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IfR is the ring of integers of a number field, then there exists a polynomial parametriza-

tion of the set SL2(R), that is, an element A ∈ SL2(Z[x1, . . . , xn]) such that every element

of SL2(R) is obtained by specializing A via some homomorphism Z[x1, . . . , xn] → R.

Let R be a commutative ring. We say a subset S ⊂ SLN(R) is bounded if there exists an

element A(x1, . . . , xn) ∈ SLN(Z[x1, . . . , xn]) such that

S ⊆ {A(r1, . . . , rn) | ri ∈ R},

and A(x1, . . . , xn) = I has a solution in Rn, where I denotes the identity matrix. It is clear

that if S and T are bounded subsets of SLN(R), then every subset of S is bounded, and

likewise, S∪ {I}, S−1, and ST are bounded. Thus, S∪T ⊂ (S∪ {I})(T ∪ {I}) is also bounded.

When SLN(R) itself is bounded, we say it is polynomially parametrized.

For 1 ≤ i 	= j ≤ N, the set of elementary matrices {erij | r ∈ R}, with entry r in

position (i, j), is bounded. Therefore, the set of all elementary matrices (i.e., the union

of these sets over pairs (i, j)) is again bounded, so for any fixed k, the set of products

of k elementary matrices is bounded. Carter and Keller [1] proved that if N ≥ 3 and R

is the ring of integers in any number field, then every element of SLN(R) can be written
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as a product of k elementary matrices, for k depending on N and R. Thus, SLN(R) is

polynomially parametrized. This leaves the question as to whether SL2(R) is likewise

always polynomially parametrized.

When R× is infinite, this is known to have an affirmative answer. Vaserstein [6]

proved that in this case SL2(R) is generated by elementary matrices, and Carter et al.

[5] proved that this implies that SL2(R) is indeed polynomially parametrized (see also

recent work by Morgan et al. [4] for another proof of this fact). Vaserstein [7] also proved

that SL2(Z) is polynomially parametrized. This leaves the case of rings of integers in

imaginary quadratic fields. The point of this note is to show that the methods of Carter

and Keller in [1] and Vaserstein in [7] extend to cover this case as well.

We say Z ⊆ SL2(R)2 is bounded if there exist bounded sets S and T in SL2(R)

such that for all pairs (M,N) ∈ Z there exist X ∈ S and Y ∈ T such that

N = XMY.

In particular, {(I,X) | X ∈ S} is bounded if and only if S is bounded in SL2(R).

Lemma 1.1. We have the following boundedness statements for SL2(R)2:

1. The set {(M,M) | M ∈ SL2(R)} is bounded.

2. If Z ⊆ SL2(R)2 is bounded, then {(M,N) | (N,M) ∈ Z} is bounded.

3. If Z,W ⊆ SL2(R)2 are bounded, then the set of pairs (M, P) ∈ SL2(R)2 such

that there exists N with (M,N) ∈ Z and (N, P) ∈ W is bounded.

4. The set of pairs {(M,XMY) | M ∈ SL2(R), X,Y ∈ SL2(Z)} is bounded.

5. The set {(M−1,MT) | M ∈ SL2(R)} is bounded.

Proof. Part (1) is trivial. Part (2) follows from the fact that if S ⊆ SL2(R) is bounded,

then S−1 is bounded. Part (3) follows from the fact that if S,T ⊆ SL2(R) are bounded,

then ST is bounded. Part (4) follows from the boundedness of SL2(Z). Part (5) follows

from (4), together with the identity

MT =
(

0 1

−1 0

)
M−1

(
0 −1

1 0

)
.

�

All ordered pairs of elements of SL2(R) whose 1st rows coincide forms a bounded

family. This follows from the boundedness of the set of elementary matrices in SL2(R).
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An ordered pair (a,b) is primitive if and only if the elements a and b generate

the unit ideal or, equivalently, if and only if there exists an element of SL2(R) whose

1st row is
(
a b

)
. We say a set of ordered pairs ((a,b), (a′, b′)) of primitive pairs is

bounded if the set of pairs (M,M ′), where M and M ′ have 1st rows
(
a b

)
and

(
a′ b′

)
,

respectively, is bounded. We indicate this boundedness condition informally by writing

(a,b) ∼ (a′, b′) for pairs in the set.

Given a fixed ring R, for polynomials P1,Q1, P2,Q2 ∈ Z[t1, . . . , tk] the relation

(P1,Q1) ∼ (P2,Q2) we mean the following. First, for any 
a := (a1, . . . ,ak) ∈ Rk, the pair

(P1(
a),Q1(
a)) is primitive if and only if the pair (P2(
a),Q2(
a)) is primitive. Second, the

set of pairs (X1,X2) ∈ SL2(R)2 such that for some 
a ∈ Rk, the first row of Xi is

(
Pi(
a) Qi(
a)

)
,

for i = 1, 2, is bounded. By Lemma 1.1, this makes ∼ an equivalence relation on

Z[x1, . . . , xk]
2.

Lemma 1.2. For every ring R, we have

(t1, t2) ∼ (t1, t2 + t1t3)

and

(t1, t2) ∼ (t1 + t2t3, t2).

Proof. For a1,a2,a3 ∈ R, (a1,a2) is primitive if and only if (a1,a2 + a1a3) is primitive,

and likewise for (a1 + a2a3,a2). The boundedness condition follows immediately from

the boundedness of the set of elementary matrices in SL2(R). �

The following argument is due to Vaserstein [7].

Proposition 1.3. For any ring R, we have

(1 + t1t2, t
2
2t3) ∼ (1 + t1t2, t3).

Proof. Let t1, t2, t3 map to a,b, c ∈ R, respectively. It is clear that (1+ab,b2c) primitive

implies (1 + ab, c) primitive. Conversely, if 1 + ab,b2c ∈ J for some ideal J � R, then for

any maximal ideal m containing J, we have 1 + ab ∈ m, hence b 	∈ m, so c ∈ m, which

implies (1 + ab, c) is not primitive.
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Let

A := Z[x1, x2, x3, x4, y1, y2, y3, y4]/(x1y4 − x3y2 − 1, y1x4 − y3x2 − 1).

For

(
x1 y2
x3 y4

)
,

(
y1 x2
y3 x4

)
∈ SL2(A), setting

M :=
(

x1 y2
x3 y4

) (
1 1

0 1

)(
x1 y2
x3 y4

)−1

, N :=
(

y1 x2
y3 x4

) (
1 0

−1 1

) (
y1 x2
y3 x4

)−1

,

we see that M and N lie, respectively, in the image of SL2(Z[x1, x3]) and of SL2(Z[x2, x4])

in SL2(A); namely,

M =
(

1 − x1x3 x21
−x23 1 + x1x3

)
, N =

(
1 − x2x4 x22
−x24 1 + x2x4

)
.

Writing

NMN

(
0 −1

1 0

)
=

(
P(x1, x2, x3, x4) Q(x1, x2, x3, x4)

R(x1, x2, x3, x4) S(x1, x2, x3, x4)

)
, (1)

the relation (
1 0

−1 1

) (
1 1

0 1

)(
1 0

−1 1

)(
0 −1

1 0

)
= I

implies that P − 1, Q, R, and S − 1 vanish at (1, 0, 0, 1). Substituting

(
x1 x2
x3 x4

)
= I + z5

(
z1 z2
z3 z4

)
,

we see that Q and R are divisible by z5, so

(
z5 0

0 1

)
NMN

(
0 −1

1 0

) (
z5 0

0 1

)−1

∈ SL2(Z[z1, . . . , z5]). (2)
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For each A =
(

a1 a2

a3 a4

)
∈ SL2(R), the polynomials x1y4 − x3y2 − 1 and y1x4 −

y3x2 − 1 both vanish at

(x1, x2, x3, x4, y1, y2, y3, y4) = (a1,a2,a3,a4,a1,a2,a3,a4),

so there exists a unique homomorphism A → R sending xi �→ ai and yi �→ ai for i =
1, 2, 3, 4. Specializing (1), we have

NMN

(
0 −1

1 0

)
= A

(
1 0

−1 1

) (
1 1

0 1

)(
1 0

−1 1

)
A−1

(
0 −1

1 0

)

= A

(
0 1

−1 0

)
A−1

(
0 −1

1 0

)
= AAT ,

so {
AAT

∣∣∣∣ A ∈ SL2(R)

}

is bounded. Further specializing to the case A = I + z5

(
z1 z2
z3 z4

)
∈ SL2(R), (2) implies

the boundedness of

{(
1 + z5z1 z25z2

z3 1 + z5z4

)(
1 + z5z1 z25z3

z2 1 + z5z4

) ∣∣∣∣ z1 + z4 + z5(z1z4 − z2z3) = 0
}
.

The family of pairs

{((
1 + z5z1 z25z2

z3 1 + z5z4

)
,

(
1 + z5z1 z25z3

z2 1 + z5z4

)−1)}

subject to the condition

z1 + z4 + z5(z1z4 − z2z3) = 0 (3)

is therefore bounded, so by part (5) of Lemma 1.1, the same is true for the family of pairs

{((
1 + z5z1 z25z2

z3 1 + z5z4

)
,

(
1 + z5z1 z25z3

z2 1 + z5z4

)T)}

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/9/6993/5374665 by Indiana U
niversity Libraries - Bloom

ington user on 12 August 2021



6998 M. Larsen and D. Q. N. Nguyen

satisfying (3). If (1+ab,b2c) is primitive, then substituting z1 = a, z2 = c, z5 = b, we can

solve (3) for z3 and z4 in R, which proves the proposition. �

Henceforth, we assume R is the ring of integers in an imaginary quadratic

field K.

Proposition 1.4. For R as above,

(1 + t1t2, t2t3) ∼ (1 + t1t2, t3).

Proof. By Lemma 1.2, for all d ∈ R

(1 + ab,bc) ∼ (1 + ab,bc + (1 + ab)bd) = (1 + ab,b(c + (1 + ab)d))

and

(1 + ab, c) ∼ (1 + ab, c + (1 + ab)d)),

so wemay replace c by any element in the same residue class (mod 1+ab). Since (c, 1+ab)

is primitive, by Hasse’s theorem (see [3, Satz 13, p. 32]) there exist infinitely many choices

d ∈ R, such that c + (1 + ab)d generates a prime ideal in R. In particular, replacing c by

this element, we may assume c is relatively prime to 2a.

We also have for all e ∈ R,

(1 + ab,bc) ∼ (1 + ab + bce,bc) = (1 + (a + ce)b,bc)

and

(1 + ab, c) ∼ (1 + (a + ce)b, c).

Applying Hasse’s theorem again, there exist infinitely many e ∈ R such that a + ce is

divisible by 4, and q := a+ce
4 generates a prime ideal of R. We may therefore assume a =

4q where q generates a prime ideal not dividing (2). Finally, applying Hasse’s theorem

a 3rd time, we may choose p := c + (1 + ab)f such that (p) is a prime ideal, and p ≡ 1

(mod 8q). Using the same argument as above, we may replace c by p.

For every place v of K, let [−q,p]v denote the Hilbert symbol (which is 1 if and

only if −qx2 + py2 = 1 has a solution in Kv and is −1 otherwise). By Hilbert reciprocity,

∏
v

[−q,p]v = 1.
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We can restrict the product to finite places of K since the only infinite place is complex.

By Hensel’s lemma, if v does not lie over 2, −qx2+py2 = 1 has a solution in Kv if and only

if the reduced equation −
arqx2 + 
arpy2 = 1 has a solution in the residue field kv. This

holds automatically as long as 
arq and 
arp are non-zero in kv, hence over all odd v other

than those corresponding to the prime ideals q and p. As p ≡ 1 (mod 8), {1−py2 | y ∈ Kv}
contains a neighborhood of 0 if v lies over 2, and it follows that −qx2 + py2 = 1 has a

solution in Kv. As p ≡ 1 (mod q), −qx2+py2 = 1 has a solution in the completion of K at

q. We conclude that [−q,p]v = 1 when v is the place corresponding to p, so the image of

a = 4q is congruent (mod p) to an element of the form −r2, for some r ∈ R. Thus, a ≡ −r2

(mod c).

As ab ≡ −r2b (mod bc),

(1 + ab,bc) ∼ (1 − r2b,bc) ∼ (1 − r2b,bc − (1 − r2b)bc) = (1 − r2b, r2b2c).

Applying Proposition 1.3, this is boundedly equivalent to

(1 − r2b, c) ∼ (1 + ab, c),

and the proposition holds. �

For n a non-negative integer and α =
(
a b

c d

)
∈ SL2(R), we write

αn =
(
an bn
cn dn

)
.

Thus, for each n, an, bn, cn, and dn can be regarded as polynomials in a, b, c, and d with

integer coefficients.

Proposition 1.5. For all n and α, we have (an, b) ∼ (an, bn).

Proof. We define a sequence of polynomials in t as follows:

Q−1 = −1, Q0 = 0, Qi+1 = tQi − Qi−1 ∀ i ≥ 0.

For n ≥ −1, we set ui := Qi(Tr(α)). By induction on i, we have

Qi+1(t)Qi−1(t) = Qi(t)
2 − 1
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for i ≥ 0, so uiui−2 = (ui−1 + 1)(ui−1 − 1) for all i ≥ 1. In particular, we can write

un = vnwn, where vn divides un−1 − 1 and wn divides un−1 + 1.

By the Cayley–Hamilton theorem, α2 = Tr(α)α − I, so for all i ≥ 1,

αi = uiα − ui−1I.

In particular,

an = aun − un−1, bn = bun = bvnwn,

so an ≡ 1 (mod wn) and an ≡ −1 (mod vn). By Proposition 1.4 and part (4) of

Lemma 1.1,

(an, bn) ∼ (an, bvn) ∼ (−an,−bvn) ∼ (−an,−b) ∼ (an, b).

As α is upper triangular (mod b), we have an ≡ an (mod b), and the proposition

follows. �

We recall the following result of Carter and Keller.

Lemma 1.6. (Carter–Keller, see [1, Lemma 4, p. 680])

Let F be a number field, O its ring of integers, and m the number of roots of

unity in F. Let a be a non-zero ideal of O, and let b be a non-zero element of O such that

(i) bO is a prime ideal with residue characteristic prime to m, that is, bO is a

prime ideal, and #(O/bO) and m are relatively prime integers.

(ii) a and bO are comaximal, that is, a + bO = O.

Then for every unit u ∈ O×, there exists an element c ∈ O such that bc ≡ u (mod a) and

such that the greatest common divisor of ε(b) and ε(c) is mγ , where γ is a positive

integer all of whose rational prime divisors ramify in F/Q (that is, they divide the

discriminant of K). Furthermore, c may be chosen such that γ avoids any single rational

prime that ramifies in F/Q. Finally if the class number of K is 1, c may be chosen such

that γ = 1.

Remark 1.7. The above lemma is in [1,Lemma 4, p. 680]. In [1,Lemma 4], Carter and

Keller made an additional assumption that a is a prime principal ideal whereas in the

above lemma, we do not impose such condition on a. In fact the proof of Lemma 4 in

[1] given in pages 680–682 does not need such assumption, and thus the proof of the

above lemma follows the same lines as that of Lemma 4 in [1]. Note that in the last

paragraph of page 683, Carter and Keller applied Lemma 4 to a non-zero ideal a that is
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not necessarily prime; so it seems that the assumption in Lemma 4 that a is prime and

principal is a typo in [1].

Proposition 1.8. Let m = |R×|. If ab 	= 0 and (a,b) is primitive, then (am, b) ∼ (1, 0).

Proof. For k ∈ R \ {0}, let ε(k) denote the exponent of the finite group (R/kR)×.
Let p1, . . . ,p� be the distinct prime divisors of the discriminant of K/Q. For each

1 ≤ i ≤ �, applying Lemma 1.6 for the ideal aO and the element b ∈ O with u = −1, one

obtains an element ci ∈ O such that the following are satisfied:

(i) bci ≡ −1 (mod aO); and

(ii) the greatest common divisor of ε(b) and ε(ci) ismγi, where γi is not divisible

by the prime pi and all prime divisors of γi divide the discriminant of K/Q.

By (ii), note that gcd(γ1, . . . , γ�) = 1, and thus there are integers h1, . . . ,h�

such that

h1γ1 + · · · + h�γ� = 1.

For each 1 ≤ i ≤ �, choose di ∈ O so that

Ni =
(
a b

ci di

)
.

Choose x, y ∈ R so that

M =
(
a b

x y

)
∈ SL2(R).

Then

Mm = Mmh1γ1 · · ·Mmh�γ� .

We claim that Mmhiγi belongs to a bounded subset of SL2(R) for all 1 ≤ i ≤ �, and

thus the same is true of Mm. This implies the proposition.

To prove the claim, take an integer 1 ≤ i ≤ �. By Proposition 1.5, there exist

bounded sets U1, V1 in SL2(R) such that there exist X1 ∈ U1 and Y1 ∈ V1 for which

X1M
m|hiγi|Y1 =

(
am|hiγi| b

x1 y1

)
,
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for some x1, y1 ∈ R. Using the same argument, there exist bounded sets U2, V2 in SL2(R)

such that there exist X2 ∈ U2, Y2 ∈ V2 for which

X2

(
am|hiγi| b

x1 y1

)
Y2 = Nm|hiγi|

i .

Let s, t be positive integers such that t − s = mγi, s is divisible by ε(ci), and t is

divisible by ε(b). Then

(1, 0) ∼ (at, b) ∼ (at, bt),

so Nt
i belongs to a bounded subset of SL2(R), which does not depend on (a,b). Likewise,

(1, 0) ∼ (as, c) ∼ (as, cs),

so (NT
i )s belongs to a bounded subset of SL2(R). By part (5) of Lemma 1.1, N−s

i belongs

to a bounded subset of SL2(R), so the same is true of Nmγi
i = Nt−s

i . Thus, Nm|hiγi|
i

belongs to a bounded subset of SL2(R), so the same is true of Mm|hiγi|. Therefore, Mmhiγi

belongs to a bounded subset of SL2(R) for all 1 ≤ i ≤ �, which proves our claim. �

Theorem 1.9. If R is the ring of integers in an imaginary quadratic field, then SL2(R)

is polynomially parametrized.

Proof. It suffices to prove that if (s, t) ∈ R2 is primitive, then (1, 0) ∼ (s, t). By [1,

Lemma 3], there exists a,b ∈ R such that (s, t) ∼ (am,d), where m = |R×|. Proposition
1.8 implies that (am,d) ∼ (1, 0). �

Remark 1.10. If A is a commutative ring such that SL2(A) is polynomially

parametrized, it is natural to ask what is the smallest number of parameters needed

to polynomially parametrize SL2(A). We do not attempt to answer this question in this

paper. With a detailed analysis of the proof of Theorem 1.8, one could in principle

find an explicit upper bound for the smallest number of parameters needed for SL2(R),

where R is the ring of integers of an imaginary quadratic number field.

There are several explicit results of this kind in the literature. Vaserstein [7]

gives an upper bound of 46 for SL2(Z). Morgan et al. [4] show that if O is a ring of S-

integers in a number field K such that the group of units O× is infinite, then 18 is an

upper bound for SL2(O). (This bound was originally given by Cooke and Weinberger [2],

assuming the Generalized Riemann Hypothesis.) If O is the ring of integers in a number

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/9/6993/5374665 by Indiana U
niversity Libraries - Bloom

ington user on 12 August 2021



Polynomial Parametrization for SL2 7003

field, Zannier [8] proves that a lower bound for the number of parameters needed for

SL2(O) is 4. It is a natural question as to whether there exists a uniform upper bound

for the number of parameters needed for SL2(O), where O is the ring of integers of an

arbitrary number field.
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