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Abstract—This paper reports on developing an integrated
framework for safety-aware informative motion planning suitable
for legged robots. The information-gathering planner takes a
dense stochastic map of the environment into account, while
safety constraints are enforced via Control Barrier Functions
(CBFs). The planner is based on the Incrementally-exploring
Information Gathering (IIG) algorithm and allows closed-loop
kinodynamic node expansion using a Model Predictive Control
(MPC) formalism. Robotic exploration and information gathering
problems are inherently path-dependent problems. That is, the
information collected along a path depends on the state and
observation history. As such, motion planning solely based on a
modular cost does not lead to suitable plans for exploration. We
propose SAFE-IIG, an integrated informative motion planning
algorithm that takes into account: 1) a robot’s perceptual field
of view via a submodular information function computed over
a stochastic map of the environment, 2) a robot’s dynamics and
safety constraints via discrete-time CBFs and MPC for closed-
loop multi-horizon node expansions, and 3) an automatic stopping
criterion via setting an information-theoretic planning horizon.
The simulation results show that SAFE-IIG can plan a safe and
dynamically feasible path while exploring a dense map.

I. INTRODUCTION

Information gathering is an important and widely studied
task for mobile robots operating in unknown environments [1–
9]. Legged robots have demonstrated the promising capability
of traversing complex terrains [10–13], and are one of the
natural candidates for such tasks. However, existing informa-
tive motion planning methods do not consider legged robots’
dynamics or safety constraints during the planning. As the
legged robot dynamics is hybrid and highly nonlinear [14],
conventional sampling-based planning methods may result in
an infeasible or unsafe path plan for legged robot operation.

Multi-step stability and feasibility are among the main chal-
lenges in developing sampling-based motion planning methods
suitable for legged robots. The sampling-based informative
motion planning methods [4, 8] have been studied to plan
a path that maximizes the information robot gathered along
the path and are asymptotically optimal. However, these algo-
rithms do not encode any safety criteria nor consider legged
robot dynamics. The Control Barrier Function (CBF) [15, 16]
has gained success in legged robot control [17–19] and
has been integrated into the sampling-based motion planning
framework [20, 21] to avoid collisions. Yang et al. [21] inte-
grated CBFs into the Rapidly-exploring Random Tree (RRT)
[22]. However, the node expansion is one-step ahead, i.e.,
greedy, using a Quadratic Programming (QP); furthermore,

Fig. 1: SAFE-IIG framework. Safety-critical multi-step planner plans a multi-
step stable path via the LIP model. CBF constraints will guarantee the robot
state stays in the forward invariant safe set. The planner performs in a receding
horizon manner, such that the first step in each sampling is used for node
expansion. A node is added to the path if it is within the dynamic budget; it has
promising information gain and is collision-free. The planner automatically
stops when an information-theoretic stopping criterion is satisfied. The angular
momentum-based walking controller then tracks the optimal path.

the development of CBFs for legged robot dynamics is not
explored. Agrawal and Sreenath [18] developed the Discrete-
time Control Barrier Function (DCBF) applied to the bipedal
robot navigation. Zeng et al. [23] combined DCBF with Model
Predictive Control (MPC), enabling safe receding horizon
control, which could potentially bridge the robot dynamics
and safety criteria in a longer time.

In this paper, to allow a legged robot to navigate with safety
and stability while maximizing the information gathered, we
propose an informative robot motion planning framework that
is tightly coupled with robot dynamics and encodes safety
criteria. In particular, our work combines the Incrementally-
exploring Information Gathering (IIG) [8] framework for
exploration with DCBF-MPC [18, 23]. Node expansion is
enabled by trajectory optimization through DCBF-MPC based
on a simplified robot model in a receding horizon manner.

The main contributions of this paper are as follows.

• We develop a DCBF-MPC based safety-critical multi-step
planner for legged robot and combine it with RRT for
sampling-based motion planning.

• We develop the integration of legged robot dynamics
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and safety criteria into the sampling-based robotic in-
formation gathering algorithms [4, 8] via the proposed
safety-critical multi-step planner. The main result of the
proposed planner, SAFE-IIG, enables a robot to navigate
an environment safely while collecting information about
a dense map. Such scenarios frequently appear in robotic
exploration, search and rescue missions, and environmen-
tal monitoring problems [24–29].

• We validate the planned trajectory’s feasibility through
simulations of a high degree-of-freedom bipedal robot (a
Cassie-series biped robot). The waypoints, velocity, and
heading angle computed by the planner are directly used
for legged robot path tracking without replanning.

The remainder of this paper is organized as follows. Related
work is given in Section II. We introduce the simplified
bipedal robot model and the kinematic constraints for motion
planning in Section III. The DCBF-MPC-based safety-critical
multi-step planner is discussed in Section IV. We develop
the proposed safe informative motion planning framework in
Section V. Simulation results are presented in Section VI. A
discussion on the proposed work and its limitations is provided
in Section VII. Finally, Section VIII concludes the paper and
provide future work ideas.

II. RELATED WORK

The hybrid and nonlinear dynamics of legged robot makes
its motion planning difficult [14]. Hybrid Zero Dynamics
(HZD)-based periodic gait design [30] enables asymptotically
stable walking pattern using optimization on the robot full
dynamics [31, 32]. The work of [33–35] has explored us-
ing simplified models, e.g., Linear Inverted Pendulum (LIP)
model [36] and Spring Loaded Inverted Pendulum (SLIP)
model [37] for bipedal locomotion. To enable multi-step mo-
tion planning of Cassie bipedal robots, Apgar et al. [34] pro-
posed an MPC framework based on the simplified model [38].
Robustness to disturbances is achieved by real-time implemen-
tation of the MPC at faster than 100 Hz. Gong and Grizzle [35]
combined the LIP model and the angular momentum about the
contact point for one-step ahead foot placement planning. The
proposed controller makes the robot robust to disturbance as
replanning is instantaneous. In this paper, we also adopt the
LIP model for the bipedal robot walking task.

CBFs (Control Barrier Functions) [15, 16] have been an
effective tool for safety-critical control. They haven been used
in stepping stones context for bipedal robot in simulations [39–
41]. Grandia et al. [17] combined MPC and CBF to achieve
multi-layer safety in motion generation and control, which is
also validated in stepping stone experiment on quadrupedal
robot. The discrete-time variant of the CBF, i.e., DCBF is
proposed by Agrawal and Sreenath [18], and implemented
via the HZD-based steering controller [42] as a one-step
ahead planner for bipedal robot collision avoidance and path
tracking. By solving QP for linear obstacles and Quadratically
Constrained Quadratic Programming (QCQP) for ellipsoidal
obstacles, the robot can track the path while stay in the safe set
with minimized steering. All the above CBF-based planning

Fig. 2: LIP model. Red arrow denotes the vector from robot COM to foot
placement. The robot is at the end of step k and about to decide the next
foot placement for step k + 1. The rectangle is the region of reachable foot
placement at step k + 1.

methods are implemented as one-step ahead or focus on stride-
to-stride planning.

Sampling-based motion planning methods are suitable for
the exploration of an unknown environment. An example is
RRT [22], which plans a trajectory by sampling the input or
configuration space to generate nodes in a tree. For legged
robots, randomly sampling the input may enable one-step
expansion, but the robot will likely lose stability at future steps.
Other methods include Probabilistic Road Map (PRM) [43, 44]
and their asymptotically optimal variant RRT* and PRM* [45].
FIRM [46] provides a probabilistically complete solution
to motion planning under sensing uncertainty. The Rapid-
exploring Information Gathering (RIG) algorithm [4] pro-
vides an asymptotically optimal informative motion planning
framework. Built on RIG, IIG [8] develops information-
theoretic convergence criteria and information functions for
online implementation. A recent review of asymptotically
optimal sampling-based motion planning methods is written
by Gammell and Strub [47]. LQR-Tree [48] combines Linear
Quadratic Regulator (LQR) and RRT to build a tree of not
only trajectories but also a closed-loop controller. However,
LQR-Tree can only work for low-dimensional systems due to
the complexity of Sum-of-Square programming. We perform
trajectory optimization similar to LQR-Tree; however, we
adopt a receding horizon approach to expand the trajectory.

To mitigate the safety problem, CBF is combined with RRT
for safe motion planning [20, 21]. The work of Manjunath
and Nguyen [20] checks the inequality condition induced
by CBF after sampling the input. A node expanded by an
input resulting in safety violation is discarded. In [21], the
CBF-QP algorithm is implemented in each sampling step to
guarantee safety. Both [21] and [20] are formulated for one
step node expansion with simple agent dynamics. In this work,
we adopt DCBF-MPC [23] to optimize the stride-to-stride
motion, which will guarantee multi-step stability.

III. SIMPLIFIED BIPEDAL ROBOT MODEL

In this section, we introduce the LIP (Linear Inverted Pen-
dulum) model [36] and the kinematic constraints for bipedal
robot motion planning. We assume the robot is walking on
flat ground thus the LIP model is suitable for this application.
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The LIP model assume constant robot center of mass (CoM)
height, massless legs and the stance ankle that is not actuated.
We assume that the impact is instantaneous and the velocity
of robot CoM will not change during the impact.

Figure 2 presents the LIP model and the variables. The
robot’s state variables are the COM position x, y and velocity
ẋ and ẏ. The input is the desired stance foot position. We
use px and py to denote the distance of the stance foot to
the robot’s CoM in x and y directions. All the parameters are
represented in the world frame.

A. Linear Inverted Pendulum Model

We use H to denote the height of COM and g to denote
acceleration of gravity. The robot’s motion in the x direction
within a step satisfies ẍ = − g

H px, or in state variable form[
ẋ
ẍ

]
=

[
0 1
0 0

] [
x

ẋ

]
+

[
0

−g/H

]
px.

The closed-form solution is given by[
x(t)

ẋ(t)

]
=

[
1 sinh(βt)/β
0 cosh(βt)

] [
x(0)
ẋ(0)

]
+

[
1− cosh(βt)
−β sinh(βt)

]
px,

where β =
√
g/H .

We assume that the each step has constant time duration T .
We call the half-open time interval for the k-th step, [kT, (k+
1)T ), as phase k. For stride-to-stride control, we use subscript
k to denote the state at the start of phase k. It follows that
the discrete dynamics is given by[

xk+1

ẋk+1

]
= A

[
xk

ẋk

]
+ Bpx,k, (1)

with

A :=

[
1 sinh(βT )/β
0 cosh(βT )

]
,B :=

[
1− cosh(βT )
−β sinh(βT )

]
. (2)

For a LIP model, the motion in the y-direction is identical to
the x-direction, namely[

yk+1

ẏk+1

]
= A

[
yk

ẏk

]
+ Bpy,k. (3)

B. Kinematic Constraints

We impose reachability constraints on foot placement to
avoid violation of joint limits and to decide the contact
sequence. The reachable region of the robot’s next foot place-
ment is approximated by a square located relative to the CoM
at the start of each phase. We use θk to denote the heading
angle θ at the start of phase k. The reachable region constraints
are given in the robot’s body frame as[

lbxb,k

lbyb,k

]
≤
[

cos(θk) − sin(θk)
sin(θk) cos(θk)

]ᵀ [
px,k
py,k

]
≤
[
ubxb,k

ubyb,k

]
,

(4)
where ub and lb denote the upper and lower bounds of the
reachable distances in the robot’s longitudinal and lateral
directions, which are denoted as xb and yb, respectively.

Because the robot switches its stance leg between phases, ub
and lb are time-varying (i.e., they are functions of k). Figure 2
illustrates the reachable region of foot placement relative to the
CoM and the robot’s body frame.

While taking θ to be an independent variable can enable
more flexible walking patterns, such as diagonal walking, here
we constrain it to be consistent with the forward direction of
the robot, namely, the heading at time k coincides with the
vector from CoM position at step k to k + 1,

sin(θk) =
∆xk√

∆xk2 + ∆yk2
, cos(θk) =

∆yk√
∆xk2 + ∆yk2

,

(5)
where ∆xk := xk+1−xk, ∆yk := yk+1−yk. By substituting
(5) into (4), we can constrain the robot’s walking direction.

To avoid infeasible motion, we also impose maximum and
minimum CoM position movement in each phase, which are
denoted by lmax and lmin, respectively,

lmin ≤
√

∆xk2 + ∆yk2 ≤ lmax. (6)

IV. SAFE MULTI-STEP PLANNER

In this section, we derive our DCBF-MPC-based safety-
critical multi-step planner [23]. As a bipedal robot’s stride-
to-stride motion is discrete, DCBF [18] is a natural choice
to constrain the robot state in a forward-invariant safe set.
However, as the open-loop robot dynamics is unstable and we
do not use predefined gait, one step planning may result in
failure in later steps. Therefore, MPC is used to ensure multi-
step stability. For sampling-based motion planning, multi-step
stability is essential to enable feasible node expansion.

A. Discrete-time Control Barrier Function

We first introduce the concepts of safety and discrete control
barrier functions. For more details, we refer the reader to [18,
23]. Consider a discrete-time control system,

xk+1 = f(xk,uk), (7)

where xk ∈ D ⊂ Rn denotes the system state at time step
k ∈ Z+, uk ∈ U ⊂ Rm is the control input, and f is a locally
Lipschitz function. The safety set S is defined as the super-
level set of a continuously differentiable function h : Rn → R,
S := {xk ∈ D ⊂ Rn | h(xk) ≥ 0}. Its boundary ∂S is
defined as ∂S := {x(k) ∈ D | h(xk) = 0} and we assume
that ∂S ∩ ∂D = ∅. Note that we define x ∈ D that S ⊂ D to
handle disturbances [15, 49]. We wish the robot’s states to stay
in the safety set once it is in it, which leads to the following
definitions of the forward invariance and safety.

Definition 1 (Forward Invariance and Safety). A set S is
forward invariant if for every x0 ∈ S , the system trajectory
xk ∈ S for every k ≥ 0. The system is safe on S if set S is
forward invariant [17].

Before we discuss CBFs, we note that a continuous function
α : (−b, a) → (−∞,∞), for some a, b ≥ 0 is said to
belong to extended class K ( Ke) if it is strictly increasing
and α(0) = 0. Moreover, if a, b =∞, limr→∞ α(r) =∞ and
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limr→−∞ α(r) = −∞ then α is said to belong to extended
class K∞ (K∞,e).

Definition 2 (Discrete-time Control Barrier Function [18, 23]).
A map h : D → R is a Discrete-time Control Barrier Function
for (7) if there exists a class K∞,e function α such that the
following hold:

1) For all y ∈ R+, α(y) ≤ y
2) For all x ∈ D, ∃u such that

∆h(x,u) ≥ −α(h(x)),

where
∆h(x,u) := h ◦ f(x,u)− h(x).

Remark 1. Note that the safe set S is attractive if h is a
DCBF. This is seen by constructing a Discrete-time Control
Lyapunov Function [18]:

V (x) =

{
0, if x ∈ S

−h(x) ≥ 0, if x ∈ D\S

such that we have:

∆V (xk,uk) = V ◦ f(xk,uk)− V (xk)

= −∆h(xk,uk)

≤ α(h(xk)) = α(−V (xk)) ≤ 0.

Remark 2. Suppose α ∈ K∞,e is a linear function such that
α(t) = γt, 0 < γ ≤ 1. If h(x0) ≥ 0, we have h(xk+1) ≥ (1−
γ)h(xk). Furthermore, we have h(xk) ≥ (1− γ)kh(x0) ≥ 0,
which is an exponential function in k, thus named Discrete-
time Exponential Control Barrier Function [18]. If h(x0) < 0,
we will have h(xk) ≥ (1 − γ)kh(x0), which means the safe
set S is also exponentially stable.

B. Model Predictive Control

MPC is designed to resolve a constrained optimal control
problem over a finite time horizon. Zeng et al. [23] combine
DCBF and MPC to achieve safe optimal performance for
discrete-time systems. In our application, we utilize DCBF-
MPC to design a feasible stride-to-stride motion that is en-
ergetically optimal with respect to a moving time horizon of
fixed length. Compared to the use of distance constraints in
MPC, the CBF constraints are more robust.

Given an initial condition xinit for the system at time 0 and
a time horizon N , the DCBF-MPC formulates the following
optimization problem.

Problem 1 (DCBF-MPC).

min
(X,U)

cN (xN ) +
N−1∑
k=0

ck(xk,uk)

s.t.

xk+1 = f(xk,uk)

x0 = xinit,xk ∈ D,uk ∈ U
∆h(xk,uk) ≥ −α(h(xk)),

where X := (x1,x2, . . . ,xN ),U := (u0,u1, . . . ,uN−1)
and the running cost is ck, k = 1, 2, . . . , N .

We redefine the legged robot system state as xk =
[xk, ẋk, yk, ẏk]T,u = [px,k, py,k]T. The system matrix for the
new states are represented by Af and Bf by reorganizing
(1)-(3). For our application in bipedal robot motion planning,
where we seek to steer the robot to a desired position subject
to the safety and kinematic constraints given by (4)-(6), the
problem is formulated as follows.

Problem 2 (Safety-critical Multi-step Planner).

min
(X,U)

cN (xN )

s.t.

xk+1 = Afxk + Bfuk,x0 = xinit

lbx,k ≤ sin(θk)px,k + cos(θk)py,k ≤ ubx,k,
lby,k ≤ − cos(θk)px,k + sin(θk)py,k ≤ uby,k,
l2min ≤ ∆x2

k + ∆y2
k ≤ l2max,

h(xk+1) ≥ (1− γ)h(xk).

(8)

Note that we assume the robot state starts inside the safe set,
i.e., h(x0) ≥ 0. The CBF is not an explicit function of u as
it is imposed by the constraints.

The terminal cost function is designed to minimize the
distance between the terminal positions and goal position
[xf , yf ]T while regulating the terminal velocity to 0,

cN (xN ) := w1(ẋ2
N + ẏ2

N ) + w2((xN − xf )
2

+ (yN − yf )
2
),

where w1 and w2 are positive weights. Part of a path planned
by the DCBF-MPC and the associated foot placements are
illustrated in Fig. 3. We also compared the path plans with
different γ in Fig. 4. The robot starts from (0 m, 0 m) and
the goal position is (10 m, 10 m). The obstacle is modeled as
a circle centered at (5 m, 5 m) with radius 2 m. The function
h(x) is defined as:

h(xk) =

((
xk − 5

2

)2

+

(
yk − 5

2

)2
) 1

2

− 1. (9)

We see that a path planned with a smaller value of 0 < γ ≤ 1
is more conservative and robust, while a larger γ allows the
robot to more closely approach the obstacle, though it still
remains outside. The different decay rate of h(x) can also be
verified in Fig. 4.

C. Application in Sampling-Based Motion Planning

Now we incorporate the DCBF-MPC into the sampling-
based motion planning framework RRT [22]. The algorithmic
implementation of RRT-DCBF-MPC is presented in Algorithm
1. The functions used in the algorithm are explained as
follows.
• Sample – This function returns i.i.d. samples from the

free space Xf .
• Nearest – Given a graph G = (V , E), where V ⊂ Xf ,

and a query point x ∈ Xf , this function returns a vertex
v ∈ V that has the “smallest” distance to the query point.

• DCBF_MPC – This function extends nodes towards newly
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Fig. 3: Path planned by simplified model. The reachable region of foot placement are the squares. The reachable regions are conservative approximations so
the foot placements near the boundary are still feasible.
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Fig. 4: Trajectory optimization by DCBF-MPC on the LIP-based simplified
model with different values of γ. The step number is N = 40.

sampled points and allows for constraints on motion
of the legged robot. It returns the first step by solving
Problem 2 and the flag denoting the feasibility of the
solution. The flag is true if the solution is feasible,
otherwise it is false.

• NoCollision – Given two points xa,xb ∈ Xf , this
functions returns true if the line segment between xa

and xb is collision-free and false otherwise.
• ComputeSteps – This function returns an approxima-

tion of the time-horizon for solving DCBF_MPC given
two points xa,xb ∈ Xf .

The algorithm’s main loop begins with the start node and
generating random sample points xrand in Xf . For each new
point sampled, the algorithm finds the nearest node in V and
steers to the point using DCBF_MPC. Inside the DCBF_MPC
function, we give an estimation of the time horizon N through
ComputeSteps. To ensure multi-step stability, we set a
minimal step number Nmin. A maximum time horizon Nmax is
also set considering the computational budget. We only reserve
the first step planned by the MPC, which is very similar to
the applications of MPC in real-time control [50–54]. When
a path is chosen after the planning is finished, we will decide
the heading angle using (5).

V. SAFE INFORMATIVE MOTION PLANNING

Hollinger and Sukhatme [4] formulated the Robotic Infor-
mation Gathering (RIG) problem as a maximization problem
subject to finite resources, i.e., a budget b. Ghaffari Jadidi et al.
[8] extended RIG to an incremental motion planning setup,

Algorithm 1 RRT-DCBF-MPC()

Require: Free space Xf , start configuration xstart;
1: // Initialize node list, edge list, and tree
2: V ← {xstart}; E ← ∅
3: while true do
4: xrand ← Sample(Xf )
5: xnearest ← Nearest(xrand,V)
6: xnew, isFeasible ← DCBF_MPC(xnearest,xrand)
7: if NoCollision(xnearest,xnew,Xf ) and isFeasible then
8: E ← ∪{(xnearest,xnew)},V ← ∪{xnew}
9: if ReachGoal(xnew,xgoal) then

10: break
11: end if
12: end if
13: end while
14: return T = (V, E)
15:
16: function DCBF_MPC(xstart,xgoal)
17: N ← ComputeSteps(xnearest,xrand)
18: N ← min(N,Nmax), N ← max(N,Nmin)
19: (x1,2,...N ,u0,1,2,...,N−1,isFeasible) ← argmin Problem 2
20: xnew ← (x1,u0)
21: return xnew, isFeasible
22: end function

IIG, via a convergence criterion based on Relative Information
Contribution (RIC). This convergence criterion enables the
robot to execute planned actions autonomously as opposed to
being anytime (manual stop). Our proposed planner, SAFE-
IIG, is built on the IIG algorithm [8].

The algorithmic implementation of SAFE-IIG is shown in
Algorithm 2.

• Near – Given a graph G = (V, E), where V ⊂ Xf , a
query point x ∈ Xf , and a positive real number r ∈ R>0,
this function returns a set of vertices Vnear ⊆ V that are
contained in a ball of radius r centered at x.

• Information – This function quantifies the informa-
tion quality of a collision-free path between two points
from the free space Xf . In this work, we use the mutual
information between the map and a depth camera [8,
Algorithm 3].

• Cost – The cost function assigns a strictly positive cost
to a collision-free path between two points from the free
space Xf .

5



Algorithm 2 SAFE-IIG()
Require: Budget b, free space Xf , Environment M, start config-

uration xstart, near radius r, relative information contribution
threshold δRIC , averaging window size nRIC ;

1: // Initialize cost, information, starting node, node list, edge list,
and tree

2: Iinit ← Information([ ],xstart,M), Cinit ← 0, n ←
〈xstart, Cinit, Iinit〉

3: V ← {n},Vclosed ← ∅, E ← ∅
4: nsample ← 0 // Number of samples
5: IRIC ← ∅ // Relative information contribution
6: while AverageRIC(IRIC , nRIC) > δRIC do
7: // Sample configuration space of vehicle and find nearest node
8: xsample ← Sample(Xf )
9: nsample ← nsample + 1

10: xnearest ← Nearest(xsample,V\Vclosed)
11: xfeasible,isFeasible ← DCBF_MPC(xnearest, xrand)
12: if not isFeasible then
13: continue
14: end if
15: // Find near points to be extended
16: Vnear ← Near(xfeasible,V\Vclosed, r)
17: for all nnear ∈ Vnear do
18: // Extend towards new point
19: xnew, isFeasible ← DCBF_MPC(xnearest, xrand)
20: if NoCollision(xnear,xnew,Xf ) and isFeasible

then
21: // Calculate new information and cost
22: Inew ← Information(Inear,xnew,M)
23: c(xnew)← Cost(xnear,xnew)
24: Cnew ← Cnear + c(xnew)
25: nnew ← 〈xnew, Cnew, Inew〉
26: if Prune(nnew) then
27: delete nnew
28: else
29: IRIC ← append(IRIC , (

Inew
Inear

− 1)/nsample)
30: nsample ← 0 // Reset sample counter
31: // Add edges and nodes
32: E ← ∪{(nnear, nnew)},V ← ∪{nnew}
33: // Add to closed list if budget exceeded
34: if Cnew > b then
35: Vclosed ← Vclosed ∪ {nnew}
36: end if
37: end if
38: end if
39: end for
40: end while
41: return T = (V, E)

• Prune – This function implements a pruning strategy
to remove nodes that are not “promising”. This can
be achieved through defining a partial ordering for co-
located nodes.

Lines 2-5 show the algorithm initialization. In lines 8-14, a
feasible sample point from Xf is drawn. Line 16 extracts all
nodes from the graph that are within radius r of the feasible
point. These nodes are candidates for extending the graph, and
each node is converted to a new node using the DCBF_MPC
function in line 19. In lines 20-25, if there exists a collision
free path between the candidate node and the new node, the
information gain and cost of the new node are evaluated.
In lines 26-35, if the new node does not satisfy a partial

Fig. 5: Cassie by Agility Robotics is a 3D robot with seven joints on each
leg, where five are actuated by motors and two are constrained by springs.

ordering condition it is pruned, otherwise it is added to the
graph. Furthermore, the algorithm checks for budget constraint
violation. The output is a graph that contains a subset of safe
and dynamically feasible paths with maximum information
gain.

VI. SIMULATION RESULTS ON A HIGH-DIMENSIONAL 3D
BIPED ROBOT

We apply the proposed algorithms to motion planning of
a 20 degree of freedom bipedal Cassie-series robot, shown
in Fig. 5, and validate the feasibility of the planned path in
simulation. The Cassie robot’s weight is 32 kg, and its CoM
height is H = 0.6 m. The limits of the reachable region are
ubxb

= 0.3 m, lbxb
= −0.2 m in the robot’s sagittal plane

for all steps. When the next step is right stance, the bounds
in the frontal plane are ubyb

= 0.25 m, lbyb
= 0.05 m, and

ubyb
= −0.05 m, lbyb

= −0.25 m for left stance.
We first present the path planned by RRT-DCBF-MPC in a

single obstacle environment. Next, we present the results of
SAFE-IIG in a dense stochastic map. We then introduce LIP
model-based bipedal walking controller [35] for robot control
to track the path planned by the proposed algorithms.

The simulations are launched in Matlab Simulink. We use
the Matlab function fmincon with interior point method to
solve Problem 2 for each sample. We use Nmax = 3 as
the maximal time horizon and Nmin = 2 as the minimum.
The 3-step planning is long enough to provide foresight to
the future while limiting the computational burden. Without
analytical gradients, the optimization can run at 5 Hz on a
laptop equipped with a 4-core Intel i7-7820HQ 2.9 GHz CPU.

A. Single obstacle environment

We apply RRT-DCBF-MPC to legged robot path planning
in a 25 m×25 m square region. We consider an ellipsoidal
obstacle centered at (10 m, 10 m) with long axis being 8 m and
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Fig. 6: Legged robot motion planning by RRT-DCBF-MPC in a single obstacle
environment. The CoM trajectory is plotted in grey. Blue and red dot denotes
the left and right foot placement, respectively. We randomly choose a path
for tracking, which is plotted in black.

short axis being 1 m. We choose γ = 0.75 in this numerical
simulation. Similar to [18], the CBF constraints are

h(xk) = (xk − 10)
2

+ (
yk − 10

8
)
2

− 1. (10)

As the RRT-based algorithm can be stopped anytime and we
do not specify a target region, we sampled 2500 points in the
x−y plane to extend the tree. The planned path, including the
CoM trajectory and foot placements, is presented in Fig. 6. The
robot’s trajectory successfully avoids the obstacle. Though the
path is not smooth, we will later show that it is dynamically
feasible and can be tracked by the controller.

B. Stochastic Dense Map

We now implement the SAFE-IIG in the Cave map [55].
The map is initialized as an occupancy grid map by assigning
each point an occupied or unoccupied probability. We model a
non-uniformly distributed signal by placing two signal sources
at the top of the map. The strength of the two signals decays
exponentially with distance:

p(x) =
∑
n

λn exp(−‖x− xn‖Σn
), x ∈ Xf

where xn is the center of the signal source, and λn is the
signal strength. Here we use Mahalanobis distance ‖·‖Σn

.
To define the safe set, we first use a clustering method, e.g.,

k-means to group the occupied points. We then use p-norm
balls to approximate each detected obstacle and define the CBF
h(xk) = ‖Σ(rk − robs)‖p − 1 ≥ 0, where rk := [xk, yk]T

represents the robot’s Cartesian position at step k and robs
denotes the center of an obstacle. Σ is a linear transformation
that rotates and normalizes the axis. As DCBF allows the robot
state to approach the boundary of safe set, we add a buffer to
the radius of each ball. For example, the obstacle at the top

of the map is written as:

h(xk) =

(∣∣∣∣ xk − xc
rx + rbuff,x

∣∣∣∣p +

∣∣∣∣ yk − yc
ry + rbuff,y

∣∣∣∣p)
1
p

− 1, (11)

where the parameters xc = 4.2, yc = 18.9 are the center, rx =
1.9, ry = 0.9 the radii, and rbuff,x = rbuff,y = 0.5 the buffer
size. We choose p = 10 to approximate the infinity norm while
avoiding the non-smoothness. When applied in a map, only the
obstacles near xnearest will activate the corresponding CBF
constraint for the MPC.

The planning stops when the Relative Information Contri-
bution (RIC) [8] is below the threshold δRIC (e.g., 5e − 3).
RIC is essentially the non-dimensional information gain and
shows the contribution of any new node in the graph relative to
its parent node. The final path plans are presented in Fig. 7.
The signal distributions are represented by the color in the
unoccupied region, where a brighter color denotes a stronger
signal. The planned path is in white. Three paths are selected
and the path with maximized information gain is plotted in
red. The evolution of RIC and its upper bound (UBRIC) are
presented in Fig. 7. The upper bound is based on the map
entropy rather than the mutual information between the map
and measurements from a simulated depth camera [8].

We observe that the planned path maintains a clear dis-
tance from the obstacles. As multiple CBF constraints can
be activated at the same time in this map, the robot path is
constrained in a safe corridor and thus is much smoother than
in the RRT-DCBF-MPC case. In the following section, we
will show that the planned path is also dynamically feasible
by simulation.

C. LIP-based Angular Momentum Controller

The controller is developed in [35]. The linear velocity term
is replaced with angular momentum about the contact point L.
On a real robot, L = LCoM + p ×mvCoM, where LCoM is
the angular momentum about the CoM, p is the vector from
the contact point to the CoM. We neglect LCoM for walking
task. For LIP model, Ly = −mHpx and the dynamics is[

ẋ

L̇y

]
=

[
0 1

mH
0 0

] [
x
Ly

]
−
[

0
mg

]
px (12)

Compared to the original LIP model, this model has a higher
fidelity to the real robot model because of several desirable
properties of L as discussed by Gong and Grizzle [35].

The dynamics from step to step can be described by:[
xk+1

Ly
k+1

]
= AL

[
xk
Ly
k

]
+ BLpx,k

AL :=

[
1 1

mHβ
sinh(βT )

0 cosh(βT )

]
,BL :=

[
1− cosh(βT )
−mHβ sinh(βT )

]
Substitute desired angular momentum to the left side of (12),
we can decide the desired foot placement:

px,k =
−Ly des

k+1 + cosh(βT )Ly
k

mHβ sinh(βT )
. (13)
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Fig. 7: Top: Path plan by SAFE-IIG in cave map. The red path maximizes
the information gathered. Bottom: Convergence graph of the cumulative
penalized IRIC . The planning converges automatically when RIC is below
the threshold.

On Cassie robot, after deciding the foot placement, time-
based reference trajectories are generated for the following
nine control variables.

z0 =



torso pitch
torso roll

stance hip yaw
swing hip yaw
CoM height
pxswingfoot

pyswingfoot
pzswingfoot

swing toe absolute pitch


.

The reference for torso pitch and roll are constant 0 to keep
the torso upright. Hip yaw on two legs changes linearly w.r.t.
time to track the heading angle. CoM height is kept constant
to imitate LIP model. Swing foot position will arrived at the
decided foot placement at the end of a step. Swing toe pitch
is constant zero to keep the foot flat.

After the reference trajectories are generated, a low-level
Input-Output Linearization controller is implemented to make
control variables track their references. An Input-Output Lin-
earization controller enforces the following linear equation
through input:

z̈ +Kpż +Kdz = 0,

where z = z0 − zd is the so-called output, zd is the reference

for the control variables. Kp and Kd are chosen such that
eigenvalues are negative. More details about the advantage
of choosing angular momentum as state variable, selection
of output states, and the implementation on a real robot are
described in [35].

D. Path Tracking

We use the LIP-based angular momentum controller to track
the desired paths. We consider 2 scenarios that interests us.
The first scenario is called open-loop tracking, where we
assumes no position feedback. The second scenario is closed-
loop tracking, such that position feedback is available. In both
scenarios we assume we know the robot’s yaw angle as a
reliable estimate is accessible through the IMU when the initial
value is known.

In the open-loop tracking, we use the angular momentum
at the waypoint and the heading yaw angle as the feedback.
The heading angle is set to be the desired angle of the swing
toe. We plug the angular momentum obtained by the planner
at waypoint k + 1 as desired angular momentum into (13) to
get the foot placement px,k.

In the closed-loop tracking, CoM position and angular mo-
mentum are simultaneously controlled. Similar to the deadbeat
control described by Xiong and Ames [56], foot placement for
k and k+1 steps are calculated to obtain desired position and
angular momentum at k + 2 step, using[

xk+2

Ly
k+2

]
= AL

2

[
xk
Ly
k

]
+ ALBLpx,k + BLpx,k+1. (14)

Given the state at step k and the desired state at step k + 2,
we can solve (14) for foot placement px,k and px,k+1. Only
foot placement px,k is implemented.

Figure 8 shows the simulated robot trajectories. The way-
point tracking error is presented in Fig. 9. The closed-loop
tracking is close to the ground truth, while in open-loop
tracking, the robot trajectories gradually drift from the desired
path. However, the drift is small considering the path length.

The results suggest that the planned paths are dynamically
feasible considering the discrepancy between the simulated
paths and desired paths. Additionally, we have demonstrated
that the heading angle and the position and velocity at the
waypoints can be directly used as commands for the low-level
controller.

VII. DISCUSSIONS AND LIMITATIONS

We combined DCBF-MPC with sampling-based motion
planning algorithms to plan safe dynamically feasible paths.
For constructions of safe sets, the obstacle (10) can be con-
sidered as the form h(xk) = ‖Σ(rk − robs)‖pp − 1. Although
this form works well when p = 2, we observed that when
p becomes large, the CBF defined in (11) scales better when
applied in the optimization. The planned path is not smooth
due to random sampling. However, we can use it as an initial
guess to obtain a smoother path via optimization, see the video
in the supplementary material.
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Fig. 8: Robot CoM trajectory in the simulation. Left: path planned by RRT-DCBF-MCP. Right: path planned by SAFE-IIG. Compared to RRT-DCBF-MCP,
the computed path by SAFE-IIG is smoother, and the drifting in open-loop tracking is smaller. No re-planning is involved in the simulation.
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Fig. 9: Error of path tracking. The CoM position error for closed-loop tracking
are smaller than 0.05m and the foot placement error are less than 0.1m for
both paths. In open-loop tracking, the error of CoM position is less than 0.8m
in the single obstacle environment with 124 steps and less than 0.4m in cave
map with 115 steps.

We assumed full knowledge of the robot’s dynamics model
when using the Input-Output Linearization controller, and the
state feedback is deterministic. An interesting future study
for transferring this work on hardware is to fuse inertial and
kinematics data to estimate the robot states [57] and apply a
more robust controller to modeling error, e.g., [35]. Moreover,
we considered flat ground and neglected the vertical motion
of the robot. In the low-level control part, the controller
also does not consider safety criteria. In future work, we
intend to integrate vertical motion in order to traverse complex
terrains. In the context of state estimation, this challenge is also
discussed by Hartley et al. [58, see Figure 8]. DCBF-MPC can
also be used for real-time re-planning when a disturbance is
involved.

VIII. CONCLUSION

We developed an integrated framework for safety-aware
informative motion planning, SAFE-IIG, suitable for legged
robots. We integrated the Discrete-time Control Barrier Func-
tion and Model Predictive Control into the sampling-based

motion planning frameworks, enabling safety-critical multi-
step planning for legged robots. The DCBF-MPC plans a
multi-step trajectory in each sampling, and it uses the first step
for node expansion. SAFE-IIG can plan a collision-free path
for legged robots while maximizing the information gathered
along the path. The simulation results show that SAFE-IIG
can plan a safe and dynamically feasible path while exploring
a dense map.

In the future, we plan to implement SAFE-IIG on hard-
ware for real-time exploration and mapping using biped and
quadruped robots in unknown unstructured environments.
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