to using color may be to use another type of differentiator (e.g., shape) that is easier to
interpret.

An alternative to visualizing patterns is to use color to highlight distinct groups of variables (e.g.,
details). This type of visualization may be employed to identify a statistical grouping, such as
outliers, a categorical grouping, such as different types of values (e.g., watersheds within the
same sub-basin, Figure 8c), or a research-based outcome, such as groupings from hierarchical
clustering or the like. As opposed to a typical pattern-based plot, this type of plot may simplify
the number of colors being quantitatively perceived across a large volume of data.

Consideration 2: When using color, choose color schemes or gradients that allow for
contrast in hue, value, and saturation.

Color theory represents an extensive study of how colors interact, how best to mix colors, and
how best to use colors within visualizations of any kind (Albers, 1975). The basis of color
theory is the color wheel, which is used to identify colors that may work together to make visuals
appealing and to provide contrast (Rhyne, 2012). As defined by color theory, there are three
aspects of color: hue (color wavelength — e.g., blue or green), saturation (depth of the color), and
value (grayness of the color). These aspects of color may be used to generate a color scheme or
gradient for a particular plot.

Many different combinations of colors that incorporate color theory already exist. A
complementary color scheme corresponds to colors that exist on opposite sides of the color
wheel. An alternative to a complementary color scheme is a split complementary color scheme,
which uses a base color along with two colors on opposites sides of the first color complement
(i.e., the color directly across from the base color on the color wheel). An analogous color
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scheme is when three colors are adjacent to each other, and a triadic color scheme is when three
colors are equally spaced around the color wheel. Color schemes employing complementary
color schemes as end members of a gradient are often called divergent color schemes (frequently
with white or a neutral color in the middle). Schemes with colors of a similar hue or within an
analogous color palette are commonly called sequential color schemes (i.e., light green, grass
green, dark green).

The best way to make or select a color scheme that is easier to differentiate and distinguish is to
leverage the three different aspects of color: hue, saturation and value. By employing at least two
aspects of color, such as saturation and value, visualizations can appear more interpretable
(Ware, 2008). Likewise, combining colors of different saturation or value with changes in hue
can make colors more distinguishable, particularly for viewers with color blindness.

Colors appropriate for visualization are frequently difficult and overwhelming to choose. For
those who may be new to the principles of color theory, there are several web-based resources to
assist with selecting a gradient or categorical color scheme. Table 1 includes a list of these
resources that can be used for developing a color palette.

Consideration 3: Avoid rainbow color scales and limit the number of categories to enable
interpretation

While this recommendation is widely known, it still bears repeating. Despite their broad
proliferation, rainbow color ramps use constant saturation and value, only varying in hue
(Borland and Taylor, 2007). Therefore, it is very difficult for colorblind individuals to
distinguish between colors on a rainbow scale. In addition, the gradient includes all colors on the
visible spectrum, making it hard for viewers to perceive which colors correspond to a positive or
negative value. This aspect also makes it challenging to interpret which part of the scale the
color on the gradient represents (Borland and Taylor, 2007). To emphasize the problems with
this particular color scale, we include a particularly horrific example in Figure 11a.

To avoid the rainbow color scale, pick a type of contrast that best fits the visualization (Samsel et
al., 2018). Cool to warm contrasts, such as blue to red or yellow, are often good for scales with
gradients from low to high. Additionally, using single color gradients is a strong approach for
producing easy-to-discern gradients. Humans are biased to prefer balanced gradients with either
cool to warm or complementary contrast in a gradient (Albers, 1975). Limiting colors to seven
categories or less helps the viewer interpret gradient or categorical color scale (e.g., Figure 5c;
Figure 11).

Consideration 4: Think beyond just colorblindness

Colorblindness is not the only visual disability that affects the interpretation of visualizations.
Low vision individuals may find it difficult to read or interpret details in a visualization. Often
increasing the contrast of the colors used in the visualization or increasing font size can make the
figure more accessible to those with low vision (Power and Jergensen, 2010). In addition, rasters
are inaccessible to the visually impaired because the components of the figure are hard to
separate (Choi et al., 2019). Often those with visual impairments will use computer reading
software to get information from a manuscript. To provide more information, make sure the
caption in the figure is accessible to reading programs and fully describes the graph and the
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results. Accessibility can be increased by considering creative choices to explain visualizations,
such as by adding supplemental movies or audio that describe the study or the visualizations
(Power and Jergensen, 2010). Finally, there are new frontiers opening up to make visualizations
more accessible. For instance, machine learning approaches are being tested to identify
individual elements of a visualization to pass to a reading software (Choi et al., 2019).

Consideration 5: Use color to tell a story — go beyond ‘best practices’ for a single
visualization

Throughout a text — whether a manuscript, presentation, interactive video, blog post, or other
published article — colors not only tell the story of one visualization but the larger narrative of the
manuscript. To keep the message and narrative consistent, it is important to keep a consistent
color scheme throughout, particularly for visualizations that use the same components (e.g.,
variables, parameters, groups). As discussed above, picking colors that are easy to distinguish,
that visually represent the figure’s trends, and that can be interpreted by all audiences is the most
important aspect of choosing a color palette for a presentation or manuscript.

In particular, it’s important to select color palettes that do not violate or challenge cultural or
archetypal expectations, and that support and correspond to the data being shown (e.g., Figure
10b versus Figure 10c). For example, do not use warm colors for water or snowfall or cool colors
for fire frequency. When using a dataset that is known to have an associated color palette,
employ this same color scheme (e.g., Figure 11, displaying land cover data with a previously
created and widely used color palette). If choosing a color palette fills you with dread, the
easiest direction is to pick an already existing color palette that is good for color blind persons
and printing grey scale (i.e., viridis). There are also really fun ways to dream up color schemes,
such as using movie color palettes (see twitter account (@cinemapalettes or Movies in Color:
https://moviesincolor.com/).

4.0 From static to interactive

The fourth V of big data, velocity, refers to the speed and temporal resolution at which data is
collected, both of which are accelerating, and are a challenge to visualize and represent. We can
work with this type of data through two methods: summarizing such information in static
formats, or creative visualization techniques such as animation. In this particular piece, we focus
less on velocity as a visualization need, though note that the importance of visualizing velocity
will likely continue to grow in the near future.

Common approaches to visualize velocity in static formats include visualizing time using color,
or grouping values and using time as an organizing dimension. For instance, heat maps or
barcode plots are commonly used to convey temporally resolute datasets at one or many
locations. Other plotting options include the use of spatial snapshots (e.g., showing temporal
plots for a particular point, slice, or volume) or temporal snapshots (e.g., showing spatial plots
for a particular time). However, it can be quite challenging to convey velocity in static
visualizations.

At current, more and more journals offer the option to upload animations as supplementary
material. Journals are also beginning to develop visualization-based submissions (e.g., HPEye,
within the journal Hydrologic Processes). For those interested in such options, Table 2 lists
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several packages in R and Python that can be used for creating animations or interactive
graphics.

Table 2: A list of commonly used packages and libraries for R and Python that enable animation
or interactive graphics.
Programming Language Packages or Libraries
R animate
gganimate
plotly
googlevis
shiny
Python Plotly Express
Matplotlib & seaborn
Bokeh
Altair
nbinteract

While the scientific literature largely draws on static visualizations, interactive visualizations are
becoming increasingly common for science communication to a range of technical and non-
technical audiences. Though the focus of our article is primarily static visualizations, we briefly
summarize considerations for interactive visualizations. Interactive visualizations can be used
for a variety of purposes: they may be helpful in the data exploration phase, or may accompany
peer-reviewed manuscripts. As most journals do not support interactive formats, it is important
to remember that creating a static version of the figure is often necessary for a manuscript.
However, such interactive visualizations are an option for supplemental or accompanying
websites.

Interactive graphs lead to more complexity and additional decisions. While there are many types
of interactive visualizations, the most common examples involve: 1) Changing/choosing a
dataset or a unit of analysis in a visualization, 2) filtering or querying a dataset in the
visualization, 3) toggling visualization features such as variables or colors, 4) combining or
separating visualizations, 5) interactive annotations that provide more information, and 6)
zooming in and out or changing the level of detail (Wash, 2020). Approaches to parse
interactive graphic components are now being described through grammars of interaction (e.g.,
Vega, https://vega.github.io/vega/; Vega-Lite, https://vega.github.io/vega-lite/), which provide a
framework for approaching the creation of interactive visualizations. In addition, many common
scientific programming languages are facilitating the creation of interactive web apps (e.g., R
Shiny, https://shiny.rstudio.com/).

With these common types of interactive visualizations come pitfalls. The following are a brief
list of recommendations to consider when creating interactive visualizations: 1) Ensure that the
static version is explanatory, as most people will not interact with the figure; 2) Consider
whether interactive features can be engaged and used on all types of devices (e.g., individual
points can be difficult to interact with on touch devices); and 3) Make the interactive components
of the visualization well-paced and manageable (as opposed to too cumbersome or slow) to
maintain interest with your audience (Wash 2020). It is likely that the tools and
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recommendations for best practices concerning interactive visualizations will continue to evolve,
especially given the growing interest in the creation and use of interactive visualizations across
the scientific community.

5.0 Conclusions:

Conveying large datasets within publications or presentations is challenging, especially when it
comes to visualizing large amounts of data. The visualization of large, complex datasets requires
rethinking our common assumptions and approaches for creating plots. In particular, when
visualizing large datasets, researchers must make many decisions before arriving at a final plot.
These decisions include whether to show all values or to aggregate, how to convey multiple
categories or comparisons, and how to display multiple dimensions, all in succinct, easily
interpretable ways.

Our introductory overview provides several recommendations, such as choice of plot
type, encoding attributes, and groupings, to aid in the creation of clear visualizations. Thinking
carefully about these choices can enhance visualization quality and messaging. However,
whether (or not) our recommendations apply in any particular case will ultimately depend on the
overarching message conveyed by each visualization and the size and character of the associated
dataset. Though we often focus on encoding attributes and plot choice when approaching
visualizations, equally important is to give narrative to our plots using notations, legends, and a
clear caption.

Above all, when creating plots of large datasets, iteration is key. Be sure to ask for input
along the way, ensuring that the key takeaways intended for a particular visualization are clear to
others. Scientific visualization is something that we all have very strong feelings about. We
therefore emphasize that our recommendations are just that - not hard and fast rules that should
be unilaterally applied in all scenarios. Be creative, thoughtful, and intentional with your
designs, and use your best judgment along the way.
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