A NOTE ON LIE ALGEBRA COHOMOLOGY
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ABSTRACT. Given a finite dimensional Lie algebra L let I be the aug-
mentation ideal in the universal enveloping algebra U(L). We study
the conditions on L under which the Ext-groups Ext(k, k) for the trivial
L-module k are the same when computed in the category of all U(L)-
modules or in the category of I-torsion U(L)-modules. An application
to cohomology of equivariant sheaves is given.

1. INTRODUCTION

Let L be a finite dimensional Lie algebra over a field k. Consider the
universal enveloping algebra U(L) with the augmentation ideal I C U(L).
Denote by U(L)-mod the category of finitely generated left U(L)-modules
and by (U(L)-mod); C U(L)-mod the Serre subcategory of I-torsion mod-
ules. We have the obvious functor

(1.1) @y, : D*((U(L)-mod);) — D4(U(L)-mod)

where D%(U(L)-mod) C D*(U(L)-mod) is the full triangulated subcategory
consisting of complexes with I-torsion cohomology. In this paper we study
the question:

Question. When is ®;, an equivalence?

The functor ®;, being an equivalence means that the Ext-groups Exti(k, k)
for the trivial L-module k are the same in the categories U(L)-mod and
(U(L)-mod);.

We answer this question in Theorem 1.1 below.

Define inductively the decreasing sequence of ideals in L:

Li=L, L,=I[L,L,]

and put Lo = ﬂn L,. This is an ideal in L such that the quotient Lie
algebra Ly := L/Ls is nilpotent. We have Lo, = 0 if and only if L is
nilpotent.

For each i the cohomology H*(Leo, k) is naturally an L,j-module. Denote
by H>%(Ls, k) the positive degree cohomology.

Theorem 1.1. The functor ®y, is an equivalence if and only if H>% (Lo, k)*mil =
0. For example, @, is an equivalence if L is nilpotent.
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We find it natural to approach Theorem 1.1 by studying the graded Rees
algebra
UL =Pr=vl)eleol’o:-
n>0
It is easy to prove the following result.

Proposition 1.2. If the algebra U(L)* is graded left Noetherian, then the
functor ®p, is an equivalence.

It is, however, not necessary for U(L)* to be graded left Noetherian in
order for ®; to be an equivalence. The relevant result is the following
theorem (see [SW], where the interesting “if” direction is proved).

Theorem 1.3. The algebra U(L)* is graded left Noetherian if and only if
L is nilpotent.

In the last section of the paper we mention an application of Theorem 1.1
to the cohomology of quasi-coherent sheaves which are equivariant with
respect to a unipotent group.

In this paper we consider only left modules, but all the results are also
valid (with the same proofs) for right modules.

We fix a field k. All Lie algebras are finite dimensional over k. All
associative rings are unital.

Acknowledgements. We thank Grigory Papayanov for a useful discussion and
Toby Stafford for pointing out that our Theorem 3.1 was already proved
in [SW]. We are also grateful to the anonymous referee for a number of
significant suggestions and corrections.

2. A CRITERION FOR EQUIVALENCE OF CATEGORIES

Let R be an associative left Noetherian ring with a 2-sided ideal I C R.
Let M be a left R-module. An element m € M is called I-torsion, if
I"m = 0 for some n > 0. The collection of I-torsion elements in M is an
R-submodule, which we denote by M;. We say that M is torsion if M; = M.

Let R-mod denote the abelian category of finitely generated left R-modules
and let (R-mod); C R-mod be its full Serre subcategory of I-torsion mod-
ules. Let C?(R-mod) (resp. C*((R-mod);)) be the category of bounded com-
plexes over R-mod (resp. over (R-mod);) and let C%(R-mod) C C®(R-mod)
be the full subcategory of complexes whose cohomology groups are torsion.

In the bounded derived category D?(R-mod) consider the full subcategory
D?(R—mod) of complexes with torsion cohomology groups. We have the
obvious functor

® = ®p : D°((R-mod);) — D%(R-mod)
Proposition 2.1. Assume that for every finitely generated left R-module M

there exists a submodule N C M such that Ny = 0 and M/N is I-torsion.
Then the functor ® is an equivalence.
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Proof. Let A® be an object of C(R-mod). We claim there exists an object
B*® of C*((R-mod);) and a morphism of complexes f : A* — B*® which is a
quasi-isomorphism. Indeed, let
A= AL gt L g g

and let ¢ be the lowest index such that A} # A, By assumption there exists
a submodule P C A such that P; = 0 and (A'/P); = A'/P. We claim that
PNkerd = 0. Indeed, since H'(A®) and A'~! are torsion, it follows that
ker d' is torsion, so P Nkerd’ = 0. Therefore, the complex A® contains an
acyclic subcomplex P := P = d*(P) and the components with index < ¢ of
the quotient complex A°®/ P are torsion. Iterating this process we find the
required quasi-isomorphism f : A* — B®. This shows that the functor & is
essentially surjective.

For complexes C'®, D*® representing objects in D*((R-mod);), a morphism
®(D*) — O(C*®) is represented by a diagram of complexes D* — A® & C°,
where A® € C’}’(R—mod) and s is a quasi-isomorphism. The fact that the
functor ® is full and faithful now follows, since (as shown above) there exists
a complex B* € C°((R-mod);) and a morphism f : A* — B*® of complexes
that is a quasi-isomorphism. O

Consider now the graded Rees algebra
R =PI"=Relals. -
n>0

Lemma 2.2. Assume that the algebra R* is graded left Noetherian (i.e.
every graded left ideal is finitely generated). Then the assumption of Propo-
sition 2.1 holds: for any finitely generated left R-module M there exists a
submodule N C M such that Ny =0 and M/N = (M/N)

Proof. Let M be a finitely generated R-module. Consider the graded finitely
generated R*-module

M=M&IM&I’M&---
and its graded submodule
P=M;®(IMONM;)®(I*MNM)&---

By our assumption, P is finitely generated; hence, there exists n > 0 such
that for all m > 0

I™(I"M N M) = I"T™M N M;

As I M N M is finitely generated and I-torsion, it is annihilated by I for
some m. Thus,

(™" M)y = I M A My = I"™(I"M A M;) = 0.
Putting N = I"™*" M, we have Ny =0 and (M/N); = M/N. O

Corollary 2.3. Assume that the algebra R* is graded left Noetherian. Then
the functor ® is an equivalence.
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3. WHEN IS THE REES ALGEBRA OF A UNIVERSAL ENVELOPING ALGEBRA
NOETHERIAN

Let L be a finite dimensional Lie algebra, U(L) its universal enveloping
algebra and I C U(L) the augmentation ideal. As above, we consider the
graded Rees algebra

UL =@Pr=v@)elelo---
n>0

Theorem 3.1. The algebra U(L)* is graded left Noetherian if and only if
the Lie algebra L is nilpotent.

We get the following immediate consequence of Theorem 3.1 and Corollary
2.3

Corollary 3.2. Let L be a nilpotent Lie algebra. Then the functor
Oyy(ry : DP((U(L)-mod);) — DY(U(L)-mod)
18 an equivalence.

Proof. The more interesting “if” direction is contained in Theorem 2.1 in
[SW] and we prove the “only if” direction which is the easy one.

For a Lie algebra L we consider the lower central series L1 = L, L, =
[L, Ly,—1]. Thus

L=1L1>LyDL3D---

is a nonincreasing sequence of ideals in L. We put

Loo = ﬂLna Lnil = L/Loo
n

The Lie algebra Ly; is nilpotent, and L is nilpotent if and only if L., = 0.
We have the short exact sequence of Lie algebras

0L —L—>Lyy—0

This induces the surjection 6 : U(L) — U(Lyj) and ker6 is the ideal
U(L)LoU(L). As before, let I C U(L) be the augmentation ideal. We
have by construction L, C I"™ for all n, hence Lo, C [, I™.

Assume that the Lie algebra L is not nilpotent, i.e. Ly, # 0. Fix0+# z €
Lo and consider the graded left ideal

J=PUuL)z, cUL)*

where z, denotes the copy of = in I". We claim that J is not finitely
generated. Assume, on the contrary, that

J = Z U(L)* f;
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for a finite number of homogeneous elements f; € U(L)x,,. Choose m > n;

for all 7. We claim that
Tm ¢ > UL)'f,

Indeed, it suffices to notice that x ¢ Iz: if = fx, then f = 1, (since U(L)
is a domain) and hence f ¢ I. This completes the proof of Theorem 3.1. O

4. MAIN THEOREM

Let L be a finite dimensional Lie algebra, U(L) its universal enveloping
algebra, I C U(L) the augmentation ideal. As in section 3, consider the
ideal

Lw:ﬂanL
n

and the quotient nilpotent Lie algebra Ly; = L/L.
Each cohomology space H'(L«, k) is naturally a Ly;-module, so we have
the Hochschild-Serre spectral sequence [HS]:

(4.1) EY = HP(Lyy, H(Loo, k) = HPTI(L, k).

Theorem 4.1. Let L be a finite dimensional Lie algebra over a field k. The
following conditions are equivalent:
(1) The natural functor

@y, : D*((U(L)-mod);) — DY(U(L)-mod)
18 an equivalence.
(2) The natural map H®(Lyy, k) — H®(L, k) is an isomorphism.

(3) The positive degree cohomology H>°(Leo, k) considered as an Lyj-
module satisfies H>(Loo, k)Fnit = 0.

Proof. We first notice that the 3 conditions in the theorem hold in case L is
nilpotent. Indeed, then Lo, = 0, so (2) and (3) hold trivially. Also (1) holds
by Corollary 3.2.
Let now L be general. As in section 3 we consider the short exact sequence
of Lie algebras
0—>Lsew —L—> Ly —0

and the induced surjection 0 : U(L) — U(Lypy) with the kernel kerf =
U(L)LsoU(L). Denote by I the augmentation ideal in U(Ly;). Since Lo C
NpI™, any U(L)-module M such that M = M is actually a U(Lyj)-module
(and M = M7). Hence the functor of restriction of scalars

O« : U(Ly)-mod — U(L)-mod
induces the equivalence of categories

(U(Lpin)-mod)7 = (U(L)-mod);
and therefore the equivalence of categories

(4.2) D((U(Lyy)-mod)7) = D°((U(L)-mod);)
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We have the commutative diagram of functors

(4.3) DP((U(L)-mod);) —~— DY(U(L)-mod)

| T

b Y B Proy b Y
DY((U(Ly)-mod);) —% DE(U(Lyy)-mod)

As explained above the left vertical arrow is an equivalence. Also ®7, . is an
equivalence (Corollary 3.2). Hence ®y, is an equivalence if and only if the
functor

(4.4) 0. : DY(U(Lyyt)-mod) — D}(U(L)-mod)

is an equivalence. Every finitely generated I-torsion U(L)-module (resp.
I-torsion U(Lyj)-module) is a finite dimensional k-vector space on which L
(resp. Lpj) acts nilpotently, so by Engel’s theorem, it admits a stable flag
with trivial 1-dimensional quotients. As triangulated categories, therefore,
both sides of (4.4) are generated by the trivial module k, and so the functor
in (4.4) is an equivalence if and only if the natural map

(45) 9* . EXt;](L 'l)(k’ k) — EXt;](L) (k, kf)

is an isomorphism. This proves the equivalence of conditions (1) and (2) in
the theorem. It remains to prove the equivalence of (2) and (3).
The Hochschild-Serre spectral sequence (4.1) has Ey page

B0 E%OE\gt)...

We have H%(Loo,k) = k — the trivial Lyj-module and the graded space
Exty (1, (K, k) identifies naturally with the bottom row of this spectral se-

ni

quence. The map 0 : Extyy \(k, k) — Exty ) (k, k) then coincides with

ni

the projection
Extyy g, (K k) = H®(Lyit, H(Loo, k)) — H*(L, k)

ni

Assume that the condition (3) holds, i.e. H>?(L, k) = 0. Then by
[Ba, Lemma 3], we have

H*(Lpit, H(Loo, k) = 0,

and hence only the bottom row of the spectral sequence (4.6) is nonzero.
Therefore the natural map H®(Lyy, k) — H®(L, k) is an isomorphism, i.e.,
condition (2) of the theorem holds.

Assume, conversely, that condition (2) holds. Let d be the maximal inte-
ger such that H(Lyy, k) # 0. If N is any indecomposable finite-dimensional
Lyj-module, then by [Cu, Theorem 1], all irreducible subquotients of N
are equivalent. Then using Lemmas 3 and 4 in [Ba], we conclude that
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H*®(Lypy, N) = 0 unless every subquotient of N is isomorphic to the triv-
ial module k. In this case, k is a quotient representation of N, and by
induction on dim N, H>%(L,;, N) = 0. For indecomposable representa-
tions, and therefore for all representations, it follows that if NZnil £ 0, then
Hd(Lnil) N) 7é 0.

Assume for the sake of contradiction that for some i > 0, H( Lo, k)Imit #
0. Let i be the maximal such. Then Eg’z = HY(Lyy, H (Lo, k)) is nonzero
and it survives in H**?(L, k). This is a contradiction and finishes the proof
of the theorem. O

4.1. Some examples. (A) Consider the 2-dimensional Lie algebra with
basis z,y and the relation [z,y] = y. This Lie algebra is solvable but not
nilpotent, Lo, = ky. The standard complex, which computes the cohomol-
ogy H®(Lwo, k), has terms in degrees 0 and 1 and zero differential:

k% Homy, (ky, k).
The element x € Ly; acts on the space Homy (ky, k) = Hl(LC>o7 k) as minus

the identity, so the condition (3) of Theorem 4.1 is satisfied.
(B) This is a generalization of example (A) above: assume that

(/\ >0LOO)Lm1 = 0.

Then condition (3) of Theorem 4.1 holds. For example this is the case when
L is the Lie algebra of upper-triangular matrices. Then L, is the ideal of
strictly triangular matrices and L,; is the abelian quotient.

(C) However, there exist solvable algebras L for which condition (3) does
not hold. Let L = kt @ kx1 & kx_1 be the 3-dimensional solvable algebra
with [t,2;] = ix; and [x_1,21] = 0. Then Lo = kz_1 @ kx1, and Ly = kt.
By construction, Ly acts trivially on H?(Leo, k) = /\2 L.

(D) It may happen that condition (3) holds even though A\”° Lo, admits
k as an Lpj-subquotient. See Proposition 4.4 below.

(E) If k is not of characteristic 2 and Lo, # 0 has a non-degenerate Killing
form, then H3(Loo, k) # 0 by [Se, p. 103]. By [Za, Satz 16], every derivation
of L is inner, so the action of L,; on the cohomology of L. is trivial.

(F) We formulate this as a proposition:

Proposition 4.2. Assume that the equivalent conditions of Theorem 4.1 are
satisfied and the characteristic of k is zero. Then the algebra L is solvable.

Proof. As L/L* is solvable, it suffices to prove that L is solvable. Let
L2 denote the radical of L, so that

L% = Loo /LY
is semi-simple. Setting g := L}, we need to prove that g = 0.

Lemma 4.3. In the above notation the natural map

H*(g.k) = Extlyg) (k, k) — Extfy (k. k) = H*(Loo, k)
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18 tnjective.
Proof. By the Levi theorem we know that the surjection of Lie algebras
p: Lo — g has a splitting s : ¢ =& L. These induce chain maps p* :
C*(g,k) — C*(Loo, k) and s* : C*(Loo, k) — C*(g, k) such that s* - p* = id.
Hence the map
H*(p*) : H*(g, k) = H*(Loo, k)
is injective.
(]

In characteristic 0, the Killing form of a semi-simple algebra is non-
degenerate. Therefore, if g # 0, then H3(g,k) # 0 [Se, p 103]. The Ly
action on Ly, stabilizes L'24 and therefore induces an action on g. For any

x € Lyj the operator [z,—] on g is a derivation, so is inner. Therefore
the action of Ly; on the cohomology is trivial, and so the condition (3) of
Theorem 4.1 fails. ]

Proposition 4.4. The conditions of Theorem 4.1 are strictly weaker than
the condition that (N”° L) has a non-trivial Ly-invariant subquotient.

Proof. As H>°(L, k) is a subquotient of /\>0 L}, if the former has a non-
trivial Lyj-invariant subquotient, the latter does as well.

We show that converse does not hold by exhibiting a case in which Lj
acts semisimply on A°® L%, and therefore on every Lyj-stable subquotient
and for which

dim(/\" L5 )5t > 1 = dim H*(Loo, k) b,

The free Lie algebra on two generators x and y admits a unique bigrading
for which = and y have bidegree (1,0) and (0,1) respectively. Let M be
the quotient of this algebra by the graded ideal generated by all elements of
total degree > 4 and also [[x,y],y]. Then M has basis: x,y, z, w of bidegree
(1,0), (0,1), (1,1), and (2, 1) respectively, satisfying the following relations:

[ajvy] =% [x’z] = w, [liaw} = [y,z] = [yaw] = [Z’w] =0

(see [Bo, 11, §2, no. 11, Théoreme 1] and the computation of the Hall set for
2 generators given at the end of no. 10.)

We define ¢ to be the derivation which acts on the bidegree (a,b) part of
M by 2a — 3b. Let L := M & kt denote the semi-direct sum, so

[t,x] =2z, [t,y] = =3y, [t,2] = —2, [t,w] = w.

We confirm that [L,L] = [L,M] = M, so Lo = M, and Ly; is the 1-
dimensional algebra spanned by the class of t.

Next, we consider the Chevalley-Eilenberg complex of M. The underlying
graded space is \* M*, which is spanned by wedge products of the dual basis
¥, y*, 2%, w* of M. The differential is given by
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The bigrading on M induces a bigrading on A\* M*, and § preserves bidegree.
The degree (3,2)-part of A®* M* is spanned by z* Aw* and x* A y* Aw*. As
Sz ANw*) = =" ANy" A z",
the degree (3,2)-part of H*(Lso, k) is zero. On the other hand, the ¢-
invariant part of H*(Leo, k) is the sum of the (3n,2n)-part over all integers

n.

Now H*(Lwo, k) is a subquotient of A\® M*, and the latter has non-trivial
degree (3n, 2n)-part only for n = 0,1. Thus, dim(A® Lo )™ = 3 but

dim H®(Leg, k)t = 1.

5. AN APPLICATION

Let k be an algebraically closed field of characteristic zero. Let V be
a linear unipotent algebraic group over k, L = LieV the corresponding
nilpotent Lie algebra.

Denote by V-Mod the abelian category of rational representations of V.
Recall that an object of V-mod is by definition a V-module M which is
a union of finite dimensional submodules M;, such that the V-action on
M; comes from a homomorphism of k-algebraic groups V. — GL(M;). In
particular every element of V' acts on M; via a unipotent operator.

Notice that we have a natural equivalence of abelian categories

log : V-Mod — (U(L)-Mod);

where (U(L)-Mod); is the abelian category of (all) U(L)-modules which are
I-torsion.
This induces the equivalence of derived categories

(5.1) log : D°(V-Mod) — D°((U(L)-Mod);)
Recall that for M € V-mod its cohomology is by definition
HY (M) = Ext} ygoa(k, M)
where k is the trivial rational V-module.
Corollary 5.1. For any M € V-Mod we have the isomorphism
(5.2) Hy (M) ~ H®*(L,log(M))

In particular, the cohomology Hy, (M) can be computed using the standard
complex for the Lie algebra L.

Proof. The equivalence (5.1) implies the isomorphism
(5.3) Exty voa (K M) = Ext{y 1) moqy, (K, 10g(M))

The module M is a direct limit (union) of its finite dimensional submodules.
The cohomology on both sides of (5.2) commutes with direct limits, hence
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we may assume that dimy M < oo and so the log(M) € U(L)-mod. Using
the standard methods one can show that

EthU(L)_MOd)I (k,log(M)) = EXtEU(L)—mOd)I (k,log(M))

Finally, Corollary 3.2 implies the isomorphism

EXtEU(L)—HlOd)] (k,log(M)) = EXt.U(L)—InOd

which proves the corollary. O

(k,log(M))

Let X be a k-scheme with an action of the group V. For a V-equivariant
quasi-coherent sheaf F', its cohomology can be computed as

H\./(Xv F) = EXt:/—Mod(k7RF(X7 F>)7

and sometimes one wants to know that the Ext-space Ext{_y;,q(k, —) can be
computed using the standard complex for the Lie algebra L (by Corollary
5.1). This fact was used, for example, in the key computation on p. 8 of
[Te].
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