MULTIPLICATIVE SERIES, MODULAR FORMS, AND
MANDELBROT POLYNOMIALS

MICHAEL LARSEN

ABSTRACT. We say a power series » oo ang" is multiplicative if the
sequence 1,a2/a1,...,an/a1,... is so. In this paper, we consider mul-
tiplicative power series f such that f2 is also multiplicative. We find a
number of examples for which f is a rational function or a theta series
and prove that the complete set of solutions is the locus of a (proba-
bly reducible) affine variety over C. The precise determination of this
variety turns out to be a finite computational problem, but it seems to
be beyond the reach of current computer algebra systems. The proof
of the theorem depends on a bound on the logarithmic capacity of the
Mandelbrot set.

1. INTRODUCTION

Let 7, (n) denote the number of representations of n as a sum of k squares.
It is classical that r1(n)/2, ra(n)/4, r4(n)/8, and rg(n)/16 are multiplicative
functions of n; the first trivially, the second thanks to Fermat, and the third
and fourth thanks to Jacobi [Ja, §§42,44]. From the standpoint of generating
functions, this can be interpreted as the statement that the theta series 97(q)
(see (3.1) for the notation ¥A(q)) and its square, fourth power, and eighth
power, all have multiplicative coefficients (after suitable normalization). As
a starting point, we prove the converse:

Theorem 1.1. If f(q) € C[[q]], f(9)%, f(q)*, and f(q)® are all multiplica-
tive, then f(q) is a constant multiple of ¥7(%q).

This is an immediate consequence of the following more difficult result:

Theorem 1.2. If f(q), f(¢)%, and f(q)* all have multiplicative coefficients,
then f(q) is a constant multiple of ¥7(%q), Vz;(£q), or Vzi¢,)(£4)-

A much more difficult problem is to characterize all power series f(q)
such that f(q) and f(q)? are multiplicative, without assuming f(q)* is mul-
tiplicative as well. We denote by X the set of normalized multiplicative
power series f such that f2 is also multiplicative. (See Definition 3.1 for
precise definitions.) Since a power series with multiplicative coefficients is
determined by its prime power coefficients, and since prime powers form a
density-zero subset of the integers, when n is large, the first n coefficients
of any f(q) € X must satisfy a highly overdetermined system of polynomial
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equations. From this point of view, the fact that X # () is surprising. On
the other hand, it is clear that any Hecke eigenform whose square is again
a Hecke eigenform belongs to X. The relationship between the action of
Hecke operators on the space of modular forms of a fixed weight and the
ring structure on the graded vector space of all modular forms is rather
mysterious, but, in general, the square of an eigenform is unlikely to be an
eigenform unless, for dimension reasons, there is no alternative. Indeed, a
number of papers have examined when the product of two eigenforms is
again an eigenform (see, e.g., [BJTX, Du, Em, Gh, Jo]), and the moral of
these papers seems to be that this phenomenon is a transient one, associ-
ated to low levels and weights. A natural place to look for elements of X
is therefore among (noncuspidal) forms of low level and weight. One might
reasonably guess that X consists entirely of modular forms, but this turns
out to be wrong; certain rational functions analytic on the open unit disk
also belong to X.

Between modular forms and rational functions, the locus X contains at
least nine one-parameter families of solutions and twelve isolated points.
There is numerical evidence, based on the search for (mod p) solutions for
small primes p, that these solutions constitute all of X, but the results of this
paper fall far short of this. Truncating power series at the g™ coefficient, as n
varies, one obtains a sequence of complex algebraic varieties X,, of which X is
the inverse limit. The sequence X,, does not stabilize. The main theorem of
this paper asserts that, nevertheless, X itself has the structure of a complex
affine variety. More precisely, there exists n (in fact, n = 16 will do) such
that the natural map X — X, is injective, and its image is a Zariski-closed
subset of X,,. In particular, all solutions are determined by their degree 16
truncations.

Remarkably, our proof of this theorem depends, ultimately, on the fact
that the logarithmic capacity of the Mandelbrot set M is less than 2. (In
fact, it is known to be 1 [St, §6.2].) Computer algebra computations re-
duce the problem to the “sparse” case, where the coefficients ao = ag =

- = ap—1 = 0 and a, # 0, for some n > 16. In this case, one shows
first that n is a Mersenne prime and then that the first ”T_l terms of the
sequence Gy, @2, —1, A3n—2, G4n—3, - - - satisfy a certain non-linear recurrence.
In fact, there is a universal sequence Mj, My, ... € Qy] of “Mandelbrot
polynomials” such that a;;,—1)+1 = M;(a,). The multiplicativity of the se-
quence of coefficients implies that if i(n — 1) 4+ 1 is not a prime power, then
aij(n—1)+1 = 0. Thus, the roots of M; are highly relevant to the search for
sparse solutions. The recurrence formula for the M; implies that if r; is a
root of M;(y) for each ¢ and r is a limit point of the sequence r;, then —2r
belongs to the Mandelbrot set. Although the roots of the individual M;(y)
need not be algebraic integers, we have enough p-adic control to guarantee
integrality for a simultaneous root of many M;, like a,. Since X is Aut(C)-
stable and a set of capacity less than 1 contains only finitely many complete
Galois orbits of algebraic integers, there are only finitely many possibilities
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for a,, and in the end we show a,, = 0. We actually work not with M itself
but with an open disk containing M and of radius < 2, thus obviating the
need to understand the fine structure of M.

The paper is organized as follows. In §2, we give some preliminaries
about inverse systems of varieties. In §3, we present the known elements
of X. In §4, we assemble elementary results about the set of prime powers
which are needed in the next two sections. In §5, we present results of
Maple-assisted computations which reduce the problem to the sparse case.
In principle, the results of this section imply that the non-sparse solutions
can be determined by a finite computation, but this seems well beyond the
reach of currently available computer algebra systems. Sparse solutions are
ruled out in §6 by the method discussed above. The last section presents
variants and related questions, including proofs of Theorems 1.1 and 1.2. An
appendix presents the results of an exhaustive search for non-sparse solutions
defined over the finite field F,, for small primes p > 2. I am grateful to Anne
Larsen for carrying out this search and identifying almost all of her solutions
as modular forms, including a number of “exceptional solutions”, that is,
examples in which the form involved is not the (mod p) reduction of any
known characteristic zero solution. The solutions (x) in Proposition 3.2 and
(x’) in Corollary 3.4, which did not appear in an earlier draft of this paper,
originally appeared as exceptional solutions in her (mod p) tables for p = 3,
p=11,p=17, and p = 19.

I would like to thank the Hebrew University in Jerusalem for its hospitality
while much of this work was carried out. I am grateful to Zeév Rudnick for
pointing out some relevant literature and to the referee for pointing out
several deficiencies in an earlier draft of this paper and suggesting a number
of improvements to the exposition.

2. SYSTEMS OF AFFINE VARIETIES

Throughout this paper, an affine variety means a scheme V = Spec A,
where A is a finitely generated algebra over C, and a morphism of varieties
means a morphism over Spec C. When no confusion seems likely to result,
we identify V with its set V(C) of closed points.

Let (Yn,dmn: Ym — Yn) denote an inverse system of affine varieties
indexed by integers n > 2. Let (Y = Wm Y (C), ¢n: Y — Y»(C)) denote
the set-theoretic inverse limit.

Definition 2.1. We say the inverse limit Y is of affine type if there exist
n and a closed subvariety V,, of Y, such that vy, is injective and 1, (Y) =
V. (C).

Example 2.2. IfY, = Spec Clz] for all n, and every map ¢, n comes from
the C-algebra homomorphism Clz] — Clz] mapping x to 0, then Y is of
affine type (and consists of a single point).
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Example 2.3. If Y, = SpecClz, 1=, 15 ..., 2] with the obvious inclu-

T =17 -2 T x—n

sion morphisms, then Y = C\ Z>° is not of affine type.

Example 2.4. If Y, = SpecC[z]/(z%" — 1) with the obvious morphisms,
then Y = Zo is not of affine type.

Proposition 2.5. Let (Y, dmn: Ym — Yn) be an inverse system, n > 2 an
integer, and V a closed subvariety of Y,. Assume the following conditions
hold:

(1) For ally € Yo, [ ()] < 1,
(2) V is contained in P (Y),

(3) For all y € Y \'V and all sufficiently large m, ¢, (y)| < 1.

(4) For ally € Y, \V, there exists a neighborhood U, of y in the complex
topology such that there exist arbitrarily large integers m for which
oL, (Uy) is precompact in the complex topology.

m,n

Then Y is of affine type.
Proof. For m > n, let W,,, denote the Zariski closure of ¢y, (Yy,). Thus,
ldn an—I—l an+2 an—‘rfﬂ 2 T

and by the Hilbert basis theorem, this chain must eventually stabilize to
some closed subvariety Wy, C Y,,. We define V,, = Wy. Thus, V C ¢,(Y) C
V,,. We need only prove that for all y € V,,\'V, the inverse image ¥, *(y) C Y
is non-empty. As QS;Lln (y) is finite for all y € Y,, \ V and for all m sufficiently
large, and since the inverse limit of an inverse system of non-empty finite sets
is non-empty, it suffices to prove that gb;&n(y) is non-empty for all y € V,,\'V
and all m sufficiently large.

As ¢ n(Ym) contains a Zariski dense open subset in Y,,, it contains an
open set Uy, in the complex topology. Intersecting with the open set U, and
choosing m larger if necessary, we may assume that gb;ﬁn(Um) is precompact
in the complex topology. Now, y is the limit in the complex topology of a
sequence of points y; € ¢m n(Ym). Choosing §; € Yy, such that ¢, n(¥i) = yi,
the 7; belong to a precompact set, so some subsequence converges to § € Y,,,
and it follows that ¢, ,(7) = v. O

3. SOLUTIONS

Definition 3.1. A power series f(q) = % + >0 ang™ is normalized
multiplicative if a1 = 1 and amn = ama, whenever m and n are relatively
prime. We say that f 4s multiplicative if some multiple Af is normalized
multiplicative. The set X consists of all normalized multiplicative power
series f(q) such that f(q)? is again multiplicative. In this case, we define
the multiplicative sequence by, by the equation

1 . .
a0f(a)? = 7=+ > bg
n=1
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Equivalently, f is multiplicative if and only if the corresponding Dirichlet
series has an Euler product

o0
Z apn”°® = cH(l +app ¥+ apzp_2s 40,
n=1 P

and normalized if ¢ = 1. If f(q) is the g-expansion of a modular form of
prime-to-p level and T),f = Af for some A, then the Dirichlet series for f
is the product of a p-factor (1 — Ap~* + e(p)p?*~17%)~! and a prime-to-p
Dirichlet series. In particular, any Hecke eigenform of prime-power level is
multiplicative. For general level N, if f is an eigenform also for the Atkin-
Lehner operators, then it is again multiplicative.

It is convenient to express the modular solutions as theta-functions. Thus,
if A is a lattice all of whose elements have integral square-length, we write

(3.1) Ia(q) =

q

(BN IED] 2

Proposition 3.2. Let ® denote the root lattice of the Lie algebra Eg nor-
malized so that roots have length 1, H the Hurwitz order in the rational
quaternion algebra, and D* the set C\ {—1}. Then the following modular
forms lie in X:

(i) Ya(q),
(i) 19%[431( 9,
(iil) Yu(q) +tIu(g?), t € D*,
(iv) Vzp(q), 7= YT,
(v) 9 [z]( ) + t97(¢%), t € D*,
(Vi) zj¢y)(q )+t192[cg}(q4), t € D*,
(vii) 9z(q) + t9z(q"), t € D*,
(viil) Jgp/=5(q) + tUy, [\ﬁ]( %), te D*,
(ix) 192[1]( ) V=3971(¢%) + V=39z5:)(¢*) + 3971(¢®) + t(Vz(¢%) +

\/7192[2]((16»7 t e D~
(x) Iz5)(q) + V—207;¢, ().

Proof. We begin with a few general remarks. If f(g) is multiplicative and
n is a prime power, then f(q) + tf(¢") is multiplicative for all t € D*. By
[He, p. 792], if R is the ring of integers in an imaginary quadratic field,
then Yr(q) is a modular form of weight 1, level Disc(R), and nebentypus of
order 2. If, in addition, R is a PID, then the corresponding theta-series is
multiplicative. This remark applies to Z[(3], Z[i], Z[H_F], and Z[v/-2].
The modular curves Xo(N) for N € {1,3,4,7,8,12,16} are all of genus 0,
so every I'g(N) modular form of weight 2 with N in this set is a linear
combination of Eisenstein series.

We now consider the individual cases. By [Se2, VII, §6.6], ¥ is the
Eisenstein series ﬁE;;, and since there is only one normalized form of level
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1 and weight 8, 19?1, is an eigenform. The space of forms of weight 4 and
level 3 (resp. 4) has dimension 2 (resp. 3) and therefore consists entirely
of linear combinations of Eisenstein series (since the number of divisors of
the level equals the dimension of the space). This finishes (ii). For (iii),
we observe that ¥ (q) is of level 2. We can see this from the formula
Ir(q) = —5:E2(q) + 15F2(q%) expressing the theta series of the Hurwitz
order in terms of the not-quite-modular Eisenstein series Eo (cf. [Ma, II
§5]). Thus, the forms in question are all of level 4. Case (vi) requires extra
care since unlike the cases (iv), (v), and (viii), the level is no longer a prime
power; we can write the Dirichlet series for f(g)? as a product of p-factors
for all p & {2, 3} together with a factor involving all terms of the form 2™3".
As b3, = b, for all n, this final term is actually the product of (1 —37%)~1
and a power series in 27°. For (vii), the form f is of weight 1/2 and is
multiplicative by inspection. By the two-squares theorem, its square is of
the form

1+t ifn=0 (mod4),
1 & N 1 ifn=1 (mod 4),
4;]9(”)”(")‘1’ P =048 ifn=2 (mod4),
0 ifn=3 (mod 4)

For (ix),

Vzii() + u0zli)(2) + V020 (g7) + uUVz[ (g0)
is multiplicative for all u,v € C. As X((24) has genus 1, the condition that
f(q)? be a linear combination of Eisenstein series imposes a single equation,
which happens to be v? + 3 = 0. We check that when v is a square root of
—3, b3y, = by, for all n. For (x), we verify

(1 =V=2)(Iz1¢5(q) + v —2192[§3](q2))2
= Es(q) — 2B2(q%) + (1 + 2V=2) Ba(¢®) — (2 + 4V/=2) Ea(¢°),
which is again multiplicative. U

We remark that (i)-(viii) above each have at least one representative
which is the theta-series of an order in a (possibly non-commutative, pos-
sibly even non-associative) algebra. This is obvious except for (i), which
corresponds to the ring of octavian integers in the Cayley numbers ([CS,
§9.3]) and (ii), which corresponds to a maximal order in the rational quater-
nion algebra ramified only at 3 and co. We remark also that (i), (ii), (iii),
(v), (vi), and (vii) each contain at least one representative which is the
theta-series of a root lattice.

Lemma 3.3. If f(q) € X, so is —f(—q).

Proof. We have (—(—1)")(—(—1)") = (—(—1)™") whenever m and n are
not both even. When they are both even, of course, they are not relatively
prime. O
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Corollary 3.4. The following modular forms belong to X:

(1) 79@( q);

(ii") — Z[¢s) ( Q):

(iv’) 192

(ix") Iz (q ) Fﬁz i1(6%) — V=307 (=¢%) + 3071 (¢°) + t(9zp (%) +
V=30z(¢%), t € D,

(x") —Vzi¢s)(—a) = V=207, (¢).-
Next, we present some rational solutions. Clearly,
(Xl) ﬁ +4q, ao 7& 0

belongs to X. It is easy to see that these are the only polynomial solutions.
In addition, one readily checks the following proposition:

Proposition 3.5. The following rational functions all belong to X:

(xii) ¢ 1+q2 =t+q+2P +@F + 2+ PP+ 25+t #£0;
(xili 762;;6(1;16 =a+q—q2+q4—q5+q7—q8+"-;

2
(xiv %=%+q+2q2+3q3+4q4+“-;

e _
q“+10gq 1:—%‘{‘(1_2(]2"‘3(]3_4(]4"’_

)
) 247q—
(xiil") Gl = ¢ +a+@—d¢" —°+q +4* -
)
) 12(g+1)2

(xiv

The form of the above solutions suggests the following elementary propo-
sition whose proof we leave to the reader:

Proposition 3.6. If f(q) is a multiplicative power series which is a rational
function but not a polynomial, then there exists a constant ag, a non-negative
integer d, a positive integer N, and an N-periodic sequence of constants
ai,as,as, ... such that

The appendix presents the results of a comprehensive search for nor-
malized multiplicative series f(q) € Fpllg]], 3 < p < 31, such that f(q)?
is again multiplicative. The majority arise from (mod p) reduction of so-
lutions (i)—(xiv’) above (with ¢ € Q in the case of parametric solutions).
The exceptions appear to be (mod p) reductions of g-expansions of modular
forms with coefficients in Q and in most cases can be written in the form
@) =Xqn cag(q?), where g is either a theta series or an Eisenstein series.
However, somewhat unexpectedly, cusp forms also make an appearance. The
following proposition gives an illustrative example:

Proposition 3.7. Let A denote the (mod 13) reduction of the normalized
cusp form of level 1 and weight 12. Then f(q) = 2 + A is a normalized
multiplicative series in Fi3[[t]] whose square is again multiplicative.
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Proof. Tt is well known (see, for instance, [Se2, VII, Corollary 2]) that the
ring of complex modular forms of level 1 is C[Ey, Eg|. As Fa is normalized
to have constant term 1, Fg = E4Fg, and
B} — E§

1728
E4A, EgA, and E3A are the unique normalized cusp forms of weight 12,
16, 18, and 20 respectively. An easy calculation shows
441E3 + 250E3

691

A:

(3.2) By =

(see, for instance, [Se, §1.1]). )
By a theorem of Serre and Swinnerton-Dyer f(q) € Fp[[q]] is the (mod
p) reduction of a modular form of level 1 and weight k, then q% is the

reduction (mod p) of a cusp form of weight k +p+ 1 [Se, §1.4, Corollaire 2].
In particular, for p = 13, we have

q@ = 240E5A
dq
and _
dFEg _ o~
—— = —H04EJA.
q dq 4
By the Leibniz rule,
dE _ L
q dqlo = (240E} — 504E3)A.

By the von Staudt-Clausen theorem, Ejo = 1, which together with (3.2)
implies

_ . _ dE _ _
E} =5+9E3, A =8E} +5, ¢—2 = (5E} + 4)A.

dq
Thus,
172 ]. A\2 - ]. =3 - dElO
—2F A"=-24+A)"=1+A+-BE;+5)A=1+3
(2Bt 12 +48) +A+ (857 +5) —i—qdq,
which is multiplicative. The proposition follows. U

4. PRIME POWERS

A normalized multiplicative power series f(q) = % + > 00 g ang™ is de-
termined by ag and the coefficients a,, as n ranges over the set [P of positive
integral powers of primes. If it is also multiplicative, the normalization of

f@)? is
1 o
aof(q)* = — +q+ anq”.
4agp =

Each n = p{'--- pZ’“ which is not in P determines an equation

b ey =b er o0 b ep.
pil.pik 1 ek
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Writing b; formally as a polynomial B;(ag, ag, as, . ..) with integer coefficients
in the variables ag and {a; | ¢« € P}, we obtain the polynomial equation

(4.1) Py, o = Byi - B = 0.

=B
ek Pl

Py

For n > 2, let k (resp. ) denote the largest element of P (resp. N\ P) in
[1,n], and let X,, denote the affine variety

Spec (C[CL(), az,az, a4, as5,07,0a8,a9, 411,y . - - ,ak}/(Pg, Plg, ey Pl)

We identify points on X,, with polynomials of degree < n in C. For m > n
we have projection morphisms ¢y, »: X,, = X, and for n > 2, we have the
projection ¥, : X — X,.

If f(q) is a power series in g, we denote by E(f) the set of n > 2 such
that the ¢" coefficient of f is non-zero.

Lemma 4.1. If f,g € X, satisfy ¢m,n(f) = ¢m,n(g): then E(f —g)N[L,2n]
and

are contained in P. If E(f — g) contains any element other than m, its
smallest element satisfies k,k + 1 € P.

Proof. If k < 2n is not in P, then k = k1ko, where k1 and ko are relatively
prime and < n. The ¢* and ¢*? coefficients of f and g coincide, so f,g € X,
and k < m implies that the ¢* coefficients of f and g are the same, giving
the first claim. As E((f — g)?) C [2n + 2,00), we have

E(f(f - g)) N [17min(2n7m)] = E(f2 - 92) N [lvmin(an m)]

If kK < 2n is not in P, we factor as before, and if k¥ < m, the k1ko coefficients
of f2 and g2 are determined by the ki and ks coefficients and are therefore
the same. For the last claim, we note that if £ < m—1 is the smallest element
of E(f—g)and k+1¢ P, then k+ 1€ E(f —g) and k+ 1 € E(f(f — g))-
Writing f = ﬁ—I—q—l—- -~ and f—g = cpq" +cpr1g" -, we have ¢, # 0
and cx1 =0, so

Ck
(f=9) =5 d"+ed™ "+,
ao

which implies k +1 € E(f(f — g)), giving a contradiction. O

Corollary 4.2. If k > 0 is the minimal element of E(f — g) for f,g € X,
then k,k+1 € P.

Proof. Without loss of generality, we may assume k£ > 5. The corollary
follows by applying Lemma 4.1 to ¥, (f) and ¥,,(g) for m = k + 1 and
n==k—1. ([l

The condition k,k + 1 € P is very restrictive:

Lemma 4.3. If k and k+1 both belong to P and k > 8, then k is a Mersenne
prime or k + 1 is a Fermat prime.



10 MICHAEL LARSEN

Proof. Either k or k + 1 is even and therefore a power of 2. The highest
power of 2 dividing p?" 25t £ 1 is at most 2"t times the highest power of
2 dividing p £+ 1. Therefore, the only solutions of 2" — p™ = +1 in integers
m,n,p > 1is (3,2,3). If we allow n = 1 but insist that p is prime, we obtain
precisely the solutions of Mersenne and Fermat type. ([

For use in the next two sections, we prove a number of facts about P with
special reference to Mersenne and Fermat primes.

Lemma 4.4. If p > 7 is a Mersenne prime, then
p+ng¢lP Vne{23,578,9,11,13,14,15}.
Moreover, eitherp+4 ¢ P orp+6 ¢ P.

Proof. Every Mersenne prime is of the form 2¢ — 1 for ¢ prime, and we may
assume ¢ > 3. For n odd between 3 and 15, p + n is even and lies strictly
between 2¢ and 2+, For n = 2, p+n € P by Lemma 4.3. For n € {8, 14},
p + n cannot be in P since it is divisible by 3 but is either 5 or 7 (mod 8)
and therefore not a power of 3. Finally, one of p + 4 and p + 6 is divisible
by 7 but cannot be a power of 7 since neither 3 nor 5 is a power of 7 (mod

8). O
Lemma 4.5. If p > 17 is a Fermat prime, then
p+n¢P Vne{l,3,4,57,8,9,10,11}.

Proof. For n < 11 odd, p + n is an even number strictly between two con-
secutive powers of 2. For n = 4, p + n is divisible by 3 but is not congruent
to 3 (mod 8). If it is a power of 3, it is therefore a perfect square, which is
impossible since

1\ 2 _ 2
(22’“ 1) <2 f14n< (221“ 1+1) .

For n = 8, p+n is not a square and therefore cannot be in P by a (mod 40)
argument. Finally, p 4+ 10 is divisible by 3. If p 4+ 10 = 3", the congruences
3" = 12 (mod 17) and 3" = 12 (mod 257) would imply the inconsistent
congruences r = 13 (mod 16) and r = 97 (mod 256). This rules out the
case p > 257, and for p = 257, 267 £ P. O

Lemma 4.6. Ifp > 5 is a Fermat prime, then 2p+1 ¢ P.

Proof. As p = 22 4 1 and k > 2, we have 3|2p — 1 and 5|2p + 1. By
Lemma 4.3, 2p — 1 cannot be a power of 3. As for 2p + 1, it is congruent to
3 (mod 8), so it cannot be a power of 5. O

Lemma 4.7. If p > 7 is a Mersenne prime and 2p+3 € P, then 3p+4 & P.

Proof. Assuming p = 2™ — 1 is Mersenne, if 2p + 3 is prime, it is a Fermat
prime > 5 and therefore 2 (mod 5). It follows that p = 2 (mod 5), and
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therefore that 5 divides 3p + 4. If 3p + 4 is of the form 5™, then 5™ =1
(mod 2"). The highest power of 2 dividing 5™ — 1 is 2™*2,

> 5" —1 m—2
This implies m < 3. Now, 5% — 1 is not divisible by 3 at all, and while
(52 — 4)/3 is a Mersenne prime, it is not greater than 7. O

Lemma 4.8. If p1,ps > 3 are Mersenne primes, then p1 +ps + 1 & P.

Proof. Mersenne primes greater than 3 are always congruent to 1 (mod 3).
Thus, 3 divides p; 4+ p2 + 1. However, 3" + 1 is never divisible by 8, so
p1 + p2 + 1 cannot be a power of 3. ([

Lemma 4.9. If 3 < p1 < p2, p1 s a Mersenne prime, and ps is a Fermat
prime, then 2p1 + pa + 2 € P.

Proof. As p1 and ps are Mersenne and Fermat respectively, they are 1 and
2 (mod 3) respectively, so 2p; + p2 + 2 is divisible by 3. As 2p; +p2+2=1
(mod 8), if 2p; + pa + 2 € P, there exists n such that 2p; + ps + 2 = 32",
If n = 2"s, where s is odd, then the highest power of 2 dividing 3?® — 1 is
273 If py = 2™ — 1, then 7 +3 > m + 1. As py — 1 is a perfect square, it is
less than or equal to (3" —1)2, so

2.3"—1<2p +3=2""tp1 <234,
ie.,
32TS — 371 < 2T+2 4 1 < 37"+2.
Thus, 2"s < r+2,s0 s = 1 and r € {0,1}. This is impossible since
p1>T7. O

Lemma 4.10. For every odd prime £, every positive integer d not divisible
by ¢, and every residue class (mod d), there exists an integer n < (2d2)%108(24)
such that n belongs to the specified residue class and (2:) s mot divisible by

L.

Proof. Let £ = 2k + 1. If the digits in the base ¢ expansion of n are all
< k, then the second condition is satisfied. In particular, if £ > d, then
the theorem is certainly true since then the integers in [1, k] represent every
residue class (mod d). We therefore assume that ¢ < 2d.

Let
r—1

B = T (10 52 5ot ).
i=0

Then F,(z) is a sum of distinct terms z™ where £ { (2;;) We would like to

show that for a suitable value of r, all residue classes of d are represented

among the exponents of Fy.(x). As F,.(1) = (k+1)", it suffices to prove that

(k+1)"

|FT(CZ)‘ < g ¢= ezm/d, 1<7<d.
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If m is not congruent (mod d) to an integer in the interval [—3d/4¢, 3d/4¢],
then

k+17n ‘ 9 1

| Zgjm ‘_ “on | = 2sin(rmyd)] = [sin(3n/a0)]

For 0 <z < 7/6, sinx > 3:U/7r. Therefore, if £ > 3, then

| ZC“" < 4£ 8(k+1)
9
On the other hand, if £ = 3, then |1 + (™| < /2 < 3&EL.
If m is not congruent to 0 (mod d) and ¢ > d, then m, mé, mé?, ... me¢5—1

cannot all be congruent (mod d) to integers in [—3d/4¢, 3d/4/]. Therefore
the product of any s consecutive multiplicands in F.(¢) is less than § (k+ 1)s.

logd
If ¢ > m7 then

’Fst@m)‘ < Fst(l)/d~
We may therefore take n to be less than

/5t < €<53§?+ ) (2d2)910g(2d).
The proposition follows. O

Lemma 4.11. For all integers k > 1, there exists a prime £ < 4k + 1 such
that ¢ does not divide 2F — 2.

Proof. For any s € N,

225 2+ 228 1 ( ) < <25) (25)' Hpkp,

2s 2s s 512

p
where p*» < 2s for all p. As m(n) < % and []

H 223
o<z 28 Hp<fp 25 [lp<yas 3

For s > 16, we have 1 — v/2/2 < s~1/2 and log 2s < %\/Elogz SO

p<nP 21

> 225(25)_1_‘/%/2.

V2 log 2
Zlogp22slog2—<s+l> log2522slog2—\/§10g2325(;g .

2
p<2s

If ¢ is the smallest prime not dividing 2*¥ — 2 and ¢ > 31 then s = % > 16,

SO
slog 2

< Z logp < log(2* — 2) < klog2.

p<2s
Thus, ¢ < 4k + 1. This proves the existence of the desired prime ¢ when
k > 8. For k <7, we can set { = 5 except for k = 5, for which we can set
=T1. O
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Lemma 4.12. For k > 5, an arithmetic progression of integers with initial
term, a € [1,22**1], common difference 28 — 2, and length 22 contains an
integer not in P, except when (k,a) = (5,19).

Proof. For k > 6, there exists a prime £ < 2573 such that £ { 2% — 2. Then
any such progression contains at least two terms divisible by ¢, differing by
(2% — 2)0. At least one is not divisible by £2, so if they are both powers of
¢, then 28 — 1 = ¢"~'. By Lemma 4.3, this means r = 2 which is impossible
since ¢ < 2F=3. Thus, the progression contains an integer not in P. For
k =5, it is easy to check that a = 19 is the only initial term which gives an
8-term progression consisting only of elements of P. ([l

5. REDUCTION TO THE SPARSE CASE

The polynomial equations P,, n ¢ P, defined in (4.1) are of weighted
degree n where each variable a,, has degree m. They are therefore linear in
am for m > n/2. In this section we systematically exploit this linearity.

Proposition 5.1. Let n < 15 be an integer. Let

az a4 as ag ag ag aip air a2
1 a3 a4 as ay ag ag ai a1
0 1 as a3 a5 ae Ay as ag
0 0 0 0 1 a2 as a4 as

F =

az az a4 as ay ag ag a1 a3 a4
1 ay a3 ay4 as ar ag ayp a2 a3
0O 0 0 0O 1 a a3 as a7y ag
O 0 0O O O 0 O 1 a3 a4
O 0 0O O O O o0 o0 1 a9

az a3 as ag ay ag a9 ail a3z ai4 ais
1 ax a4 as ag ar ag ayp a2 a3z aun
0 0 1 as as a4 as ar ag ailp ail
0O 0 0 0O O O O 1 as a4 as
O 0 0 0 0 0O 0 O 1 as as

M// —

If every point in
(5.1)
{feX,|tk(F)<3}U{feX,|rk(M) <4}u{feX,|rk(M") <4}

is the image of one and only one point of X, then X is of affine type.

Proof. We apply Proposition 2.5, where V C X,, is the union of the three
closed subvarieties defined by the conditions that one of F', M’, or M" is not
of full rank. The hypothesis guarantees condition (2) and condition (1) for
elements of X,, in which at least one of the matrices is not of full rank. In
verifying the remaining conditions, we may therefore assume that all three
matrices are of full rank.
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Suppose f, g € X map to the same element in X,,, and let & = inf E(f —g).
By Corollary 4.2 and Lemma 4.3, either k + 1 is a Fermat prime or k is a
Mersenne prime.

Suppose k + 1 is Fermat. By Lemma 4.1 and Lemma 4.5,

E(f(f —g)) N[k, k+12] C {k,k+ 1,k + 3,k + 7).

Defining z; to be the ¢®% coefficient of f — g for i = 0,1,...,12, we have
x; =0 for ¢ € {2,4,5,6,8,9,10,11, 12}, so we obtain

(IL’O T1 T3 1,‘7)F = 0,

which by the rank condition implies that x9 = 1 = x3 = x7 = 0, contrary
to the definition of k.
If k is Mersenne, then by Lemma 4.1 and Lemma 4.4, either

E(f(f—g)N[k,k+15] C{k,k+1,k+4,k+10,k+ 12}

or

E(f(f—9g) N[k, k+15] C{k,k+1,k+6,k+10,k+ 12}.
Defining z; to be the ¢**? coefficient of f—g fori = 0,1,...,15, we have z; =
0 fori € {2,3,4,5,7,8,9,11,13,14,15} or i € {2,3,5,6,7,8,9,11, 13,14, 15}
respectively, and we therefore have

((IJQ T1 T4 10 Hflg)M// =0

or
({L‘O T1 e X10 $12)M/ =0

respectively. Either way, we get a contradiction, implying that f = g, as

claimed. This gives condition (1) for y € X,, \ V.

A slight variant gives (3). In the Fermat case, we assume m > n + 12,
and let f, g € X;,, map to the same element in X, but different elements in
Xpn+1. By Lemma 4.1 and Lemma 4.3, either k£ + 1 is a Fermat prime or k is
a Mersenne prime, and the argument proceeds as before. In the Mersenne
case, we assume m > n + 15, and otherwise the argument is the same.

Now consider a bounded open neighborhood U C X,, of polynomials such
that the full rank condition for F, M’, and M" and the condition ag # 0
hold on the closure U in the complex topology. For (4), it is enough to show
that for each such U there exists m > n such that ¢;ﬁn(U ) is bounded. If
n+1 ¢ P, then factoring n+1 = k1ks, where the k; > 1 are relatively prime,
we can take m = n + 1, since ap41 = ag,a, is bounded on U. If n +2 ¢ P,
we can take m = n + 2. Factoring n + 2 = k1ka, ant2 = ag, ak, is bounded
on U, and the same is true for a,1, since (in the notation of Definition 3.1)

A, Ay + 2600041 + ag(aza, + agan—1 + -+ + anaz) = bygo = by, by,
can be regarded as a linear equation in a,1; whose coefficients are poly-
nomial in ag,as,...,a,. Thus, it suffices to consider the cases that n is
Mersenne or that n 4 1 is Fermat.

If n+ 1 is Fermat, we take m = n + 12. Each of n + 2,n + 4,n +
5,...,n+12 can be written as a product of two relatively prime integers < n,
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SO Ap42,...,0np+12 are bounded on U. To prove that a,,any1,ants, Gy
are likewise bounded on U, we note that a; and by are bounded on U for
k—ne€{2,4,5,6,8,9,10,11,12}, so

(a() al as a7)F

is bounded on U. As F is of full rank on U, this implies ag, a1, as, a7 are
bounded on U. The same argument applies to Mersenne primes, taking
m =n + 15 and using M’ or M" in place of F.

O

Lemma 5.2. If rk(F) < 3, tk(M') < 4, or tk(M") < 4, then either az =
ag=as =0 oraz =1 and ag = as = aq4 = *1.

Proof. This follows by solving the equations Ps, Pio, P12, P14, P15 of (4.1)
together with the equations expressing any of the three rank conditions in
(5.1). O

Proposition 5.3. Ife € {1,—1}, f € X, and
€
f=gtated +q" +eq" +asq” +agg’ + -,
then a, = €"*! for alln > 1.

Proof. By Lemma 3.3, we may assume € = 1. Solving the equations P,,
6 < n < 72, we obtain the unique solution a,, = 1 for 2 < n < 15. Thus
any solution f maps to the same element of X5 as % + > q¢*, which is a
special case of solution (xii). By Corollary 4.2 and Lemma 4.3, the smallest
value m for which a,, # 1 is either a Mersenne prime or one less than a
Fermat prime. Either way, comparing f with
1 2m—1 .
g=5* (am = 1)g"™ + (ams1 — 1)g™* + Z q" € Xom—1
i=1

either ¥o,,—1(f) = g or k = inf E(¢o,,—1(f) — g) satisfies k,k+ 1 € P.

If m 4+ 1 is a Fermat prime, then this is possible if and only if £ =
2m — 1 (in which case k is a Mersenne prime). Whether ag,,—1 = 1 or not,
2m+1,2m+3 ¢ P by Lemma 4.6, so the equations Py,12, Pomt1, and Pay,y3
read:

m—+ 2 =2ay, + 2am+1 +m — 2,
2m 4+ 1 = 2amam+1 + 2a2m—1 + 2am, + 2m — 5,
2m + 3 = 2a9,—1 + 2ay, + 2m — 1.

Solving, we obtain a,, = am+1 = 1, giving a contradiction.

We may therefore assume that m > 7 is Mersenne. In this case, a; =1
for i <2m — 1, and also m + 2,2m € P, s0 ami2 = 1, aom = Gm, bypra =
m + 2, and ba,, = 2b,, = 2m + 2a,, — 2. Solving P49 and Py, we obtain
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(am,am+1) € {(1,1),(2,0)}. By hypothesis, the latter alternative must be

true. We now define
m24m—1

g= % + Z ciq'
=1
where
2 if mli,
ci=10 ifm+1Ji,
1 otherwise.

It is impossible that g = 9,2 ,,,_1(f), since g does not lift to an element of
X2ym- Let k =infE(f — g).

If £ < 4m, then k = 2m + 2, kK + 1 is Fermat, and a # ¢ = 0. The
multiplicativity of f2 implies a3m+2 = 2a9m+2 + 1 and asmyqa = —2a2m42 +
1. Now by Lemma 4.7, 3m + 4 ¢ P. Therefore, asgy,+4 = 1, contrary to
assumption. Thus, we may assume k > 4m.

We define ¢; as above. If k is Mersenne, we define

1 k+m+1 '
g=5+ Z ciqt + (ag — 1)(gF — ¥+t — gmtE1),
=1

Then ¥4 5-2(9) € Xppyk—2, so it coincides with ¥, 1o f) U m+k—1 ¢ P,
then P, _1 shows there is no way of lifting 1,1+ x—2(f) to X,,1x—1, which
is absurd. Thus, m + k — 1 € P, and ¥, 11(9) € Xkt must coincide with
Um+k(f). By Lemma 4.8, k +m+ 1 € P, so Py, r+1 shows there is no way
of lifting ¥, 11 (f) to Xyskr1, which is absurd.

If £ 4+ 1 is Fermat, we define

1 k+2m+3 4
g= 3 + Z ciq' + ak(qk(l —q)+ 2qm+k(1 — q2) — 3q2m+k_1(1 — q2)2).
i=1

Now, ¥mik-1(9) € Xmik—1 coincides with ¥, x—1(f). If m + k ¢ P, then
Py, 1 shows there is no way of lifting 7,4 x—1(f) to X4k, which is absurd.
We repeat the argument, replacing m + k — 1 successively by m + k + 1,
m+ 2k — 2, m+ 2k, m + 2k + 2. We conclude that m + 2k + 2 € P, which
is impossible by Lemma 4.9.

The only remaining possibility is k = m?+m—1, and k € P. In this case,

we set
m2+42m—2

%—i— Z ¢iq'
i=1
where
if i =m?4+m—1,
if i < m? and mli,
if i =m? +2m — 2 or m + 1Ji,

otherwise.

C; =

— O NN
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It is impossible that m? +m < E(f — g) < m? 4 2m — 2 since there is no
Mersenne or Fermat prime in that interval. However, g does not lift to an
element of X,,2,9,, 1, which gives a contradiction. (]

Lemma 5.4. Suppose az = 0 and rk(F) < 3, rk(M') < 4, or tk(M") < 4.
Let

(5.2) m = inf{i > 2| a; # 0}

either m is undefined (in which case f(q) is linear in q), m is a Mersenne
prime > 31, or m + 1 is a Fermat prime > 257.

Proof. As as = 0, we have a3 = a4 = 0, and also ag = 0. Equation Py

implies a5 = 0, and P;5 implies arag = 0. If ay # 0, the equations P,
as ¢ runs through all positive integers < 92 not in P are inconsistent; if

a7 = 0, the equations up through ¢ = 34 imply ag = ag = --- = a1 = 0.
The multiplicativity of f implies m € P; the multiplicativity of f? implies
m + 1 € P. The result now follows from Lemma 4.3. ([

Definition 5.5. We say f is sparse if the index m of (5.2) is > 16.

Proposition 5.6. If f,g € X are not sparse and f = g (mod z'7), then
f =g. In other words, a non-sparse element of X is determined by its first
17 coefficients.

Proof. By Lemma 5.2 and Proposition 5.3, if F, M’, or M" has less than full
rank then either f is a solution of type (xi) or ag = 0. In the latter case, f is
sparse by Lemma 5.4. Thus, we may assume full rank. By Proposition 5.1,
this implies that all higher coefficients are determined from the first 17
coeflicients. O

6. SPARSE SOLUTIONS AND MANDELBROT POLYNOMIALS

Lemma 6.1. Let S be a set of positive integers such that if s,t € S are
relatively prime, then st € S. Let n be a positive integer and ci,co,... a
multiplicative sequence such that if m € (1,n) is an integer and ¢, # 0,
then m € S. Then for all integers m € [n,2n) with ¢, # 0, either m € S or
m e P.

Proof. 1If for some m € [n,2n) \ P we have ¢, # 0, then m can be factored
m = my1mse, where m; and mo are relatively prime and greater than 1. Thus
mi,me € (1,n), and by multiplicativity, both ¢, and ¢, are non-zero.
Therefore mi,mgo € S, so m € S. O

It will be useful to note that the same argument gives the same result for
odd values of m in [n, 3n).

Lemma 6.2. Let S be a set of positive integers, f € X, and m the smallest
integer in E(f)\ S. If m+ 1 cannot be written as a sum of two elements of

S, either amy1 # 0 or by # 0.
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Proof. For 2<i<m—1,a; #0only if i € S. As m + 1 is not the sum of
any pair of elements in 5,

m—1
(61) b1 = @my1 + 2a0am + ap Z AiGm+1—i
i=2
simplifies to ayy4+1 + 2apay,. Since a,, # 0, either a1 # 0 or b1 0. O

Lemma 6.3. If f € X is sparse, then E(f) C 1+ 6N, that is, for n > 1,
an =0 except when n =1 (mod 6).

Proof. Suppose that n is such that for all positive integers 1 < m < n,
am # 0 implies m = 1 (mod 6). Applying Lemma 6.1 to S; = 1 + 6N and
the sequence a;, we see that for m € [n,2n), a,, # 0 implies m € Sy or
m € P. Also, for 1 < m < n, by, # 0 implies m is congruent to 1 or 2 (mod
6). Applying Lemma 6.1 to S12 =1+ 6N U2+ 6N, for m € [n,2n), by, # 0
implies m € S12 or m € P.

If the lemma does not hold, we can define n to be the smallest integer
in E(f) \ S1. As n is a prime power not in Sy, it is not divisible by 6, so
n+11is not in Sy 2 and therefore cannot be written as a sum of two elements
of S1. Applying Lemma 6.2 to S = 51, either a,41 # 0 or b,4+1 # 0, and
as n + 1 belongs to neither S; nor 512, either condition implies n + 1 € P.
As n > 16, either n is a Mersenne prime or n + 1 is a Fermat prime. All
Mersenne primes > 7 lie in 57, so only the latter case is possible.

Now suppose that there is another value m € E(f) \ S; which lies in
(n,2n). As before, m € P, and m + 1 is not in S or S} 2, S0 am+1 = 0, and
by Lemma 6.2, b,,+1 = 0. Note that n < m < 2n implies that m is an odd
prime power, so m + 1 is 4 or 0 (mod 6) and can be written as a product
mimg with 1 < mq1,me < n and m; and mgy relatively prime. Therefore,
my and my cannot both belong to S; 2, and if either is 2, the other cannot
belong to Si2. Therefore, by, 11 = by, bm, = 0, which is a contradiction.
Thus E(f) \ (S1 U{n}) contains no element smaller than 2n. In particular,
it does not contain n + 1, so a,+1 = 0, and so b,11 # 0, by Lemma 6.2.

Now, by Lemma 4.6, 2n + 1 ¢ P. By the remark following Lemma 6.1,
aon+1 = 0. Likewise as = 0 and an+1 = 0. Let m =2n+1. Asm+1 =
2n 42 ¢ S19, (6.1) simplifies to b2 = agn+2 = 0, which is absurd since
bant2 = babyy1 # 0.

O

Corollary 6.4. If f € X is a nonlinear sparse power series, its index is a
Mersenne prime.

Lemma 6.5. If f € X is a sparse series of index p, then for all n € E(f),
there exists r such thatn =r (modp—1), and 1 <r < 1% -1

Proof. We proceed by induction. We say n > p is a-typical (resp. b-typical)
if it is congruent (mod p — 1) to a positive integer r < 1% —1 (resp r <
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2(n—1)
p—1
for products since for ni,ny > p, we have

2 2 4 2 2 2
( ny _1>( N9 _1> _ 2n1n2_<n1+n2_1> <
p—1 p—1 (p—1) p—1 p—1

Likewise, the set of b-typical integers is closed under addition and multipli-
cation since

2(%1 — 1) 2(712 — 1) 4

p—1 p-1 (p—1)2(

The lemma asserts that every element n € E(f) is a-typical. If n is the
smallest exception, then a, # 0, so n € P implies we can factor n = nine
where ny,n9 > 1 and ap; # 0 for i = 1,2. As f has index p, we have n; > p
for ¢ = 1,2, so n1 and no are a-typical, implying n is a-typical, contrary
to assumption. Moreover, if by # 0 for 2 < k < n, then there exist non-
negative integers ¢, j such that i +j = £, a; # 0, and a; # 0. Thus, 7 and
j are either < 1 or are a-typical. It follows that k is a-typical, one greater
than an integer which is a-typical, or the sum of two a-typical integers, and
in each case, k is b-typical.

Suppose that n+1 ¢ P. In general, subtracting 1 from a b-typical integer
leaves either an a-typical integer or a multiple of p — 1. As n is a prime
power, it is not divisible by p — 1, so n + 1 is not b-typical and therefore
not a-typical. Writing n + 1 = nins for ni,ne > 1 relatively prime, it is
impossible that nq and no are both b-typical and therefore impossible they
are both are a-typical, so a,11 = 0. Applying Lemma 6.2 with S equal to
the set of a-typical integers, we deduce b,1+1 # 0. As n1 and ng are not both
b-typical, this gives a contradiction. We conclude that since n > p > 17,
either n is a Mersenne prime or n + 1 is a Fermat prime. By Corollary 6.4,
n is in fact a Mersenne prime. Writing p = 2% — 1 and n = 2° — 1 we have
2% =2 (mod p — 1), so

n=2%"%_1 (modp—1).
Setting = 21472 — 1, we have

(p—1)(r+1) =210 _92tb-a o 9l+b _ o — 9oy

.) The sum of two a-typical integers is a-typical, and the same is true

ning—1.

ning — (n1 +ng — 1)) <

p— 1(n1n2 — 1).

so n is a-typical, which gives a contradiction. ([
Proposition 6.6. If f € X is sparse of index p, then a, # 1.

Proof. If ap = 1, then the polynomial condition P, defined in (4.1) implies
aszp—1 = 0. By Lemma 6.5, if a; and a; are non-zero, i +j = 2 (mod p — 1),
and i + j < p?/2, then either i =0, j =0, 0ori =j =1 (mod p — 1). The
first two possibilities are ruled out by Lemma 6.3 (note that p =1 (mod 6)),
so p — 1 must divide ¢ — 1 and j — 1. Thus

Ak (p—1)+1

br(p—1)+2 = @
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forl1 <k< %. For2 <k < %, the highest power of 2 dividing k(p—1)+2
is less than p + 1, 80 agp—1)4+1 = 0.

Equation P,,11) guarantees that there is some n > p for which a,, # 0.
Suppose that the smallest such n satisfies n < p?/2. We have just proved
that n # 1 (mod p — 1). For r,s > 1, ayas # 0 implies rs > p?; thus
n € P. Likewise, b,+1 = 2apa, # 0son+1 € P. By Lemma 6.3, n + 1
cannot be a Fermat prime, so n is a Mersenne prime. If n reduces to s (mod
p—1),1 <s < p-—1, an easy induction shows that for every residue class
r, 1 <r < s, and every m < p?/2, m = r (mod p — 1), we have a,, = 0.
Therefore,

Ap+tp—1 1+ Qn Ap+2p—1 + Gptp—1

,Ozbn+2p_1: g e
ao ao

O == bn+p =

In particular, if n < m < p?/2, and m =n (mod p — 1), then a,, # 0. Since
2
the largest possible Mersenne prime less than p?/2 is < %, we have an
arithmetic progression of at least (p + 1)/4 terms with common difference
p — 1 and every term in P.
If the smallest element n of the set {n > p | a, # 0} exceeds p?/2,

then proceeding as before, either n is Mersenne (necessarily ﬂ#) or
n = p® + p — 1. In either case, by induction

Un = “lnt(p-1) = Ont2(p=1) = “n+3(p-1) = " = Ty 28 (p 1)
Thus, the proposition follows from Lemma 4.12. O

Definition 6.7. We define the Mandelbrot polynomials M;(y) by the re-
cursive formula

Y ifn=1,
Mo(y) = § =5 S0 Mi(y) M —i(y) ifn>1 odd,
%Mn/Q(y) - %Z?:_ll M;(y)My—i(y) if n>1 even.
Thus,
2 3 2
Yty Yo -y
Ma(y) = —5— Maly) =—5—,
—5y* +6y° — 3y* + 2y Ty® — 10y* + 5y — 2>
—21y% + 35° — 21y* + 13y° — 62

Me(y) = N

16
The definition is motivated by the following proposition:

Proposition 6.8. If f € X is sparse of index p, then for 1 < i < %,
M;(ap) =0 wheneveri(p—1)+1 ¢ P.

Proof. Let ¢; = a;;,—1)4+1. We have seen that

k
1
bk(p—1)+2 = Tto Z CiCk—i-
i=0
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For 2 <k < %, kE(p — 1) + 2 is even, but the highest power of 2 dividing
it is < p + 1. Therefore,

, B 0 if £ > 3 is odd,
k(p—1)+2 — Z’Qbm’%”? if £ > 2 is even.

As by = 1/2a9, we have

Zk: 0 if k> 3 is odd,
CiCh—i =
=0 e L(p;l)“ =cpp if k> 2is even.

As ¢p = 1 and ¢1 = ay, the proposition follows by induction. O

Corollary 6.9. If f € X is sparse, then its index must be greater than 2200,

Proof. No two polynomials M;(y) for ¢ < 11 have a common root other than
0 and 1. By machine computation, for every prime ¢ < 2000 there exist
positive integers ¢ < j < 11 such that (29 —2) +1,j(2 —2)+1 ¢ P. (In
every case, this can be witnessed by a prime divisor less than 1000.) ([

Proposition 6.10. The roots of M, (y) are always 2-adically integral. More-
over, if p does not divide the binomial coefficient (2:), then the roots are
p-adically integral.

Proof. Let v denote the valuation on Qo normalized so that v(2) = 1, and
let v be an element of Q2 with v(y) < 0. We claim that for any sequence ~;
with 1 =, such that
n—1
Bn = 29n + Z ViVn—i
=1
is zero when n is odd and has valuation at least v(~,, /2) when n is even, the
valuation of 7, does not depend on the ;. In fact, if v; and §; are two such
sequences, then v(d, —v5) > v(vn) = v(dy) for all n.
It suffices to treat the case that
n—1
200 + Y 0ibp—i =0
i=1
for all n > 2, i.e.,
i N2
(1 + Z (MUZ) =14 2vzx.
i=1
By the binomial theorem
(2n — 3)!!
B

n
)

671 _ (_1)n71

where, as usual, k!! is the product of all odd numbers up to k. In other
words, if d(n) denotes the sum of the digits in the binary expansion of n,

v(0p) = nv(y) + d(n) — n.
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As d(i+7) < d(i) + d(j)

v(élén_z) Z ’U((;n)
for 0 < i < n, and if n is even,

v(ég/z) > v(20,).

We prove by induction that v(y; — ;) > v(7y;) = v(9;) for all i. Assume it
holds all ¢ < n. Defining v, /2 = d,,/2 = 0 if n is odd,

1
On =Y = =500 = Yo Gi—vwvi— D 4ild—)

(6.2) 1<i<n/2 1<i<n/2
1
- 5(511/2 = Yn/2)(0ns2 + Yny2)-

If n is even,

v(Bn/2) 2 v(ns2/2) = v(0n/2/2) 2 v(0n) — v(0n/2) > v(dn)

since v(0;) < 0 for all ¢ > 1. The right hand side of (6.2) is therefore a sum
of terms with valuation strictly larger than v(d,), as claimed.

For p odd, we note that by induction M,(y) € Z,ly] for all n. The
leading coefficient of M, (y) is again (—1)"1(2n — 3)!!/n! and is therefore
not divisible by p if (27?) is not. O

Proposition 6.11. If f € X is sparse of index m, then a,, is an algebraic
nteger.

Proof. By Corollary 6.4, m = 2* — 1, and by Corollary 6.9, we may assume
k > 2000. Let ¢ be any odd prime and let p be a prime not dividing m — 1.
By Lemma 4.11, we may take p < 4k + 1; if £ < 27720, we take p = 29. An
integer congruent to —p (mod p?) cannot be in P, so we apply Lemma, 4.10,
with d = p?, and a residue class a such that a(m — 1) +1 = —p (mod p?).
If 2000 < k < 27720 and d = 841 or k > 27720 and d < (4k + 1)2, then
m/2 > (2d%)?108(9) 5o there exists n < m/2 such that n(m —1) +1 & P
and ¢ { (2:) By Proposition 6.8, M,(a,) = 0, but by Lemma 6.10, all the
roots of M, are f-adically integral. O

We next consider the generating function
o0
ge(z) =1+ Z M, (c)z".
n=1

By construction, g.(z) satisfies the formal functional equation
9:(2)? = go(2%) + 2cz.

This motivates the recursive definition

1 ifn=20
6.3 nc(z) = ’
(6.3) gne(2) {\/gn_lvc(zﬂ) +2cz ifn>0.
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Explicitly,
g1.¢(2) = V1 +2cz,

92.c(2) = \/\/ 14 2c22 + 2c¢z,
g3.c(2) = \/\/\/ 14 2cz% + 2¢22 + 2¢z,

and so forth. This sequence of power series in z converges coefficientwise to
ge(2); in fact the first 2" coefficients of gy, .(z) coincide with those of g.(z).
So far, we have regarded g.(z) as a formal power series parametrized by
¢, but each series gy, (z) converges, for each value ¢, in a disk around 0. The
algebraic function g, () can have branch points only for z in the set

{21 gne(2) =0} U{z | gn1c(2)) =0}U - U{z | gro(z*" ) = 0}.
For each n, let K,y = C(y/z) and define K, j recursively for 1 <k < n
by setting

n—k

K = Knj1(gre(z> ),
S0 gn.c(2) € Knp. Let I, o(20) denote the nth iterate of the function 22 + ¢
with initial value zg.

Lemma 6.12. For alln > 1 and all ¢ € C such that 0 is not a periodic
point of 22 — 2¢ with period < n, we have (Knn: Knol =2" and

2n—1

NKn,n/Kn,ogn,c(Z) = NKn’n/(C(ﬁ)gn,C(Z) = In,—2:(0)2 -1

Proof. We prove the following pair of claims by induction on k£ > 1.
(1) Kk : Knp] = 2%,

n—k n—1—k n

(2) Ni, ,/kno(Gre(z2 ) + 2027 ) = =1+ Ii —2c(20) 2>

For k = n, combining (1) and (2) for zg = 0, we obtain the claim of the
lemma,

-1

2n71

NKn,n/Kn,ogn,r:(z) = NKn,n/Kn,()(_gn,r:(Z)) = n,—26(0)z -1
For k =1, Claim (1) is obvious, while (2) is the identity
(V1+2e22" " + 2027 ) (=V1+ 222" + 222" )
=1+ (24 — 20)22n_1.
The relation
_9k+1,0(22n7k71)2 = _gk,t:(anik) —2c”
implies K, 41 @ K ] > 2. By the induction hypothesis,
(6.4)
NKn,k/Kn,o(—9k+1,c(22n_k_1)2) = NKn,k/Kn,o(—gk,c(ZQn_k) - 2022n_k_1)

2n—1

= —1+ I _2.(—2c)z
= —1+ Ij1,-2.(0)2

n—1
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As Ii11 —2.(0) # 0, the right hand side of (6.4) has only non-zero simple
zeroes, so it is not the square of a rational function in y/z. This implies

—gk+17c(z2n7k71)2 is not the square of an element in K, , therefore that

gk+17c(z2"_k_l) ¢ K, 1, and finally that [K, z11 : K, %] > 2, giving Claim
(1) for k + 1. Therefore

n—1—k on—2—k
)

NKn,k+1/Kn,0 (gk+1,c(22 ) + 202

. 2n717k 2n727k
= NE, /Ko NKp jir /K (Gh+1,6(2 ) + 202 )

n—1—k n—2—k
= Nic, /Ko (—gri1c(zT )2+ (20277 )?)

= Nty o/t (—gre(z ) =262 422227
= Nicy (o) + (=202
= 1+ Dac(f — 2)2>"
=—-1+ Ik+17_26(20)22n—1’
giving Claim (2) for k + 1. .

Therefore the power series for g, (%) converges in an open disk around 0
of radius

_217n
Roe= inf |L 2(0) " = ( L 20)])
ne = Inf |1k —2(0)] Sup e —2c(0)]
Lemma 6.13. Let U be a connected neighborhood of oo in the Riemann
sphere such that for all finite ¢ € U, the absolute value of I, _2.(0) is strictly

greater than the absolute values |Ij, —2.(0)| for k < n. Then for each ¢ €
1/2

U, gne(2)? has exactly one zero, denoted z., in the disk |z| < R/% .

Moreover,
72n—1
Zn,c = n7—20(0)a

and the zero at zy . is simple.

Proof. First we observe that g, .(2)? = gn-1.(2?) + 2c2 is really defined
in the disk |z] < R:/_QLC.
of In,_gc(O)_l. Since the product of gmc(z)2 and its conjugates over the
field of rational functions has only simple zeroes, we need only show that
gn.c(2)? itself accounts for exactly one of those zeroes. We prove this by
analytic continuation, using the fact that in a continuously varying family
of analytic functions, the number of zeroes inside a continuously varying
disk never changes as long as there is never a zero on the boundary of the
disk. As U is connected, it suffices to prove the claim when |c¢| > 0. But
in this case it is clear that each conjugate of gn_Lc(zQ) + 2c¢z accounts for
exactly one of the 2"~! roots in question, each according to the constant
term in its power series expansion, which is a different 2"~ 'st root of unity
for each conjugate. ([l

In particular it is defined at every 2" !st root
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Lemma 6.14. Ifc € C, r > 0, and n € N are such that gnc(2), gnt1,c(2),
nt2,c(2), ... all have radius of convergence greater than r < 1, then g.(z)
has radius of convergence greater than r and the sequence {gi c(2)}k>n con-
verges to g.(z) on the closed disk of radius v centered at the origin.

Proof. As ’ d%\/l +z ’g 1 for all |z|] < 3/4, by induction on k, |wq| + -+
|wg| < 3/4 implies

0
‘awl\/\/m\/x/l+w1+w2+-~+wk_1+wk

for 1 <i < k. Thus,

<1

< Jwl,

‘\/\/---\/\/l—i—w%—chQ"1—1—---—1—20224—202—9”70(2)

whenever |w| + [2¢22" | + -+ - + |[2¢z| < 3/4. In particular,

|gn+1.e — gn(c)] < |2C'22n|
provided
2lel(l2] + 12 + |2 + - + [2*").
It follows that the sequence

(6.5) {gr,e(2) br=1,23,...

converges whenever
3
<inf(1, ——).
o] < inf(1, 1)
By the recursive definition (6.3) of ¢, .(2), the sequence (6.5) converges for
z whenever |z| < r and it converges for 22. The convergence of (6.5) in
{z: |z] < r} follows by a bootstrapping argument. O

Let R. denote the minimum of lim,,_,« I, and 1. We have the following
immediate corollary:

Lemma 6.15. The series g.(z) converges for all |z| < R..

In the next two results, we sketch a proof that there is an upper limit to
the index of sparseness for any element of X.

Lemma 6.16. Let X be a compact set and b;: X — C a collection of
continuous functions indeved by integers i > 0. Let fi(2) = Y o br(z)2".
We suppose that for each x € X there exists vy > 0, depending continuously
on x, such that f.(2)? converges in a disk of radius greater than r, and has

exactly one zero, counting multiplicity, in the disk of radius r,. Then there
exists N such that for all k > N and for all x € X, bi(x) # 0.
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Proof. By compactness we may assume without loss of generality that a
single r = 7, works for all z € X. Choose s > r such that all f,(z)?
have radius of convergence > s. As f, is continuous in x, the unique zero
2z Of fgc(z)2 in the closed disk D, of radius r varies continuously with x.
Therefore % is continuous on X x D, and nowhere vanishing on that
set. Therefore its absolute value is always greater than some € > 0. We

make a branch cut from z, to z,00 to make f,(z) single valued and then

estimate bg(x) by computing the contour integral sz ];”,”C(fl) dz, where @,
Zx
Tza]?
counterclockwise circle of radius s, and an inward segment from sé—w' to 2.
For large values of k, only the two segments matter, and their contributions
are equal since f,(z) changes sign over the circle of radius s. If f.(2)? =

c1(z — 2zz) + ca(z — 2z)% + - - -, the integral over one of the segments of Q, is
T(3/2)ct/223/2k73/2, 78 4 O(k—5/22%).

Since |c1| > € and the implicit constant above is uniform in X, by (z) # 0
for all £ > 0 uniformly in X. O

denotes a contour consisting of an outward segment from 2z, to s a

Theorem 6.17. For all open neighborhoods U of the Mandelbrot set M
there exists an integer N such that for all n > N and for all ¢ € U,

Mn(_0/2) 7é 0.

Proof. Making U smaller if necessary, we may assume that it is bounded.
Let Uy and Us be disjoint open sets in CP! such that U; contains the com-
plement of U and Us contains M. By construction the set —%Ul satisfies
the hypotheses of Lemma 6.13 for all n greater than some fixed C'. Let K
denote a compact subset of U; containing the complement of U, and let X
denote the product of the one-point compactification ZZ¢ U {oco} and —%K .

We define
V1—z ifec= o0,
fne(2) =< ge(z/c)  if n = o0,
gn,c(z/c) otherwise.

By Lemma 6.14, f,(z) is continuous in x and is analytic in a neighborhood of
0 for each fixed z. (Note that we have renormalized the g, . and g. to prevent
the radius of convergence from going to zero as ¢ — 00.) The conclusion of
Lemma 6.13 implies that f,(z) satisfies the hypotheses of Lemma 6.16, and
the theorem follows. O

By Proposition 6.11, if f is sparse of index m, then a,, is an algebraic
integer. On the other hand, X is rational over Q, so all conjugates of a,
must also give rise to sparse solutions. In particular, if m > 0, a,, and its
conjugates all lie in any specified open set containing —%M. Since M is a
closed subset of the disk of radius 2 meeting the boundary of the disk only
at the point —2, this open set can be taken to have capacity less than 1,
and therefore to contain finitely many conjugacy classes of algebraic integers
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[Fe]. In fact, it is easy to see that it can be chosen small enough that 0 and
1 are the only possible values for a,,. The first is ruled out by definition,
the second by Proposition 6.6.

However, to prove the main theorem, it is necessary to make the above
estimates effective. We do this by choosing a particular open neighborhood
of —%M, namely the disk of radius 7/8 centered at 1/4. We begin by finding
the orbits of algebraic integers belonging to this disk.

Proposition 6.18. If a is an algebraic integer all of whose conjugates sat-
isfy |z — 1/4] < 7/8, then v is 0 or 1.

Proof. According to the maximum principle, for elements «g,...,a, of a
closed disk of radius r, the product [], ,; [a; — a;| can achieve its maximum
only if all @; lie on the boundary of the disk. By the concavity of log |1 —e®|,
the product is achieved when the «; form the vertices of an inscribed regular

n-gon. In this case, the product is

n—1 n
(T 1r-rcl) =
=1

For r = 7/8, this expression is < 1 for n > 26. For 6 < n < 25, we still

have that g(n) is less than the Minkowski bound (’5;7275”. For 3 < n <5,
g(n) remains less than the smallest actual discriminant absolute value, as
tabulated in [Po]. Finally, for n = 2, two conjugate algebraic integers lie

in the same disk of radius 7/8 if and only if the integers are of the form
+27s

n+e 3 for some n € Z. In particular, no such pair lie in a disk centered
at 1/4. O

Proposition 6.19. Ifn > 2 and |d + 1/2| > 7/4, then
(6.6) (Id+1/2] = 1/4)%" < |L,4(0)] < (Jd+1/2] + 1/4)*" .

Proof. As Iy(d) = d*>+d = (d+1/2)? —1/4, setting r = |d+1/2| > 7/4, we
have

2 n—1 " n,n%>—n
ltz+a"+- 42" oz | =n"r .

1o 3 1.4 5 1
S —(r—= — - <|I
(r= 2+ 5= < = 1 < D)
1 1 3 1
<242 1y 92 14
<r +4<(T+4) 4(7’+4)
We prove by induction that for all n > 2, we have
(6.7)
1 n—1 3 1 _on—1 1
(r— 1)2 +Z(T*1)1 < - 15 [1n,a(0)]
1 1 n—1 3 1 n—1
<242 lign-1 9 112
<r +4<(T+4) 4(r+4)

For the induction step, we apply

1 1
|w\2—r—§S|w2+d\§\w|2+r+§,
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to w = I, ¢(0) in (6.7), using the inequalities

3 1 1 3 1
Srt s oSS > 1
2(7" 4)>7“+4, 4(7" 4)>
The inequalities (6.6) follow immediately. O
Corollary 6.20. Ifn > 2, |c—1/4]| > 7/8, then
! < Rp.< ! < 2
2c—1/4|+1/4 = T 2le—1/4| - 1/4 " 3

In particular,
5

3
<R.<—.
T
Proof. The proposition implies that |1, —2.(0)| is monotonically increasing
for n > 2. Thus R, . = \In7,gc(0)|217n. The first claim follows immediately,
the second from the inequality

5ol
16~ [2]c—1/4]+1/4] 4’

which holds for |¢ —1/4] > 7/8. O

Corollary 6.21. The sequence zic, 22, ... converges to z., and |z.| = R..

Proof. By Lemma 6.13 and Corollary 6.20, |z, .| = Ry for all n > 1. As

1/2
n—1,c’

r e ((2le—1/4] = 1/4) 7", 2le = 1/4/+ 1/4)7?),

the sequence gfw(z) converges to g.(z)? uniformly on the disc |z| < r, and

g,%’c(z) converges for |z| < R choosing

Zn, is the unique zero of g2 .(z) in that disk and is moreover simple. It
follows that z. = lim, oo 2.

O
Theorem 6.22. The only sparse elements in X are the linear solutions (xi).

Proof. Suppose f € X is sparse of index p. Setting ¢ = a,, we have ¢ # 0 by
definition and ¢ # 1 by Proposition 6.6. Therefore, by Proposition 6.11 and
Proposition 6.18, we have |c — 1/2| > 7/4.

We want to estimate the constant N of Lemma 6.16. Our first task is

to estimate the derivative of h.(2) = g.(2)? at its unique zero z. in the
1/2
R

disk |z| < limy—e0 -1 This is the same as the limit of the derivative of
g,w(,z*)2 at its unique zero z, . satisfying |z, .| < R:L/fl’c. By induction on k,
we have

gnfk,c(zzzljc) = Ik,72c(0)zgljgl

for 0 < k < n. Differentiating (6.3), we obtain

c+2g,_j1,0(5°)
gnfk,c(z)

g;lfk,c(z) -
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for all 2 > 1, and substituting z = z%]jc, we get
k—1 k+1
gl (ZQk ) N C + ZTQL,C g;l—k;—Lc(Z?z,c )
n—k,c\*n,c Ik,—Zc(O)Z%IZI Ik,—2c(0)

Therefore, the value of the derivative of gy, ¢(2)? = 2c2 + gn—1,c(2%) at 2, is

2c 222 .9, -2 (%n,c)
2 2 / 2 —9 n,cIn—2,c\~n,c
c+ zn,cgn—l,c(zn,c) ¢+ Il<—26) + Il(_zc)
—9¢ 4 2c i 2c 22;11709;_370(2270)
N Il(—QC) Il(—2C)IQ(—20) _[2(—20)

Expanding completely (and using the fact that 9(/),c is identically zero), we
obtain

2 (1+ L4 ! TR ! )
N T (20 T hi(—201(—20) T(—20)Ia(—2¢) - Ip_1(—2¢) ) -

As I1(—2c¢) = —2c lies on a circle of radius 7/4 centered at —1/2, its inverse
lies on the circle with diameter the real interval [—4/9,4/5]. It follows that
|1+ I1(—2¢)~Y > 5/9. On the other hand, |I;(—2c)| > 5/4, and by (6.6),
|Io(—2¢)| > 9/4, and |1, —2.(0)| > 5 for n > 3, so

1 1 1+5 14524+ 1
1+ +--+ >5/9— > —.
Il(—QC) Il(—2c) oo In_l(—QC) B / |I1(—20)I2(—2c)\ 9
Thus,
1
) h(z0)| > le] .

Next, we need to estimate the second derivative of h.(z) near z = z.. By
Cauchy’s integral formula for derivatives,

supg | f(z + re'?)]
r2 '

1" (2)] <2

By Lemma 6.15, h.(z) converges for |z| < y/R. and therefore, by Corol-

lary 6.20, for |z| < 1.2R.. For |z| < 1.1R., we may take r = R./10 and

still have |e(z + re®)] < 1 by Corollary 6.20. As |¢| > 1, the inequality

V14 z| <1+ |z|/2 implies

(6.9) , ,
i62 i6\4

|gn,c(2+rei9)| <1+ ’C(Z+T6i9)| + ‘C(Z -|-27“6 ) | ‘C(Z +4T6 ) |

Thus, |z| < 1.1R. implies
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By (6.8), |z — z.| < R./120 implies

he(2) 1
h.(zc) -2’
so integrating h/,(z) along the directed line segment from z. to z, we obtain
_hem) || e pelwlde 1
hi(2e) (2 — 2c) a hi(zc)(z — zc) -2

As |(z +iy)? — 1| < 1/2 implies

(@ +y*)? + 22 +1— 222 = (2® —y® — 1)> + (22y)* <

»M»—‘

it follows that

h 1
N # > —
hl(ze)(z —z.) = 2
in the ball |z — z.| < R./120.
We integrate \/he(z)z"*71 over the contour consisting of a straight line

121R .
150, and a straight

line returning to z.. As y/h.(z) changes sign over the contour, the integral
is twice the original segment plus the circle. We will show that the integral
is non-zero by showing that

(6.10)
121z
o (o [

from z. to %zc, a counterclockwise circle C' of radius

Zk+1 yk+1

Zc

hc(Z)dz) >‘ bl (z) 712 k12 / he(z) ;. ‘
C

The left hand side of (6.10) is the integral of

zc z—zc 1rze\k ze(z — 2e)
——

6.11
( R(ze)(z —z.)  2\z z

It is therefore greater than the integral of the right hand side of (6.11) from
ze(1 4+ 1/480) to z.(1 + 1/240), and so is at least

V480(1 + 1/240)7* R,

(6.12)

2-480 - 481
The right hand side of (6.10) is no larger than
121R. 1 sup.eo V()] _, 121R. 1 3

"TI20 (e Ry (L+ 1712001 = 717120 /30 (1+ 1/120)FF1
by (6.8) and (6.9). Comparing this to the lower bound (6.12), for k > 2773,

we have 049\
— 48 - 481
(241) > 48 - 481,

implying (6.10).
If p > 213 — 1, then by Lemma 4.12, there exists k satisfying p—1 > k >
(p—1)/2 > 2773 such that k(p — 1) + 1 € P and the z* coefficient of g.(z),



MULTIPLICATIVE SERIES AND MODULAR FORMS 31

i.e., My(c) = My(ap) is non-zero. This contradicts Proposition 6.8, and we
are done.

This leaves two cases: p = 31 and p = 127. For the former, 3-30+1 ¢ P
and for the latter, 2-12641 ¢ P. Now, either Mas(c) = 0 or M3(c) = 0 implies
¢ € {0, 1}, which is impossible. This again contradicts Proposition 6.8, which
proves the theorem.

U

7. SOME VARIANTS

In this section, we consider some variants of the problem of classifying
normalized multiplicative power series whose squares are multiplicative.
We begin by proving Theorem 1.2, or more precisely:

Proposition 7.1. The set of normalized multiplicative power series f(q)
such that f(q)? and f(q)* are both multiplicative is as follows:

(7.1) {92(0), V713 (0), Vz1¢5) (@), —V2(—q), =07} (=), —V7(¢;) (=) }-

Proof. First, we claim that each series f(q) in (7.1) is a solution. It suffices
to prove that f(q) and some multiple of f(g)? lie in X, and by Lemma 3.3,
it suffices to prove this for 9z(q), ¥7;)(¢), and ¥z, (¢). By Proposition 3.2,
these are of type (vii), (v), and (vi) respectively. As 9z(q)* = U7(q)
and 219%[1.] (q) = 9u(q) + 291(¢?), the squares of the theta series, suitably
normalized, are elements of X of type (v), (iii), and (ii) respectively.

Let the polynomials P, be defined as in (4.1). We define polynomials Q,,
which play the role for f* which the P, play for f2; namely, if 2a3f(q)* =
>, dnq", and D,, denotes the polynomial expression in ag,as, ..., for the
coefficient d,,, we set

Qper.per = Dperpex = Dyper -+ D e
We consider the system of 14 polynomial equations in the 13 variables
ap, az, ..., a9 given by P, and @, for n € [6,20] NZ \ P.

A Maple computation shows that there are exactly six solutions, corre-
sponding to the initial coefficients of the six modular forms listed above.
Since performing this calculation reasonably efficiently is not straightfor-
ward, we describe our steps in more detail. We begin by solving for the
variables a4, as, as, ag, a11, a3, aig, a7, a1g using the polynomial equations
Q¢, Ps, Q10, P10, P12, P14, Q1s, Pis, and Py respectively and substituting
the resulting expressions into the equations Q12, @14, P15, Q15, @20. The
resulting polynomials in ag, asz, ag, and ay have degrees 11, 11, 13, 13, and
17 respectively. We reduce to equations in ag and as by using @12 to elimi-
nate a7 and Q14 to eliminate ag from Pi5, QQ15, Q20. These three equations
have a degree 24 common factor, A(ag, az)?, but pulling out this factor and
using the first of the three remaining factors to eliminate ag from the second
and third, we can take the g.c.d. to solve for as. The possible solutions,
0, 1, :l:% can then be substituted back into the original equations Qq2,
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Q14, P15, Q15, Q20, at which point Maple is capable of solving directly for
all triples (ag, as,a7). To deal with solutions of A(ag,a2) = 0, we eliminate
a7 and as from Q15 and Q¢ using Q14 and Py5 respectively. The resulting
polynomials in ag and a again have a common factor, B(ag, az)*, of degree
92. Removing this factor from Q15 and (9o and eliminating ag using A,
we see again that ay € {0,+1, i%} Thus, we need only consider the case
A(ag,a2) = B(ag,a2) = 0. Eliminating a7 and ag from Q20 using Pj5 and
Q15 respectively, we obtain an equation in ag and ae, and eliminating as
from this equation and B using A, we get ag = 0, which is impossible.

By Proposition 5.6, there is at most one solution f(q) with each of these

initial coefficient sequences.
O

Note that Theorem 1.1, or more precisely, the following statement, is an
immediate corollary:

Corollary 7.2. The set of normalized multiplicative power series f(q) such
that f(q)?, f(q)*, and f(q)® are all multiplicative consists of

{9z2(q), —9z(—q)}-

Next we consider the following question: What can be said about f(q) if
f and f2 both belong to the vector space V of finite linear combinations of
multiplicative power series, or more generally, if all powers of f belong to
V'? The following proposition proves that this question is not vacuous.

Proposition 7.3. The vector space V' is a proper subspace of the complex
POWET Series in q.

Proof. We prove the following stronger claim: There exists a function F'(x)
such that if |ap41] > F(|ay|) for all n > 0, then f(q) = >_,2; anq"™ does not
belong to V.

Suppose

f@) = a0+ cifilq),
i=1
where the f; are normalized multiplicative :

fi(q) =aio+q+ ai,2q2 + ai,3q3 + ai,4q4 + Gi,5q5 + ai,2ai,3q6 +e

Let Ci(xs,ys,;) denote the polynomial representing the ¢ coefficient of f in
terms of x; = ¢; and y;j = a;; (j € PU{0}). Thus C} is a sum of distinct
products of subsets of the variables

{zil1<i<n}U{y;|1<i<n, j<k, jecPU{0}}.

By the prime number theorem, the number of variables in the set grows like
nk/logk. Therefore, for N > 0, the polynomials Cn41, Cny2, ..., Con
involve among them fewer than N variables. The proposition now follows
from the following two lemmas: O
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Lemma 7.4. For x = (21,...,%y) and I = (i1,...,iy), we denote by x!
the monomial z7* - - - xim . There erist functions G, H: N — N such that if
Qi(':vl)"'vxm): Z ai,lxla izlv"wm—i_la

Ie{0,1}m™

with a; 1 € {0,1}, then there exists a polynomial R(yi,...,Ym+1) of degree
< G(m) and integer coefficients of absolute value < H(m) such that

R(Q1(x),...Qm+1(z)) =0.

Proof. For any positive integer IV, there are (N ;Tf 1) monomials in @1, ..., Qm+1

of degree < N; all are of degree < mN as polynomials in z1,...,z, and
have all coefficients < (2™)". The total number of monomials of degree
< mN in the z; is (m]\;b ™). If N = G(m) is sufficiently large, the former
number is larger, so there must be some linear relation between the mono-
mials. The coefficients of the relation can be bounded by H(m) depending

only on N and m, and therefore only on m.
O

Lemma 7.5. Given functions G, H: N — N there exists a function F: R —
R such that for all m > 2, all sequences z1, ..., zom € C satisfying |zi41]| >
F(|zi]) for 1 <i<2m — 1, and all non-zero polynomials R € Clzy,. .., Ty)
with degree < G(m) and coefficients with absolute value < H(m), we have

R(Zm+1, ey sz) 75 0.

Proof. Replacing G(z) and H(x) by x + sup,,«, G(n) and sup,,«, H(n) re-
spectively, we may regard both as non-decreasing functions defined on [0, co),
where, moreover, G(z + 1) > G(z) + 1 and G(z) > z for all z > 0. For
x>0, let

F(z) = (1 + H(z))e 6@z L 3,

Then we have F(x) > e* + 3 > max(3,z + 3). By induction on r, we have
|zr41| > 3r >r+2forallr>1, so

|zry2] > F(lzrsa]) = (1 + H(‘ZTH|)e(1+G(|zr+1|)\zr+1\

>+ H(r+ 2))6(1+G(7‘+2))|2r+1|.

As lo% is increasing on (0,e) and decreasing on (e, 00), for e < x <y, we
have z¥ > y*, and for x,a > 0, we have

0T (ex)a > (me)a _ pea
Thus,
|Zr+2| > H(T’ + 2)|Zr+l|e(1+G(r+2)) > H(T—i— 2)(7, + 2)1+G(r+2)‘zr+1‘1+G(r+2)

> (14 G(r+2)"P2H(r 4 2)|zpp | TE0+2).
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In particular, for 1 < j < m,
[2mti] > [zmaj—1| (1 + G(m + )"V H(m + j)|zmq 1 |F0 )

J
> o> o [T+ Glm+ k)™ H (m + k)| 25 | S0P
k=1

Jj—1
> (14 G )" H(m) [T Jom 1l 6.
=1

Thus, given m-tuples of non-negative integers < G(m) such that
(k1y .. km) > (K, ... kD)
in lexicographic order, we have
|zom "+ [z zma [Fr > (14G(m) ™ H(m) zam | - - |2l Ptz 40 [F

which in turn implies that any non-trivial integer linear combination of
monomials zé“rln . z,’fl"jH with k; < G(m) and coefficient absolute values <

H(m) is non-zero. O

If a, and b, are multiplicative sequences, then the sequences n + a,b,
and n— > a;b; are multiplicative. The polynomial

SHOED I

din

ij=n

has multiplicative coefficients, and every polynomial, in particular, every
monomial in ¢ is a finite linear combination of the polynomials .S;. It follows
that f(¢") € V whenever f(q) € V.

If M,(N) denotes the graded ring of modular forms of integral weight for
I'1(N), then it is clear by reduction to the case of newforms that | M.(N) C
V. As the union of the M, (V) is a ring, the same is true for all powers of f.
Certain power series, such as 24 F5(q), though not modular forms themselves,
are congruent to elements of M,(N) modulo every prime [Se]. Naturally,
any integer power of such a series has the same property.

Question 7.6. Is Fy(q)? € V ?
In a different direction, we have the following:

Proposition 7.7. If f(q) is the q-expansion of a modular form of weight
1/2, then f and f? are both in V.

Proof. Obviously f? € M,(N) for some N, so f2 € V. As for f, by [SS], it
is a finite linear combination of series of the form

[e.e]

> wn)g™,

n=—oo
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where k is a positive integer and 1 is periodic. Equivalently, f is a linear
combination of series

% Z qk”Q if m # 2,
2 =+ d
fk,m,a _ Z qkn _ n=ta (mo q’r;;)12

nea+miz Z

n=a (mod 2)

if m=2,

where (a,m) = 1.
It therefore suffices to prove that fi.,,, € V whenever a and m are rel-
atively prime, but this is clear since fi,,, is a linear combination of the

multiplicative power series ), X(n)q”Q, as y ranges over the even charac-
ters of (Z/mZ)*. O

Question 7.8. Are forms of half-integral weight k > 3/2 finite linear com-
binations of multiplicative power series?
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TABLE 1. Exceptional solutions (mod 3)

Comments
Es
Es
Es
192[”4*7“]
E,
Es
Eo
Es
15.2.1.a
Vz1v3)
Eo
75.2.1.a or 75.2.1.b
21.2.1.a

1/2@0

=
)
IS
w
IS
W~
=]
ot
S
3
IS
o
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e
S
=
—
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50.2.1.b

8. APPENDIX, BY ANNE LARSEN

A computer was used to find all multiplicative series whose squares are
also multiplicative (when multiplied by a suitable scalar), mod small primes.
The series found, excluding mod p versions of the general types listed before
and “sparse” solutions, are listed in the tables below. However, for each
solution, the same series with even coeflicients multiplied by —1 will also be
a solution; only one solution in each pair is exhibited in the tables.

Note that there is no table of mod 2 solutions because

(14 a1g+asg®+...) =14 (a1)’@P + (a2)?¢* +... (mod 2),

which has no ¢ term and is therefore not strictly a multiplicative series.

For all but one (mod 3) solution, the comments column gives a possible
match for the series as some modular form. Usually, the series is identified as
a modified Eisenstein or #-series. (The modification consists of taking some
finite linear combination of f(¢*), so, for example, the mod 19 solution
listed as Fg is actually Fg(q) — Es(q?) + 7Eg¢(q*).) However, there are also
some cusp forms (plus a scalar term, which is interpreted as E,_;), which are
identified by their label on the online LMFDB database of holomorphic cusp
forms. Proposition 3.7 provides a proof that the mod 13 series identified as
1.12.1.a in the tables is indeed multiplicative; presumably, proofs for the
other cusp forms should be similar.

There were no exceptional solutions mod 23, 29, or 31.
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TABLE 2. Exceptional solutions (mod 5)

1/2ap | a2 | a3 | a4 | a5 | a7 | ag | ag | a11 | a13 | a1 | Comments
1 11212111401 4] 2 3 4 Ey
1 1712|1310 1]01|2] 2 2 1 5.4.1.a
1 2131313 10]3] 2 4 4 Es
1 21414134 |3] 2 4 4 Es
1 3141211303 2 4 1 Es
2 3134|1412 ]2] 2 3 1 Ey
TABLE 3. Exceptional solutions (mod 7)
1/2ap | a9 | a3 | a4 | a5 | a7 | ag | ag | a11 | a13 | a1 | Comments
1 612 (3|6|210|4] 3 1 2 3.6.1.a
2 512151205 |1]0 2 5 192[2-]
3 2141|116 |6]| 5 0 2 Es
3 21512121012 |1]0 2 2 ﬂz[i]
3 31012]0]013]2]1 0 4 7.6.1.a
3 3165|4116 ]|3] 3 0 3 Fg
TABLE 4. Exceptional solutions (mod 11)
4131110 213[1]01]2]10 192[(3]
516 8 |1|5|7]0[7]4] 2 |2.10.1.a
TABLE 5. Exceptional solutions (mod 13)
1/2a0 | a2 | a3 | a4 | as | a7 | ag | ag | a11 | a1z | aig | Comments
2 2|15 (1070|630 8 7 1.12.1.a
2 5111110} 9|6 |[11| 8 | 6 1 6 Ey
4 6 |10 9|6 (12|10 8 1 5 Eg
TABLE 6. Exceptional solutions (mod 17)
1/2ap | a2 | ag | a4 | a5 | a7 | ag | ag | a11 | a13 | a1 | Comments
3 121 1116 5 [14]16|12] 5 7 | 14 1.16.1.a
4 70121111113 |13 |14 | 4 5 | 14 Eg
TABLE 7. Exceptional solutions (mod 19)
1/2ap | a2 | as | a4 | a5 | a7 | ag | ag | a11 | a13 | a1 | Comments
1 5115|512 |05 ]1]0 2 5 ﬂzm
5 6 |15|6 2|06 |10 2 6 ﬂzm
5 1316 5 1012|1513 | 8 | 15 | 12 Eg
9 7TI 1| 712|107 ]1]0 2 7 ﬁZ[iJ
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