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Abstract. We propose a simple, geometrically-motivated construction of smooth random paths in the plane. The construction is such
that, with probability one, the paths have finite curvature everywhere. Our construction is Markovian of order 2. We show that a simpler
construction which is Markovian of order 1 fails to exhibit the desired finite curvature property.

Résumé. Nous étudions une maniere élémentaire de construire des marches aléatoires du plan a ’aide d’angles aléatoires. Cette
construction, issue de considérations géométriques, est telle que le processus limite posseéde presque stirement des trajectoires dont la
courbure est partout finie. Les marches aléatoires que nous exhibons sont markoviennes d’ordre 2, et nous montrons qu’une approche
plus simple, avec des processus d’ordre 1, ne permet pas d’obtenir, a la limite, les propriétés désirées de courbure finie.
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1. Introduction

A random walk with independent increments having finite variance converges, when linearly interpolated, to a Brown-
ian motion. This is the essence of the celebrated Donsker’s theorem [5], and applies in any (finite) dimension. In fact,
historically, Robert Brown’s observations were of pollen particles moving in a solution, therefore in dimension two or
three.

As is well-known, a Brownian motion is differentiable nowhere with probability one, and may be therefore inappropri-
ate to model motion that is smoother. In the present paper, we are concerned with constructing a stochastic process in the
plane that yields curves which have finite curvature almost surely. There are various relatively obvious constructions of
such processes that fit the bill, such as integrating a Brownian motion twice (Figure 1), or interpolating a random sample
of points using some splines such as cubic ones or GAMs (Generalized Additive Models) (Figure 2). In the first case, the
realizations are less than pleasant in that they do not seem to curve much at all. In the later case, the construction is not
particularly geometric in nature.

Fig. 1. A realization of a of 2-dimensional Brownian motion (left), which is then integrated once (center) and twice (right).
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Fig. 2. Two realizations of smooth random processes using cubic splines interpolation (middle) and GAM regression (right) applied to a discrete
random walk (left).

Fig. 3. A realization of the process defined in Section 4 for different values of the parameter defining it. Specifically, with the notation to be defined
shortly, n3/ Zan was taken to be 4 (left), 16 (middle), and 128 (right).

We propose a construction based on a random walk with nontrivial memory. Indeed, a random walk with no memory
would again converge to a Brownian motion.

Our first attempt leads us to constraint the angle between two successive line segments in the polygonal line resulting
from interpolating the random walk. In our construction, the line segments are all of unit length and the angles are
drawn independently and uniformly at random in some interval — see (1) and (2) for a formal definition. It turns out that
this construction fails in producing a smooth curve in the limit: when the angle interval remains constant, the process
converges again to a Brownian motion (Theorem 1); when the angle interval has length tending to zero asymptotically,
the smoothest limiting process we are able to obtain is only once differentiable (Theorem 3). Our second attempt is based
on endowing the sequence of random angles in the construction with some memory. It turns out that a minimum amount
of memory suffices for the construction to be successful (Theorem 4). A realization of this process is given in Figure 3.

Related work. There does not seem to be much literature on geometric constructions of random walks leading to pro-
cesses with smooth paths. Tangentially related, [10] model polymer configurations as polygonal lines with random angles,
but no continuous process limit is derived. We provide other pointers to the literature later on.

Content. The remainder of the article is organized as follows. In Section 2, we define and study a random walk where
the successive angles are drawn iid from the uniform distribution on a fixed interval. We show that this construction
results to a Brownian motion when taken to the limit (Theorem 1). In Section 3, we consider the same construction
except that the interval from which the angles are sampled shrinks in size in the limit. We show that this construction
results to either trivial limits (Proposition 3), to a Brownian motion (Theorem 2), or to a process whose realizations have
infinite pointwise curvature everywhere with probability one (Theorem 3). In Section 4, we consider again the same
basic construction, except that the angles are generated by a Markov process, and show that the limit is a process whose
realizations have finite curvature everywhere with probability one (Theorem 4). We finish with a short discussion in
Section 5.
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2. Construction based on an iid sequence of angles

We consider a sequence of iid random variables {®;};>> with values in R, which we use to define the following process:
Starting with U; drawn uniformly at random from S', recursively define

Uj=e%uU;_y, forj=>2. (1)

Note that Uy, Us, ... are uniformly distributed on the unit circle, but not independent in general. Denote G; the o-field
generated by {Oy}2<k<; and Uy, so that U; is G j-measurable for all j. We investigate the behavior of the piecewise-linear
interpolation of this walk, namely

[nt]
X} =Y Uj+ (nt — [nt])Upiys1.  fort €0, 1]. (2)
j=l1

See Figure 4 for an illustration of this definition. We see X" as a random variable taking its value in C; = C([0, 1], R?),
the set of continuous functions from [0, 1] to R2, endowed with the o -field associated with the uniform topology.

Theorem 1. [fthe random variables {®;};>1 are uniformly distributed in [—o, o], where o € (0, 7], then, as n — oo,

1 11+sinca
—X"=0,B?, itho? = ——————|
N e WO = 5T sinca

where = stands for the weak convergence of probability measures, B® denotes the standard 2-dimensional Brownian
motion, and sinc « = sin(«)/«.

In particular, we recover Donsker’s theorem (in dimension 2) when « = 7, the situation in which {U;};> are de facto
independent (and therefore iid, since they are uniformly distributed on the circle). In general, however, the limit process
is a scaled Brownian motion. See Figure 5 and Figure 6 for an illustration of Theorem 1.

0

Fig. 4. The first steps of the random walk defined by (1)-(2) and its linear interpolation.

Fig. 5. A realization of the process defined in Theorem 1 for o being equal to /2 (left), /8 (center) or /16 (right).
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Fig. 6. A realization of the process defined in Theorem 1 for « = /4 observed at different scales.

When clear from the context, we will use the abbreviation B instead of B® .
This first result shows that we cannot create smoothness from independent angles, no matter how small we constraint
them to be. To prove Theorem 1, we will first show that the finite-dimensional laws of ﬁX " converge toward the ones

of B, that is to say, as n — 00,

1
— (X}, ... X )= 0u(By, ... By),

vn
forall 0 <# <--- <1 < 1. (Here = denotes the weak convergence of random vectors in the appropriate dimension,
which is 2k.) Once this is done, it will remain to show that the sequence of laws of ﬁX " is tight.!

Because the steps, {U;}i>1, are not independent (at least when o < 77, which is the situation not covered by Donsker’s
theorem), we need a generalization of the central limit theorem for dependent random variables. (Unless otherwise spec-
ified, the convergence is as n — 00.)

Proposition 1. (Dependent CLT, [2]) Let &; , be centered with finite second moment random variables in RY. Letk, — oo
be a sequence of integers. Suppose that the following conditions hold:
kn
There exists 0 < 8 < 1 such that A,(8) = » _E[[|& alI*"*] — 0;
i=1
ky
There exists a matrix I" such that I, = Z Covl& ;] — T
i=1
ky
Foranyt eRY, T, (t) = Z|C0V[fz(51,n ot Eili), fz(Ei,n)]| 0, where f,:x > 0.
i=1
Then,
kﬂ
Sp = Z & n = N(0,T), the centered normal law with covariance matrix T.

i=1

We will apply Proposition 1, not to the steps U; themselves, but instead to slices of the random walk, defined in our
context as

1 (G=D(pn+qn)+pn
Sj,n = ﬁ

Each slice contains p, terms, and are g, terms apart. We will need to have p, large enough so that the sum ) i&jn is
close to Ln > ; Ui, but also g, large enough so that the £ ,’s are all independent enough from each other.

Ui. (3)
i=—D(pntqn)+1

We start with a covariance inequality.

IBecause C, is a polish space, tightness and relative compactness are classically equivalent notions, according to Prohorov’s theorem. We will use these
terms interchangeably.
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Proposition 2. Let 51 <--- <s, and t| < --- < t, be positive integers. Suppose that s, < t. Then, for any bounded
measurable functions f : {R*}* — R and g : {R*}’ — R, we have

|Cov[ f(Uy,, ... Us), W, ..., UD]| < 1 fllscliglloo TV (v, —g, . 1),

where v is the uniform law over [0, 21 ], v, is the law of Zle ®; mod 27, and TV is the total variation distance.?

Remark 1. If f and g are complex-valued, this results remains true up to a numeric constant. Indeed, for any random
variables X,Y € C, noting X = X1 +iXp,and Y =Y +iY>, we have

|CovIX, Y1|* = (Cov[ X1, Y11 — Cov[X2, Y21)” + (Cov[X1, Y2l + Cov[ X2, 11)?

<8 max_[Cov[X;, ¥;1|.
i,je{l,2}

Proof. We set A =|Cov[f(Uy,,...,Us,), gy, ..., Up)]|. Recall that for any j € N*, G; is the o-field generated by
{®}2<k<j and Uj. We have

A=|E[fWUy.,.... U)Wy, ..., U] —E[f(Us.....,U)|E[gUy,.... U]
= |E[fUy,..... U (E[gUy..... U | Fy,] —E[g Wy, ..., U)])]|
< flIE[|E[gWy. ... U)IGs, ] —E[gW.....U)]|].

Note that, there exists random variables ®, ¥ and Z’ such that the vector Z = Uy, ..., Uy,), which takes values in {Rz}“,
can be written in the form Z = exp{i (® + ¥)}Z’ as follows

Z = (Ut|7--~sUl‘v)

11 ty
<Ulexp<iZ®j>,...,U1 exp(iZ®j)>
j=2 j=2

Su 131 5] ty
:exp(iZ(H)j)exp(i > @j)(Ul,Ulexp< > @j),...,Ulexp( > o]>>
j=2

J=su+l Jj=t+1 Jj=t+1

=:exp(i®)exp(iW)Z'.

The random variable Z’ has same law as (U1, Uy,—¢,+1, - - - , Ur,—1,+1), which is the same as Z by strong stationarity of
(U1, Ua, ...). Furthermore, @ is G;, -measurable, and W and Z’ are independent of G, . Using the fact that the law of Z
is rotationally-invariant and letting ® be a random variable with law v and independent from Z’, and denoting by ¢ the
law of Z’, we get

A < || fllE[|E[g (expfi (¥ + )} 2) Gy, ] —E[g(expli®)} Z')]]
< ||f||oo¢€s{ggﬂ|ﬂﬂ[g(exp{i(\lf +¢)}2')] - E[g(expli®} Z2)]|
<1 f lloollglloo TV, ® £, v ® )
<11 fllollglloo TV (v —g, - v). )

In (4), we used the fact that the function g, : (¥, z) € [0, 2] x {R?}V > g(e!VT9)7) is bounded by ||gl| oo, the definition
of the total variation distance, and in the last inequality we used the subadditivity of the latter. (]

We turn now to bounding TV (v,, v), which again is the total variation between v, the law of Z;zl ®; (modulo 27),
and v, the uniform distribution on [0, 27 ].

2Recall that for any probability laws P and Q on some measurable space (X, B), TV(P, Q) = sup f{llP’( f) —Q(f)|} where the supremum is over
f: X — R measurable such that || f]loc < 1.
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Lemma 1. Let p be a symmetric and absolutely continuous distribution over R. Letting v, denote the distribution p, =
W, but modulo 2, we have

TV, v) <> |¢u (k)

k>1

" S)

where ¢, is the characteristic function of (. In the special case where  is the uniform distribution on [—a, o], where
o € (0, ], there exists a positive numeric constant A such that, forr > 2,

A, . r
TV(v,,v) < —(smc(ot) \% 2/71)
o
and so the total variation distance between v, and v decreases exponentially fast as r — o0.

Proof. Since p is absolutely continuous with respect to the Lebesgue measure, so is ., and for any Borel set A of

[0, 27r] we have

2(k+1)m di,
vr(A)=/ 1advr =/ D tatakndiy =2/ A2k () — = (X) dx
[0,27] Rz ez, 2km X
2
dpr
Z/ 1400 3 27 (x4 2k) dx.
0 i

The law of v, is thus absolutely continuous with respect to v, and %(x) =27 ven %(x + 2km). The RHS can be
computed with the Poisson summation formula

duy di, "

2 = _— Lkx

T E e (x + 2km) E .T-[ P ](k)e ,
keZ keZ

where F is the Fourier transform. With the classical property of the convolution product, we can get

d,er _ -d,bb " _ r
f[ T }(k)—}‘_d—x] (k) = ¢ (IKI)",

since w is symmetric, so that

1 [|dv, ,
TV(v,,v):E/ d‘; —1‘du52\¢ﬂ(k)\ :

k>1

This proves the stated bound (5).
When p is uniform over [—c, a], we have ¢, (k) = sinc(kar). We use this in order to bound the sum on the RHS of

(5). We distinguish two cases according to the value of «. If &« > 7 /2, we immediately get that

Dot <D 1/ ka) < (¢0) = 1)@/ < (¢ = 1) (/) (x/2),

k>1 k>1
where ¢ is the Riemann zeta function. If o < /2, we split the sum at n, = |7/« ]. For the first part of the sum, we simply
have

Ny

> |puo)|” < natsince)” < (/a)(sinca)’,

k=1
which is justified because sinc is decreasing on the segment [0, 7] and ko < 7 for all k < n,. For the second part of the
sum,

_ 1 Ny

1 1 [*®dx b1 _r
> = / - = — =< < (/2)7".
(k)" —a” Ju, X" (r—1Da’ny r—DE—-—ao) = r—Da

k>ngy o

Summing these two parts, all in all, we indeed get a bound of the desired form.
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A very simple and straightforward computation of the covariance gives the following
CovlU;,Uji] = %(sinca)k Id,, forall j,k € N* (6)
Recall the definition (3). We have the following.

Lemma 2. If p, and gy, are two sequences of integers diverging to oo such that p, + q, <n and q, < pn, < n, then
kn
ELl|Sy — 83171 = 0. where Sy = 5= 375y Uy S5 = Y4 Sk and kn = [n/(pu + qn)).-
Here, we write a, < b, for any two real-valued sequences a, and b,, for a,, = o(b;) as n — oo. This result appears in
[6, Section 4.3.1] in the context of real-valued time series. Although this is not difficult, we extend the result to bivariate

time series for the sake of completeness.

Proof. We start with the fact that

kn+1
Sp=Sp=Y &,
i=1
where
1 k(pn+an) 1 n
Ei‘,n=7 > U;, fork<k, and g,jﬁ],n:ﬁ > U
i:(k_l)([’)1+QIl)+[7n+l i:kn([’n‘f‘%l)

Simple calculations give

kn+1

sljs,-sil 2| |3 s, ]m[

<2 r(Cov[&,. £1,]) + 2t(Cov[Es 1, ])-
1<i,j<k,

i,n

2
}m (gt o1

When i = j, we have, since U; is strongly stationary and using formula (6),

n 2
tr(Cov[g, &7, ]) = ZE[Itol?]+ = Y w(Covly;. Uk))

1<j<k=gn

qn_l
an , 2 ~Bsineak = of 1
="+ > " (gn — k) (sinca) _0(n>.

k=1

We have, likewise, tr(Cov[EIan ) =0(pu/n).
When i # j, the steps of §; , and §; ,, are at least |i — j|p, apart, so that, using again (6),

2 2
tr(Cov[éEi*n, E*n]) < n sup tr(Cov[Ul, Uk+1]) < q—"(sinca)ll_”p”.
e k=i~ lpn n

Combining these bounds, we get that

knin a2 3
E[||S,,—s;;||2]=o< B B By —k)(smcoc)kp”>

k=1

2
k

0<—q” 4y e ”(sinca)f’">
n

Pn n
=O<q—"+&) — 0,
Pn n

which ends the proof. U
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In view of Lemma 2, it is thus sufficient to establish the convergence in law for S; to deduce the same for S,,. This is
exactly what we do next.

Lemma 3. The finite-dimensional laws of ﬁX " converge towards the ones of o4 B.

Proof. We use the notation introduced in Lemma 2. We apply Proposition 1 to S = Z/,z": 1 §k.n» and we also use the
notation introduced there.
For the first condition, by stationarity, for any 6 > 0 we have

kn s s p2td pl+o
An®) =Y E[IEen ] = kB[l 7] < ks <~

k=1

where the first inequality comes from the fact that ||& , || < p,/+/n (due to the triangle inequality and the fact that U; € St
for all j), and the second inequality comes from the definition of k. It thus suffices to show that p,, < n%/%+2) to have
that A, (8) converges towards 0.

For the third condition, we control 7},(¢) with a straightforward application of Proposition 2 and Lemma 1, as follows

kn
To(t) =Y _|Cov[fiE1n+ - +&—1a). fi6jm)]|

j=1

n
< Z4TV(vqn, V)
j=1

A . .
<4k, —(sinca v 2/7)" = O(neq”), where 6 = sinca Vv 2/, @)
o

which yields that 7, (t) — 0 as soon as g, > logn. In (7) we used the fact that f; (&1, +---+§&;_1,,) and f;(§;,) are
bounded functions of Uy, Uz, ..., U(j—2)(putgu)+ps A0 UG —1)(putgn)+1s - - - » UG =1)(pu+qn)+pa » TESPECLivELy.
Finally, for the second condition, using again stationarity and using (6), we get that

k
Ly =ky Cov[él,n] = ;n Z Cov|[U;, Uj]

1<i,j<pn

pll
o (pn + Y (oo p)(sincoz)”> Idy

2n
p=1

kn

= — <p,, + 2(sinc &)

Idy > ——— Id», (8)
2n

21 —sinca

pn (1 —sinca) + (sinca)?r — 1 11+sinca
(1 —sinc)?

where, in the convergence, we used the fact that p,k, ~n and p, — oo.

Thus, for the conditions of Proposition 1 to be fulfilled, it suffices to choose sequences p, and g, such that logn <
Gn K pn < %@+ which we do. We may then apply Proposition 1, to get that S¥* converges weakly to N (0, 0(3 Idy)
or, equivalently, to o, B1. And in light of Lemma 2, we may conclude that the same is true for S, = ﬁX 1

The same argumentation leads as easily to establishing that ﬁX 7 converges weakly to o B;, and even that ﬁ (X} —
X{) converges weakly to o, (B; — By) forany 0 <s <t < 1.

Now, let 0 <7 <--- <1 <1 be a sequence of real numbers and 7y = 0. We set

Zl’l — l Xn Xl‘l Xn X}’l Xﬂ
—_( A T A S T )

ﬁ k-1
with values in {R2}¥, and we write Z" = Y" + €", where

I."[jj_qn
Z U, and e?:Z?—YJ’-’.
g=Lntj—1]+1
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Similar arguments lead to the fact that IE[IIG;? 1?1= O(gn/n) — 0 as soon as g, < n, thus E[|| Z" — Y"||?] — 0, implying
that Z" and Y have thereby the same limit law, provided that one of them has a limit law. In particular, we know that Y;‘

converges weakly towards oo (B;; — By;_,) forall j. Letu = (uj, ..., ux) € {R2}K, By recurrence on £, it is easy to show
the following formula

=~

k

1 u, Y" l_[ l (uj,Y / Z|COV[ i((uy, Y7 >+-~-+(uj_1,Yj'-’_l>)’ei(u,-,Yj'-‘)]|.

j=1 j=2

With Proposition 2 and Lemma 1, the RHS is bounded from above by ) j 4o~ AG% = 0(99") — 0 as soon as g, — 0.
Since we already know that Y]’.’ converges weakly towards oo (B; — By;_,), we can conclude using the Levy continuity
theorem. ' (]

We conclude the proof of Theorem 1 with the following result.

Lemma 4. The sequence of laws of ﬁX " is relatively compact.

Proof. For n € N, we now note S,, = ZZ:] Uj.. We have

E[nsnu“]:ﬂz[( > <Ul-,U,»>ﬂ= > E[(UL Uj) (Ui, UD)].

1<i,j<n 1<i,jkl<n

Using that ab < a A b for any a, b € [0, 1], and using formula (6), we find that

E[IS,*] < > E[UL UM AE[UUN]= Y (—a)n—b)(sinca)*”

1<i,j,k,l<n 1<a,b<n
k(k+1 u
- ZZ(n - k)( G+ )>(sinca)k <2n? Zk(sinca)k
k=1
2n?

<—7.
~ (1 — sincw)?

Using [4, Thm. 10.2], which we may since the process {U} is stationary, we get that there exists a numeric constant
K > 0 such that, for any A > 0,

Pmax 1501 > 1) < —— ©)
max —_—.
ksn K ~ (1 —sinca)224
Then, Lemma 5 below yields tightness, and hence relative compactness, of the sequence of law of ﬁX n, (|

Lemma 5 ([4, Lem. on p. 88]). Let &; be stationary, real-valued and square integrable random variables with variance
o7 Let W' = LSy + (nt — |t ) ey +1), where Sy = Sh_Ef

lim llmsupAZ]P( max |Sk| > Aof)

A—>+00 p—so0

then, the sequence of the laws of W" is tight.

3. Construction based on a triangular array of angles

We now place ourselves in the setting where the laws of the angles ® ; can vary with n. Let {®; ,} j>2 ,>1 be a collection
of real valued random variables. As in Section 2, define the following process: Starting with U; ,, drawn uniformly at
random from S', recursively define

Ujp=2e9U;_y,, forj=>2,
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and then

Lnt
X" = ZU,,,, + (nt — [nt])Upps )41, fore €0, 1.

Contrary to what has been done in the previous section, we will this time normalize X" with n instead of /. Note that,
if one wants to obtain a smooth — and thus rectifiable — curve at the limit, this is the only reasonable normalization.

Lemma 6. For any n > 1, as a function on [0, 1] with values in R2, %X" is 1-Lipschitz.

Proof. For0<s <t <1andn €N, we have

[nt]

1
X”—-—X" = 2: Ukn + (nt = [0t ) Uppr 1.0 + (1 — ns + [ns ) Upns 1,0
k=|ns|+2
< —(Lntj —|ns|—1+4+ (nt — Lntj) + (1 —ns + Lnsj)) =t—sy,
n
by a simple application of the triangle inequality and the fact that Uy, € S! for all k. ]

Corollary 1. As a sequence of laws on C3, {%X "} is relatively compact.

Proof. This is an immediate consequence of Lemma 6 and the fact that the set of 1-Lipschitz functions from [0, 1] to R?
taking value (0, 0) € R? at 0 is relatively compact by the Arzela—Ascoli theorem; see [4, Thm. 7.2 p. 81]. ]

We first investigate the case where

®j n, j > 1 are iid from the uniform distribution on [—a,, ay],
(10)
ay, € (0, ] is a sequence of angles converging to 0.

We observe two degenerate regimes when «,, converges either too fast or too slow towards 0.

Proposition 3. Consider a sequence of angles as in (10). Ifnoz,zl — 00, then %X" = 0inC;. Ifnot,% — 0, then %X? =tU
in C, where U denotes a random vector with the uniform distribution on S'.

Proof. We first suppose that na,% — 00. In this case, we have that for any ¢, developing the square like we did in formula

®),
1

(I
n

where the O (1/n) term corresponds to the one coming from U|,;|+1,, in the definition of X}'. Since

|nt](1 — sinca,) + (sinc e, ) — 1 N 0<1>’

n2(1 — sinc o, )? n

2
] = 2(sincay) an

(sinc ) ") = exp{[nt]log(1 — &2/6 + 0(c?)) } = exp{—nt |2 + o(na?)} — 0,

and n(1 — sinc o) ~ naﬁ/é, we find that

1P 1 1
El[-Xx!| |[=0(—)+0(=)—0.
n no; n

Finite-dimensional laws of %X " all converge to 0 and thus %X " = 0 in C, by relative compactness (Corollary 1).
We now assume that na2 — 0. We then get

1 1
1 — (sincoy) " =1 — exp(—g Lnt o2 + 0(na,%)> =3 lnt o2 + o(nay),
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so that
11— (sinca,)

- —>t, foranyt €0, 1].
n 1 —sincoy,

Developing (11) to the next order, we find
1
|nt (1 — sincay,) + (sinca,) " — 1= > Lnt |2ay + o(nay),

and this leads to E[|| %X 7 [I*1 — 2. We then conclude with

2
1
J=={l5x
n

n
_2 2,50 yn
=t +o(1) +1 +2n;1E[(U/,U1)]
11— (sinc oy, )

n 1 —sincay,

2
E[H%X{‘ —tUy, }+t2—2£E[(Xf,U1">]

=22 -2 +o0(1) — 0, (12)

where at (12) we used (6), together with the relative compactness of {%X "} as a sequence of laws (Corollary 1). O

When noz,zZ — oo sufficiently fast, with a different normalization, X" in fact converges to a Brownian motion. The
precise normalization that results in this is given below. (In a sense, Theorem 1 is a special case of the following.) See
Figure 7 for an illustration of Proposition 3 and Theorem 2.

Theorem 2. Consider a sequence of angles as in (10). Ifnoc% > n® for some w € (0, 1), then
Op
vn

Proof. The arguments are similar to those given in the proof of Theorem 1 in Section 2, so we will omit some details.

Let g, < pn < n be two sequences of integers with p,,, g, — oo and such that p, + g, <n. Let k, = [n/(py + qn)].
We introduce the random variables

(k=1 (pnt+qn)+pn

(07
Sk,n = 7% ' Z Ui,n,

i=(k—1)(pntgn)+1

X" = /3B.

and S = Zf"zl &in Weset S, = %X 1. Mimicking the proof of Lemma 2, and using again Proposition 2 and Lemma 1,
we get

k 2 b
w15, - i11= 024 24 55 3, — psnca

n n
" k=1

Pn n nay, 1 — (sincoy,)Pr

O(‘]_n+pn +61,%kn (sinc oy, ) P >

Fig. 7. A realization of the process defined in (10) for oy = 234 (left) and o, = 2an~1/4 (right).
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If pya2 > logn, then (sinca,)P" = exp(—ppa2/6 + o(pya?)) — 0, thus

15 =81 = 0 g+ et s ) o
n

We now investigate the control of the three quantities underlying the conditions necessary for Proposition 1 to apply. For
the first condition, for any § € (0, 1], we have

kn
D &I < kn(pron//n)* TP <y pate n?2,

i=1

using the triangle inequality and the fact that U; ; € S!. This implies that A, (8) — 0 as soon as the RHS converges to 0.
For the third condition, for € R?, we have, according to Proposition 2 and Lemma 1, for any n large enough so that
sinca, > 2/m,

A
Ty (t) < 4ky— (sinca,)™ = O (n*~*(sinc ).
Op

Thereby, T;,(t) — 0 as soon as q,,oc,zl > logn.
For the second condition, using the same development as in the proof of Proposition 3, we find

r,— oc%kn
2n

1 —si 1 Pn __ 1
{Pn 4 2(sincary) pn(1 —sincay,) + (sinc ay,) } Idy.,

(1 — sincary,)?
and in particular, if p,a2 — oo,

3knpn
n

r,,:{o(a,%)+o(1)+ }Id2—>31d2.

Thus, if we can find two sequences, p, and g, verifying all the conditions above, we can then apply Proposition 1
and, in the same fashion as in the proof of Lemma 3, we show that the finite-dimensional laws of %X " converge weakly
to the appropriate limit.

It only remains to find two such sequences. The conditions are, in order of appearance: g, < p, <K n; logn <« pnaﬁ;
and 28 pl+% « n%/2 for some 8 € (0, 1]; and logn < guo2. Denoting u, = n'=“/2a2/logn, set p, = &, >(logn)u$
and g, = an’z(log n)u, with 0 < n < € < 1 fixed. The first, second and fourth conditions are immediate consequences of
the fact that u,, — oo (since nl"”/za,% > n?? > logn) and «;, — 0. The third condition is equivalent to uf,(1+5)_5/2 <
nw5/4(log n)~17%/2 which is true as soon as we pick € smaller than ﬁ

It remains to show that the family of laws defined by {%X "1 is tight. To do this, we do as in the proof Lemma 4, and
reinstate the notation defined there. The inequality at (9) applies in the same way, but with « replaced here by «,,, and

thus

: 2 . atK 6K
limsup A P(max ISkl > Aﬁ/an> <limsup—"———=— ——0,
neN k=<n nen (1= sinc e, )22 A2 a—oo
which, by Lemma 5, implies relative compactness of the sequence of laws. (]

2

Remark 2. We conjecture that the conditions of Theorem 2 can be weakened to a mere divergence, no;

our proof technique does not seem capable to confirm this conjecture.

— 00, although

So far, our constructions have only yielded a (scaled) Brownian motion, or trivial limits. However, in the critical regime

where noz,zl converges to a positive real, the limit process is different, and, in particular, it is strictly smoother than the

Brownian motion itself. See Figure 8 for an illustration of Theorem 3.

Theorem 3. Consider a sequence of angles as defined in (10). If not,% — k>0, then
I, d 2 )
=X =U | expyizkB;’ ds, (13)
n 0 3

where U and BV are independent, with U uniform over S' and BV a standard 1-dimensional Brownian motion.
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Fig. 8. A realization of the process defined in (10) for oy = 271~ 1/2 observed at different scales.

Proof. We set C; = C([0, 1], R), and we introduce the sequence of processes

Lnt]

CI);’ = Z®i’n -+ (I’lt - Lntj)@anJ+1,n~
i=2

Since the angle variables ®; ,, i > 1, are iid, a simple application of the Lyapunov central limit theorem, in conjunction
with the use of [4, Lem. on p. 88] and of the Etemadi inequality [3, Thm. 22.5 on p. 288], immediately show that

O = &, = %KB,(I) in the space C;.
Set

[nt]
faixeli— ( {Ze”‘(k/”) + (n Lntj)eix((L”’JJr])/”) }) €(Cy, and

l .
fixeC— (l‘l—>f e’x(s)ds) € Cp.
0

These two maps are continuous from C; to C; for the uniform topology — they are even 1-Lipschitz for the supnorm.
Furthermore, we notice that %X" = U}, fn®", with Uy, being independent from f;, ®". Since f is continuous, we
immediately have that f®" = f® in the space C.

Take a test function g : C; — R that is both bounded and Lipschitz,? and denote by Lip g its Lipschitz constant. We
have

[E[s(f2®")] ~E[(f®)]| < [E[¢(f®")] ~ E[¢(f©")]| + [E[2(f @")] — E[2(f ]|
< Lip(QE[| fu@" — £ " | ] +0(D),

The second term is indeed o(1) because f ®" converges weakly to f . With an analogous reasoning as the one underlying
Lemma 6, we see that for any s, ¢ € [0, 1], |®} — &7 | < nay,|t — s|, and thus, for any ¢ € [0, 1],

[nt| ¢ o
ds + |el‘b§' — ! Pt/
nt]
n

|fq)n[t] _ fnq)n[t” Z[ lq) d:’Z/n

ds (14)

Lnt]

= Z/ |q)n Z/n|ds + /‘Lntj |CD? - ¢?Lntj+1)/;1|ds

LmJ
<Z (na n> + 2 L””(an)%szan. (15)

Hence, || f,®" — f®" |0 < @, — 0. We may thus conclude that E[g(f,®")] — E[g(f®)], and so for any g bounded-
Lipschitz, thus implying that f, ®" converges weakly to f® in C,. (]

3Because Cs is a polish space, the bounded-Lipschitz distance metrizes the weak convergence of probability measures [7, Thm. 11.3.3].
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Let (X; :t € [0, 1]) denote the limit process in (13). Because a Brownian motion has continuous paths, X has continu-
ously differentiable paths. Furthermore, as a parametrization of a curve, it is unit-speed, its velocity at time ¢ being given
by

. 2 )
X; =Uexp ngBt .

4. Construction based on a Markov sequence of angles

The limit process derived for the construction studied in Theorem 3 is not twice differentiable. Our goal in this section is
to construct a random walk with limiting process having finite curvature, which from a geometric standpoint is appealing.
Given our investigations in the previous two sections, such a construction appears to require some memory in the angle
processes. It turns out that just a little memory is sufficient.

We consider a sequence of angles constructed as follows:

Given §; ,, that are iid uniform on [—a, o],

(16)
define ®1 , =81 p,andfor j >2,0;, =0; 1, +6;,.
See Figure 9 for an illustration of this definition.
Theorem 4. Consider a sequence of angles as defined in (16). Ifn3arzl — k >0, then
Lon ' e
=X/ =U | expyizk | B, dugds. a7
n 0 3 0

Proof. The proof is similar to that of Theorem 3, and we reinstate the notation used there. We have ®; , = Zf:z in
(denoting 82 , = ©2 ,). We then define

[nt]
\IJt" =n Z(Si’" + (nt — Lntj)a\_ntj+l,n R
i=2

so that © , = %\D,?/n. As in the proof of Theorem 3, we have W' = ¥; = %KB,(D in the space C;. We introduce the
functions

o) lnt] +1
hp:xeCi> [t = Zx(k/n)—i—(nt—[ntj)x(—) €C, and
n p n

t
h:xeC— <t|—>f x(s)ds>eC1,
0

U4./z

Fig. 9. The first steps of the random walk with a Markov sequence of angles. Because the angles keep track of their former values, we can expect a
smoother process at the limit.
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which are 1-Lipschitz for the supnorm. Furthermore, we have
1
X" = Ul,nfncbn = Ul,nfnhnq"n~
n

As before, Uy, are independent from f,,h, ®". Take a test function g € BL(C,). We have
E[(fuhn¥")] - E[g(fh)]| < [E[g(£7¥")] - E[g(fh)]| + [E[g(fuh¥")] - E[g(fr¥")]]
+ |E[g(fulnV")] — E[g(fuh¥")]]. (18)

The first term on the RHS of (18) converges to 0 because ®" = ®. The second term on the RHS of (18) can be bounded
as follows

[E[g(fuh¥")] - E[g(fn¥")]| < Lip(E[| fuh 0" — frw"| ]
1
< Lip(g);IE[Lip(h\If”)]
1
= Lip() -E[[¥"[ ] < Lip(g)net, — 0, (19)

where the inequality || f,x — fx|lco < %Lip(x) comes from a computation similar to the one done in the proof of The-

orem 3 (see formulas (14) and (15)). The inequality Lip(hW") < ||W" | that we use at (19) comes from the definition

of h: for any x € Cy, we have |hx(t) — hx(s)| < fSt |x] < ||x|loolt — 5] for any O < s <t < 1. The convergence to 0 holds

because n = O (a,, s 3). The last term on the RHS of (18) is bounded as follows

Bl ()] ~ Els (8] < LipGE[ | fun v — £ "] ]
< Lip(@s[ |, 9" ] ]

1
< Lip(g)—E[Lip(¥")] < Lip(g)ne, — 0,
n
where we used the fact that f;, is 1-Lipschitz, and a few inequalities that we already used in the previous bounds.
We conclude that %X " =UtpfuhaW" converges weakly in C» to U fh\W, which is exactly the convergence stated in
the theorem. O
Let X denote the limit process in (17). It is clearly twice differentiable, with velocity given by

. 2 !
X, = Uexp{i—ic/ Bs(l)ds},
3 Jo

and acceleration is given by
.. 2 2 !
Xt=i—KBt(1>Uexp i—K/ BWdst.
3 3 Jo

In particular, as a parameterization, it is unit-speed (since |1 X, = 1 for all 7), and its (unsigned) curvature at time 7 is
given by ||5ft | = %KlB,(]) |. See Figure 10 for a realization of such a process.

-3/2

Fig. 10. A realization of the process defined in Section 4 for «;; = 647 n , observed at different scales.
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5. Discussion

Retrospectively, our construction in Section 2 appears naive. Yet, the fact that the construction failed to produce a process
with curves with finite curvature was initially surprising to us due to the fact that the polygonal lines resulting from
the construction do have bounded curvature (independent of n) in the sense of [1]. In that paper, the curvature of a
polygonal line at a vertex is defined as the inverse of the circumradius of the triangle that this vertex forms with the two
adjacent vertices on the polygonal line — a rather natural definition that is shown there to enjoy good properties. However,
as we have shown, such a construction can only yield a Brownian motion in the limit, or at best, a process with once
differentiable realizations if we let the angle interval shrink at a very specific rate.

Otherwise, we believe that the limits established here have the sort of universality expected for random walk construc-
tions, in that the edges defining polygonal line do not need to have the exact same length, and that the angles or their
increments do not need to be selected uniformly at random.

We also anticipate that similar constructions, with similar limits, are possible in arbitrary dimension. The most inter-
esting case, besides the planar case presented here, may well be that of random walks and curves in dimension three,
where an analogous goal would be to construct random walks with limits that exhibit finite curvature and torsion (almost
surely).

Finally, we mention that processes that look like (13) naturally appear in many applications ranging from mathematical
finance to quantum optics [9] and have been thoroughly considered in the literature, in particular by [11], who studies
exponential functionals of the Brownian motion of the form

t
X, =/ exp{an,]) + bs} ds,
0

in the situation where a and b are real. [8] study similar processes with a allowed to be complex, but with b < 0. To the
authors’ knowledge, the case when both a € iR and b = 0 remains to be studied.
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