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ABSTRACT. By considering a two ended warped product manifold, we demonstrate a
bifurcation that can occur when metric trapping interacts with a boundary. In this
highly symmetric example, as the boundary passes through the trapped set, one goes
from a nontrapping scenario where lossless local energy estimates are available for the
wave equation to the case of stably trapped rays where all but a logarithmic amount
of decay is lost.

1. Introduction. We explore the interaction of metric trapping and a boundary in an
explicit example and note an extreme bifurcation in the behavior of the local energy for
the wave equation as the boundary passes through the trapping. This is closely related
to the instability of ultracompact neutron stars as was examined in [8]. Here, we instead
examine a certain class of exterior domains with Dirichlet boundary conditions on a
warped product background geometry and provide a more elementary argument.

For the Minkowski wave equation O = 97 — A, we have a conserved energy Eo[u](t) =
1[|0u(t, -)||2. for solutions to the homogeneous wave equation. Here du = (dyu, V,u)
denotes the space-time derivative. One common and robust measure of dispersion is
called the (integrated) local energy estimate, which involves examining the energy within
a compact set. Specifically if we set

—q —1
||u||LE[o,T] = S};EQ J/QHUHL'Z’Lg([O,T]x{(x)z2j})a ||UHLE1[0,T] = ||(Ou, (z) U)HLE[O,T]
Jj=z

and
1F|lLEx0,1) = Z 2”2||F||Lng([o,T]x{<z>~za‘}),
Jj=20
we have
[0ull Loz + llull e < 110w(0, -)l[r2 + 1Oull L1 2 4 e
on (1 + 3)—dimensional Minkowski space. Here LE' and LE* are understood to denote
LEY0,00), LE*[0,00). Such estimates originated in [12, 13]. See, e.g., [11] for some of
the most general results and a more complete history.

On nonflat geometries, the null geodesics, which packets of the solution tend to flow
along, are no longer necessarily straight lines. And in certain geometries, null geodesics
may stay in a compact set for all times, and when this happens, trapping is said to occur.
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Trapping is a known obstruction to local energy estimates. In fact, [14], [15] show that
the local energy estimate as stated above cannot hold when trapped rays exist.

When the trapping is sufficiently unstable, it is often the case that local energy esti-
mates may be recovered with a small loss, which is often realized as a loss of regularity.
This is what happens, e.g., on the Schwarzschild space-times [9]. There it is shown that
a logarithmic loss of regularity suffices. See [6, 7] for the seminal results in this direction.
When, however, the trapping is elliptic (i.e. stable), it is known that nearly all decay is
lost. See, e.g., [2], [5], [8]. In both of these cases, numerous related results have followed.
See, e.g., [4, Chapter 6]. The surfaces that we consider are from [3], [1] where they were
shown to generate an example of trapping for which an algebraic loss of regularity is both
necessary and sufficient.

The notion of being nontrapping is generally known to be stable in the sense that
a sufficiently small perturbation of a nontrapping metric remains nontrapping. Here,
however, we show that a drastic bifurcation can happen when metric trapping interacts
with a boundary. Specifically, on the surfaces used in [3], [1], we shall demonstrate that
lossless local energy estimates are available when a boundary exists on one side of the
trapping. But as soon as that boundary passes through the trapped set, the interaction
with the metric causes stable trapping to form. In this setting, we demonstrate that at
most a logarithmic amount of decay is available and no loss of regularity is sufficient in
order to recover a local energy estimate.

Specifically we consider the warped products that were examined in [3], [1]. That is,
we examine R x R x S? with

ds? = —dt*> + da® + a(x)? dok, a(x) = (¥ +1)Y*™, meN.

Here (S2, do§2) is the two-dimensional round sphere. This geometry is asymptotically
flat on both of its ends, and trapping occurs at x = 0. When m > 2, the trapping is
degenerate, while for m = 1 the trapping resembles that of the Schwarzschild metric. We
use M, to denote the space (z9,00) x S? equipped with the metric dz? + a(z)?*do3,. We
will set dV = a(x)? dx dogz, while the volume form of the whole space-time Ry x M,,,
then, is dV dt. The arguments of these paper should also apply if S? is replaced by other
compact manifolds, but we will not pursue it here.

On this background (and in these coordinates), the wave equation is given by
Ogu = —07u + Agu = —07u + a(z) 20, {a(w)%wu} + a(z)"? Agou.
We consider the boundary value problem Dirichlet boundary conditions

Ogu = F(t,z,w), (t,x,w) € Ry x {x > 20} x S?,
(1.1) u(t, xg,w) =0,

U(O,.’E,UJ) :u()(wi), atu(ovwi) :ul(x,w)'

Our methods do not directly apply for other boundary conditions. For example, in the
proof of Theorem 1.1 for Neumann boundary conditions, there will be an extra boundary
term on x = xo with the wrong sign.
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This static space-time and the Dirichlet boundary conditions naturally yield a coercive
conserved energy for solutions to the homogeneous equation (F' = 0)

1

Bl) =5 [ (0 + (00 + ala) | FguldV,

where Y, denotes the derivatives tangent to the unit sphere. More generally, we have
t
(1.2) Elu](t) < Eu](0) +/ / |Ogul|Ovu| dV dt.
0 Jzxz>xo

We first consider the case of xp > 0. In this realm, the trapping is not observed and
the effect of the boundary is akin to the case of star-shaped obstacles as was examined
in [10]. We note that, in this case, we can significantly simplify the argument of [1] and
indeed select a single multiplier that will yield the result rather than needing to consider
high and low frequency regimes separately.

Theorem 1.1. If zy > 0, then solutions to the wave equation (1.1) satisfy the lossless
local energy estimate®

(1.3) lullZer +sup B () S ER(0) + I10gullzy 13, srp--
zo

For each R > 0, we shall consider the local energy
1
Balult) =5 [ (@ + @u? + ala) Wyl dV,
zo<z<R
We shall use
(w0, u1) [l p(sry = Il(uo, ur)|lm,, + || B* (uo, wr)|

with

iNg 0

- 0 il
H,, := HY(M,,) ® L*(M,,), B:= { ! ] .

Our second theorem then says that when zy < 0 all but a logarithmic amount of decay
is lost no matter what loss of regularity k is permitted.

Theorem 1.2. Let 29 < 0, and fit R > 0. Then for any k € N, if u solves (1.1) with
F=0,

EY2 )t
(1.4) lim sup (logk(t) sup w) > 0,
t—o0 wour || (w0; w1)| pemry

where the supremum is taken over all ug,u; € C°°(My,) supported in {xo < x < R} that
vanish when x = xg.

LThe analog of the LE norm here is

, T 1/2
lull L go,7] = sup 279/ (/ / lu(t, z,w)|2a(z)? do(w) dx dt) ,
g0 0 J{(z)m20}n{z>a0} Js2

with similar adjustments for LE*.
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We note that the lower bound that we obtain here matches up nicely with the decay
obtained in [2, Théoréme 1.1], namely

BY (1) < 1o loey

, t>0.
R log® (t + 2)

Note, however, that the assumptions in [2] are not exactly the same as ours, requiring in
particular a(z) =  for x > 1. While we expect a similar result to hold in our context,
we do not prove it here.

We also remark that there is no reason that R > 0 is required. The choice was made
simply to reduce the number of parameters for the sake of clarity.

Due to the presence of stably trapped broken bicharacteristics, the integrated local
energy estimate must also fail. While the above morally states that the solution decays
at most logarithmically, it does not strictly rule out the possibility of an integrated local
energy estimate. Thus, we also prove the following.

Theorem 1.3. For any A > 0 and any k € N, there ezists a T > 0 and data ug,u; €
C*(M,,), which are supported in {ro < x < R} and vanish when x = xo, so that the
solution u to (1.1) when F =0 satisfies

(1.5) lullerjo,r) > All(uo, u1)ll psr)-

2. Proof of Theorem 1.1: Nontrapping with a star-shaped boundary. By
standard approximation arguments, we may assume that wug, u;, and F have spatial

support inside a fixed ball. Finite speed of propation implies that u(¢, z,w) has compact
support in x for any t.

For, say, f,g € C?, integration by parts and the Dirichlet boundary conditions give

/ f.. > no.u o] av = [ , dalf@du+ gl av|
+/0 /x>x f/(m)+9(a?)—%a(x)_2d—( )} (Dyu)? dV dt
+/0T/zzmo [f(x)(g((;f)) ol )‘%“(x) d%( )}a ) 2|V oul® dV dt
2z (o

+ /OT /xzmo [—g(a:) + %a(

_;/OT /IMO (a(x)d%[a(x)zgl(x)])ﬁ dth—&—%/O F(20)(021)? | smay a(x0)? dogadt.

S2

))} (Oyu)? dV dt

The identity (2.1) can alternatively be seen by applying the Fundamental Theorem of
Calculus to

T
/ / (&Il 4 0,ls + Y, - 13) dog dz dt
>CEO
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where
I = _8tu(f($)8zu + g(x)u)a(x)2,
I = %((&U)Q + (Dau)? = a(@) 2 |Fgul?) f(2)a(@)? + ud,ug(w)a(x)? - %9'(@”2@(90)27
Is = (f(a:)azu + 9(55)“) You.

For 0 < § <« 1, we set

x? 1 o d N plt2m
@ = o 9@ = 3007 g (@) -0y

Then we record that, for § sufficiently small, the coefficient of (9,u)? satisfies

f'(@) +g(@) — Sale)

9 _ 20 B $1+2m
dz (a(aj) f(x)) - (1 +x2m)1+%n 6(1 +x2m)2+%

- T
~ (14 a2m) it
the coefficient of a(z)~?| ¥V u|?> becomes

Sa(e) 2 (a1 (@)) =

x1+2m x1+2m

(1 +x2m)1+$ B 5(1 _|_x2m)2+i
m1+2m

> - 0
N1+ a2m) it

the coefficient of (9yu)? is

—g(x) + %a(x)_Q% (a(x)Qf(m)) =4

x1+2m

and the coefficient of u? obeys

1 o d o2m g2m—1 m(2m + Va2 (gt — 442™ 4 1
L@ La@rg @) = Sy LG LIRS )
2 dx (1 + me)2+m (1 + x2m)4+m
2m—1

> v

N1+ 22m)2t
provided that § > 0 is sufficiently small. Moreover, we note that the boundary term,
which is the last term in (2.1), is nonnegative.

Since 0 < f(x) < 1, the Schwarz inequality and (1.2) give

F@)udendV | < Blulr) //> |0gul|u| dV dt
>xo

T>x)

on any time slice. Similarly, since g(z) < a(z)™?

[ gwyud av| 5 ( / o) dV)l/ (B[u](1)V2.

So upon establishing a Hardy-type inequality

(2.2) / a(x)2u?dV < / (Dpu)? dV,
x>x0 r>T0

, we have
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we shall also have

t
/ g(x)u@tudV‘ < E[u)(0) +/ / |0gul|du| AV dt
x>x0 0 Jzx>xo

on every time slice. In order to prove (2.2), we simply note that < a(x) and integrate
by parts, while relying on the Dirichlet boundary conditions, to obtain

/ a(x)2u?dV = / u2ix dx do
T>x0 T>x0 dx

S [ a) fudsuldv S Ja() a0l
>0

Using the bounds from below for each of the coefficients in (2.1) and the above esti-
mation of the time-boundary terms, a local energy estimate of the form

(2.3)
T
/ / (x’Qm’l(E)'gEu)2 + a7 a(2) 2|V oul? + 272 (Opu)? + x’2m’3u2) dV dt
0 x>x0

T
< E[u)(0) +/ / Ogul (1] + () ul ) aV dt
0 x>x0
follows, though it does not have the sharp weights as x — oo.

To get the estimate as stated, we shall pair (2.3) with [1, Proposition 2.3], which
showed
(2.4)

T
I §E[u](0)+/o /> Ogul (10wl + () ul ) aV dt + R ull} 5, _ 0
r-=xo

provided R is sufficiently large. Here, e.g., LEL_ 4[0,T] denotes the LE'[0,7] norm
restricted to the set {(¢,z,w) : 0 <t <T, x > R}. In order to prove (2.4), we again use
(2.1) but this time with
x x 1 x d x
= (-8R iy s =g [0 8(R))ewr). oz
1@ =(1-6(5)) s, 9@ =g o n|(1-6(5))e@?]. 2

where (p) is a monotonically decreasing cutoff that is = 1 for p < 1/2 and vanishes for
p > 1. See [1] for more details.

Due to (2.4), it suffices to control [ul|? ., for which the weights at infinity are
rg<z<R

irrelevant and (2.3) suffices. Applying the Schwarz inequality to the forcing term and
bootstrapping completes the proof.

3. Proof of Theorem 1.2 and Theorem 1.3: Stable trapping and the nonexis-
tence of integrable local energy decay. Here we shall need the following sequence
of exponentially good quasimodes.

Proposition 3.1. There is a constant ¢ > 0, a sequence of positive numbers T; — 400,
and functions v; € C°(My,) such that suppv; C {zo < z < O}, [lvjllz2(a,,) = 1,
Vjlp=ao =0, and for each k =0,1,2,... there exists C, > 0 so that

(3.1) (=g = 77)v;l mx 2,y < Cre™ ™.
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Before we proceed to proving the Proposition, we shall first show how these quasimodes
can be used to complete the proof of Theorem 1.2. These arguments are akin to those of
[14], [5], and others.

Let
uo,j(z,w) == vj(z,w), u j(zr,w):=—itv,(z,w),
Uj(t) = (Uo;(t), U j(t)) := ™" (vj, —iTjv;) € Hay,.
It follows immediately from the definition of || - || p(B*) and Proposition 3.1 that for each

k € N, there is C > 0 so that for all j € N
(3.2) (o5, u1,5) I pesry = vy, —imjv) | psry < Crtfll(v5, —iT505) || H,y -
One can check that U; solves the inhomogeneous wave equation
atUj—l—iBUj :Fj = (0,(—A9—Tj2)vj), on Ry x M,,
Uj(0) = (vj, —ijv;).
Next let ~ ) .
Uj(t) = (Uo,j(), Ur;(t)) == e~ (v, —imjv;)
be the solution to the homogeneous equation where F; = 0. Note that if u; solves (1.1)

with uy = ugj,u1 = u1y, and F' = 0, then Uo,j = uj, Ur; = Owuj. By Duhamel’s
principle, the relationship between U; and Uj is

¢
Uj(t) = Uj(t) +/0 eiz(tis)BFj ds.
Using (3.1), we estimate

([ 1¥at0s = G + 10, - Oy av) ™ < | [ 2,
rzo<z<R

< | Fjllm,, < Cote™ ™.
Let J € N be sufficiently large that 7; > 1 for j > J. Then for any ¢ € [0,¢;] where
1

v 1 . .
tj = ﬁem < ﬁecn (v, —i750;) | g 5

Ha

it holds that
Y] 2 1050, ~ ( [

zo<z<R

. ~ 1/2
V(o = Tog) () + (WU — O )0 av)

> |[(vj, —iTjv)| mr,, — Cote™ ™
2 5w, —imjj)ll

1 .
> W||(vj7_“—jvj)”D(Bk)-

In the last step, we have used (3.2). We have thus shown

Ey?uj](t) 1 ok
([ (wo,55w1,5)lpBry — 2CkT) T 20,

log™*(2Cot;), t€[0,¢],

from which Theorem 1.2 follows immediately.
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By integrating the above inequality, we also obtain

1/2
il 8110,6,) = Cono 1o ] (8) | 2210,1,1
1/2

j
log® (t5)
Since 7;, =+ o0 as j — oo, given any A > 0, we can select j sufficiently large so

1/2
Cy

> Coo i ||(Uo,j,U1,j)||D(Bk)~

O’klogz"w > A, which proves Theorem 1.3.

3.1. Proof of Proposition 3.1: By expanding into spherical harmonics, we can write

_ ~ d? _ _
a(@)(~Ag)a(@) ! = P~ + otala) +d” (@)a(a) )
=0
where 0 = 0g < 01 < 09 < ... are the square roots of the eigenvalues of the Laplacian

on S?, repeated according to multiplicity. We set

V() :=oja(x) "+ a"(z)a(z)”", Vo:=a"(z)a(z)"".

We will show that there is a sequence 7; — 400 so that we have u; € C°([zo,0)),
ujllr2@) = 1, u(xo) = 0, and for each k =0,1,2,...
il = 1 0, and for each k =0, 1,2

& L
(3.3) (=27 + Vi) = 72)u5(2) = O an,op (e™):
This will imply (3.1) with v;(z,w) = a(x) " u;(2)Y;(w) where Y; is a spherical harmonic
with eigenvalue o7.

The first lemma fixes the sequence 7;.

Lemma 3.2. For j large enough, V; is strictly increasing on [xo, zo/2], we have V;(zo/2) <
V;(0), and the operator P := —j—; + V;(z) on (x0,0) with Dirichlet boundary conditions
has an eigenvalue 737 € [Vj(x0), V;(x0/2)].

Proof. To prove that, for j large enough, we have Vj strictly increasing on [x¢, zo/2] and
Vj(z0/2) < V;(0), it suffices to use the fact that o5a(x)~? is strictly increasing on [z, 0]
when j > 0 and that o; — 00 as j — oo.

Let I = (x0,0), let D = Hg(I) N H?*(I) be the domain of P, and let 77 be the first
eigenvalue of P. We prove the upper bound on Tj2 by comparing the bottom of the

spectrum of P with the bottom of the spectrum of an explicit infinite square well, whose
first eigenvalue can be directly calculated. Let

d2

p=—2
+ dx?

+V;(3z0/4), have domain Dy = Hy (1) N H* (1)
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where Iy = (x9,3z0/4). We then have

72 = inf

<Puau>L2(1) < . <Pu’ U>L2(I)
7 uep Hu||2L2(1)

inf 5
ueCse(1y)  ullf2(p
(Prv ) 2z,

< in 5
ueC§e (1) HU||L2(1+)

||U/ 2
=V;(3z9/4) + inf M = V;(3wo/4) + 1672, >,
ueC§e(Iy) ||UHL2(1+)

which is bounded by V;(x¢/2) for j large enough. The last equality follows by computing
the smallest constant p so u”+pu = 0 has a nontrivial solution with u(xg) = u(3z¢/4) = 0.

To prove the remaining lower bound, we observe that

inf 7<PU7 u>L2(1)

> Vj(wo).
wep g, -

O

Fix x € C°([xo,0];[0,1]) with x(z) =1 on a neighborhood of [zg,z¢/2] and x(x) =0

on a neighborhood of 0. Let ¢; € C*(I), ¥;(xz0) = ¢;(0) = 0 be an eigenfunction

associated to the eigenvalue TjQ, as supplied by Lemma 3.2. Thus,

(3.4) (g Vo) — 72y =0, 7 € [Vy(ao), Vyo/2)].

We define the quasimodes to be
() = x(@);(x)/lIxibsll e

In order to prove (3.3), we will prove the following Agmon estimate, which is a variant
of the standard semiclassical Agmon estimate as in [16, Section 7.1].

Lemma 3.3. There exists a constant ¢ so that, for j large enough,

(3.5) [ Lsupp (1=x) V5 | L2 (10,01 < € 711951l 2 ([0,0]) -

Proof. Let p € C*([x0,0]) such that ¢ = 0 on a neighborhood of [zg,z¢/2] and ¢ = 1
on a neighborhood of supp (1 — x). We then fix xo € C°([x0,0]) with xo = 0 on a
neighborhood of [zg, 29/2] and xo = 1 on a neighborhood of supp ¢. Define

(3.6) w = x0e’7¥;, & >0 to be chosen later
and
2
P,:= e‘saﬂ’(—ﬁ + Vj(z) — TJQ) e~0oiv
d2
(37) = 660].80(—@ +0'j2-(1(1')72 + ‘/O(x) —Tj2>675"j90

2

d d
=05 2&7]-90’% +o3a(z) % = 8205 (¢) + b0 + Vo(z) — 77
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Using Re2d0;(0'w', w) = —d0;(¢"w,w), we compute

);
Re (Pyw, w);» = ||w'||32 + Re 200, {(¢'w', w) 2
(3.8) +{(07(a™ = 8*(¢)?) + 603" + Vo — T )w, w)
= [w'llZ> + {(oF(a™? 52( )?) + Vo = 77w, w) s
Here and in the sequel we have abbreviated L*([zo,0]) by L?. Since 77 < [Vj(x0/2)| <
oFa(xo/2)"% 4 |Vo(20/2)|, we now estimate, on supp xo,

—1

(3.9 UJQ-(a_2 — () + Vo — sz > 0’?(( max a2) —a(z0/2)7? — 6% max (@’)2)
Supp Xo Supp X0

— max |Vp| — [Vo(z0/2)].

supp Xo

Because a'(z) < 0 for < 0 and supp xo C (20/2,0], we can fix 6 > 0 small enough so
that

—1
( max a2> —a(z0/2)7? — 6% max (¢')? =:a>0.

SUpPP Xo SuUpp Xo
Then if o; > 1 is sufficiently large, we can ensure that

2
o
(sz-(a_2 — 52(90/)2) +Vy — 7—].2 > TJ, on supp xo-

Using this and the fact that o7 > 1 in (3.8) gives

2
« Qo 1 «
Sl < 2wl < IPswlzelwlis < ZIPswls + S lwl

Therefore
(3.10) Jwls < 5l Powl.
We now use elliptic estimates to show
(3.11) 1Ppwlire < ol -
Integration by parts and (3.4) give
195032 < 5 sl + 51013

1
(3.12) < (5 + (max V;(@))?) I

< a5l
By (3.4), (3.6), and (3.7),
P, w_XO<P 660”9%) [ saaXO] 6@%‘/)]'
(3.13) = Xo€’ ”(*ﬁ +V; - )% [Py, x0]e*7i#1);
= [,diz Xo]e‘s"“”z/;- + [250%0/7 Xo} 7%
da?’ I I dx’ J
Using the support properties of ¢ and xg, we get

{_%’XO} = {_%’XO]’ [250;&0’%»@} 373 = (.
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Since [—%7)(0] = —x0 — 2x6%7 using the triangle inequality along with (3.12) and
(3.13) establishes (3.11).

Since ¢ = xo0 = 1 on supp (1 — x), (3.10) and (3.11) show
@ [ P de < fuls € ofls e
supp (1-x)
which implies the desired result (3.5). O

We now complete the proof by establishing (3.3):

Proposition 3.4. There exists a constant ¢ so that for any k =0,1,..., we have
d2
——+ V=) H < Cre=<%.
H( dg2 0T T ) H*((20,0)) ke

Proof. As (3.5) gives
(L =252 < e 7 [Y5llLe = [Ixtjlle = (1 — e )4yl 2,
it suffices to bound the norms of (—% +V; - 7]2)()(1/13-) in terms of ||¢);]| 2.
Integrating by parts gives
0
21Ul < =2 [ (2% + (P05 da
zo

< IX¥ilz. +C |51 do + C

supp x’ supp x’

Vi(z) — Tj2 Wj|2 dx.

Noting that supp x’ C supp(1l — x), this yields

(3.14) D A N
supp (1—x)

provided j is sufficiently large. Using (3.14) along with (3.4) and (3.5), we get

d2
L2 H [_@’X}%‘ L2
" 10
< IX"illez + 20X ¥l 2
< C’O'j”]-supp (lfx)¢j||L2
< e Yl Lz,

(-G v =)

dx?

as desired.

The bounds on the higher Sobolev norms follow by an induction argument and using
(3.4) and integration by parts repeatedly as above. a
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