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If R is the ring of integers of a number field, then there exists a polynomial parametriza-
tion of the set SL,(R), that is, an element A € SL,(Zlxy, ..., x,]) such that every element

of SL,(R) is obtained by specializing A via some homomorphism Z[x,,...,x,] - R.

Let R be a commutative ring. We say a subset S C SLy(R) is bounded if there exists an

element A(xy,...,X,) € SLy(Zlx,,...,Xx,]) such that
SC{A(ry,...,tp) |, €R},

and A(x,,...,x,) = I has a solution in R", where I denotes the identity matrix. It is clear
that if S and T are bounded subsets of SLy(R), then every subset of S is bounded, and
likewise, SU{I}, S7!, and ST are bounded. Thus, SUT C (SU{I})(T U{I}) is also bounded.
When SLy (R) itself is bounded, we say it is polynomially parametrized.

For 1 <i #j < N, the set of elementary matrices {efj | r € R}, with entry r in
position (i,j), is bounded. Therefore, the set of all elementary matrices (i.e., the union
of these sets over pairs (i,j)) is again bounded, so for any fixed k, the set of products
of k elementary matrices is bounded. Carter and Keller [1] proved that if N > 3 and R

is the ring of integers in any number field, then every element of SLy(R) can be written
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as a product of k elementary matrices, for k depending on N and R. Thus, SLy(R) is
polynomially parametrized. This leaves the question as to whether SL,(R) is likewise
always polynomially parametrized.

When R* is infinite, this is known to have an affirmative answer. Vaserstein [6]
proved that in this case SL,(R) is generated by elementary matrices, and Carter et al.
[5] proved that this implies that SL,(R) is indeed polynomially parametrized (see also
recent work by Morgan et al. [4] for another proof of this fact). Vaserstein [7] also proved
that SL,(Z) is polynomially parametrized. This leaves the case of rings of integers in
imaginary quadratic fields. The point of this note is to show that the methods of Carter
and Keller in [1] and Vaserstein in [7] extend to cover this case as well.

We say Z C SLZ(R)2 is bounded if there exist bounded sets S and T in SL,(R)
such that for all pairs (M, N) € Z there exist X € S and Y € T such that

N = XMY.

In particular, {(I,X) | X € S} is bounded if and only if S is bounded in SL,(R).

Lemma 1.1. We have the following boundedness statements for SL, (R)2:

1. The set {(M,M) | M € SL,(R)} is bounded.

2. If Z C SL,(R)? is bounded, then {(M,N) | (N, M) € Z} is bounded.

3. If Z, W C SL,(R)? are bounded, then the set of pairs (M,P) € SL,(R)? such
that there exists N with (M, N) € Z and (N, P) € W is bounded.

4. The set of pairs {(M,XMY) | M € SL,(R), X, Y € SL,(Z)} is bounded.

5. The set {(M~,MT) | M € SL,(R)} is bounded.

Proof. Part (1) is trivial. Part (2) follows from the fact that if S € SL,(R) is bounded,
then S~! is bounded. Part (3) follows from the fact that if S, T < SL,(R) are bounded,
then ST is bounded. Part (4) follows from the boundedness of SL,(Z). Part (5) follows
from (4), together with the identity

All ordered pairs of elements of SL,(R) whose 1st rows coincide forms a bounded

family. This follows from the boundedness of the set of elementary matrices in SL,(R).
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An ordered pair (a, b) is primitive if and only if the elements a and b generate
the unit ideal or, equivalently, if and only if there exists an element of SL,(R) whose
1st row is (a b). We say a set of ordered pairs ((a,b),(a’,b’)) of primitive pairs is
bounded if the set of pairs (M, M’), where M and M’ have 1st rows (a b) and (a/ b’),
respectively, is bounded. We indicate this boundedness condition informally by writing
(a,b) ~ (a’,b’) for pairs in the set.

Given a fixed ring R, for polynomials P;,Q;,P,,Q, € Zlt;,...,t;] the relation
(Py,Q,) ~ (Py,Q,) we mean the following. First, for any a:= @y,...,ap) € Rk, the pair
(Py(a), Q(a)) is primitive if and only if the pair (P,(@), Q,(a)) is primitive. Second, the
set of pairs (X;,X,) € SL, (R)? such that for some a € R¥, the first row of X, is

(r@ a@).

for i = 1,2, is bounded. By Lemma 1.1, this makes ~ an equivalence relation on

Z[Xl, e ,Xk]Z.
Lemma 1.2, For every ring R, we have
(tlr tz) ~ (tl, t2 + t1t3)

and

(tll tz) ~ (tl + t2t3, tz)

Proof. Fora,,a, a; €R, (a;,a,) is primitive if and only if (a,, a, + a,a3) is primitive,
and likewise for (a; + a,a4, a,). The boundedness condition follows immediately from

the boundedness of the set of elementary matrices in SL,(R). |
The following argument is due to Vaserstein [7].
Proposition 1.3. For any ring R, we have
(1 + tyty, thts) ~ (1 4+t ty, t3).

Proof. Lett;,t, t; maptoa,b,c € R, respectively. It is clear that (1+ab, b2c) primitive
implies (1 + ab, ¢) primitive. Conversely, if 1 + ab, b?%c e J for some ideal J C R, then for
any maximal ideal m containing J, we have 1 + ab € m, hence b ¢ m, so ¢ € m, which

implies (1 + ab, ¢) is not primitive.
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Let

A = 7Ixy, Xy, X3,X4, V1, V2, V3, Val/(X1Vq — X3V5 — 1, Y1X4 — V3% — 1).

X X
For( g ), ( Yi % ) € SL,(A), setting
X3 Va4 V3 Xy
-1

-1
X3 Va4 01 X3 V4 V3 X4 -1 1 V3 Xy

we see that M and N lie, respectively, in the image of SL,(Z[x;, x3]) and of SL,(Zlx,, x,4])

in SL,(A); namely,

2 2
M= 1 —xx3 X7 N— 1 —x,x, X5 .
—x2 1 +x;x5 —x2 1+ X%,

Writing

NMN( 0 -1 ):( P(xy,X9,%X3,%X4) Q(X1,X9,X3,Xy) ), 1)
1

0 R(xy,%x,,X3,X,) S(X,X9,X3,Xy)

the relation

(DG D)

implies that P — 1, Q, R, and S — 1 vanish at (1,0, 0, 1). Substituting

X X zZ zZ
1 2 1 2
( ) ! 25( ),
X3 Xy Z3 Zy

we see that Q and R are divisible by zg, so

-1
(Z5 0 )NMN( 0 -1 )( % 0) € SLy(Zzy, ..., z5)). @)
0 1 1 0 0 1
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a; a

For each A = ( b7 ) € SL,(R), the polynomials x;y, — X3y, — 1 and y;x4 —
az Q4

V3%, — 1 both vanish at

(X1,X2,X3/X4rY1rY2/Y3/Y4) = (allaZI a3!a4/ a11a21 a31 a4)l

so there exists a unique homomorphism A — R sending x; > a; and y; — a; fori =

1,2, 3,4. Specializing (1), we have
0 -1 1 0 11 1 0\, ,[(0 -1
NMN =A A
1 0 -1 1 0 1 -1 1 1 0

SO

[AAT

Ac SLZ(R)]

z, z
is bounded. Further specializing to the case A =1+ 25( b= ) € SL,(R), (2) implies
Z3 24

the boundedness of

[ 1+2zgz, Zziz, 1425z,  zizg
Zy 1+2z52, Zy 1+ 252,

The family of pairs

-1
[ ( 1425z, ziz, 1425z, zizg )]
Zq 1+ 252, ' Z 1+ 252,

subject to the condition

Zy + 24 + 25(2124 — Z923) = 0].

Z) 4+ 2, + 25(2,24 — 2924) = 0 (3)

is therefore bounded, so by part (5) of Lemma 1.1, the same is true for the family of pairs

T
[ ( 1+252,  Zpz, 1+252)  Zyzg ) ]
Z3 1+ 252, ' Zy 1+ 252,
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satisfying (3). If (1 +ab, b2c) is primitive, then substituting z; = a, z, = ¢, z; = b, we can

solve (3) for z; and z, in R, which proves the proposition. |

Henceforth, we assume R is the ring of integers in an imaginary quadratic
field K.

Proposition 1.4. For R as above,
(14 t,ty, tyts) ~ (1 + tyty, t3).
Proof. By Lemma 1.2,foralld € R
(1+4+ab,bc) ~ (1 +ab,bc+ (1 +ab)bd) =1+ ab,b(c+ (1+ ab)d))

and
(1+ab,c) ~ (1 +ab,c+ (1+ab)d)),

so we may replace ¢ by any element in the same residue class (mod 1+ab). Since (c, 1+ab)
is primitive, by Hasse's theorem (see [3, Satz 13, p. 32]) there exist infinitely many choices
d € R, such that ¢ + (1 + ab)d generates a prime ideal in R. In particular, replacing c by
this element, we may assume c is relatively prime to 2a.

We also have for all e € R,
(1 +ab,bc) ~ (1 +ab+ bce,bc) = (1 + (a + ce)b, bc)

and
(1+ab,c) ~ 1+ (a+ceb,c).

Applying Hasse's theorem again, there exist infinitely many e € R such that a + ce is
divisible by 4, and g := %4 generates a prime ideal of R. We may therefore assume a =
4g where g generates a prime ideal not dividing (2). Finally, applying Hasse’s theorem
a 3rd time, we may choose p := ¢ + (1 + ab)f such that (p) is a prime ideal, and p = 1
(mod 8g). Using the same argument as above, we may replace c by p.

For every place v of K, let [-q, pl, denote the Hilbert symbol (which is 1 if and

only if —gx? 4+ py? = 1 has a solution in K, and is —1 otherwise). By Hilbert reciprocity,

[]t-q.p1, =1.
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We can restrict the product to finite places of K since the only infinite place is complex.
By Hensel's lemma, if v does not lie over 2, —gx?+py? = 1 has a solution in K, if and only
if the reduced equation —argx? + arpy? = 1 has a solution in the residue field k,. This
holds automatically as long as arg and arp are non-zero in k,, hence over all odd v other
than those corresponding to the prime ideals gand p. Asp = 1 (mod 8), {l-py? | y € K,}}
contains a neighborhood of 0 if v lies over 2, and it follows that —gx? + py? = 1 has a
solution in K,,. Asp = 1 (mod q), —gx%+py? = 1 has a solution in the completion of K at
g. We conclude that [—g, pl, = 1 when v is the place corresponding to p, so the image of
a = 4q is congruent (mod p) to an element of the form —r?, for some r € R. Thus, a = —r?
(mod c).
As ab = —r?b (mod bc),

(1+ ab,bc) ~ (1 — r?b,bc) ~ (1 — r?b,bc — (1 — r’b)bc) = (1 — r?b, r*b?c).
Applying Proposition 1.3, this is boundedly equivalent to
(1-7%b,0) ~ (1 +ab,0),

and the proposition holds. |

.. a
For n a non-negative integer and o = (

b
) € SL,(R), we write
c d

Thus, for each n, a,,, b, c,,, and d,, can be regarded as polynomials in a, b, ¢, and d with

integer coefficients.

Proposition 1.5. For all n and «, we have (a”*, b) ~ (a,, b,,).

Proof. We define a sequence of polynomials in ¢ as follows:
Q_,=-1,Q,=0, Qj;; =tQ;—Q;_; Vi=>0.

Forn > —1, we set u; := Q;(Tr(«)). By induction on i, we have

Qi1 (DQ;_; (O = Q;(H)* — 1
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fori > 0, so u;u;_, = (u;_; + D(u;_; — 1) for all i > 1. In particular, we can write

u, = v,w,, where v, divides u,,_; — 1 and w,, divides u,,_; + 1.

n= "nWnr

By the Cayley—Hamilton theorem, «? = Tr(a)a — I, so forall i > 1,
ai = uiOl — ui lI‘

In particular,

a,=au, —u,_;, b, =bu, =bv,w,,
so a, = 1 (modw,) and a, = -1 (modv,). By Proposition 1.4 and part (4) of
Lemma 1.1,
(an/ bn) ~ (anr an) ~ (_an/ —an) ~ (_anr _b) ~ (anr b)'
As o« is upper triangular (mod b), we have a, = a" (mod b), and the proposition
follows. u

We recall the following result of Carter and Keller.

Lemma 1.6. (Carter—Keller, see [1, Lemma 4, p. 680])
Let F be a number field, O its ring of integers, and m the number of roots of

unity in F. Let a be a non-zero ideal of O, and let b be a non-zero element of O such that

(i) bO is a prime ideal with residue characteristic prime to m, that is, bO is a
prime ideal, and #(O/b0O) and m are relatively prime integers.

(ii) aand bO are comaximal, that is, a + b0 = O.

Then for every unit u € O*, there exists an element ¢ € O such that bc = u (mod a) and
such that the greatest common divisor of €(b) and ¢(c) is my, where y is a positive
integer all of whose rational prime divisors ramify in F/Q (that is, they divide the
discriminant of K). Furthermore, ¢ may be chosen such that y avoids any single rational
prime that ramifies in F/Q. Finally if the class number of K is 1, ¢ may be chosen such
that y = 1.

Remark 1.7. The above lemma is in [1,Lemma 4, p. 680]. In [1,Lemma 4], Carter and
Keller made an additional assumption that a is a prime principal ideal whereas in the
above lemma, we do not impose such condition on a. In fact the proof of Lemma 4 in
[1] given in pages 680-682 does not need such assumption, and thus the proof of the
above lemma follows the same lines as that of Lemma 4 in [1]. Note that in the last

paragraph of page 683, Carter and Keller applied Lemma 4 to a non-zero ideal a that is
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not necessarily prime; so it seems that the assumption in Lemma 4 that a is prime and

principal is a typo in [1].
Proposition 1.8. Let m = |R*|. If ab # 0 and (a, b) is primitive, then (a™, b) ~ (1,0).

Proof. For k € R\ {0}, let (k) denote the exponent of the finite group (R/kR)*.
Let p;,...,p, be the distinct prime divisors of the discriminant of K/Q. For each
1 <i <, applying Lemma 1.6 for the ideal aO and the element b € O with u = —1, one

obtains an element c; € O such that the following are satisfied:

(i) bc; = -1 (mod a0); and
(ii) the greatest common divisor of €(b) and €(c;) is my;, where y; is not divisible

by the prime p; and all prime divisors of y; divide the discriminant of K/Q.

By (ii), note that gcd(y;,...,¥,) = 1, and thus there are integers h,,...,h,
such that

h1y1+"'+heye=1.

Foreach 1 <i < ¢, choose d; € O so that
Choose x,y € R so that

Then
M™ = pmhan L pmere
We claim that M™hivi belongs to a bounded subset of SL,(R) forall1 <i < ¢, and
thus the same is true of M™. This implies the proposition.

To prove the claim, take an integer 1 < i < {. By Proposition 1.5, there exist
bounded sets U;, V; in SL,(R) such that there exist X; € U; and Y; € V; for which

m|h;y;l
XleIhi)/Hyl — (a ' b),

X 1
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for some x;,y; € R. Using the same argument, there exist bounded sets U,, V, in SL,(R)
such that there exist X, € U,, Y, € V, for which

am‘hiyi‘ b .
XZ( Y2 — Nirmhlyll.
X1 Vi

Let s, t be positive integers such that t — s = my,, s is divisible by €(c;), and ¢t is
divisible by €(b). Then

(1,0) ~ (a%,b) ~ (a;, by),

o) Nl? belongs to a bounded subset of SL,(R), which does not depend on (a, b). Likewise,
(1,0) ~ (@, ¢) ~ (ag,c),

so (NiT)S belongs to a bounded subset of SL,(R). By part (5) of Lemma 1.1, N; * belongs
to a bounded subset of SL,(R), so the same is true of N;"" = N!~°. Thus, N:nlhml
belongs to a bounded subset of SL,(R), so the same is true of M™*tivil Therefore, M™hivi

belongs to a bounded subset of SL,(R) for all 1 <i < ¢, which proves our claim. [ |

Theorem 1.9. If R is the ring of integers in an imaginary quadratic field, then SL,(R)

is polynomially parametrized.

Proof. It suffices to prove that if (s,t) € R? is primitive, then (1,0) ~ (s,t). By [1,
Lemma 3], there exists a,b € R such that (s,t) ~ (a™,d), where m = |R*|. Proposition
1.8 implies that (a™, d) ~ (1,0). [ |

Remark 1.10. If A is a commutative ring such that SL,(A) is polynomially
parametrized, it is natural to ask what is the smallest number of parameters needed
to polynomially parametrize SL,(A). We do not attempt to answer this question in this
paper. With a detailed analysis of the proof of Theorem 1.8, one could in principle
find an explicit upper bound for the smallest number of parameters needed for SL,(R),
where R is the ring of integers of an imaginary quadratic number field.

There are several explicit results of this kind in the literature. Vaserstein [7]
gives an upper bound of 46 for SL,(Z). Morgan et al. [4] show that if O is a ring of S-
integers in a number field K such that the group of units O* is infinite, then 18 is an
upper bound for SL,(O). (This bound was originally given by Cooke and Weinberger [2],

assuming the Generalized Riemann Hypothesis.) If O is the ring of integers in a number
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field, Zannier [8] proves that a lower bound for the number of parameters needed for
SL,(0) is 4. It is a natural question as to whether there exists a uniform upper bound
for the number of parameters needed for SL,(0), where O is the ring of integers of an

arbitrary number field.
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