Disperse Access Considered Energy Inefficient in
Intel Optane DC Persistent Memory Servers

Abstract—The Intel Optane DC Persistent Memory Module
(AEP), which is the first commercial available Non-Volatile
Memory (NVM) product, offers comparable performance with
DRAM while providing larger capacities and data persistence.
Existing researches that substituting NVM with DRAM or
hybridizing them are either emulator-based or focused on how
to improve the energy efficiency for writes, while the energy
efficiency of the real AEP system are less explored. Based
on real AEP, we observe that, even thought eliminating the
DRAM-like refresh energy consumptions, AEP shows significant
energy consumption differences in different performance levels.
Specifically, requests with time intervals (disperse) underperform
in both performance and the energy efficiency when compared
with requests without time intervals (compact). This disparity
and parallelism performance potentials motivate us to propose
Sprint-AEP, an energy-efficiency-oriented scheduling method for
AEP-equipped servers. Sprint-AEP fully activates adequate AEPs
to address most of the requests by deferring the write requests
and prefetching the hottest data. The remaining AEPs will stay in
idle mode with a low idle power to save energy. Besides, we also
utilize the read parallelism to accelerate the sync and prefetching
processes. Compared with energy-unaware AEP usages, our
experimental results show that Sprint-AEP saves up to 26%
energy without performance degradation.

Index Terms—Intel Optane, Persistent Memory, Energy Effi-
ciency, Scheduling

I. INTRODUCTION

Putting all data into Dynamic Random Access Memories
(DRAMs) is usually regarded as the last resort for storage-
bottlenecked performance problems in the age when there are
significant performance gaps between memory and storage
devices. However, the exponential growth of application foot-
prints challenges this DRAM-enabled method from the capac-
ity, data persistence, and energy limitation. First, currently the
JEDEC standard [1] allows for 128 GB as the maximum ca-
pacity per DRAM, while this upper bound is far from expected
capacity demands. Second, data in DRAMS is volatile while
the data persistence is usually considered as a default option
for storage systems. This demand unavoidably exacerbates
the disadvantage of DRAM capacity limits, because persisting
data to or loading data from the relatively much slower non-
volatile hierarchies significantly compromises the performance
benefits of residing them in DRAMs [2]. Third, limited power
budgets are unable to support the free scale of DRAMs, and
as much as 40% of the total power consumed in a server is
attributed to DRAMs [3-5]. Many researches are trying to
address these issues in both micro and macro approaches.

Micro ways continue to explore potentials of DRAMs from
their internals. Optimizing DRAM energy consumptions miti-
gates the energy limitations and also helps to scale DRAMs to

provide larger capacities. These methods [6—-13] take DRAM
physical structures into considerations, and process all the data
mainly by only a part of the DRAM banks while keeping other
banks in the energy-efficient mode. Considering that DRAM
on-board memory management units are usually black-boxed
to users, these approaches are difficult to be realized. Besides,
periodical refreshes for valid data in DRAMSs still consume
13% of the total power even at idle state [5].

Macro tryings introduce Non-Volatile Memories (NVMs)
as supplements to or substitutes for DRAMs. Apart from
competitive performance with DRAM, NVM devices pro-
vides lower standby power with data persistence and, more
importantly, higher storage capacities. These advantages of
NVM greatly alleviate the large capacity and high performance
demands from large-footprint applications, and make it a
promising alternative to DRAM. However, previous publicly
available NVM emulators or prototypes attract research efforts
on problems such as limited write endurance [14-19] or
the asymmetries of read and write operations in terms of
performance or power consumptions [17-23]. The problem
is that, for the newly released commercially available NVM
device, Intel Optane DC Persistent Memory Module (AEP)
[24], its practical characteristics remain unclear and are thus
needs to be explored.

With different access patterns and lots of tests, we observe
that (1) AEP shows significant energy consumption differences
in different performance levels. Specifically, requests with time
intervals (disperse) underperform in both performance and the
energy efficiency when compared with requests without time
intervals (compact). (2) AEP also shows great parallelism
performance potentials. These findings indicate that fully
activating only a part of AEPs not all of them in a server
is able to handle the majority of requests in the most of time.

We believe that the real energy consumption of AEP, just
like the power budget wall for DRAM, is the major concern for
the further deployment, and focusing on its energy-efficiency
in this paper.

This disparity and parallelism performance potentials moti-
vate us to propose Sprint-AEP, an energy-efficiency-oriented
scheduling method for AEP-equipped servers. Sprint-AEP
reshapes access patterns to selected AEPs accordingly. Sprint-
AEP fully powers on adequate AEPs to absorb the coming re-
quests at the best effort, and dispatches misses to the remaining
idle AEPs. Moreover, Sprint-AEP utilizes the parallelism po-
tentials to compensate possible performance degradations for
standby AEPs and to boost data movements among different
power mode AEPs.



In summary, we make the following contributions in this

paper:

o We conduct experiments on real AEP devices, and find
opportunities to reduce energy consumptions for AEP-
equipped servers.

+ We take advantage of the parallelism performance poten-
tials to provide performance guarantees.

o We implement Sprint-AEP on a server with real AEP
devices. Experiment results show that Sprint-AEP saves
up to 26% energy without performance degradation.

TABLE I
MOTIVATION TEST CONFIGURATIONS

CPU 2 x Gen Intel Xeon processors (48 cores)
OS Kernel Linux 3.10.0-957.12.1.el7.x86_64 GNU/Linux
CPUO DIMMs One 16GB DRAM
CPU1 DIMMs One 128GB AEP, and one 16GB DRAM

Access method  By-pass DRAM, NUMA with DAX AEP access

TABLE II
MEASURED AEP POWER

Power Mode Power in Watts (W)
Idle 1.91
Peak 3.64
Dynamic 1.91-3.3

II. BACKGROUND AND MOTIVATION

In this section, we firstly brief the AEP product, and then
give experiments on servers with real AEP devices under
different access patterns to quantitatively show their enery
and power characteristics. Finally, we explain our designs of
Sprint-AEP in a high level to clarify design principles.

A. Intel Optane DC Persistent Memory Module (AEP)

The newly released commercially available Intel Optane
DC Persistent Memory Module, named Apache Pass (AEP),
provides DDR4 interfaces just the same as the DRAM, and
currently a dual-processor Intel server can hold up to twelve
AEPs. The typical capacity of an AEP is 128/256/512 GB,
therefore a server provides up to 6 TB. The 3D XPoint
technology [25] enabled AEP product offers near DRAM
performance and data persistence, this greatly closing the per-
sistency boundary between CPUs and storage levels. Besides
performance parameters, however, the energy consumption and
parallelism capabilities of AEP are less explored.

B. Access Pattern and AEP Power Mode

1) Experiment Configurations and Methods: Tab. I lists the
parameters of motivation experiments on the AEP server, and
we use the Running Average Power Level (RAPL) interface
[26] to measure energy usages the DIMMs area [27]. To
measure the AEP power, we set a test group and a control
group in a two-processor server, which is shown in Tab. I.
In detail, the CPUl1 DIMMs area is set as the test group,

and the CPUO DIMMs area is set as the control group. The
DRAM of both groups are the same, and the AEP only exits
in the CPU1 DIMMs area. Through the NUMA and by-pass
DRAM methods, the requests are sent to the AEP directly.
By comparing the test group and the control group, we finally
obtain the energy consumption of the AEP.

2) Workload Patterns: As there is usually a time interval
between two requests in the real world [28], we plan to explore
the influence of different time intervals on the AEP. To reduce
the disturbance, the time interval between two requests is fixed
during each test. And the request size is 4 KB in our tests, as
4 KB is a common size and shows the similar results with the
other request sizes (bigger than 256 bytes).

We send requests with different time intervals to simulate
the heavy and light workload access patterns. Specifically,
requests with time intervals are disperse accesses, and requests
without time intervals are compact accesses. We start from
zero-time interval and run a new test every 0.1 millisecond
(ms) until the 1.6 ms time interval with random/sequential
write/read cases.

Tab. II lists the measured power of AEP in watts. When
time intervals between requests are long enough, AEP shows
a steady energy consumption in 1.91 W, which means that
AEP requires a static power supply. As time intervals becomes
shorter, AEP consumes more power, ranging from 1.91 to 3.3
W, and finally reaches its fully active mode in 3.64 W under
compact accesses. These energy consumption differences indi-
cate that the AEP energy consumption is tunable with different
access patterns. The following subsection then quantitative the
relationship between access time intervals and performance.

C. Performance and Energy-efficency
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Fig. 1. The average response time of 4KB request under four R/W modes.

In Fig. 1, we can see that the average response time is
closely related with the AEP power. The higher the average
response time, the smaller the power of AEP. In general, the
read outperforms the write. The smallest average response time
is observed at zero-time interval. And the average response
time changes little between 0.1 ms and 0.8 ms time interval.
Then the average response time reaches a higher value at the
0.9 ms time interval.

As shown in Fig. 2, for example, the average Input/Output
Operations Per Second (IOPS) and AEP power under random
write are introduced, as a function of the time interval. The left
ordinate and right ordinate represent the IOPS and AEP power
respectively. The IOPS of zero-time interval is 254131. In
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Fig. 2. IOPS and AEP power under random write.

general, IOPS decreases exponentially with the time interval.
AEP power has the largest value at zero-time interval, and
remains stable at 3.3 watt (W) between 0.1 ms and 0.8 ms time
interval. Finally, AEP power descends until 1.96 W, which is
almost the same as idle power.
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Fig. 3. Number of processed requests per joule.

As shown in Fig. 3, to figure out the efficiency, we analyze
the number of requests the AEP can address with only one
joule, as a function of the time interval. The value of zero-time
interval (69.7) is too large to be displayed and is marked with
a label. With the increase of time interval, the value descends
quickly and then seems to be stable at 0. The smaller the time
interval, the higher the efficiency.
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Fig. 4. Real-time power and total energy of compact and disperse accesses
with the same amount of data. Compact accesses (top) and disperse accesses
(bottom) over time.

In this article, we propose two concepts: compact and
disperse requests. In detail, the requests with zero-time interval

are named compact requests, and the requests with non-
zero-time interval are named disperse requests. Fig. 4 shows
the compact and disperse accesses with the same testing
dataset size. Disperse accesses start with the active power
at t,,, causing energy consumption to rise until time ¢.q,
and finishes with the final energy consumption Fg;s. On the
other hand, compact accesses begin at t,, with the peak
power, and remains until ¢;, where the compact accesses have
been finished with the execution-time energy consumption
E.om1. Then the AEP becomes idle and the cumulative energy
curve slowly rises during the idle period (from time ¢; to
tena), finally ending with the equal-time energy consumption
Ecom1+Ecom2'
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Fig. 5. The execution-time energy-delay product.

z 4 = random write

< === sequential write  _..eee. ool el e
7 35 random read

& 3 [eeeeee sequential read K S S PO L L
5 .

5 3 2.5

o

£2 2

s als

E] 1

g 05

o

& 0

O I R B O T T TN

Time interval(ms)

Fig. 6. The equal-time energy-delay product.

To further explore the energy efficiency, we use the energy-
delay product as a measurement. In detail, the energy data
means the execution-time energy and equal-time energy, the
delay data means the average response time. All of the energy
and delay value has been processed with normalization before
used. As shown in Fig. 5 and Fig. 6, there are two kinds of
products, which use the execution-time energy and equal-
time energy respectively. We should note that the smaller the
product, the higher the energy efficiency. Thus, in either case,
the compact test (zero-time interval) has the highest energy
efficiency.

D. Parallelism Potential

We have also tested the throughput and power of the AEP
under different threads to explore the parallelism. Fig. 7 shows
the throughput of AEP under different threads. With the
increasing of threads, the throughput of read improves sig-
nificantly. Whereas the throughput of write improves slightly
and has a visible drop at eight threads. Fig. 8 shows the related
AEP power. We can find that the read power is higher than the
write power, which is the same as the throughput. In addition,
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Fig. 7. Throughput of AEP with different threads.
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Fig. 8. AEP power with different threads.

the AEP power almost remains stable as the number of threads
changes.

In short, read can benefit from multiple threads, while the
write can’t.

E. Motivation

Generally, part of the real-world workload traces are mainly
composed of disperse requests (several tens of megabits per
second), which can’t fully utilize the bandwidth of an AEP.
Meanwhile, even if the coming requests are all compact
requests (zero-time interval), the bandwidth of the AEP server
(multiple AEPs) still can’t be fully utilized. But we should note
that an AEP will run with high power even when dealing with
disperse requests, rather than idle power. Therefore, naively
distributing requests to all the AEPs is not energy efficient.
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Fig. 9. The motivation of our design.
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As shown in Fig. 9, to address this problem, we can fully
activate only one AEP to address most of the requests by
deferring the write requests and prefetching the read requests
for the other AEPs. When one AEP is unable to deal with the
compact requests, more AEPs will be fully activated in the

AEP server. The remaining AEPs will stay in idle mode with
a low idle power to save energy.

Finally, the deferred write requests will be synchronized to
their corresponding idle AEPs, which offers an opportunity to
leverage the internal parallelism of the AEP. In detail, as shown
in section II, we can read the deferred write requests with
multiple threads, which can significantly accelerate the sync
process with only a small energy increase. And the parallelism
can also be used in the prefetching process.

Though we can’t keep only part of AEPs with idle power at
present, the internal controller of each AEP designed by Intel
offers an opportunity to achieve this goal in the future.

III. DESIGN OF OUR SYSTEM
A. System Architecture
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Fig. 10. The system architecture of our Sprint-AEP.

As shown in Fig. 10, the system architecture of our Sprint-
AEP consists of three parts: CPU, primary AEPs, and idle
AEPs.

CPU is mainly responsible for distributing requests across
all the AEPs. All of the AEPs are divided into two parts:
primary AEPs and idle AEPs. Primary AEPs are fully activated
to guarantee the performance, and idle AEPs are always kept
standby to save energy until there is a need to access an idle
AEP.

There is at least one primary AEP, and the number of
primary AEPs and idle AEPs varies with the intensity of
workload. When the workload is too heavy for the existing
primary AEPs, one idle AEP will be fully activated as a new
primary AEP.

For convenience, we set a parameter « (10% in our tests) to
judge whether an idle AEP should be fully activated. Firstly,
we fully activate an idle AEP as primary AEP for several
seconds, and calculate the rate of write and read performance
increment. If the sum value of write and read throughput
increment ratio can achieve «, this AEP will be kept as
primary AEP.

Each primary AEP is responsible for up to M idle AEPs,
which is set as 3 in our tests. Each primary AEP is logically
divided into three parts: AEP cache, AEP buffer and local area.



The local area stores the data that is originally dispatched to
the primary AEP. AEP buffer will absorb the write requests
that are originally dispatched to idle AEPs, and data in AEP
buffer will be synchronized to its corresponding idle AEPs.
After data synchronization, these write data will be logically
moved to AEP cache. In this way, the originally disperse write
requests of idle AEPs will be gathered into compact write
process, which can raise the energy efficiency. We fetch the
frequently and recently accessed data from idle AEPs to AEP
cache in advance, thus part of the originally disperse read
requests will be turned into compact prefetching processes.

B. Data Organization

Access

A4

| Hash to find the AEP

1st
| Primary AEP/\‘

—_— e e

|
|
|
[ AEPcache | :
|

AEP buffer .oe
[T T eee IO

S Y | g gy d

| CPU

3rd

Primary
AEP

4th

Idle AEPs Idle AEPs

Fig. 11. The index architecture of the storage system.

For better data organization, we design an index architec-
ture, which is shown in Fig. 11.

The first layer is a hash function, which is a function of the
key for key-value requests and decides which AEP a request
belongs to.

The second layer contains the B+-trees of AEP cache and
AEP buffer of every primary AEP. Each B+-tree corresponding
to one idle AEP and only manages the data that are temperately
stored in primary AEP. There are only metadata in these B+-
trees, and the related values are all stored in the AEP buffer
and AEP cache.

The third layer contains the AEP buffer and AEP cache of
every primary AEP. AEP cache stores the data that is most
likely to be accessed, including the frequently and recently
accessed data prefetched from its related idle AEPs and the
clean data from AEP buffer. AEP buffer absorbs all the write
requests of its related idle AEPs by many logs. Each log
corresponding to one idle AEP.

The fourth layer is the final data storage area, including the
idle AEPs and the local area of the primary AEPs. And each
area is organized by an internal B+-tree.

When a request comes, it will be firstly processed by the
hash function and then sent to one of the primary AEP. If the

request is originally dispatched to one primary AEP, it will
be directly addressed by the local area of the primary AEP.
Otherwise, the request will visit the B+-trees of AEP cache
and AEP buffer. If the request is a write process, it will be
wrote into its corresponding log in the AEP buffer. Otherwise,
we will read the data from the AEP cache, AEP buffer or the
corresponding idle AEP. When an idle AEP is read, we will
start a prefetching process, which is introduced in the next
subsection.

Due to the limited space of AEP buffer, each log will be
synchronized to its corresponding idle AEP when the log size
reaches a threshold (80% of the AEP buffer in our test). As
the read performance will increase with multiple threads, we
will synchronize these logs with multiple threads to multiple
idle AEPs. In this way, the sync process will be significantly
accelerated.

Besides, we use key-value storage system in this ar-
ticle for an example, and the metadata is significant.
The metadata of each key-value entry is designed as
(key, value_address, pointer, hotness, flag). The key rep-
resents the logical address of the requests in our imple-
mentation, the wvalue_address represents the physical ad-
dress where the value is stored, the pointer is reserved
for prefetching data chain. The hotness means the accessed
popularity, the flag means whether the data is dirty(flag=1)
or not(flag=0) for the B+-trees of AEP cache and AEP
buffer, and the flag also means whether the data has been
cached(flag=1) or not(flag=0) for B+-trees in idle AEPs.
Note that B+-tree in the local area of primary AEP only needs
(key, value_address, pointer).

C. Prefetching

To further reduce the energy consumption of idle AEPs,
we propose an energy-aware prefetching algorithm. Since the
write requests of idle AEPs can be temperately addressed by
the AEP buffer, our main concern is about the read requests.
We intend to design a prefetching algorithm to reduce the read
access of idle AEPs.

This subsection provides an overview of our prefetching
algorithm and a sketch showing how this algorithm works.

Very roughly, first, we will divide the data of AEP cache
and idle AEPs into different hot levels respectively. The higher
the hot level value, the larger the visit probability is. Thus, the
hottest data in idle AEPs will be fetched to AEP cache when
there is a primary AEP cache miss .

Fig. 12 shows the sketch of prefetching data from an idle
AEP. At the beginning, we will initialize a Hot Range List
(HRL) cluster based on the B+-tree of an idle AEP. We will
also initialize a Cold Range List (CRL) cluster based on three
B+-trees related to AEP cache and AEP buffer. The largest hot
level value in HRL cluster and the smallest cold level value
in CRL cluster are named Hmax and Hmin respectively.

To simplify the statistic, we impose certain limits on the
HRL and CRL clusters. First, the smallest hot level value in
HRL cluster should be larger than Hmin, and the largest cold
level value in CRL cluster should be smaller than Hmaz.
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Fig. 12. The sketch of prefetching algorithm for an idle AEP.

Second, two clusters only records the metadata with flag
equals zero. To improve prefetching efficiency, we divide the
HRL (CRL) cluster into several (up to 10) HRLs (CRLs).
Every HRL (CRL) is constructed with LRU. The hot level
value is sequentially incremented from HR1 (CR1) to HR10
(CR10).

When a primary AEP miss happens, we will fetch data from
the corresponding idle AEP and a prefetching process will
be triggered. First, data will be fetched with multiple threads
from the head of HRL10 to AEP cache. If there isn’t enough
space in the AEP cache, data in CRL1 will be evicted. When
HRL10 has been traversed, we will move on to the sequential
chain HRLO if the HR9 is still higher than CRL1, and so on.
Otherwise, the prefetching process will be stopped. Besides,
we should note that frequent and large data migration is likely
to cause dramatic fluctuations. To this end, we set a threshold
for the prefetching size at any one time, which is one-twentieth
the size of AEP cache.

To guarantee the consistency of all the B+-trees, we record
the metadata of the eliminative data, which will be synchro-
nized to the corresponding idle AEPs when there is idle AEP
access.

IV. EVALUATION AND RESULTS
A. Configurations

TABLE III
THE CONFIGURATION OF OUR OBSERVATION TEST

CPU 2 processors with 96 cores Genuine Intel(R) CPU
System Linux 3.10.0-957.12.1.e17.x86_64 GNU/Linux
CPU1 DIMMs  four 128GB AEPs, 16GB DRAM

Access method  By-pass DRAM, NUMA with DAX AEP access

We evaluate our Sprint-AEP on a real AEP server, which
has been shown in Tab. III. This AEP server puts four 128GB
AEPs on the CPU1 DIMMSs, and we run our tests on CPU1
and four AEPs by NUMA, without accessing the DRAM.

The Yahoo! Cloud Serving Benchmark (YCSB) is an open-
source specification and program suite for evaluating retrieval
and maintenance capabilities of computer programs. It is often
used to compare relative performance of NoSQL database
management systems. In our tests, we use the C++ version

of YCSB [29], which has low cost. Unless otherwise noted,
the size of a key-value request is set as 1KB, the distribution
mode of requests (requestdistribution) is set as zipfian,
and we use 20 threads to distribute requests.

TABLE IV
THE WRITE RATIO OF OUR YCSB TRACES

‘Workload Description Time interval (us)  Density
YCSB A 50% updates, 50% reads 0 high
YCSB B 5% updates, 95% reads 0 high
YCSB 3 67% updates, 33% reads 0 high
YCSB A-T  50% updates, 50% reads 50 low
YCSB B-T 5% updates, 95% reads 50 low
YCSB 3-T 67% updates, 33% reads 50 low

As shown in Tab. IV, we choose two representative YCSB
workload traces: YCSB A and YCSB B, and make a new
YCSB 3. The three traces represent three different write
sensitivity. The time interval means the extra time we add
between two requests. Therefore, three original traces (YCSB
A, YCSB B, YCSB 3) are defined as high density traces
with zero-time interval. Three traces (YCSB A-T, YCSB B-T,
YCSB 3-T) are defined as low density traces with 50us-time
interval to simulate the real-word traces.

To evaluate the performance and energy consumption of our
Sprint-AEP, we set three configurations for comparison.

o Standard: Four AEPs are all powered on as a small
distributed key-value storage system to address requests
without any power management policy.

e Sprint-AEP: Four AEPs are managed by our novel
system scheduling scheme to save energy with little
performance degradation.

e Sprint-AEP w/o Pre: Sprint-AEP method without
prefetching algorithm.

o Sprint-AEP w/o Parallel: Sprint-AEP method without
using the read parallelism in sync and prefetching.

B. Analysis on Low-density Workload

According to our records, Sprint-AEP only fully actives
one primary AEP with three low-density traces (YCSB *-
T), and the remaining three AEPs all mainly kept with idle
power. Because the IOPS of YCSB *-T is far away from the
maximum bandwidth of one AEP, and one primary AEP is
enough.

1) Energy Consumption Analysis: As shown in Fig. 13 and
Fig. 14, we record the number of read times and the execution
time for one AEP (primary AEP for standard mode, idle AEP
for Sprint-AEP) under different low-density YCSB *-T traces
with 20GB data.

In Fig. 13, Compared to standard mode, it is clear that
Sprint-AEP can significantly reduce the number of read times.
Because AEP cache and AEP buffer act as a large read cache
for the whole storage system in Sprint-AEP (w/o Pre). In
detail, Sprint-AEP w/o Pre can reduce at least 96% of the
number of read times, further more, Sprint-AEP can reduce
about 99.99%. Sprint-AEP performs better than Sprint-AEP
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w/o Pre, as more read requests of idle AEPs have been
addressed by the primary AEP through prefetching.

In Fig. 14, compared to standard mode, Sprint-AEP reduces
at least 95% of the execution time. Because most of the time
has been wasted by the 50us-time interval in the standard
mode. Whereas, Sprint-AEP can address most of the disperse
requests by only one fully activated primary AEP, and then
gather these disperse requests into compact requests by sync
and prefetching. Thus, the idle time of remaining AEPs are
extended. The read time of Sprint-AEP is almost the same with
Sprint-AEP w/o Pre, though there is a noticeable difference
for the number of read times. Because the read time contains
the prefetching time, and each prefetching operation fetches
a chunk of data from the idle AEP. The pure read time of
Sprint-AEP is smaller than Sprint-AEP w/o Pre, but the gap
is offset by the time of prefetching.

According to Tab. II and Tab. IV, four AEPs of standard
mode works at 2.8W all the time. For Sprint-AEP, when
destage and prefetching happens, all of the four AEPs are
kept in peak power (3.64W). The rest of the time, primary
AEP works at 2.8W, and the remaining three idle AEPs work
at 1.91W.

Therefore, as shown in Fig. 15, we calculate the total
equal-time energy of four AEPs for different configurations
under different low-density YCSB *-T traces with 20GB data.
Compared to standard mode, Sprint-AEP (w/o Pre) can save
about 26% energy. Sprint-AEP consumes almost the same
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Fig. 15. Total equal-time energy of four AEPs for different configurations
under different low-density YCSB *-T traces with 20GB data.

energy with Sprint-AEP w/o Pre, as they have the same read,
write and idle time. There is no difference between different
workload traces. Because lots of time has been wasted by the
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Fig. 16. Performance comparison under different low-density YCSB *-T
traces with 20GB data.

2) Performance Analysis: As shown in Fig. 16, we test
the performance of three configurations under different low-
density YCSB *-T traces with 20GB data. Whether write or
read, Sprint-AEP slightly outperforms the standard mode. The
reason is that Sprint-AEP can easily gather disperse requests
into compact requests to improve the performance by the
primary AEP when the IOPS of YCSB *-T is far away from
the maximum bandwidth of one AEP.

In detail, for write, Sprint-AEP (w/o Pre) absorbs disperse
write requests by the primary AEP, and then synchronize these
data to their related idle AEPs in compact mode by three
parallel threads. For read in Sprint-AEP (w/o Pre), AEP cache
and AEP buffer act as a large read cache for the whole storage
system. Besides, for Sprint-AEP, disperse read requests can
be turned into compact prefetching requests to further more
increase the read performance. There is no difference between
different workload traces. Because the pure execution time
only accounts for a tiny fraction of the whole run time with
the 50us-time interval, and the throughput has been limited
by the 50us-time interval.

3) Energy Efficiency Analysis: To explore the energy effi-
ciency, as described in section II, we use the energy-delay
product as a measurement. The energy means the equal-time
energy, and the delay means the sum of write and read latency.
The final energy-delay products have been processed with
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Fig. 17. Energy efficiency comparison under different low-density YCSB *-T
traces with 20GB data.

normalization. As shown in Fig. 17, we compare the energy
efficiency under different low-density YCSB *-T traces with
20GB data. The smaller the product, the higher the energy
efficiency is. Therefore, Sprint-AEP (w/o Pre) has a higher
energy efficiency than standard mode, and can improve the
energy-delay product by 30%.

4) The Effect of Dataset Size: As shown in Fig. 18 and
Fig. 19, we also calculate the total energy of four AEPs
and record the performance for different configurations under
YCSB A-T with different dataset size, which shows the same
pattern.
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Fig. 18. Total equal-time energy of four AEPs under YCSB A-T with different
dataset size.
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C. Analysis on High-density Workload

Under high-density workload traces, Sprint-AEP (w/o Pre)
fully activates three primary AEPs under YCSB A and B, two
primary AEPs under YCSB 3. Because one fully activated
AEP can’t guarantee the performance, and the detail has been
described in section III.
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Fig. 20. Total equal-time energy of four AEPs for different configurations
under different low-density YCSB *-T traces with 20GB data.

1) Energy Consumption Analysis: As shown in Fig. 20,
we calculate the total energy of four AEPs of different
configurations under different low-density YCSB *-T traces
with 20GB data. Compared to standard mode, Sprint-AEP can
save about 7% to 17% energy. Because Sprint-AEP (w/o Pre)
fully activates three primary AEPs under YCSB A and B, two
primary AEPs under YCSB 3. We can find that standard and
Sprint-AEP (w/o Pre) consumes the least energy under YCSB
B. Because the read ratio of YCSB B is the largest, and AEP
performs a better read throughput than write.

2) Performance Analysis: As shown in Fig. 21, we compare
the performance of different configurations under different
high-density YCSB traces with 20GB data. We can find that
the write throughput of standard mode is higher than Sprint-
AEP (w/o Pre). Because the compact requests distributed to
primary AEP has already reached its maximum bandwidth
with B+tree, extra requests of an idle AEP will exceeds
the maximum bandwidth and result in write performance
degradation. Whereas, Sprint-AEP w/o Pre shows almost the
same read throughput with standard mode, except for YCSB
3. Because the read ratio is smallest in YCSB 3, and the cache
function of AEP cache and AEP buffer has been reduced by
many write requests. But the read throughput is still largest
under YCSB B, because of the largest read ratio. Sprint-AEP
always shows a better read throughput than Sprint-AEP w/o
Pre, as the prefetching algorithm really works.
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Fig. 21. Performance comparison under different high-density YCSB traces
with 20 GB dataset.

To figure out why Sprint-AEP (w/o Pre) fully activates three
primary AEPs under YCSB A and B, two primary AEPs under
YCSB 3, Fig. 22 has been introduced. Fig. 22 shows the
ratio of performance improvement under different high-density
YCSB traces with 20 GB dataset. The X-X+1 Write/Read
means the ratio of throughput improvement of Write/Read
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Fig. 22. Ratio of performance improvement under different high-density
YCSB traces with 20 GB dataset.

when the system fully activates X+1 primary AEPs based on
X primary AEPs. As shown in section III, we set a parameter
«, which is 10% in our tests. If the sum of X-X+1 Write
and X-X+1 Read can achieve «, then Sprint-AEP will fully
activates X+1 primary AEPs. As shown in Fig. 22, Sprint-
AEP will fully activates three primary AEPs for YCSB A and
B, and two primary AEPs for YCSB 3.
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Fig. 23. Energy efficiency comparison under different high-density YCSB
traces with 20GB data.

3) Energy Efficiency Analysis: To explore the energy effi-
ciency, we still use the energy-delay product as a measure-
ment. The energy means the equal-time energy, and the delay
means the sum of write and read latency. The final energy-
delay products have been processed with normalization. As
shown in Fig. 23, we compare the energy efficiency under dif-
ferent high-density YCSB traces with 20GB data. The smaller
the product, the higher the energy efficiency is. Therefore,
Through little, Sprint-AEP (w/o Pre) still has a higher energy
efficiency than standard mode.

D. The effect of Parallelism

To evaluate the effect of parallelism, we test Sprint-AEP and
Sprint-AEP w/o Parallel under all the YCSB traces. First, as
shown in Fig. 24, we evaluate the effect of parallelism under
different high-density YCSB traces with 20GB data.

We can find that the utilization of parallelism can sig-
nificantly improve the performance. In detail, Sprint-AEP
outperforms 30% to 68% and 23.7% to 40% than Sprint-AEP
w/o Parallel on write and read respectively. Because we read
the AEP cache with multiple threads to accelerate the sync
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Fig. 24. The effect of parallelism under different high-density YCSB traces
with 20GB data.

process with only a small increase in energy. And we read the
hot data in idle AEPs with multiple threads to accelerate the
prefetching process.

We also evaluate the effect of parallelism under different
low-density YCSB traces with 20GB data, which is shown in
Fig. 25. Different from the results under high-density YCSB
traces, the parallelism can only bring little improvement on
the performance. Because the throughput is mainly limited by
the 50ps-time interval.
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Fig. 25. The effect of parallelism under different low-density YCSB traces
with 20GB data.

V. RELATED WORK
A. Energy Saving Methods of DRAM

To reduce the energy consumption of DRAM, many meth-
ods have been proposed. For example, turning some banks of
DRAM into low-power mode according to the request interval
[6, 7], processing all of the data mainly by part of the DRAM
[8-10], reducing the DRAM refresh rate [11, 12], reducing
the activation energy by scheduling the order of requests [13],
and so on [30, 31]. Although there are many energy-saving
schemes for DRAM in academic, the majority of them do
not seem to actually promote industrialization. Because the
chip/bank of a DRAM is difficult to control. And the data
reliability and capacity of DRAM are always problems[1].

B. Energy Saving Methods of NVM

The energy-saving methods of NVM usually save energy
by organizing the data allocation of a hybrid DRAM/NVM
memory [14-19, 32, 33], and some methods mainly focus on
the consistence and performance, not the energy. Article [17]



proposes energy-aware persistence principles, save energy by
modifying the logging method of a single NVM device. Article
[32] saves energy by performing data allocation to different
memories and task mapping to different cores. Article [33]
uses DRAM to store the data with higher local I/O activity,
while cache data with lower activity is placed into NVM to
save the refresh energy. Most of the methods only focus on the
high write energy and latency, and the read energy is always
ignored.

C. Systems and products of NVM

The excellent characteristics of NVM have attracted ex-
tensive interests of industry and academia [20]. Academic
researchers have proposed systems, such as SOFORT [21],
Peloton [34], and FOEDUS [35], that incorporate NVM both
as memory and storage. Meanwhile, database vendors like
SAP, Oracle, Microsoft, and Aerospike, have raced to an-
nounce NVM-based products [22, 23, 36, 37]. However, these
systems and products do not solve the energy consumption
problems of NVM.

VI. CONCLUSION

In this paper, we observe that naively scattering data to
all AEPs is energy inefficient, and an AEP can obtain the
highest energy efficiency when dealing with compact requests.
Therefore, we propose an energy-efficient AEP scheduling
method, named Sprint-AEP. Sprint-AEP fully activates only
part of the AEPs to absorb all the requests, and dispatches
misses to the remaining idle AEPs. Thus, the write requests
of idle AEPs will be temperately stored in the fully activated
AEPs, and finally synchronized to idle AEPs in compact mode.
And by a compact prefetching algorithm for idle AEPs, most
of the read requests can be addressed by the fully activated
AEPs. Therefore, all the write requests and most of the read
requests of idle AEPs can be gathered into compact requests
for better energy efficiency. Compared with naive AEPs usage,
our experimental results show that Sprint-AEP saves up to
26% energy without performance degradation.
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