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Abstract. Given a finite dimensional Lie algebra L let I be the aug-
mentation ideal in the universal enveloping algebra U(L). We study
the conditions on L under which the Ext-groups Ext(k, k) for the trivial
L-module k are the same when computed in the category of all U(L)-
modules or in the category of I-torsion U(L)-modules. An application
to cohomology of equivariant sheaves is given.

1. Introduction

Let L be a finite dimensional Lie algebra over a field k. Consider the
universal enveloping algebra U(L) with the augmentation ideal I ⊂ U(L).
Denote by U(L)-mod the category of finitely generated left U(L)-modules
and by (U(L)-mod)I ⊂ U(L)-mod the Serre subcategory of I-torsion mod-
ules. We have the obvious functor

(1.1) ΦL : Db((U(L)-mod)I)→ Db
I(U(L)-mod)

where Db
I(U(L)-mod) ⊂ Db(U(L)-mod) is the full triangulated subcategory

consisting of complexes with I-torsion cohomology. In this paper we study
the question:

Question. When is ΦL an equivalence?

The functor ΦL being an equivalence means that the Ext-groups Exti(k, k)
for the trivial L-module k are the same in the categories U(L)-mod and
(U(L)-mod)I .

We answer this question in Theorem 1.1 below.
Define inductively the decreasing sequence of ideals in L:

L1 = L, Ln = [L,Ln−1]

and put L∞ =
⋂

n Ln. This is an ideal in L such that the quotient Lie
algebra Lnil := L/L∞ is nilpotent. We have L∞ = 0 if and only if L is
nilpotent.

For each i the cohomology H i(L∞, k) is naturally an Lnil-module. Denote
by H>0(L∞, k) the positive degree cohomology.

Theorem 1.1. The functor ΦL is an equivalence if and only if H>0(L∞, k)Lnil =
0. For example, ΦL is an equivalence if L is nilpotent.
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We find it natural to approach Theorem 1.1 by studying the graded Rees
algebra

U(L)∗ :=
⊕
n≥0

In = U(L)⊕ I ⊕ I2 ⊕ · · ·

It is easy to prove the following result.

Proposition 1.2. If the algebra U(L)∗ is graded left Noetherian, then the
functor ΦL is an equivalence.

It is, however, not necessary for U(L)∗ to be graded left Noetherian in
order for ΦL to be an equivalence. The relevant result is the following
theorem (see [SW], where the interesting “if” direction is proved).

Theorem 1.3. The algebra U(L)∗ is graded left Noetherian if and only if
L is nilpotent.

In the last section of the paper we mention an application of Theorem 1.1
to the cohomology of quasi-coherent sheaves which are equivariant with
respect to a unipotent group.

In this paper we consider only left modules, but all the results are also
valid (with the same proofs) for right modules.

We fix a field k. All Lie algebras are finite dimensional over k. All
associative rings are unital.

Acknowledgements. We thank Grigory Papayanov for a useful discussion and
Toby Stafford for pointing out that our Theorem 3.1 was already proved
in [SW]. We are also grateful to the anonymous referee for a number of
significant suggestions and corrections.

2. A criterion for equivalence of categories

Let R be an associative left Noetherian ring with a 2-sided ideal I ⊂ R.
Let M be a left R-module. An element m ∈ M is called I-torsion, if
Inm = 0 for some n > 0. The collection of I-torsion elements in M is an
R-submodule, which we denote by MI . We say that M is torsion if MI = M .

LetR-mod denote the abelian category of finitely generated left R-modules
and let (R-mod)I ⊂ R-mod be its full Serre subcategory of I-torsion mod-
ules. Let Cb(R-mod) (resp. Cb((R-mod)I)) be the category of bounded com-
plexes over R-mod (resp. over (R-mod)I) and let Cb

I(R-mod) ⊂ Cb(R-mod)
be the full subcategory of complexes whose cohomology groups are torsion.

In the bounded derived category Db(R-mod) consider the full subcategory
Db

I(R-mod) of complexes with torsion cohomology groups. We have the
obvious functor

Φ = ΦR : Db((R-mod)I)→ Db
I(R-mod)

Proposition 2.1. Assume that for every finitely generated left R-module M
there exists a submodule N ⊂ M such that NI = 0 and M/N is I-torsion.
Then the functor Φ is an equivalence.
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Proof. Let A• be an object of Cb
I(R-mod). We claim there exists an object

B• of Cb((R-mod)I) and a morphism of complexes f : A• → B• which is a
quasi-isomorphism. Indeed, let

A• = 0→ Ai di−→ Ai+1 di+1

−→ · · · d
n−1

−→ An → 0

and let t be the lowest index such that At
I 6= At. By assumption there exists

a submodule P ⊂ At such that PI = 0 and (At/P )I = At/P . We claim that
P ∩ ker dt = 0. Indeed, since Ht(A•) and At−1 are torsion, it follows that
ker dt is torsion, so P ∩ ker dt = 0. Therefore, the complex A• contains an
acyclic subcomplex P̃ := P

∼→ dt(P ) and the components with index ≤ t of

the quotient complex A•/P̃ are torsion. Iterating this process we find the
required quasi-isomorphism f : A• → B•. This shows that the functor Φ is
essentially surjective.

For complexes C•, D• representing objects in Db((R-mod)I), a morphism

Φ(D•)→ Φ(C•) is represented by a diagram of complexes D• → A•
s← C•,

where A• ∈ Cb
I(R-mod) and s is a quasi-isomorphism. The fact that the

functor Φ is full and faithful now follows, since (as shown above) there exists
a complex B• ∈ Cb((R-mod)I) and a morphism f : A• → B• of complexes
that is a quasi-isomorphism. �

Consider now the graded Rees algebra

R∗ :=
⊕
n≥0

In = R⊕ I ⊕ I2 ⊕ · · ·

Lemma 2.2. Assume that the algebra R∗ is graded left Noetherian (i.e.
every graded left ideal is finitely generated). Then the assumption of Propo-
sition 2.1 holds: for any finitely generated left R-module M there exists a
submodule N ⊂M such that NI = 0 and M/N = (M/N)I

Proof. Let M be a finitely generated R-module. Consider the graded finitely
generated R∗-module

M̃ = M ⊕ IM ⊕ I2M ⊕ · · ·
and its graded submodule

P = MI ⊕ (IM ∩MI)⊕ (I2M ∩MI)⊕ · · ·
By our assumption, P is finitely generated; hence, there exists n > 0 such
that for all m > 0

Im(InM ∩MI) = In+mM ∩MI

As InM ∩MI is finitely generated and I-torsion, it is annihilated by Im for
some m. Thus,

(Im+nM)I = Im+nM ∩MI = Im(InM ∩MI) = 0.

Putting N = Im+nM , we have NI = 0 and (M/N)I = M/N . �

Corollary 2.3. Assume that the algebra R∗ is graded left Noetherian. Then
the functor Φ is an equivalence.



4 MICHAEL J. LARSEN AND VALERY A. LUNTS

3. When is the Rees algebra of a universal enveloping algebra
Noetherian

Let L be a finite dimensional Lie algebra, U(L) its universal enveloping
algebra and I ⊂ U(L) the augmentation ideal. As above, we consider the
graded Rees algebra

U(L)∗ =
⊕
n≥0

In = U(L)⊕ I ⊕ I2 ⊕ · · ·

Theorem 3.1. The algebra U(L)∗ is graded left Noetherian if and only if
the Lie algebra L is nilpotent.

We get the following immediate consequence of Theorem 3.1 and Corollary
2.3

Corollary 3.2. Let L be a nilpotent Lie algebra. Then the functor

ΦU(L) : Db((U(L)-mod)I)→ Db
I(U(L)-mod)

is an equivalence.

Proof. The more interesting “if” direction is contained in Theorem 2.1 in
[SW] and we prove the “only if” direction which is the easy one.

For a Lie algebra L we consider the lower central series L1 = L, Ln =
[L,Ln−1]. Thus

L = L1 ⊃ L2 ⊃ L3 ⊃ · · ·
is a nonincreasing sequence of ideals in L. We put

L∞ :=
⋂
n

Ln, Lnil = L/L∞

The Lie algebra Lnil is nilpotent, and L is nilpotent if and only if L∞ = 0.
We have the short exact sequence of Lie algebras

0→ L∞ → L→ Lnil → 0

This induces the surjection θ : U(L) → U(Lnil) and ker θ is the ideal
U(L)L∞U(L). As before, let I ⊂ U(L) be the augmentation ideal. We
have by construction Ln ⊂ In for all n, hence L∞ ⊂

⋂
n I

n.
Assume that the Lie algebra L is not nilpotent, i.e. L∞ 6= 0. Fix 0 6= x ∈

L∞ and consider the graded left ideal

J =
⊕
n

U(L)xn ⊂ U(L)∗

where xn denotes the copy of x in In. We claim that J is not finitely
generated. Assume, on the contrary, that

J =
∑
i

U(L)∗fi
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for a finite number of homogeneous elements fi ∈ U(L)xni . Choose m > ni
for all i. We claim that

xm /∈
∑
i

U(L)∗fi

Indeed, it suffices to notice that x /∈ Ix: if x = fx, then f = 1, (since U(L)
is a domain) and hence f /∈ I. This completes the proof of Theorem 3.1. �

4. Main theorem

Let L be a finite dimensional Lie algebra, U(L) its universal enveloping
algebra, I ⊂ U(L) the augmentation ideal. As in section 3, consider the
ideal

L∞ =
⋂
n

Ln ⊂ L

and the quotient nilpotent Lie algebra Lnil = L/L∞.
Each cohomology space H i(L∞, k) is naturally a Lnil-module, so we have

the Hochschild-Serre spectral sequence [HS]:

(4.1) Epq
2 = Hp(Lnil, H

q(L∞, k))⇒ Hp+q(L, k).

Theorem 4.1. Let L be a finite dimensional Lie algebra over a field k. The
following conditions are equivalent:

(1) The natural functor

ΦL : Db((U(L)-mod)I)→ Db
I(U(L)-mod)

is an equivalence.
(2) The natural map H•(Lnil, k)→ H•(L, k) is an isomorphism.
(3) The positive degree cohomology H>0(L∞, k) considered as an Lnil-

module satisfies H>0(L∞, k)Lnil = 0.

Proof. We first notice that the 3 conditions in the theorem hold in case L is
nilpotent. Indeed, then L∞ = 0, so (2) and (3) hold trivially. Also (1) holds
by Corollary 3.2.

Let now L be general. As in section 3 we consider the short exact sequence
of Lie algebras

0→ L∞ → L→ Lnil → 0

and the induced surjection θ : U(L) → U(Lnil) with the kernel ker θ =
U(L)L∞U(L). Denote by I the augmentation ideal in U(Lnil). Since L∞ ⊂
∩nIn, any U(L)-module M such that M = MI is actually a U(Lnil)-module
(and M = MI). Hence the functor of restriction of scalars

θ∗ : U(Lnil)-mod→ U(L)-mod

induces the equivalence of categories

(U(Lnil)-mod)I
∼→ (U(L)-mod)I

and therefore the equivalence of categories

(4.2) Db((U(Lnil)-mod)I)
∼→ Db((U(L)-mod)I)
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We have the commutative diagram of functors

(4.3) Db((U(L)-mod)I)
ΦL // Db

I(U(L)-mod)

Db((U(Lnil)-mod)I)

OO

ΦLnil // Db
I
(U(Lnil)-mod)

OO

As explained above the left vertical arrow is an equivalence. Also ΦLnil
is an

equivalence (Corollary 3.2). Hence ΦL is an equivalence if and only if the
functor

(4.4) θ∗ : Db
I
(U(Lnil)-mod)→ Db

I(U(L)-mod)

is an equivalence. Every finitely generated I-torsion U(L)-module (resp.
Ī-torsion U(Lnil)-module) is a finite dimensional k-vector space on which L
(resp. Lnil) acts nilpotently, so by Engel’s theorem, it admits a stable flag
with trivial 1-dimensional quotients. As triangulated categories, therefore,
both sides of (4.4) are generated by the trivial module k, and so the functor
in (4.4) is an equivalence if and only if the natural map

(4.5) θ∗ : Ext•U(Lnil)
(k, k)→ Ext•U(L)(k, k)

is an isomorphism. This proves the equivalence of conditions (1) and (2) in
the theorem. It remains to prove the equivalence of (2) and (3).

The Hochschild-Serre spectral sequence (4.1) has E2 page

(4.6) E01
2

((

E11
2

((

· · · · · ·

E00
2 E10

2 E20
2 · · ·

We have H0(L∞, k) = k – the trivial Lnil-module and the graded space
Ext•U(Lnil)

(k, k) identifies naturally with the bottom row of this spectral se-

quence. The map θ∗ : Ext•U(Lnil)
(k, k) → Ext•U(L)(k, k) then coincides with

the projection

Ext•U(Lnil)
(k, k) = H•(Lnil, H

0(L∞, k))→ H•(L, k)

Assume that the condition (3) holds, i.e. H>0(L∞, k)Lnil = 0. Then by
[Ba, Lemma 3], we have

H•(Lnil, H
>0(L∞, k)) = 0,

and hence only the bottom row of the spectral sequence (4.6) is nonzero.
Therefore the natural map H•(Lnil, k) → H•(L, k) is an isomorphism, i.e.,
condition (2) of the theorem holds.

Assume, conversely, that condition (2) holds. Let d be the maximal inte-
ger such that Hd(Lnil, k) 6= 0. If N is any indecomposable finite-dimensional
Lnil-module, then by [Cu, Theorem 1], all irreducible subquotients of N
are equivalent. Then using Lemmas 3 and 4 in [Ba], we conclude that
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H•(Lnil, N) = 0 unless every subquotient of N is isomorphic to the triv-
ial module k. In this case, k is a quotient representation of N , and by
induction on dimN , H>d(Lnil, N) = 0. For indecomposable representa-
tions, and therefore for all representations, it follows that if NLnil 6= 0, then
Hd(Lnil, N) 6= 0.

Assume for the sake of contradiction that for some i > 0, H i(L∞, k)Lnil 6=
0. Let i be the maximal such. Then Ed,i

2 = Hd(Lnil, H
i(L∞, k)) is nonzero

and it survives in H i+d(L, k). This is a contradiction and finishes the proof
of the theorem. �

4.1. Some examples. (A) Consider the 2-dimensional Lie algebra with
basis x, y and the relation [x, y] = y. This Lie algebra is solvable but not
nilpotent, L∞ = ky. The standard complex, which computes the cohomol-
ogy H•(L∞, k), has terms in degrees 0 and 1 and zero differential:

k
0→ Homk(ky, k).

The element x ∈ Lnil acts on the space Homk(ky, k) = H1(L∞, k) as minus
the identity, so the condition (3) of Theorem 4.1 is satisfied.

(B) This is a generalization of example (A) above: assume that

(
∧

>0L∞)Lnil = 0.

Then condition (3) of Theorem 4.1 holds. For example this is the case when
L is the Lie algebra of upper-triangular matrices. Then L∞ is the ideal of
strictly triangular matrices and Lnil is the abelian quotient.

(C) However, there exist solvable algebras L for which condition (3) does
not hold. Let L = kt ⊕ kx1 ⊕ kx−1 be the 3-dimensional solvable algebra
with [t, xi] = ixi and [x−1, x1] = 0. Then L∞ = kx−1 ⊕ kx1, and Lnil = kt.

By construction, Lnil acts trivially on H2(L∞, k) =
∧2 L∗∞.

(D) It may happen that condition (3) holds even though
∧>0 L∞ admits

k as an Lnil-subquotient. See Proposition 4.4 below.
(E) If k is not of characteristic 2 and L∞ 6= 0 has a non-degenerate Killing

form, then H3(L∞, k) 6= 0 by [Se, p. 103]. By [Za, Satz 16], every derivation
of L∞ is inner, so the action of Lnil on the cohomology of L∞ is trivial.

(F) We formulate this as a proposition:

Proposition 4.2. Assume that the equivalent conditions of Theorem 4.1 are
satisfied and the characteristic of k is zero. Then the algebra L is solvable.

Proof. As L/L∞ is solvable, it suffices to prove that L∞ is solvable. Let
Lrad
∞ denote the radical of L∞, so that

Lss
∞ := L∞/L

rad
∞

is semi-simple. Setting g := Lss
∞, we need to prove that g = 0.

Lemma 4.3. In the above notation the natural map

H•(g, k) = Ext•U(g)(k, k)→ Ext•U(L∞)(k, k) = H•(L∞, k)
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is injective.

Proof. By the Levi theorem we know that the surjection of Lie algebras
p : L∞ → g has a splitting s : g → L∞. These induce chain maps p∗ :
C•(g, k)→ C•(L∞, k) and s∗ : C•(L∞, k)→ C•(g, k) such that s∗ · p∗ = id.
Hence the map

H•(p∗) : H•(g, k)→ H•(L∞, k)

is injective.
�

In characteristic 0, the Killing form of a semi-simple algebra is non-
degenerate. Therefore, if g 6= 0, then H3(g, k) 6= 0 [Se, p 103]. The Lnil

action on L∞ stabilizes Lrad
∞ and therefore induces an action on g. For any

x ∈ Lnil the operator [x,−] on g is a derivation, so is inner. Therefore
the action of Lnil on the cohomology is trivial, and so the condition (3) of
Theorem 4.1 fails. �

Proposition 4.4. The conditions of Theorem 4.1 are strictly weaker than
the condition that (

∧>0 L∗∞) has a non-trivial Lnil-invariant subquotient.

Proof. As H>0(L∞, k) is a subquotient of
∧>0 L∗∞, if the former has a non-

trivial Lnil-invariant subquotient, the latter does as well.
We show that converse does not hold by exhibiting a case in which Lnil

acts semisimply on
∧• L∗∞ and therefore on every Lnil-stable subquotient

and for which

dim(
∧•

L∗∞)Lnil > 1 = dimH•(L∞, k)Lnil .

The free Lie algebra on two generators x and y admits a unique bigrading
for which x and y have bidegree (1, 0) and (0, 1) respectively. Let M be
the quotient of this algebra by the graded ideal generated by all elements of
total degree ≥ 4 and also [[x, y], y]. Then M has basis: x, y, z, w of bidegree
(1, 0), (0, 1), (1, 1), and (2, 1) respectively, satisfying the following relations:

[x, y] = z, [x, z] = w, [x,w] = [y, z] = [y, w] = [z, w] = 0

(see [Bo, II, §2, no. 11, Théorème 1] and the computation of the Hall set for
2 generators given at the end of no. 10.)

We define t to be the derivation which acts on the bidegree (a, b) part of
M by 2a− 3b. Let L := M ⊕ kt denote the semi-direct sum, so

[t, x] = 2x, [t, y] = −3y, [t, z] = −z, [t, w] = w.

We confirm that [L,L] = [L,M ] = M , so L∞ = M , and Lnil is the 1-
dimensional algebra spanned by the class of t.

Next, we consider the Chevalley-Eilenberg complex of M . The underlying
graded space is

∧•M∗, which is spanned by wedge products of the dual basis
x∗, y∗, z∗, w∗ of M . The differential is given by

δ(x∗) = 0, δ(y∗) = 0, δ(z∗) = y∗ ∧ x∗, δ(w∗) = z∗ ∧ x∗.
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The bigrading on M induces a bigrading on
∧•M∗, and δ preserves bidegree.

The degree (3, 2)-part of
∧•M∗ is spanned by z∗ ∧w∗ and x∗ ∧ y∗ ∧w∗. As

δ(z∗ ∧ w∗) = −x∗ ∧ y∗ ∧ z∗,

the degree (3, 2)-part of H∗(L∞, k) is zero. On the other hand, the t-
invariant part of H∗(L∞, k) is the sum of the (3n, 2n)-part over all integers
n.

Now H∗(L∞, k) is a subquotient of
∧•M∗, and the latter has non-trivial

degree (3n, 2n)-part only for n = 0, 1. Thus, dim(
∧• L∞)Lnil = 3 but

dimH•(L∞, k)Lnil = 1.

�

5. An application

Let k be an algebraically closed field of characteristic zero. Let V be
a linear unipotent algebraic group over k, L = LieV the corresponding
nilpotent Lie algebra.

Denote by V -Mod the abelian category of rational representations of V .
Recall that an object of V -mod is by definition a V -module M which is
a union of finite dimensional submodules Mi, such that the V -action on
Mi comes from a homomorphism of k-algebraic groups V → GL(Mi). In
particular every element of V acts on Mi via a unipotent operator.

Notice that we have a natural equivalence of abelian categories

log : V -Mod→ (U(L)-Mod)I

where (U(L)-Mod)I is the abelian category of (all) U(L)-modules which are
I-torsion.

This induces the equivalence of derived categories

(5.1) log : Db(V -Mod)→ Db((U(L)-Mod)I)

Recall that for M ∈ V -mod its cohomology is by definition

H•V (M) := Ext•V -Mod(k,M)

where k is the trivial rational V -module.

Corollary 5.1. For any M ∈ V -Mod we have the isomorphism

(5.2) H•V (M) ' H•(L, log(M))

In particular, the cohomology H•V (M) can be computed using the standard
complex for the Lie algebra L.

Proof. The equivalence (5.1) implies the isomorphism

(5.3) Ext•V -Mod(k,M) = Ext•(U(L)-Mod)I
(k, log(M))

The module M is a direct limit (union) of its finite dimensional submodules.
The cohomology on both sides of (5.2) commutes with direct limits, hence
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we may assume that dimkM < ∞ and so the log(M) ∈ U(L)-mod. Using
the standard methods one can show that

Ext•(U(L)-Mod)I
(k, log(M)) = Ext•

(U(L)-mod)I
(k, log(M))

Finally, Corollary 3.2 implies the isomorphism

Ext•
(U(L)-mod)I

(k, log(M)) = Ext•
U(L)-mod(k, log(M))

which proves the corollary. �

Let X be a k-scheme with an action of the group V . For a V -equivariant
quasi-coherent sheaf F , its cohomology can be computed as

H•V (X,F ) = Ext•V -Mod(k,RΓ(X,F )),

and sometimes one wants to know that the Ext-space Ext•V -Mod(k,−) can be
computed using the standard complex for the Lie algebra L (by Corollary
5.1). This fact was used, for example, in the key computation on p. 8 of
[Te].
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