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Abstract—Suppose we are given a large number of sequences
on a given alphabet, and an adversary is interested in identifying
(de-anonymizing) a specific target sequence based on its patterns.
Our goal is to thwart such an adversary by obfuscating the
target sequences by applying artificial (but small) distortions to
its values. A key point here is that we would like to make no
assumptions about the statistical model of such sequences. This is
in contrast to existing literature where assumptions (e.g., Markov
chains) are made regarding such sequences to obtain privacy
guarantees. We relate this problem to a set of combinatorial
questions on sequence construction based on which we are able to
obtain provable guarantees. This problem is relevant to important
privacy applications: from fingerprinting webpages visited by
users through anonymous communication systems to linking
communicating parties on messaging applications to inferring
activities of users of IoT devices.

Index Terms—Anonymization, information-theoretic privacy,
Internet of Things (IoT), obfuscation, Privacy Preserving Mech-
anism (PPM), statistical matching, superstring.

I. INTRODUCTION

Consider a scenario where n length-m sequences are being
generated. You do not know anything about the way the se-
quences are constructed (e.g., the distribution of the data points
in the sequences). All you know is that these n sequences,
labeled 1,2,. .., n, each have m elements drawn from the same
size-r alphabet-R. The sequences are revealed to a potential
adversary but the labels are hidden. However, the adversary has
obtained a “pattern" (later defined precisely) in one of these
sequences and would like to identify that sequence based on
that pattern. Your job is to design an obfuscation mechanism
to apply to these sequences before they are revealed to the
adversary to prevent such identification. The difficulty is that
you have very limited knowledge about these sequences (the
values of n, m, and R), and you do not know which sequence
the adversary might be seeking to identify or what pattern
the adversary might employ. And, of course, we want the
distortion to be as small as possible.

The considered problem addresses key scenarios in privacy
or security: fingerprinting webpages visited by users through
anonymous communication systems, linking communicating
parties on messaging applications, and inferring the activities
of the users of IoT devices. While the setting is general, to have

This work was supported by the National Science Foundation under grants
CCF-1421957 and CNS-1739462.

978-1-7281-6432-8/20/$31.00 ©2020 IEEE

884

a concrete example in mind, we motivate the problem from
the consideration of User-Data Driven (UDD) services in IoT
applications: data submitted by users is analyzed with the goal
of improving the service in applications such as health care,
smart homes, and connected vehicles. This tuning by UDD
services has significantly improved customers’ lives, but the
large amount of user data collected by these applications can
compromise users’ privacy. These privacy and security threats
are a major obstacle to the adoption of IoT applications [1]-
[11]. In order to improve users’ privacy, anonymization and
obfuscation mechanisms are used at the cost of user utility. The
anonymization technique frequently changes the pseudonym of
user mappings in order to reduce the length of time series that
can be utilized for statistical analysis [12]-[18]. By contrast,
obfuscation adds noise to users’ data samples to increase users’
privacy [19]-[25].

To provide a privacy guarantee in sequence matching anal-
yses, a general stochastic model for the users’ data (e.g.,
Markov chains) has been generally assumed [26]-[31]. How-
ever, as Privacy-Protection Mechanism (PPM) designers, we
may not know the underlying statistical model for users’ data.
Takbiri et al. [24] have shown that modeling errors can destroy
privacy guarantees: a privacy mechanism that provides perfect
privacy under one statistical model may break down under
another model, even if a very high level of obfuscation is
employed. Hence, an important question is whether we can
provide robust privacy mechanisms without assuming a certain
model for users’ data.

In practice, many privacy attacks are based on simple
“pattern matching" [32], [33], where the adversary looks for
an ordered sequence of values that appear close to each other
in the user’s data. Our goal is to provide privacy guarantees,
even if we do not know what patterns the adversaries might
be exploiting. By focusing on this common type of privacy
attack (pattern matching), we are able to eliminate the need
for making specific assumptions about the users’ data model.
In other words, we are able to seek a model-free approach by
focusing on a specific (albeit very common) type of attack.

Our obfuscation approach is based on the following idea:
noise should be added in a way that the obfuscated data
sequences are likely to have a large number of common
patterns. This means that for any user and for any potential
pattern that the adversary might obtain for that user, there will
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be a large number of other users with the same data pattern in
their obfuscated sequences. This in turn can be used to provide
privacy guarantees against pattern matching attacks.

To achieve privacy guarantees we rely on the concept of
superstrings, which contain every possible pattern of length
less than or equal to /. This in turn happens to be related to
a rich area in combinatorics [34]-[37]. Of relevant interest
are the De Bruijn sequences [38], which give the answer
for the shortest cyclic sequence in which repeated symbols
are allowed in each contiguous substring when the substring
length is restricted to be less than the size of the alphabet.

The setting of our privacy guarantees can be summarized as
follows: (i) we make no assumption on the statistical model
of users’ sequence except for the alphabet-R; (ii) we make no
assumption about the pattern known to the adversary except
for its length-/; (iii) we obtain non-asymptotic guarantees.

II. SYSTEM MODEL, DEFINITIONS, AND METRICS

Here, we employ a framework similar to [18], [24], [39],
[40]. The system has n users with X, (k) denoting the data
of user u at time k, which we would like to protect from an
interested adversary. We also assume there are r > 2 possible
values for each user’s data points in a finite size set R =
{0, 1,...,r—1}.

As shown in Fig. 1, in order to achieve privacy for users,
both anonymization and obfuscation techniques are employed.
In Fig. 1, Z, (k) denotes the reported data point of user u
at time k after applying the obfuscation, and Y, (k) denotes
the reported data point of user u at time k after applying the
obfuscation and the anonymization.

X ——— Obfuscation [— Z —»| Anonymization|——— Y

Adversary’s
Observations

Fig. 1: Applying obfuscation and anonymization techniques to
the users’ data points.

Data Points Model: Let X, be the m X 1 vector containing
the data points of user u#, and X be the m X n matrix with the
u'™ column equal to X,, :

Xll = [Xu(l),Xu(2), o aXu(m)]T’ X= [XI’X% e 7Xn] .

Next, we provide a formal definition of a pattern to provide
a suitable model for a typical pattern matching attack. For
instance, a potential pattern could be the sequence of locations
that the user normally visits in a particular order. The visited
locations might not necessarily be contiguous in the sequence,
but they are close to each other in time. Hence, we impose two
conditions on a pattern: first, the elements of the pattern se-
quence must be present in order. Second, consecutive elements
of the pattern sequence must appear close to each other, with
distance less than or equal to i, where the distance between
two elements is defined as the difference between the indices
of those elements. For some applications which don’t require
the distance for detecting a pattern, e.g., traffic analysis, we
can treat A as infinity.

Definition 1. A pattern is a sequence Q = ¢Vg® ... 4",
where ¢ € {(0,1,---,r — 1} for any i € {1,2,---,1}.
u is said to have the pattern Q if
« The sequence Q is a subsequence (not necessarily consec-
utive) of user u’s sequence (or its obfuscated sequence),
and
o fori € {1,2,---,1 — 1}, ¢V and ¢U*D appear in the
sequence of user u (or its obfuscated sequence) with
distance less than or equal to h.

Since we do not know which pattern the adversary might be
using to identify a user, one proposed main idea is to ensure
that the obfuscated sequence of each user includes a large
number of potential patterns. To achieve this, we define the
concept of superstrings used in the obfuscation mechanism.

Definition 2. A sequence is an (r, [)—superstring if it contains
all possible 7! length-/ strings (repeated symbols allowed) on
a size-r alphabet-R as its contiguous substrings (cyclic tail-
to-head ligation not allowed here).

We define f(r,/) as the length of the shortest
(r,)—superstring. A trivial upper bound on the length
of a superstring on r symbols is Ir, since this is the length of
the (7, l)—superstring obtained by arranging all the possible
rl substrings without overlapping. As a result, we can
conclude f(r,I) < Ir'. As an example of a superstring, the
sequence 11221 is a (2,2)—superstring because it contains
11, 12, 21, and 22 as its contiguous subsequences, thus
f(2,2) <5<8= Ir'. In fact, as we will see shortly, 5 is the
lowest possible length of a (2,2)—superstring, so f(2,2) = 5.
Obfuscation Mechanism: Let Z, be the m X 1 vector con-
taining the obfuscated version of user u’s data sequence, and
Z be the m x n matrix with the u'* column equal to Z,:

Z,=12,01),2,2),-, Ze(m)", Z=1Z1,Z0,--,Z,].

X [%0 [%@ [ [%® [%.6 [%6 [x0 [x® [%0 ]

O S I D O I A

J=i j=1+ j=1+1+1

i H i
7, [%0 [%.@ [a.0 [%® [a.@ [%6 %0 [x@ Jae ] 1.

Fig. 2: The obfuscation of user u € U based on an
(r,1)—superstring

The obfuscation mechanism adds a noise to users’ data in
a way that the obfuscated data sequences are likely to have a
large number of potential patterns. This is to ensure that for
any user and for any potential pattern that the adversary might
obtain for that user, there will be a large number of other users
with the same data pattern in their obfuscated data sequences.

The basic procedure is shown in Fig. 2. To create a noisy
version of data samples, for each user we independently and
randomly generate an (r,l)—superstring (one superstring is
generated equally likely from the superstring solution set,
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explained in Section III), where r is the size of the data point
alphabet, and [ is the length of the patterns. We denote the gen-
erated (r,l)—superstring as a, = {a,(1),a,(2), -+, a,(Ls)},
where L is the length of the generated superstring. We define
Dofb as the probability that a user’s data sample is changed
to a different data sample by obfuscation. For each user
at each specific time, we independently generate a random
sequence variable W, (k) which has a Bernoulli distribution
with parameter pog,. As shown in Fig. 2, the obfuscated version
of the data sample of user u at time k can be written as:

X, (k), if W,(k)=0

Zy (k) =

abl(j)’ if Wu(k) = 1

k
where j = >, W, (k’), and a,(j) is the j’h element of the

(r, )—superstring element used for the obfuscation. Note that
if the length of the generated (r, [)—superstring is less than the
length of the adversary’s observed data sequences (Lg < m),
we should append multiple copies of the generated superstring
(a,) in order to have Ly > m.

Anonymization Mechanism: Anonymization is modeled by a
random permutation IT on the set of n users, U = {1,2,---,n}.
Each user u is anonymized by the pseudonym function IT(u).
We use Y to denote the anonymized version of Z; thus,

Y=Perm(Z1,Z;, - ,Z,;1I)

= Znay Zn1p o Ly
= [Yls Y2’ e 7Yn]s

where Perm( - ;II) is the permutation operation with permu-
tation function I1. As a result, Yy, = Zp-1(,) and Yr) = Z,.
We employ the anonymization once in order to conceal the
mapping between users and their data sequences.
Adversary Model: We assume an adversary who has ac-
cess to length—m observations per user; in other words,
for each u € {1,2,---,n}, the adversary observes
YD), Yy (2), - -+, Yy (m). We also assume the adver-
sary has identified a pattern Q, of a specific user v,
‘(,1) ‘(,2) . ~~q‘(,l), and is trying to uncover the user’s identity
based on the information that they have about the user’s
pattern. Note that we also assume that the adversary knows
the obfuscation and the anonymization mechanisms; however,
they do not know the realization of the generated superstring
(ay,, u € U) or the realization of the random permutation (IT).
We introduce the definition of e—privacy as:

Definition 3. User v with data pattern q\(,l) ‘()2) ---qy’ has

e—privacy if for any other user u, the probability that user u has
the same pattern as user v in their obfuscated data sequence
is at least e.

()
\4

Loosely speaking, the above definition implies that even if
the adversary can identify a data pattern of user v, they cannot
identify user v with probability greater than ﬁ It is worth
noting that this is a relatively strong requirement for privacy. In
the common language of k-anonymity, this can be interpreted

as ne—anonymity, as a specific user can be confused with ne
other users. This can be contrasted with the concept of perfect
privacy [18], [24], [25], where it suffices that each user is
confused with N users, where N — oo as n — oo. Hence,
if we were to loosen the privacy definition, we can achieve
privacy with lower obfuscation rates, and this investigation of
utility-privacy tradeoffs is a future research direction.

III. PRIVACY GUARANTEE FOR MODEL-FREE PPMSs

Without loss of generality, consider e—privacy for an arbi-
trary user 1 with pattern sequence qll)qu) . --qil). Per Sec-
tion II, we want to ensure that the obfuscated data sequences
or other users are likely to have the same data pattern as user
1 to confuse a pattern-matching adversary trying to find user
1. Let B, be the event that user 1’s pattern qf])qu) . ~-ql(l)
appears in user u’s obfuscated data points Z,, (by Definition 1)
due to our obfuscation technique. And here the pattern length
[ and the maximum distance h of the pattern letters appearing
in the obfuscated sequence (by Definition 1) are assumed to
be known and treated as constants.

We will assume a worst-case scenario: each user has their
own unique pattern to be identified by the adversary. To be
further pessimistic, let us start with the large value Ir! for
the length of an (r,l)—superstring; we will show below that
the length of the obfuscating superstring can be shortened by
introducing the De Bruijn sequence. We will prove that such
a superstring guarantees that at least a certain percentage € of
users will have the same pattern as user 1 after employing the
obfuscation mechanism.

Definition 4. P (8,) is defined as the probability that the
obfuscated sequence Z,, has user 1’s identifying pattern due to
obfuscation by an (7, [)—superstring with length Ir! (obtained
by arranging all the possible r! substrings without overlap-
ping).

Definition 5. P (8)) is defined as the probability that the
obfuscated sequence Z, has user 1’s identifying pattern due
to obfuscation by the shortest (r,l)—superstring with length

f@, D).

Theorem 1. If Z is the obfuscated version of X, and Y is the
anonymized version of Z as defined previously, there exists a
lower bound € for the probability P (8,,):

P(B,) >
(1-—(1-—pom0h)afl)nﬂnhrl_b’[ggﬂij} 2
5 D 1-exp (—ngobf), )
a=0
where
al

G=m—-h(l-1), 6,=1- fora=0,1,---,r = 1.

Pobf

Proof. The procedure of obfuscation on any user u € U is
shown in Fig. 3. Note that since our generated superstring can
have more than one copy of each pattern, we pessimistically
focus on one “intended” copy of our desired pattern in the
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superstring for the analysis. We denote L, ; as the index of
the first element of the “intended” version of the pattern in
the superstring, such that a,(L, ) = qil), ay(Ly +1) =
QEZ)"" say(Lyp+1-1) = qil), and correspondingly, Ml’;’l
is the index of the data point X, (Mlif)l) that is obfuscated to

qi") (M’ii)1 <m), fori=12...,1I

Zu(M,ii)l) =ay,(L,1+i-1)= qii), foranyueU. (2)

According to Definition 1, the event B, occurs if (but
not only if) the following two events occur: (i) the user 1’s
pattern q}l)qiz)'-'qil) appears in user u’s obfuscated data
points Z,; and, (ii) the distance between any neighboring
points of pattern q{l)qiz) e qfl) in Z,, is smaller than or equal

to h. Now, if we accordingly define event &, and F, as:

&M <m-hl-1)=G, 3)

Fu: DV <n;D® < by DY < p, @)
(i) _ pgG+D) (i) : @i+1)
where D,,” = M, '|"' — M, | are the distances between g

1
and qi’) in user u’s obfuscated sequence Z,,, fori = 1,2,...,1—

1. Since events &, and ¥, are independent, we have:
P(B,) 2P(E)P(Fu) - 5

The probability of event &, is the probability of L, | successes
in M Bernoulli trials, where each trial has probability of
success pobf; thus,

P(E,) =P (at least L, | success in G trials) .

Since each user employs a randomly chosen superstring for
obfusctation, the pattern is equally likely to be in any of the
rl substrings of length /; hence,

1
P(Lyi=al+1)=—=, a=01---,r' -1 (6)
r

Thus, by employing the Law of Total Probability, we have:

rl-1

P (&u)

a=0

'P(Lu,l =al + 1)

rl-1
i Z P (at least al + 1 success in G trials)
B

a=0

rl-1

Let us define A, as the event in which there exists less than
al +1 success in G trials. By employing the Chernoff Bound:

1 G Popf
p(Ay) < exp (—Eaicpobf), for all @ < ’;"bf. )

Now, by using (6) and (7):
min{(r/_l), LG’;obe}

2,

a=0

1 1
P (&) 2 T 1 —exp (—§5§Gpobf) . (®)

Z P (at least L, success in G trials|L, 1 = al + 1)

i Z [1 —P (less than al + 1 success in G trials)].
r a=0

Note that sub-events of F: Di,l) < h,--- ,D,(f_]) < h are
independent, thus, the probability of event 7, is:

-1

. =D

PF)=[]P(DP <h)=(1--pad") . )
i=1
Thus, by (5), (8) and (9), we obtain (1). O
X, [2o[xe [ae] [ - Jrw@] [ro@n] - Tno] i
P ¥ > s I3

a, [«0 Ja® | Jouti) = e [ @ + D =0® | e [

F;;‘stob[usca!ion Lu;’sobfﬂsmi"ﬂ ‘luv+1'§ 1_“:“,2», L,“,H'-—l’s

2,(3) = a,() 2, (M) = au(Lyy) Obfuscation Obfuscation Obfuseation

g A ) A 3
Z, [0 J2o J2.06 ] [ = Tam®] | T I | =

|-—Df‘"—o| D'(At—n_,l

Fig. 3: The obfuscation of user u € U for protecting its data
trace from an adversary.

The methodology that we develop in Theorem 1 can read-
ily be applied with (r,[)—superstrings with shorter length,
from which we can provide stronger privacy guarantees. The
following lemma provides a construction for the shortest
(r, )—superstring and evaluates its length.

Lemma 1. The length of a sequence solution for the shortest
(r, 1) —superstring is equal to r' +1—1. Thatis, f(r, 1) = r'+I-1.

Substrings:
{32} -
{32} -
{21} -
{11} -

I A 1)
~— ~——
112132233

e o

Alphabet: {1, 2, 3}

) == De Bruijn Sequence:
Substring length: 2

{12} . Add
Symbol 1" to

{13} - generate {3 1}

22y -

{33}

1121322331

Fig. 4: The construction of a shortest (3,2)—superstring by
using a De Bruijn sequence B(3,2). The length of the con-
structed (3,2)—superstring is f(3,2) =32 +2 -1 = 10.

Proof. A (non-unique) shortest (7, [)—superstring can be con-
structed by a De Bruijn sequence [38], [41], denoted by B(r,[)
in this paper. A De Bruijn sequence of order / on a size-
r alphabet-R, is a sequence with length ! in which every
possible length-/ substring on R occurs exactly once as a
contiguous subsequence. The last ([ — 1) and the first (I — 1)
letters of the De Bruijn sequence is cyclic tail-to-head ligation
for counting the substrings. A shortest (r, [)—superstring can
be constructed via one chosen De Bruijn sequence B(r,[) by
repeating B(r,[)’s front (I — 1) symbols at the end of the
sequence, with length (! +1—1). We prove it in the following.
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We first prove that the constructed sequence is an
(r, )—superstring. The sequence has the first rl = (- 1)
substrings because it contains a full De Bruijn sequence B(r, [)
at its front r! symbols. In addition, since the left (I — 1)
substrings in B(r,l) are counted by tracking from the last
(I =1) letters and the first (/ — 1) letters as mentioned, the left
(I —1) substrings also appear in the constructed superstring in
a non-cyclic way, since the De Bruijn sequence’s front (/ — 1)
symbols have been copied to its end. Thus, the constructed
sequence contains all possible »! substrings, and hence, by
Definition 2, it is a valid (r, [)—superstring.

Then we prove that the constructed sequence gives the short-
est solution for an (r,l)—superstring. Each of these distinct
substrings on the size-r alphabet-R, must start at a different
position in the sequence, because substrings starting at the
same position are not distinct. Therefore, an (r, [)—superstring
must have at least (#! +7—1) symbols. Since the constructed
(r, 1) —superstring has exactly (r! + [ — 1) symbols, it is
optimally short with length (! + 1 — 1). O

The solution for the shortest (r,l)—superstring is non-
unique in general for r > 2 since we can construct our
(r, )—superstring by taking any De Bruijn sequence B(r,![)
(which is also non-unique: another De Bruijn sequence can be
generated by circular shifting B(r,[) in the left or right direc-
tion by some digits) from any De Bruijn sequence pattern set.
An example of construction of a shortest (3,2)—superstring
by a De Bruijn sequence B(3,2) = “112132233” is shown
in Fig. 4, and its length f(3,2) = 10. Another solution
can be generated, for instance, by right circular shifting the
De Bruijn sequence B(3,2) by one digit and copy the first
symbol ‘3’ to its end: “3112132233”. Another solution can
be: “3311213223” (by further right circular shifting B(3,2)
by one digit and adding its front symbol ‘3’ to its end).

Next we consider the privacy performance when the shortest
(r,l)—superstring is employed.

Theorem 2. If Z is the obfuscated version of X, and Y is the
anonymized version of Z as defined previously, there exists a
lower bound €’ for the probability P (8;,):

P(8B,) =

(1 —(-p bf)h)(l—l) min{ (- ~1), | Gpost |} 57
(o]
§ 1 —exp (——; Gpobf), (10)

a=0

rl

where

G=m-h(l-1), & =1- , fora=0,1,---,rf = 1.

Pobf
Proof. By using (5), we have:

P(8,) 2P (&) P (F). (11)

where the events &/ and ¥,/ are defined analogously to the
events &, and F,, defined in (3) and (4), respectively.

For a given superstring set generated by a De Bruijn sequence
B(r,1), we assume that the index values L, ; are equally
likely over the front 7! indices in the (r,1)—superstring chosen

by user u since one (r,l)—superstring can be selected by
uniformly circular shifting B(r,/) by Lemma 1. So we have:

1
P(Lyi=a+1)==, a=01---,r -1 (12)
r

Similarly, by employing a Chernoff Bound and the Law of
Total Probability, we have:

min{(r!=1), [ Gpost] |
a=0

In addition, the probability of event ¥, can be obtained

similarly by (9):

1
P(&,) =2 - I —exp (—§5fGPobf)- (13)
r

P (7)) =P(Fu). (14)
Therefore, by (11), (13), and (14), we obtain (10). O

Discussion: In Table I, we show the lower bounds to € and €’
for different parameter settings. These results show that our
PPMs will yield a percentage of the user set U that have
the same pattern in their obfuscated sequences as user 1’s;
Increasing m or pepr increases the chance that other users have
the same pattern as user 1’s.

TABLE I: Numerical evaluation of the lower bounds € and €’
for P(8B,) and P (B],) for different parameter settings.

m r 1 h Pobf | lower bound € | lower bound €
1000 20 3 8 10% 0.11% 0.35%
1000 20 3 10 15% 0.35% 1.06%
3000 16 2 10 10% 35.40% 65.06%
3000 16 2 10 15% 66.34% 80.31%
5000 30 2 10 10% 17.07% 34.12%
10000 30 2 10 10% 34.75% 65.12%
15000 12 3 10 10% 11.87% 35.59%
15000 15 3 10 10% 6.07% 18.22%

IV. CONCLUSION

The need for sharing sensitive data in today’s interconnected
world has led to major privacy and security concerns for users;
thus, different privacy-preserving mechanisms (PPMs) have
been proposed to improve users’ privacy. A key parameter
in the design of many PPMs is a statistical model of users’
data. However, if the modeling assumptions are not accurate,
privacy guarantees are no longer valid. Unlike prior work in
this area, here we make no specific assumptions about the
statistical model of the users and propose a PPM to achieve
privacy guarantees by applying small artificial distortion to
thwart pattern matching attacks. In particular, a small noise
has been added to users’ data in a way that the obfuscated
data sequences are likely to have a large number of potential
patterns; thus, for any user and for any potential pattern that
the adversary might have to identify that user, we have shown
that there will be a large number of other users with the same
data pattern in their obfuscated data sequences.
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