Analyzing and Mitigating Data Stalls in DNN Training

Jayashree Mohan
University of Texas at Austin
jaya@cs.utexas.edu

Ashish Raniwala
Microsoft
ashish.raniwala@microsoft.com

ABSTRACT

Training Deep Neural Networks (DNNs) is resource-intensive and
time-consuming. While prior research has explored many different
ways of reducing DNN training time, the impact of input data
pipeline, i.e., fetching raw data items from storage and performing
data pre-processing in memory, has been relatively unexplored.
This paper makes the following contributions: (1) We present the
first comprehensive analysis of how the input data pipeline affects
the training time of widely-used computer vision and audio Deep
Neural Networks (DNNs), that typically involve complex data pre-
processing. We analyze nine different models across three tasks and
four datasets while varying factors such as the amount of memory,
number of CPU threads, storage device, GPU generation etc on
servers that are a part of a large production cluster at Microsoft.
We find that in many cases, DNN training time is dominated by
data stall time: time spent waiting for data to be fetched and pre-
processed. (2) We build a tool, DS-Analyzer to precisely measure
data stalls using a differential technique, and perform predictive
what-if analysis on data stalls. (3) Finally, based on the insights from
our analysis, we design and implement three simple but effective
techniques in a data-loading library, CoorDL, to mitigate data stalls.
Our experiments on a range of DNN tasks, models, datasets, and
hardware configs show that when PyTorch uses CoorDL instead of
the state-of-the-art DALI data loading library, DNN training time
is reduced significantly (by as much as 5X on a single server).

PVLDB Reference Format:

Jayashree Mohan, Amar Phanishayee, Ashish Raniwala, and Vijay
Chidambaram. Analyzing and Mitigating Data Stalls in DNN Training.
PVLDB, 14(5): 771 - 784, 2021.

doi:10.14778/3446095.3446100

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/msr-fiddle/DS- Analyzer.

1 INTRODUCTION

Data is the fuel powering machine learning [59]. Large training
datasets are empowering state-of-the-art accuracy for several ma-
chine learning tasks. Particularly, Deep Neural Networks (DNNs),

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 5 ISSN 2150-8097.
doi:10.14778/3446095.3446100

Amar Phanishayee
Microsoft Research
amar@microsoft.com

Vijay Chidambaram
University of Texas at Austin & VMWare Research
vijay@cs.utexas.edu

have gained prominence, as they allow us to tackle problems that
were previously intractable, such as image classification [33, 43, 67],
translation [74], speech recognition[30], video captioning [73], and
even predictive health-care [70].

Empowering DNNss to push state-of-the-art accuracy requires
the model to be trained with a large volume of data. During training,
the model predicts the output given training data; based on the
output, the model’s weights are tuned. This happens iteratively, in
many rounds called epochs.

However, DNN training is data-hungry, resource-intensive, and
time-consuming. It involves the holistic use of all the resources in
a server from storage and CPU for fetching and pre-processing the
dataset to the GPUs that perform computation on the transformed
data. Researchers have tackled how to efficiently use these resources
to reduce DNN training time, such as reducing communication
overhead [32, 39, 49, 57, 76], GPU memory optimizations [22, 38, 63],
and compiler-based operator optimizations [21, 41, 72]. However,
the impact of storage systems, specifically the data pipeline, on
DNN training has been relatively unexplored.

The DNN Data Pipeline. During DNN training, the data pipeline
works as follows. Data items are first fetched from storage and then
pre-processed in memory. For example, for many important and
widely-used classes of DNNs in computer vision, there are several
pre-processing steps: data is first decompressed, and then random
perturbations such as cropping the image or rotating it are per-
formed to improve the model’s accuracy [60]. Once pre-processed,
the data items are sent to the GPUs for processing. One complete
pass over the training dataset is termed an epoch; models are itera-
tively trained for several epochs to achieve desired accuracy.

The DNN data pipeline operates in parallel with GPU computa-
tion. Ideally, the data pipeline should steadily feed pre-processed
data items to the GPUs to keep them continuously busy process-
ing data; we term this GPU-bound. Unfortunately, training image,
video, or audio models is often I/O-bound, bottlenecked by fetching
the data from storage, or CPU-bound, bottlenecked by applying
data pre-processsing in memory. Collectively, we term these bottle-
necks data stalls and differentiate between prep stalls (time spent
on data pre-processing) and fetch stalls (time spent on I/O).

1.1 Contributions

Categorizing, measuring, and analyzing data stalls. We present
the first comprehensive analysis of data stalls (categorized as fetch
and prep stalls) in DNN training. We analyze nine popular DNN
models from three domains (image classification, object detection,
and audio classification) and four datasets in a production cluster

Table 1: Key findings and implications of our analysis of data stalls

Finding

Insights

OS Page Cache is inefficient for DNN training due to thrashing

DNN-aware caching can eliminate thrashing across epochs

pre-processing

DNNs need anywhere between 3 — 24 CPU cores per GPU for data | If hardware is upgraded to overcome workload bottlenecks, it must be done carefully

with an eye towards designing balanced server SKUs.

DNNs spend upto 65% of the epoch time in data pre-processing,
primarily on redundant decoding

Decoded data can be cached (as opposed to caching encoded data), if space

amplification due to decoding can be addressed

Lack of coordination among local caches lead to redundant I/O in
distributed training across servers

To overcome local storage I/O bottlenecks, local in-memory caches of servers
allocated to a job can be coordinated to fetch data from distributed in-memory caches

Hyperparameter search workloads perform redundant I/O & prep | Hyperparameter search jobs must coordinate data fetch & prep to mitigate data stalls

at Microsoft. We vary factors such as the storage media, amount
of data that can be cached in memory, the number of CPU threads
used to fetch and pre-process data, and GPU generation. We then
analyze how these factors affect the data pipeline and DNN training.
Our analysis shows that data stalls are prominent in popular com-
puter vision and audio DNNSs, as opposed to text-based NLP models.
Our analysis finds that data stalls squander away the improved
performance of faster GPUs, even on ML optimized servers like
the DGX-2 [10]. Revisiting the insights from Stonebraker et al. [69],
our analysis corroborates that relying on OS abstractions (like Page
Cache) is inefficient for DNN workloads. We also find that the data
pipelines in popular training frameworks like PyTorch and Ten-
sorFlow are inefficient in their use of CPU and memory resources,
despite using state-of-the-art data-loading libraries like DALI [7]
that reduce prep stalls using GPU-accelerated data pre-processing.
Table 1 summarizes the findings and insights of our analysis.

Performing predictive what-if analysis of data stalls. Perform-
ing an analysis of how the data pipeline impacts DNN training is
challenging since DNN training has a high degree of concurrency;
it is hard to isolate the time taken to perform a single task as data
pre-processing is pipelined with GPU computation. We develop a
tool, DS-Analyzer, that uses differential analysis between runs (e.g.,
comparing a run where data is completely cached vs when data
needs to be fetched from storage) to identify data-stall bottlenecks.
Using the measured data stalls, it answers what-if questions to help
practitioners predict and analyze data stalls (e.g., What would be
the impact on data stalls if DRAM capacity increased by 2x?).

Mitigating data stalls. We use the insights from our analysis to
identify opportunities for improvement. We build a new Coordi-
nated Data Loader, CoorDL! that uses three main techniques to
mitigate data stalls. First, inspired by the pioneering work of Stone-
braker et al. on database caching [69], we demonstrate that relying
on the OS page cache is sub-optimal for DNN training. We imple-
ment MinlO, a software cache that is specialized for DNN training.
Second, we describe the partitioned caching technique to coordinate
the MinlO caches of servers involved in distributed training over
commodity network stack. Third, we discuss the coordinated prep
technique to carefully eliminate redundancy in data prep among
concurrent hyperparameter search jobs in a server. We implement
these techniques as part of the user-space library CoorDL, built
on top of the state-of-the-art data pipeline DALI [7]. We evaluate
CoorDL across different models, datasets, and hardware and show
that it can accelerate training by up-to 5X on a single server by
mitigating data stalls over DALL

Read as cordial

2 BACKGROUND

Deep Neural Networks (DNNs) are a class of ML models that au-
tomatically extract higher level features from the input data. The
DNN is trained over multiple rounds termed epochs. Each epoch
processes all items in the dataset exactly once, and consists of mul-
tiple iterations; each iteration processes a random, disjoint subset of
the data termed a minibatch. The DNN is trained until a target ac-
curacy is reached. Training a DNN model to reach a given accuracy
consists of two steps:

(1) Hyperparameter (HP) search. There are many parameters
for the learning algorithm that must be provided before the
start of training. These hyperparameters (for e.g., learning rate,
its decay, dropout, and momentum) influence the speed and
quality of learning. During the search process, we start several
training jobs; each job trains the model with different hyper-
parameters, on each available GPU (or a distributed job across
several GPUs); progress is checked after a few epochs and the
worst-performing candidates are killed and replaced by new
jobs with different hyperparameters that are chosen algorith-
mically [19, 27, 37, 46]. Tuning hyperparameters is crucial for
generating DNN models that have high accuracy [61].

—~
oY)
~

Training the model to target accuracy. The second step is
to obtain models with high accuracy by training it with input
data, using the hyperparameters chosen in the previous step.

2.1 The DNN ETL Requirements

In every epoch of training, the input dataset is subjected to a ETL
(extract-transform-load) before being processed at the GPU (or any
other accelerator). The ETL process in the data pipeline of popular
image-based DNN training imposes several unique data ordering
constraints to ensure model convergence and achieve state-of-the-
art accuracy.
e The dataset must be shuffled every epoch to ensure the order
in which data items are accessed are random in each epoch
e An epoch must use all data items in the dataset exactly once
e In every epoch, the data transformations(pre-processing) must
be random; the same transformed item should not be used
across epochs

Several prior work have theoretically and empirically demonstrated
that relaxing these constraints will affect the convergence rate of
SGD [23, 48, 52, 60]. While some NLP and recommendation models
may not require random pre-processing and data shuffling every
epoch, the focus of our work is computer vision and audio models
where random data augmentation and shuffling is the default and

Prefetch Pre-processing

Collate
Decode — Transform — batch g g g %

Fetch Rate (F) Prep Rate (P) GPU Rate (G)

Figure 1: Data Pipeline in DNN training. This figure shows
the different stages in the data pipeline.

common practice [54, 62]. Therefore, in this work, all our experi-
ments abide by the aforementioned ETL requirements.

2.2 DALI: Fast Data Pipelining

State-of-the-art data loading and pre-processing libraries like DALI
can be used as a drop in replacement for the default dataloaders in
frameworks like PyTorch, TensorFlow, or MxNet. DALI can accel-
erate data pre-processing operations using GPU-accelerated data
pre-processing operations. DALI also prefetches and pipelines the
data fetch and pre-processing with the GPU compute, similar to the
default dataloader in PyTorch. We empirically verified that DALI
outperforms the default data pipelines of PyTorch, TensorFlow,
and MxNet. Therefore, throughout this work, unless and otherwise
stated, we use DALI, as it is the strongest baseline.

3 DATA STALLS IN DNN TRAINING

We now discuss our formulation of data stalls. Consider the training
process of a typical DNN. It executes the following steps in each
iteration of an epoch:

(1) A minibatch of data items is fetched from storage.

(2) The data items are pre-processed, for e.g.,, for image classifica-
tion, data items are decompressed, and then randomly cropped,
resized, and flipped.

(3) The minibatch is then processed at the GPU to obtain the
model’s prediction

(4) A loss function is used to determine how much the prediction
deviates from the right answer

(5) Model weights are updated using computed gradients

Ideally, most of the time in each epoch should be spent on Steps
3-5 (which we collectively term the GPU compute time), i.e., training
is GPU bound. When performing multi-GPU training, individual
GPUs (workers) exchange weight gradients with other workers
before performing weight update. For this work, we roll the com-
munication time for gradient exchange during multi-GPU training
into computation time.

In most frameworks including PyTorch, TensorFlow, and MxNet,
data preparation (Steps 1 and 2) and GPU computation execute in a
pipelined fashion; i.e., subsequent minibatches are prefetched and
pre-processed by data preparation threads, using multiple CPU cores
on the machine, as the GPU computes on the current minibatch of
data. If the GPU is waiting for Steps 1-2 to happen, we term it a
data stall. Specifically, if training is blocked on Step 1, we call it a
fetch stall; the training is I/O bound in this case. Training blocked
due to Step 2 is termed prep stall; this causes the training to be CPU
bound. Data stalls cause the GPU to be idle, and must be minimized
to increase GPU utilization.

The rate at which data items can be fetched from storage (Step
1) depends primarily on the storage media. The rate at which

Table 2: Models and datasets used in this work.

Task Model Dataset (Size)

Shufflenetv2 [77]
AlexNet [43]
Resnet18 [33]
SqueezeNet [35]
MobileNetv2 [65]
ResNet50 [33]
VGG11 [67]

ImageNet-22k [8]
(1.3TB)
Openlmages-Extended
[45, 66] (645GB)
Imagenet-1k [64
(146GB

Image
Classification

=

Obj Detection ~ SSD+Res18 [50] Openlmages [45] (561GB

= |2 | =

Audio Classify M5 [24] Free Music [25] (950GB

data items can be pre-processed (Step 2) depends upon the pre-
processing operations and the number of CPU cores available for
pre-processing.

In general, if we prefetch data at rate F, pre-process it at rate
P and perform GPU computation on it at rate G, then data stalls
appear if G > min(F, P), i.e., GPU processes data at a rate faster
than it can be prefetched or pre-processed.

Any fetch or prep stall implies idle GPU time, which must be
minimized. The fetch and prep stalls reported in this work are
unmasked stall time; i.e., the stall time that shows up in the critical
path, inspite of being pipelined with compute. From now on, we
call data prefetching simply fetch, and pre-processing prep.

4 ANALYZING DATA STALLS

To understand data stalls in DNN training and the fundamental
reasons why data stalls exist, we perform a comprehensive analysis
on several DNNs by varying a number of factors, such as the number
of GPUs, GPU generation, the size of the DRAM cache, the number
of CPU threads etc.

4.1 Methodology

Models and Datasets. We analyze nine state-of-the-art DNN mod-
els across three different tasks and four different datasets as shown
in Table 2. This section focuses on the smaller ImageNet-1K dataset
for image classification models. Evaluation with large datasets like
ImageNet-22k and Openlmages is presented in Section §7. The
image and audio classification models are taken from TorchVi-
sion [15] and TorchAudio [14] respectively; for object detection,
we use NVIDIA’s official release of SSD300 v1.1 [11].

Pre-processing. For all DNNs, we use the same pre-processing as
in their original papers. More precisely, for the image classification
task, pre-processing includes image decoding, random crop, resizing
to a fixed size, and a random horizontal flip of the image. The object
detection task performs a color twist of the image, and a random
crop and horizontal flip of the bounding box in addition to the image
transformations described for image classification. The audio model
decodes and down-samples input to 8kHz.

Training environment. All experiments are performed on Py-
Torch 1.1.0 using the state-of-the-art NVIDIA data loading pipeline,
DALIL We have empirically verified that DALI’s performance is
strictly better than PyTorch, TF and MxNet’s default data loaders;

Table 3: Server configurations used. We use two SKUs; each
server has 24 CPU cores, 500GiB DRAM, and 8 GPUs.

GPU GPU Storage Rand Read
Config Mem(GB) Media (MBps)

SSD-V1e0 8xV100 32 SSD 530
HDD-1080Ti 8x1080Ti 11 HDD 15 -50

therefore we perform our analysis of data stalls using the strongest
baseline, DALI We use two distinct server configurations for our
analysis as shown in Table 3. Both these are part of a large pro-
duction and research cluster at Microsoft [9, 40], whose workload
have guided the design of several research systems for ML train-
ing [20, 31, 51, 75]. These servers also closely resemble publicly
available cloud GPU SKUs [1, 2]. Config-SSD-V100 has configu-
ration closest to AWS p3.16xlarge [1] with gp2 storage [6], while
Config-HDD-1080T1 is closest to AWS p2.8xlarge [2] with st1 stor-
age [6]. Both our servers have 500GB DRAM, 24 physical CPU cores
, and 8 GPUs per server.

Training parameters. For experiments on Config-SSD-V100, we
use a batch size of 512 per GPU for all image classification mod-
els, 128 per GPU for SSD-Res18, 16 per GPU for M5 and perform
weak scaling for distributed training (while ensuring that the global
batch size is consistent with those widely used in the ML commu-
nity). Since V100 GPUs have tensor cores, we use Apex mixed
precision training with LARC (Layer-wise Adaptive Rate Clip-
ping), and state-of-the art learning rate warmup schedules [29].
On Config-HDD-1080T1i, we use the maximum batch size that fits
the GPU memory (less than 256 for all models) and perform full-
precision training.

Training metrics. We run all the experiments presented here for
three epochs, and report the average epoch time (or throughput in
samples per second), ignoring the first epoch. Since we start with
a cold cache in our experiments, first epoch is used for warmup.
Measuring data stall time does not require training to accuracy;
per-epoch time remains stable.

4.2 Measuring data stalls using DS-Analyzer

We develop a standalone tool, DS-Analyzer that profiles data stalls
in DNN training. Frameworks like PyTorch and TensorFlow provide
an approximate time spent on data loading and pre-processing per
minibatch, by simply placing timers in the training script. This is
insufficient and inaccurate for two reasons. First, this technique
cannot accurately provide the split up of time spent in data fetch
(from disk or cache) and pre-processing operations. To understand
if the training is bottlnecked on I/O or CPU, it is important to
know this split. Second, frameworks like PyTorch and libraries
like DALI use several concurrent processes (or threads) to fetch
and pre-process data; for a multi-GPU data parallel training job, a
data stall in one of the data loading processes may reflect as GPU
compute time for the other processes, because all GPU processes
wait to synchronize weight updates at batch boundaries. Naively
adding timers around data path does not provide accurate timing
information. Therefore, DS-Analyzer uses a differential approach.
DS-Analyzer runs in three phases;

(1) Measure ingestion rate. First, DS-Analyzer pre-populates
synthetic data at the GPUs and runs the job for a fixed number
of epochs. This identifies the max data ingestion rate at the
GPUs, with no fetch or prep stalls.

(2) Measure prep stalls. Next, DS-Analyzer runs the training
script with a subset of the given dataset, such that it is entirely
cached in memory, using all available CPU cores, and estimates
the training speed. Since this run eliminates fetch stalls, any
drop in throughput compared to (1) is due to prep stalls.

(3) Measure fetch stalls. Finally, DS-Analyzer runs the training
script by clearing all caches, and setting maximum cache size
to a user-given limit, to account for fetch stalls. The difference
between (2) and (3) is the impact of fetch stalls.

4.3 Data Stalls in DNN Training

Our analysis aims to answer the following questions:

Fetch Stalls
(Remote)

Fetch Stalls | When does the local storage device (SSD/HDD)

Is remote storage a bottleneck for training? §4.3.1

(Local) become a bottleneck for DNN training? §43.2
When does data prep at the CPU become a bot- §433
Prep Stalls [y.peck for DNN training? -
Do fetch and prep stalls exist in other trainin,
Generality PP & §4.34

platforms like TensorFlow?

4.3.1 When dataset resides on remote storage. Datasets used
for training DNNs could reside locally on the persistent storage of a
server, or on shared remote storage such as distributed file systems
(HDFS, GlusterFS - GFS), or object stores (S3, Azure blobs). We
analyze the impact of two kinds of remote backends; a distributed
file system, GlusterFS (GFS) and the Azure blob object store accessed
via blobfuse. When data resides remotely, the first epoch of training
fetches data over the network and stores it locally for subsequent
use. Cluster file systems like GFS use the OS Page Cache to speed
up subsequent accesses. Blobfuse downloads the dataset on to local
SSD, and mimics local training from the second epoch. Figure 2a
compares the epoch time for ResNet18 on Config-SSD-V100 using
GFS, blobfuse, and local SSD for the first epoch and a stable-state
epoch with warmed up cache.

The data stall overhead of BlobFuse is especially high in the
first epoch when it downloads the entire dataset to local storage,
and can result in 20X higher training time as compared to GFS.
Unsurprisingly, during the steady state epochs, data stall overheads
when using the local SSD and BlobFuse are similar (as the blob data
is cached on the local SSD); GFS results in more data stalls as it
validates metadata of cached data items over the network every
time a data item is accessed. Blobfuse does not incur any network
cost beyond first epoch, if the dataset fits on local SSD.

As shown in Figure 2b, for the ImageNet1K dataset, for BlobFuse,
the cost of downloading the entire dataset in the first epoch is
amortized as we train for a longer number of epochs, making the
remote Blobstore a better fit compared to GFS when models are
trained to accuracy for over 60 epochs.

Athough datasets are growing in size, large datasets that are
publicly available fit entirely on local storage (but not in memory) [8,
16, 18, 25, 45, 64]. Therefore, a common training scenario is to pay

T 20 EEE local-SSD | —e— GFS »”
%Q BX GFS £ 15 Az Blob »
ED15 AzBlob | &g P 2
o - = o
o o~ »
2510 2 g 1o i
® E

=S 3" v
575 E 5 o
s |

Epoch-1 Epoch-stable 20 40 80 100

Number of epochs

(a) Epoch time

(b) Cumulative training time

Figure 2: Training with remote stores. The high download
cost of blob is amortized over training for a large # of epochs

a one-time download cost for the dataset, and reap benetfits of local-
SSD accesses thereafter (default and recommended mode in the
Microsoft clusters). Therefore, in the rest of the work, we analyze
fetch stalls in scenarios where dataset is present locally on a server,
but is not entirely cached in memory.

4.3.2 When datasets cannot be fully cached. ML-optimized
cloud servers with 500GB DRAM can only cache 35% of ImageNet-
22K, or 45% of the FMA dataset, or 65% of the Openlmages dataset,
although they entirely fit on local storage. Popular datasets like
ImageNet-1K cannot be fully cached on commonly used cloud
SKUs like AWS p3.2xlarge, which has 61 GiB DRAM. When
datasets don’t fit in memory, and the fetch rate(F) < compute rate
(min(P, G)), fetch stalls occur.

Fetch stalls are common if the dataset is not fully cached in
memory. Figure 3 shows the percentage of per epoch time spent
on /O for nine different DNNs when 35% (for e.g., ImageNet-22k on
500GB server) of their respective datasets can be cached in memory
on Config-SSD-V100. DNNs spend 10 —70% of their epoch time on
blocking I/0, despite pipelining and prefetching, simply because
the compute rate is higher than fetch rate.

OS Page Cache is inefficient for DNN training. DNN training
platforms like PyTorch, TensorFlow and libraries like DALI, rely on
the operating system’s Page Cache to cache raw training data in
memory. Unfortunately, the OS Page Cache leads to thrashing as it
is not efficient for DNN training. If 35% of the data can be cached,
then an effective cache should provide 35% hits; instead, the Page
Cache provides a lower hit rate. For a 146 GiB data set, each epoch
should see only 65% of the dataset, or 95GiB, fetched from storage.
Instead, we observe 85% of the dataset fetched from storage every
epoch; the 20% difference is due to thrashing. Figure 4 shows the
fetch stalls, including those due to thrashing, when using PyTorch
with DALI An effective cache for DNN training must eliminate
thrashing to reduce fetch stalls to the minimum shown in Figure 4.

Lack of coordination among caches leads to redundant I/O
in distributed training. In distributed training jobs, the data to
be fetched and processed is divided randomly among servers, and
changes every epoch. As a result, each server often has to fetch
data from storage every epoch; this is done even if the required data
item is cached in an another server that is a part of the distributed
training job. This lack of coordination among caches makes dis-
tributed training storage I/O-bound. When training Resnet50 on
ImageNet-1K (146GiB) across two servers having a total cache size
of 150GiB, each server fetches 45GiB from storage in each epoch
(despite the fact that the other server might have this data item in

ShN AN RN18 SqgN MN RN50 V11 SSD M5

o

£ 1004 ShN-ShuffleNet AN -AlexNet RN18-ResNet18
z SqN-SqueezeNet MN -MobileNet RN50-Resnet50
Y goq{ V11-VGG1l SSD-SSD+RN18 M5 -AudioM5

)

‘5 601

N

= 404

©

wn 20 4

=

2

[

[

Figure 3: Fetch stalls. Several DNNs experience significant
stalls waiting for I/O, when training on Config-SSD-V100
with 35% of their dataset cached.

I Extra Fetch Stall(Thrashing) BZXA Ideal Fetch stall] Compute
O 6000 -
° 200
£ 4000
'_
<100
3 2000 1
oY
w
| e |

05 . . .
25% 35% 50% 100%
% of dataset cached % of dataset cached
(a) Config-SSD-V100 (b) Config-HDD-1080Ti
Figure 4: ResNet18 with varying cache. This stacked bar
chart splits epoch time into time spent in compute, ideal
fetch stalls, and the additional fetch stall due to thrashing.

o . ‘ .
25% 35% 50% 100%

its cache). On Config-HDD-1080T1i, this leaves ResNet50 stalled on
I/O for 75% of its epoch time.

Lack of coordination in HP search results in redundant I/0.
HP search is performed by launching several parallel jobs with
different HP on all available GPUs in a server [47]. Al HP jobs access
the same dataset in a random order in each epoch, resulting in cache
thrashing and read amplification. When 8 single-GPU jobs are run
in a server (35% cache), there is 7x read amplification per epoch
(884 GiB read off storage compared to 125 GiB for one job), which
slows down HP search on ResNet18 by 2x on Config-SSD-V100.

4.3.3 When datasets fit in memory. We now analyze the im-
pact of CPU pre-processing on DNN training in the scenario where
the entire dataset is cached in memory of a single server, thus
eliminating fetch stalls due to storage I/O.

DNNs need 3-24 CPU cores per GPU for pre-processing. Fig-
ure 5 shows how DNN training throughput changes as we vary the
number of CPU pre-processing threads (per V100 GPU) for four
models. For computationally complex models like ResNet50, 3 — 4
CPU cores per GPU is enough to prevent prep stalls; for computa-
tionally lighter models like ResNet18 or AlexNet, as many as 12 —
24 CPUs per GPU are needed to mask prep stalls. Even on NVIDIA’s
Al-optimized DGX-2, there are only three CPU cores per GPU; thus,
many models have prep stalls on the DGX-2 (§7.6)

DALI is able to reduce, but not eliminate prep stalls. DALI
has a GPU-based prep mode to offload a part of pre-processing to
the GPU. As shown in Figure 8 (a), when all pre-processing except
decoding is offloaded to the GPU for training ResNet18, prep stalls
reduce. The effectiveness of DALI depends on the GPU speed; for
example, on the slower 1080Ti, DALI is able to eliminate prep stalls

I
o
S
o

1500 A

n)
@2 £1001 ShN-ShuffleNet AN -AlexNet RN18-ResNet18
3 e 5| SqN-SqueezeNet MN -MobileNet RN50-Resnet50 g =
2 3000 % £ oo VI1VGG11 SSD-SSD+RN18 M5 -AudioM5 g B CopaResize
E #+ MobileNet g 80 £ 1000 E== Flip&N li
= | 1P lormalize
o =+ ResNet50 o I o1 [Z3 ToTensor
© 2000 " —e | < 60 4
2 '/‘ . LR 3 500
et e ® 3 i
© 1000 " 40 o
£ e ———————— | T £
£ % 20 F
k0 oy
123 6 12 24 £ 0-
Number of CPU cores per GPU ShN AN RN18 SgN MN RN50 Vil SSD M5 cPU GPU

Figure 5: Impact of CPU cores on training

400 800
Config-SSD-V100 EX3 HDD-1080Ti (Compute)
I Prep Stall EEE HDD-1080Ti (Prep Stall)
3300 =1 Compute 3600 [SSD-V100 (Compute)
) g I SSD-V100 (Prep Stall)
'g 200 F 400
< c o
% v (= —
o g_ o

0 0
PyTorch DALI-CPU DALI-GPU 1 2 3
Number of CPU per GPU

(a) PyTorch vs DALI(3 CPU per GPU) (b) Varying cluster config

Figure 8: 8-GPU ResNet18 training. Even with DALI, faster
GPUs like V100 have upto 50% prep stalls.

using three CPU threads per GPU. On the faster V100 though, DALI
still results in 50% prep stalls when using three CPU cores per GPU,
and the GPU for pre-processing. Since DALI cannot automatically
split pre-processing between CPU and GPU, we empirically find
that offloading all operations except decoding to the GPUs offered
best performance for the object detection and image classification
models except ResNet50 and VGG11. These two models are compu-
tationally complex and slow down if pre-processing is performed
at the GPU. Furthermore, DALI does not support audio decoding at
the GPU. Therefore, pre-processing is entirely done at the CPU for
ResNet50, VGG11 and audio M5 models. Figure 6 shows that prep
stalls exist across different DNNs when training with eight GPUs
each with 3 CPUs when using the best of CPU or GPU-based prep
mode of DALI as described above.

Decoding is very expensive! To understand what makes prep
expensive, we run a microbenchmark to breakdown the cost of
different stages in a typical prep pipeline for image classification
tasks. An input image is first loaded into memory, decoded, and
then randomly transformed (crop, flip), and finally copied over to
the GPU as a tensor that can be processed. Fig 7 shows the time
taken for each operation when prep is done on CPU and GPU by
DALI We see that offloading prep to the GPU provides significant
speedup at the expense of GPU memory usage (+5GB!). Second, a
majority of time during prep is spent in decoding images.

Impact of batch size. The impact of batch size on GPU computa-
tional efficiency is well studied [34, 68]; larger batch sizes utilize
the massive GPU parallelism better, and also reduce the number of
weight updates (inter-GPU communication) per epoch, resulting in
faster training. Figure 9 shows the impact of varying the batch size
on epoch time and the percentage of epoch time spent on prep stalls
for MobileNetv2. As computational efficiency increases with larger
batches, training becomes CPU bound due to data prep. Note that,
although the required GPU compute time dropped with a larger

Figure 6: Prep stall across DNNs

Figure 7: Breakdown prep

400

w I Prep stall [Compute

300

(4]

S

=200 1

e

3

8100

W8]

0 T T T :

64 128 256 512

Batch size per GPU
Figure 9: Impact of batch size on prep.

= 60 % cached | 8-GPU job 8-job HP
% 0 (Sz:146GB) | Cache Miss | I/O (GB) Read amp
©
3 20 50% 91% 860 6.14%
e 35% 94% 1010 7.21X

0 TF MxNet 25% 97% 1019 7.28%X

(a) 100% Cache (b) Varying cache (TensorFlow)

Figure 10: Data stalls across frameworks

batch size, per epoch time remained same due to prep stalls. This
graph makes an important point; as compute gets faster (either due
to large batch sizes, or the GPU getting faster), data stalls squander
the benefits due to fast compute.

Redundant pre-processing in HP search results in high prep
stalls. During HP search, concurrent jobs process the same data.
Currently, there is no coordination; if there are 8 HP jobs, the same
data item is processed eight times. This is made worse by the fact
that all HP jobs share the same set of CPU threads, leading to fewer
CPU threads per GPU, and higher prep stalls. When 8 single-GPU
ResNet18 HP jobs run on Config-SSD-V109, each job gets 3 CPU for
prep and incurs a 50% prep stall as shown in Figure 6. Coordinating
these HP search jobs on a single server can potentially eliminate
prep stalls, as all available CPU (24 cores) can be used to prep the
dataset exactly once per epoch and reused across jobs (Figure 5
shows ResNet18 requires 12 CPUs per GPU to eliminate prep stalls).

4.3.4 Data stalls exist across training frameworks. To gener-
alize our findings on data stalls across different training platforms
and data formats, we analyze the prep and fetch stalls in TensorFlow
(TF) using the binary TFRecord format, and MxNet using RecordIO
format. Unlike PyTorch, TF does not store training data as small
individual raw files. Instead, it shuffles the small random files, seri-
alizes it, and stores them as a set of files (100-200MB each) called
TFRecords. TFRecords make reads more sequential. MXNet also
use a similar serializing technique for data called RecordIO [53].

Figure 10a shows that both native TF and MxNet spend 65% and
50% of the epoch time on prep stall for a 8-GPU ResNet18 training
job when the dataset is entirely cached in memory. Next, Table 10b
shows the percentage of misses in the Page Cache for a 8-GPU
training job and the I/O amplification due to lack of coordination
in HP search for varying cache sizes in TF. TFRecord format results
in 40% higher cache misses than the ideal because, the sequential
access nature of TFRecords (and RecordlO) is at odds with LRU
cache replacement policy of the Page Cache, resulting in a patho-
logical case for LRU (this is 20%higher than PyTorch). The lack of
co-ordination in HP jobs results in upto 7.2x read amplification;
although all jobs read the same 140 GiB dataset, the total disk I/O
was 1.1 TB.

4.3.5 Analysis of NLP Models. In addition to vision and au-
dio models in table 2, we evaluated data stalls on two language
models; Bert-Large pretraining [26] on Wikipedia & BookCorpus
dataset [80] for language modeling and GNMT [74] on WMT16 [17]
(EN-De) dataset for translation, which do not exhibit data stalls.
Language models have a distinct pre-processing regime compared
to vision-based models. Text-based models pre-process and shuf-
fle the data corpus once before training, and then reuse it every
epoch. There is no online, random, heavy-weight pre-processing
performed in every epoch unlike vision models. Therefore, the lan-
guage models do not exhibit data stalls in our training environment.
However, data stalls may show up in these models if GPUs get
faster or the computation requirements for these models gets lower
due to compact model representations.

5 DS-ANALYZER: PREDICTIVE ANALYSIS

While all the experiments that vary cache size, and the number
of CPU cores in §4.3 are run on physical servers, we extend DS-
Analyzer to help a user simulate these experiments without having
to run all different configurations on physical servers. While there
exists prior work that predict the performance of a DNN, they
focus on profiling the layer-wise performance of DNN [4, 13], low
level perf counters for accelerators [12, 36], or finding optimization
opportunities at the neural network layer level [78]. In contrast,
DS-Analyzer analyzes the implication of CPU, memory, and storage
on the performance of a DNN and answers what-if questions.

This is a powerful means of analyzing whether throwing more
hardware at the problem will solve the issue of data stalls. For
instance, if training is dominated by fetch stalls (bottlenecked on
disk bandwidth), then increasing the number of CPU cores on the
machine has no benefit; either DRAM capacity has to be increased,
or the disk must be replaced with a higher bandwidth one. Similarly,
if the training job is bottlenecked on prep, then increasing DRAM
has no effect on training time. DS-Analyzer is useful in scenarios
like this, to predict the performance of a model as we scale up
CPU, memory, or storage. However, DS-Analyzer needs to be run
atleast once for every new GPU and DNN architecture to collect the
required information, and predicts the impact of varying auxiliary
resources like CPU, memory, or storage on data stalls.

Estimating data stalls. Consider the different components in-
volved in a typical DNN data pipeline as in Figure 1; data is fetched
from cache (and store) with an effective prefetch rate F, pre-processed
at the CPU at a rate P and processed at the GPU at a rate G. To

25000 T Y
@ 20000 1 =8~ Pred. Fetch Rate (F) =% Pred. GPU Rate (G)
3 == Pred. Prep Rate (P) = Empirical P
g 15000 1 2

~~

3 N
3 10000
& 5000 e -o—0- —0—

0O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
% of dataset cached

Figure 11: Estimating optimal cache size with DS-Analyzer.

perform predictive analysis, DS-Analyzer measures several metrics
related to the data pipeline of the model; the maximum ingestion
rate at the GPU (G), the rate of CPU prep (P), the rate of cache fetch
(C), and the rate of storage fetch (S), by training for a fixed number
of iterations (default:100) using the differential technique discussed
in §4.2. More details on how DS-Analyzer measures these quan-
tities is precisely mentioned in our Technical Report [55]. Using
these metrics, DS-Analyzer models the training iteration to answer
what-if questions such as, how much DRAM cache is required for
this model to eliminate fetch stalls?

5.1 Example : Predicting optimal cache size

We now describe an example of what-if analysis with DS-Analyzer.
We show how DS-Analyzer answers the question : how much DRAM
cache does the DNN need to eliminate fetch stalls? To predict the
implication of cache size, DS-Analyzer calculates the effective pre-
fectch rate (F) for a given cache size (x % of the dataset). Here, we
assume that the cache implements an efficient policy like MinIO;
i.e., a cache of size x items has atleast x hits per epoch. F is com-
puted as follows. Say the size of the dataset is D samples, and cache
is x% of the dataset. Therefore, in an epoch, the total time to read

the dataset is given by
DXxx . Dx(1-x)

Tr = 1
r c S (1
The fetch rate is then calculated as,
D D
F=—= —MM (2)
T DX Dx(1-x)
i

Since C >> S, F « ﬁ, i.e, the effective fetch rate increases,
as the number of uncached items per epoch decreases. Since DS-
Analyzer has already estimated values of D, C, and S, given a cache
percentage x, DS-Analyzer can predict the fetch rate using Eq (2).

To evaluate how accurately DS-Analyzer can answer this ques-
tion, we run the actual experiment by varying cache size on a
physical server (empirical), and comparing it to the predictions
of DS-Analyzer for AlexNet on Config-SSD-V100 with Imagenet-
1K. Figure 11 plots the predicted values of F, P, and G, alongside
empirical speed while varying cache size. First, we observe that
the predicted training speed (min(F, P, G)) is a maximum of 4% off
the empirical results. Second, using these predictions, DS-Analyzer
can estimate the optimal cache size for the model by comparing it
with prep rate (P) and GPU ingestion rate (G). To eliminate fetch
stalls, F > min(P, G) as shown by the intersection in Figure 11. At
lower cache sizes, training is I/O bound, however, a cache that is
50% of the dataset size is sufficient to eliminate fetch stalls; larger
cache (more DRAM) is not beneficial beyond this point, as training

Add the missed item to cache

cB CA DA/ 'bc BC [BD [AD

voOX XX XX XX
+LRU
|Access Pattern [B C A D] [C B D A \l

Figure 12: Cache hits with MinlIO. Cache activity for two
“epochs” of training for page cache and MinlIO.

becomes CPU-bound. A comprehensive list of data pipeline rates
(G, P, F) for several models, datasets, and configurations is in the
Appendix of our Technical Report [55].

6 MITIGATING DATA STALLS

Based on the insights from our analysis, we explore ways of mit-
igating data stalls using domain specific techniques that reduces
cache misses, and eliminates redundancy in data fetch and prep.
We further discuss how to reduce the cost of decoding in §8.

Technique Impact Benefits

. DNN-aware caching to minimize IO by Single-server
MinlO Cache reducing cache misses per epoch (§6.1) training

. Eliminate redundant fetch by Distributed
Partitioned coordinating remote MinIO caches .
MinIO Cache training
(§6.2)

Coordinated Eliminates redundant fetch and prep ~ Single-server

Prep across jobs (§6.3) training

6.1 The MinlO cache

As datasets increase in size, they cannot be cached entirely in the
memory of a server during training. In such cases, DNNs suffer from
fetch stalls if the rate of data fetch is lower than the rate of compute
(despite prefetching and pipelining data fetch with compute) as
discussed in (§4.3). Note that, when fetch stalls occur, training is
bottlenecked by the bandwidth of storage device, therefore it is
crucial to minimize I/O by maximizing cache hits every epoch.

DNN training frameworks today, rely on the OS Page Cache to
cache the training dataset. However, we tap on the piercing insight
of Stonebraker et al.’s pioneering work on database caching [69],
that the abstractions provided by OS can hinder the development of
efficient databases, and validate it in the context of DNN workloads.
Therefore, we study the DNN data access pattern to design a domain-
specific cache MinlO.

OS Page Cache works as follows; whenever a data item is read
from storage, it is cached in the Page Cache to speed up future
accesses. When the Page Cache reaches its capacity, a cache replace-
ment policy decides which of the existing items to evict to make
space for the new one. Linux uses a variant of Least Recently Used
(LRU) for cache replacement [28].

However, DNN training has a unique data access pattern: it is
repetitive across epochs and random within an epoch. Training is split
into epochs: each epoch accesses all the data items in the dataset
exactly once in a random order. We make a key observation about
the DNN access pattern that is at odds with such OS cache replace-
ment policies. All data items in the dataset have equal probability
of access in an epoch. Therefore, it is not important which data item

is cached. Instead, it is crucial that cached items are not replaced
before they are used, to minimize storage I/O per epoch.

Therefore, MinIO recommends a simple and unintuitive solution;
items, once cached, are never replaced in the DNN cache. MinIO
works as follows. In the first epoch of the training job, MinIO caches
random data items as they are fetched from storage, to populate the
cache. Once the cache capacity is reached, MinIO will not evict any
items in the cache; instead, the requests to other data items default
to storage accesses. The items in the MinIO cache survive across
epochs until the end of the training job. Every epoch beyond the
first gets exactly as many hits as the number of items in the cache;
this reduces the per-epoch disk I/O to the difference in the size of
dataset and the cache.

Figure 12 contrasts the caching policy of the OS Page Cache and
MinlO. Consider a dataset of size 4 (with items A — D) and a cache of
size 2 (50% cache). Let’s say after warmup, the cache has two items
D and B. Figure 12 shows the state of the cache for two training
epochs. MinIO only incurs capacity misses per epoch (here 2); the
Page Cache on the other hand, can result in anywhere between 2-4
misses per epoch because of thrashing. For instance, in the first
epoch, D is in the cache to begin with, but kicked out to make way
for a new item C, and later in the same epoch it is requested again
(thrashing). We empirically verified this using large datasets and
varying cache sizes (§7) and found that Page Cache results in close
to 20% more misses than MinIO due to thrashing.

MinlO’s no replacement policy simplifies the design of the cache
as we do not need bookkeeping about the time or frequency of
access of data items. Moreover, we choose to implement MinlO
in user-space and not as a new replacement policy in the kernel,
making it flexible to use in scenarios where the user has no root
privileges to modify the kernel. The strength of MinIO thus lies in
its simplicity and effectiveness.

6.2 Partitioned MinlO Caching

MinIO reduces the amount of disk I/O (fetch stalls) in single-server
training. In distributed training, the dataset is partitioned and pro-
cessed by a group of servers. Each server operates on a random
shard of the dataset per epoch, and this partition changes every
epoch (§2.1). The MinlO cache alone, is not efficient in this setting.
For example, consider a distributed training job across two servers,
each of which can cache 50% of the dataset. In every epoch, each
server has to process a random 50% partition of the dataset, some
of which may be hits in the local MinIO cache but the misses result
in storage I/O, which is expensive and results in fetch stalls.

We observe that the cross-node network bandwidth in publicly
available cloud GPU instances and our clusters(10-40 Gbps) is upto
4x higher than the read bandwidth of local SATA SSDs (530 MBps).
Data transfer over commodity TCP stack is much faster than fetch-
ing a data item from its local storage, on a cache miss. Therefore,
we can coordinate the remote MinlO caches across all servers.

Partitioned MinlO caching works as follows. In the first epoch,
the dataset is sharded across all servers, and each server populates
it’s local MinIO cache with data items in the shard assigned to it.
At the end of the first epoch, we collectively cache a part of the
dataset of size equal to the sum of capacities of individual MinIO
caches. To route data fetch requests to the appropriate server, we
maintain metadata about data items present in each server’s cache.

Whenever a local cache miss happens in the subsequent epoch at
any server, the item is first looked up in the metadata; if present, it
is fetched from the respective server over TCP, else from its local
storage. If the aggregate memory on the participating servers is
large enough to cache the entire dataset, then partitioned caching
ensures that there is no storage I/O on any server beyond the first
epoch; the entire dataset is fetched exactly once from disk in the
duration of distributed training.

6.3 Coordinated Prep

Hyperparameter (HP) search for a model involves running several
concurrent training jobs, each with a different value for the HP
and picking the best performing one. Our analysis shows that co-
locating HP search jobs on the same server results in both fetch
and prep stalls (§4) due to lack of coordination in data fetch and
prep among these jobs.

We introduce coordinated prep to address this issue. The idea be-
hing coordinated prep is simple. Each job in the HP search operates
on the same data; hence, instead of accessing data independently
for each job, they can be coordinated to fetch and prep the dataset
exactly once per epoch. Each epoch is completed in a synchro-
nized fashion by all HP jobs; as a result, pre-processed minibatches
created by one job can be reused by all concurrent jobs.

Coordinating HP search jobs must be done carefully to ensure
that: each job processes the entire dataset exactly once per epoch. A
naive way of doing this is to pre-process the dataset once and reuse
across all HP jobs and all epochs as suggested by prior work [42, 56].
This approach will not work for two reasons. First, reusing pre-
processed data across epochs may result in lower accuracy, as the
random transformations are crucial for learning. Second, the pre-
processed items are 5-7x larger in size when compared to the raw
data items. Caching pre-processed items will overflow the system
memory capacity quickly for large datasets. If we store them on
storage, we may incur fetch stalls.

Coordinated prep addresses these challenges by staging pre-
processed minibatches in memory for a short duration within an
epoch. Since each job has identical per-minibatch processing time,
the minibatch is short lived in the staging area. Coordinated prep
works as follows.

Each HP search job on a server receives a random shard of the
dataset when they start. Each job fetches and pre-processes the
assigned shard, creating minibatches as they would normally do.
When ready, these minibatches are exposed to the other jobs in the
cross-job staging area. This is a memory region that is accessible to
all running jobs on the server. Additionally, each minibatch has a
unique ID and an associated atomic counter that tracks how many
jobs have used this minibatch so far in the current epoch. When a
job needs a minibatch for GPU processing, it retrieves it from the
staging area and updates its usage counter. A minibatch is deleted
from the staging area when it is used exactly once by all running
jobs, as we want to ensure that it is not used across epochs. We
empirically show in §7 that the addition of cross-job staging area
does not introduce additional memory overhead.

6.4 Tying it all together with CoorDL

We implement the three techniques discussed thus far as a part of a
user-space data loading library, CoorDL. We build CoorDL on top of

DALI to take advantage of the GPU-accelerated data pre-processing
operations. CoorDL can be used as a drop-in replacement for the
default PyTorch dataloader.

The overall architecture of CoorDL is as follows. The training
dataset resides on a local storage device like SSD/HDD. If the data
resides on a remote storage service, it is cached in local storage
when first accessed [3]. For all later epochs, the data is fetched from
local storage. In each training iteration, a minibatch of data must
be fetched from disk (or cache), pre-processed to apply random
transformations and collated to a tensor that can be copied over to
the GPU for computation. CoorDL manages its own MinIO cache
of the raw data items (before any stochastic pre-processing trans-
formations are applied). The data sampling and randomization is
unmodified; in each epoch, every minibatch is sampled randomly
from the dataset. Every data item is then subjected to the random
pre-processing pipeline specified in the training workload. The
prepared minibatch is then placed in a cross-job staging area for
consumption by the GPU. If a single data-parallel job is running
across multiple GPUs in a server, then the minibatches in the stag-
ing are used exactly once per epoch and discarded; if there are
concurrent HP jobs on a server, then the staging area retains mini-
batches until each concurrent job has used it exactly once in the
current epoch. Any minibatch that satisfies this criteria is evicted
from the staging area to make way for newer batches.

7 EVALUATION

We now evaluate the efficacy of CoorDL on three different as-
pects of the training process: multi-GPU training on a single server,
distributed training across multiple servers, and hyperparameter
tuning. We evaluate our techniques on nine models, performing
three different ML tasks (image classification, object detection and
audio classification) on four different datasets, each over 500GB as
shown in Table 2. Since DALI strictly outperforms PyTorch DL, we
use DALI as the baseline in our experiments. For each model, we
run both CPU-based (all pre-processing on CPU) and GPU-based
(part of decoding and all other transformations on GPU) mode of
DALI and present the best of the two results.

Experimental setup. We evaluate CoorDL on two representative
server configurations from Microsoft clusters as described in Ta-
ble 3. Config-SSD-V100 uses V100 GPUs and a SATA SSD, while
Config-HDD-1080Ti uses 1080Ti GPUs and a magnetic hard drive.
We use the same training methodology we used for analysis (§4.1).
We seek to answer the following questions:

How does the MinlO cache affect multi-GPU training on a server? | §7.1
How does partitioned caching improve training time for jobs dis-

7.2
tributed across multiple servers? 3
How does coordinated prep benefit HP search? §7.3
Does CoorDL affect DNN training accuracy? §7.4

Does CoorDL enable better resource utilization compared to DALI? | §7.5
Does CoorDL accelerate training on ML servers like the DGX-2? | §7.6

7.1 Single-server Multi-GPU training

CoorDL speeds up a single-server training job by reducing cache
misses using the MinlO cache. Figure 13 (a) plots the relative
speedup with respect to DALI while training the image classifi-
cation and object detection models on the Openlmages dataset, and

o
o}
w
= B DALl-seq DALI-shuffle HEl CoorDL
<
als
£
2
210
°
o}
[}
o
w 0.5
o
£
£
© 0.0 -
= ShuffleNet AlexNet ResNet18 SqueezeNet MobileNet ResNet50 Vggll SSD+Res18 Audio-m5
(a) Config-SSD-V100 : Multi-GPU training in a server
5 12
— 15 - - v
3 24 @ g 10 > 3
a a) a I3 =
" @ o < & 8 a g
ER £ 3] ¢ z @ £ 5
a _g a &’ a 61 § Y <
3 s 27 3 2 4 £ Ey 2
s 7 g | 8 3 5 3| B
Q s o 1 Q5 e 3 a
() IS4 n wn ~ ol
i 0
0 0 0-
1-node 2-nodes 1-node 2-nodes l-node 2-nodes 3-nodes £
(i) AlexNet (ii) ResNet50 (iii) Audio-M5 ShuffleNet Audio-M5
(b) Config-HDD-1080Ti : Distributed Training across servers (c) Config-SSD-V100 : 2 servers
6 6
- - DAL-shuffle | — 3]
s s)
<D(<DE [Fetch-Only <Q(
o a o4l 3 EEE CoorDL £ 21
Q 1= [=
z s 2502 2
2’ & 2l 5 2
(%] "
22 © < <) < — m n B2 @ ® 11
() o] © wn wn wn (=2} O «© — (] © Q
n) %)
0 0

SSD

Shuffle
(d) Config-SSD-V100 : Hyperparameter search with 8 jobs

Alex Resl8 Squeeze Mobile Res50 Vggll

Audio

ol
Res50 8-jobs 4-jobs 2-jobs 1-job

(f) Varying # HP search jobs

ShuffleNet Res18
(e) Breakdown of techniques

Figure 13: This graph compares DALI against CoorDL for a variety of training scenarios; single server, multi-server and HP
search, across 2 clusters and 9 models. CoorDL significantly accelerates training by eliminating redundant data fetch and prep.

audio classification on FMA dataset. We evaluate MinlO against
two modes of DALIL DALTI’s default mode is DALI-seq, where it
reads data sequentially off storage and shuffles them in memory [5].
DALI-shuffle accesses the dataset in a randomized order (doing
random reads, similar to the native dataloader of PyTorch).
MinlO results in upto 1.8% higher training speed compared to
DALI-seq by eliminating thrashing on Config-SSD-V100. When
the image classification models are trained with ImageNet-22k
dataset, CoorDL results in up to 1.5x speedup. CoorDL accelerates
ResNet50 training on Openlmages by 2.1x compared to DALI-seq
and 1.53x compared to DALI-shuffle on Config-HDD-1080T1i.

Reduction in cache misses. We measure the disk I/O and number
of cache misses when training ShuffleNet on Openlmages dataset
on Config-SSD-V100. This server can cache 65% of the dataset.
CoorDL reduces misses to the minimum number of 35%, resulting
in 225 GB of I/O. In contrast, DALI-Seq results in 66% cache misses,
increasing I/O by 87% to 422 GB; DALI-shuffle results in 53% cache
misses, increasing I/O by 50% compared to CoorDL to 340 GB.

Note that, when the whole dataset does not fit in memory, DALI-
shuffle performs better than DALI-seq (because sequential access
is a pathological case for the Linux LRU page cache). Therefore,
our evaluation in the rest of this section compares CoorDL to the
stronger baseline, DALI-shuffle.

7.2 Multi-Server Distributed Training

We now evaluate CoorDL on a distributed training scenario. The
lack of cache co-ordination between the participating servers re-
sults in fetch misses that lead to disk I/O. CoorDL uses partitioned
caching to avoid redundant I/O. Figure 13(b) shows that CoorDL
improves the throughput of distributed training jobs by upto 15x
(AlexNet on Openlmages) when trained across two servers on
Config-HDD-1080Ti (16 GPUs). On Config-HDD-1080Ti servers,
65% of the Openlmages dataset can be cached on a single server;
and it can be fully cached in the aggregated memory of two servers.
Therefore, CoorDL moves the training job from being I/O bound to
GPU bound. When trained across two servers on Config-SSD-V100,
CoorDL accelerates ShuffleNet on ImageNet-22k by 1.3%, and Audio-
M5 on FMA by 2.9%. On Config-SSD-V100, the relative gains
are lower because the cost of a fetch miss is lower on SSDs due
to its high random read throughput, as compared to HDDs on
Config-HDD-1080Ti.

7.3 Hyperparameter Search

Figure 13 (d) plots the relative increase in throughput of individual
jobs across several models when eight concurrent HP search jobs
are run on a Config-SSD-V100 server. On less computationally
complex models like AlexNet and ShuffleNet, CoorDL increases

100
- —— CoorDL —e— DALI Q DALI HE CoorDL
o 80 — @
© ® 400 kY
5 = o
o 60 £ 2
g] g
— 40 %2001 —— DALI >
E 20 o —— CoorDL é‘:’_
0 0 o
0 10 20 30 40 50 0 200 400 600 800 1000 1200 1400 ShN AN RN18 SgN MN RN50 V11

Time (hrs)

Figure 14: Training to accuracy

training speed by 3X, because these models are originally CPU
bound due to prep. For the audio model, CoorDL increases the
training speed by 5.6X. CoorDL reduced the total disk I/O from
3.5TB to 550GB. Similarly, on Config-HDD-1080Ti, CoorDL results
in 5.3X faster training on the audio model, and 4.5X faster train-
ing on ResNet50. On Config-HDD-1080Ti, CoorDL results in 5.3%
faster training on the audio model, and 4.5x faster training on
ResNet50 by coordinating data fetch and prep.

Split of coordinated prep benefits. Next, we show the break-
down of speedup due to coordination of data fetch and prep during
HP search. When fetch is coordinated, concurrent jobs use data
fetched by other jobs; but each job performs its own data prep.
CoorDL coordinates both; eliminating redundant fetch and prep.
Figure 13 (e) plots the results on Config-SSD-V10@. In this case,
data stall is dominated by prep, which CoorDL mitigates unlike
prior work like Quiver [44] that only coordinates fetch.

Multi-GPU HP search jobs. Figure 13 (f) shows training with
different configs of HP search jobs on a machine; 8 1-GPU jobs, 4 2-
GPU jobs, 2 4-GPU jobs, or 1 8-GPU job for AlexNet on Openlmages.
For a single job case, the benefit is due to the MinlO cache; in
other configs, it is due to coordinated prep. More the number of
concurrent jobs, higher the benefit with coordination.

7.4 Training to Accuracy with CoorDL

CoorDL does not change the randomness of data pre-processing
involved. Its techniques do not affect the learning algorithm. To
demonstrate this, we train ResNet50 to accuracy on ImageNet-1K
using 16 GPUs across two Config-HDD-1080T1 servers, where each
server is capable of caching 50% of the dataset. Figure 14 shows
that CoorDL reduces the time to target accuracy (75.9%) from two
days to just 12 hours (4% better), due to partitioned caching.

7.5 Resource Utilization

MinlO results in lower disk I/0 and better CPU utilization.
Figure 15 shows the I/O for two epochs of training ResNet18 on
Openlmages on Config-SSD-V100. The I/O behavior is similar
across models and server configurations. DALI observes cache hits
at the beginning of the epoch, but soon becomes I/O bound.

Since MinlO is caching a random subset of the dataset, cache hits
are uniformly distributed across the epoch in CoorDL. This results
in a predictable I/O access pattern and faster training (epochs end
earlier in Figure 15). Profiling the CPU during training shows that
the prep threads in DALI are often stalled waiting for I/O. Since
MinlO reduces the total disk I/O, CoorDL is able to better utilize
the CPU for pre-processing. The combination of lower disk I/O and
better CPU utilization leads to shorter training time in CoorDL.

Time (s) Models
Figure 15: Disk I/O profile

Figure 16: Evaluation on DGX-2

CoorDL uses a fraction of available network bandwidth. Co-
orDL shards the dataset equally among all servers in distributed
training to ensure load balancing. We track the network activity
during the distributed training for ResNet50 on Openlmages across
two, three, and four servers with DALI and CoorDL. CoorDL used
5.7 Gbps per server of network bandwidth (14% of the 40 Gbps
available). DALI used 1.18 Gbps of network bandwidth per server.
CoorDL used 4.8% higher network bandwidth to train 4.3 faster.

Coordinated prep has low memory overhead. We track the
memory utilization of running hyperparameter search on AlexNet
on Openlmages on Config-SSD-V100 using eight concurrent jobs.
CoorDL uses 5 GB of extra process memory to store prepared mini-
batches in memory until all hyperparameter jobs consume it. We
reduce the cache space given to CoorDL by 5 GB (keeping the total
memory same for CoorDL and DALI). Despite the lower cache
space, CoorDL still accelerated training by 2.9%.

7.6 CoorDL on DGX-2

We now compare CoorDL against DALI on the bleeding-edge ML
optimized server DGX-2 while performing HP search across 16
GPUs using Openlmages dataset. Since this dataset can be fully
cached in the memory of DGX-2 (1.5TB DRAM), we observe no stalls
due to data fetch beyond the first epoch. However, the imbalance in
the ratio of CPU-GPU results in prep stalls which CoorDL mitigates
by coordinating pre-processing. CoorDL accelerates HP search by
1.5%- 2.5x over DALI by eliminating redundant data prep, enabling
efficient usage of CPU to mask prep stalls.

8 DISCUSSION

Our analysis of data stalls reveals several key insights to utilize
the computational capabilities of GPUs by minimizing data stalls.
While we explore ways of mitigating data stalls in a user-space
library CoorDL, we believe there is more to be done.

Decoded cache to reduce pre-processing overhead. CoorDL
does not address the high cost of decoding/decompressing raw
images, which our analysis identifies to be the most expensive oper-
ation during data prep. A future direction is to evaluate the benefits
of caching decoded data items instead of the current approach of
caching raw encoded items. Since decoding is deterministic, it is
possible to cache it across epochs. However, this is non trivial; de-
coding increases the dataset size by 5 - 7 X. It is an interesting
future direction to enable decoded caching without incurring the
high space overhead, possibly using serialized data formats.

Automatic prep offload to GPUs. Data pipelining frameworks
like DALI have the ability to perform certain image and audio based
pre-processing (prep) such as crop, flip, and other transformations
on GPU accelerators. However, there is a memory-performance

tradeoff in deciding how many steps of prep are offloaded to the
GPU for two reasons. (1) Performing prep at the GPU takes up a part
of the already scarce GPU memory which may result in training
with lower batch sizes, thereby affecting training efficiency. (2) Prep
at the GPU may interfere with the computations performed by the
learning algorithm; this adversely affects the overall throughput
of training for computationally expensive and deeper networks.
Therefore, the split of prep operations must be carefully chosen
considering the model’s architecture, batch size, and data stalls.
While this split is determined manually by trial-and-error today,
automating it with a careful eye on GPU and CPU utilization is an
interesting future direction.

Minibatch as a service. Our analysis shows that the imbalance in
CPU cores per GPU in ML optimized servers result in data stalls
for several models. In such cases where single-host capacities are
maxed out, a viable approach is to offload data prep to other idle
host machines in a cluster. This is especially useful in production
clusters with high-bandwidth ethernet, where several jobs use the
same dataset and similar pre-processing pipelines; a dedicated set
of servers can be used to centrally pre-process minibatches of data,
while the training jobs can request minibatch as a service, thereby
entirely disaggregating learning from data management.

Cost-peformance tradeoff of upgrading hardware. Our analy-
sis finds that data stalls squander away the improved performance
of faster, expensive GPUs, resulting in lower value/$ spent as shown
in Figure 8 (b). Therefore, it may be economical to train some mod-
els on slower, less expensive GPUs with no data stalls, rather on
underutilizing the accelerator capabilities due to stalls on faster, ex-
pensive GPUs. In practice, such techniques may improve the overall
efficiency in multi-tenant clusters by assigning jobs to accelerators
in such a way that they maximize GPU utilization.

Data stalls in inference. This work addresses data stalls in the
training pipeline which have three distinct features from inference.
(1) Training requires a large volume of data samples, (2) performs a
larger set of data prep for every batch, and (3) requires backpropaga-
tion during the learning phase. While inference jobs require fewer
prep steps per sample or batch, it also performs lesser GPU com-
putation compared to training. Moreover, the limited memory and
compute availability at edge devices may also introduce data stalls
in inference. We hope our analysis encourages similar research and
possibly unique optimizations in inference land.

Trade-off between convergence rate and epoch time for other
SGD variants. This work focuses on the most common case of
mini-batch SGD with a random shuffling of the data in every epoch
which is the default for the models we analyzed. A future direc-
tion is to understand the impact of relaxing the ETL requirements
assumed in this work (such as random prep and shuffling every
epoch) on epoch time and model convergence. Although relaxing
these constraints may reduce data stalls and hence epoch time, it
may prolong convergence, or affect the accuracy of some models. It
is worth investigating this behavior theoretically and empirically.

9 RELATED WORK

To the best of our knowledge, this paper presents the first compre-
hensive analysis of data stalls in DNN training.

Optimizing remote storage via local caching. Quiver [44] uses
local SSD caches to eliminate the impact of slow reads from remote
storage. The best case for Quiver is when the dataset is completely
cached on local storage; our system starts from this baseline and
further improves performance. Quiver does not consider or optimize
prep stalls, only handling fetch stalls.

Partitioned caching. Cerebro [56] uses a new parallel SGD strat-
egy for model selection tasks. It partitions the dataset across the
servers in a cluster and hops the models from one server to other,
instead of shuffling data. Cerebro does not improve DNN training
on a single server, while CoorDL optimizes performance in this sce-
nario. Furthermore, Cerebro is designed specifically for distributed
model search; on the contrary, our analysis and CoorDL have a
broader scope. DeeplO [79] uses a partitioned caching technique
for distributed training with remote data, but relies on specialized
hardware like RDMA. In contrast, our work shows that it is possible
to mask fetch stalls using commodity TCP stacks.

Redundancy in DNN training. Prior work like Model Batch-
ing [58] addressed redundancy in model search when running
multiple DNNs together on a single GPU, by sharing GPU computa-
tion across jobs. Our analysis looks at the setting where GPUs are
not shared between jobs. OneAccess [42] is a preliminary study that
makes a strong case for storing pre-processed data across epochs
to reduce prep stalls; however such an approach precludes com-
monly used online data prep techniques and this can affect model
convergence. In contrast, CoorDL carefully eliminates redundancy
while preserving accuracy and providing significant speedups.

Domain specific caching. The idea of designing a caching pol-
icy that is aware of application semantics is not new. Stonebraker
et al. highlighted the importance of domain-aware caching for
databases [69]. Tomkins et al. show that informed prefetching
and caching in file systems can reduce the execution time of I/O-
intensive applications [71]. Our work draws parallels to such tech-
niques by first understanding DNN access pattern and then devising
a caching policy based on these observations.

10 CONCLUSION

We present the first detailed study of data stalls in several DNNs, and
show that it accounts for up to 65% of the training time. The insights
from our study, guide the design of a coordinated caching and pre-
processing library, CoorDL, that can accelerate DNN training by
mitigating data stalls. CoorDL accelerates training by up to 15X for
distributed training across two servers, and 5.3x for HP search (on
the audio model).The techniques behind CoorDL are simple and
intuitive, easing adoption into production systems.

ACKNOWLEDGEMENTS

This work was done during an internship at Microsoft Research as
part of Project Fiddle. We thank the anonymous VLDB reviewers,
members of the UT SaSLab, Jorgen Thelin, Jack Kosian, Deepak
Narayanan, Keshav Santhanam and many of our MSR colleagues for
their invaluable feedback that made this work better. We thank MSR
Labs for their generous support in procuring the many resources
required for this work. This work was supported by NSF CAREER
#1751277 and donations from VMware, Google, and Facebook.

REFERENCES

[13]
[14]
[15]
[16]

[17]
[18

[19]

[20

[21

[22

[23]

[24]

[25

[26]

[27]

[28]

[29

[30]

[31]

2020. AWS Instance Types. https://aws.amazon.com/ec2/instance-types/#p3.
2020. AWS Instance Types. https://aws.amazon.com/ec2/instance-types/#p2.
2020. Blobfuse. https://github.com/Azure/azure-storage-fuse.

2020. Cloud TPU Tools. https://cloud.google.com/tpu/docs/cloud-tpu-tools.
2020. DALL: Supported Operations. https://docs.nvidia.com/deeplearning/dali/
user-guide/docs/supported_ops.html#nvidia.dali.ops.FileReader.

2020. EBS Volume types. https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/ebs-volume-types.html.

2020. Fast AI Data Preprocessing with NVIDIA DALL
devblogs.nvidia.com/fast-ai- data- preprocessing- with-nvidia- dali/.
2020. ImageNet-22k. http://www.image-net.org/releases.

2020. Microsoft Philly Traces. https://github.com/msr-fiddle/philly-traces.
2020. NVIDIA DGX-2: Enterprise Al Research System. https://www.nvidia.com/
en-us/data-center/dgx-2/.

2020. NVIDIA Object Detection. https://github.com/NVIDIA/
DeepLearningExamples/tree/master/PyTorch/Detection/SSD.

2020. NVIDIA Profiler. https://docs.nvidia.com/cuda/profiler-users-guide/
index.html.

2020. Profiling MXNet models. https://mxnet.apache.org/api/python/docs/
tutorials/performance/backend/profiler.html.

2020. TorchAudio classifier. https://pytorch.org/tutorials/beginner/
audio_classifier_tutorial.html?highlight=audio.

2020. TorchVision models. https://pytorch.org/docs/stable/torchvision/
models.html.

2020. Training a Champion: Building Deep Neural Nets for Big Data Analyt-
ics. https://www.kdnuggets.com/training-a-champion-building-deep-neural-
nets-for-big-data-analytics.html/.

2020. WMT16. http://www.statmt.org/wmt16/.

Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Natsev, George Toderici,
Balakrishnan Varadarajan, and Sudheendra Vijayanarasimhan. 2016. Youtube-8m:
A large-scale video classification benchmark. arXiv preprint arXiv:1609.08675
(2016).

James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter
optimization. Journal of machine learning research 13, Feb (2012), 281-305.
Shubham Chaudhary, Ramachandran Ramjee, Muthian Sivathanu, Nipun Kwa-
tra, and Srinidhi Viswanatha. 2020. Balancing efficiency and fairness in het-
erogeneous GPU clusters for deep learning. In EuroSys °20: Fifteenth EuroSys
Conference 2020, Heraklion, Greece, April 27-30, 2020. ACM, 1:1-1:16. https:
//doi.org/10.1145/3342195.3387555

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. 2018. TVM: An automated end-to-end optimizing
compiler for deep learning. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). 578-594.

Tianqgi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016. Training Deep
Nets with Sublinear Memory Cost. arXiv preprint arXiv:1604.06174 (2016).
Jichan Chung, Kangwook Lee, Ramtin Pedarsani, Dimitris Papailiopoulos, and
Kannan Ramchandran. 2017. Ubershuffle: Communication-efficient data shuffling
for sgd via coding theory. Advances in Neural Information Processing Systems
(NIPS) (2017).

Wei Dai, Chia Dai, Shuhui Qu, Juncheng Li, and Samarjit Das. 2017. Very deep
convolutional neural networks for raw waveforms. In 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 421-425.
Michaél Defferrard, Kirell Benzi, Pierre Vandergheynst, and Xavier Bresson. 2016.
Fma: A dataset for music analysis. arXiv preprint arXiv:1612.01840 (2016).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for Language Under-
standing. In Proceedings of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers). Association for Computational Linguistics, 4171-4186.
https://doi.org/10.18653/v1/n19-1423

Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John
Karro, and D Sculley. 2017. Google vizier: A service for black-box optimization.
In Proceedings of the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining. 1487-1495.

Mel Gorman. 2020. Understanding the Linux Virtual Memory Manager. https:
/Iwww .kernel.org/doc/gorman/html/understand/understand013.html.

Priya Goyal, Piotr Dollar, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. 2017. Accurate,
large minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677
(2017).

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. 2013. Speech
recognition with deep recurrent neural networks. In 2013 IEEE international

conference on acoustics, speech and signal processing. IEEE, 6645-6649.
Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo Zhu, Myeongjae Jeon,

Junjie Qian, Honggiang Harry Liu, and Chuanxiong Guo. 2019. Tiresias: A GPU

https://

[35

[36

[37

[38

[39

[40

[41

[42

[43

[44

[45

[47

(48

[49

[50

[51

]

Cluster Manager for Distributed Deep Learning. In 16th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2019, Boston, MA, February
26-28, 2019. USENIX Association, 485-500. https://www.usenix.org/conference/
nsdil9/presentation/gu

Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy H. Campbell. 2019. TicTac:
Accelerating Distributed Deep Learning with Communication Scheduling. In
Proceedings of Machine Learning and Systems 2019, MLSys 2019, Stanford, CA,
USA, March 31 - April 2, 2019. mlsys.org.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

Elad Hoffer, Itay Hubara, and Daniel Soudry. 2017. Train longer, generalize better:
closing the generalization gap in large batch training of neural networks. In
Advances in Neural Information Processing Systems. 1731-1741.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J
Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and< 0.5 MB model size. arXiv preprint arXiv:1602.07360 (2016).
Kumar Iyer and Jeffrey Kiel. 2016. GPU Debugging and Profiling with NVIDIA
Parallel Nsight. In Game Development Tools. AK Peters/CRC Press, 303-324.
Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki,
Jeff Donahue, Ali Razavi, Oriol Vinyals, Tim Green, lain Dunning, Karen Si-
monyan, et al. 2017. Population based training of neural networks. arXiv preprint
arXiv:1711.09846 (2017).

Animesh Jain, Amar Phanishayee, Jason Mars, Lingjia Tang, and Gennady Pekhi-
menko. 2018. Gist: Efficient Data Encoding for Deep Neural Network Training. In
ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA
18)

Anand Jayarajan, Jinliang Wei, Garth Gibson, Alexandra Fedorova, and Gennady
Pekhimenko. 2019. Priority-based Parameter Propagation for Distributed DNN
Training. In Proceedings of Machine Learning and Systems 2019, MLSys 2019,
Stanford, CA, USA, March 31 - April 2, 2019. mlsys.org.

Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie Qian, Wen-
cong Xiao, and Fan Yang. 2019. Analysis of Large-Scale Multi-Tenant GPU
Clusters for DNN Training Workloads. In 2019 USENIX Annual Technical Con-
ference (USENIX ATC 19). 947-960.

Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and
Alex Aiken. 2019. TASO: Optimizing Deep Learning Computation with Au-
tomated Generation of Graph Substitutions. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles. ACM.

Aarati Kakaraparthy, Abhay Venkatesh, Amar Phanishayee, and Shivaram
Venkataraman. 2019. The case for unifying data loading in machine learning
clusters. In 11th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud
19).

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Clas-
sification with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems. 1097-1105.

Abhishek Vijaya Kumar and Muthian Sivathanu. 2020. Quiver: An Informed
Storage Cache for Deep Learning. In 18th USENIX Conference on File and Storage
Technologies, FAST 2020, Santa Clara, CA, USA, February 24-27, 2020. USENIX
Association, 283-296.

Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi
Pont-Tuset, Shahab Kamali, Stefan Popov, Matteo Malloci, Tom Duerig, et al.
2018. The open images dataset v4: Unified image classification, object detection,
and visual relationship detection at scale. arXiv preprint arXiv:1811.00982 (2018).
Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. 2017. Hyperband: A Novel Bandit-Based Approach to Hyperparameter
Optimization. J. Mach. Learn. Res. 18 (2017), 185:1-185:52. http://jmlr.org/papers/
v18/16-558.html

Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez,
and Ion Stoica. 2018. Tune: A research platform for distributed model selection
and training. arXiv preprint arXiv:1807.05118 (2018).

Tao Lin, Sebastian U. Stich, Kumar Kshitij Patel, and Martin Jaggi. 2020. Don’t Use
Large Mini-batches, Use Local SGD. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net. https://openreview.net/forum?id=B1eyO1BFPr

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. 2017. Deep
gradient compression: Reducing the communication bandwidth for distributed
training. arXiv preprint arXiv:1712.01887 (2017).

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. 2016. Ssd: Single shot multibox detector.
In European conference on computer vision. Springer, 21-37.

Kshiteej Mahajan, Arjun Balasubramanian, Arjun Singhvi, Shivaram Venkatara-
man, Aditya Akella, Amar Phanishayee, and Shuchi Chawla. 2020. Themis: Fair
and Efficient GPU Cluster Scheduling. In 17th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2020, Santa Clara, CA, USA, February
25-27, 2020. USENIX Association, 289-304. https://www.usenix.org/conference/
nsdi20/presentation/mahajan

(52

[53]
[54]

[55]

[56]

[57

[58]

[59]
[60]

[61]

[62

[63]

[64]

[66

[67]

[68

Qi Meng, Wei Chen, Yue Wang, Zhi-Ming Ma, and Tie-Yan Liu. 2019. Convergence
analysis of distributed stochastic gradient descent with shuffling. Neurocomputing
337 (2019), 46-57. https://doi.org/10.1016/j.neucom.2019.01.037

Apache Mesos. 2020. RecordIlO Data Format. https://mesos.apache.org/
documentation/latest/recordio/.

MLPerf. 2020. MLPerf Training Results v0.7.
training_results_v0.7.

Jayashree Mohan, Amar Phanishayee, Ashish Raniwala, and Vijay Chidambaram.
2020. Analyzing and Mitigating Data Stalls in DNN Training. CoRR abs/2007.06775
(2020). arXiv:2007.06775 https://arxiv.org/abs/2007.06775

Supun Nakandala, Yuhao Zhang, and Arun Kumar. 2020. Cerebro: A Data System
for Optimized Deep Learning Model Selection. Proc. VLDB Endow. 13, 11 (2020),
2159-2173. http://www.vldb.org/pvldb/vol13/p2159-nakandala.pdf

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R
Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. 2019.
PipeDream: Generalized Pipeline Parallelism for DNN Training. In Proceedings
of the 27th ACM Symposium on Operating Systems Principles. ACM, 1-15.
Deepak Narayanan, Keshav Santhanam, Amar Phanishayee, and Matei Zaharia.
2018. Accelerating deep learning workloads through efficient multi-model exe-
cution. In NIPS Workshop on Systems for Machine Learning (December 2018).
Andrew NG. 2020. Data and DNNs. https://www.wired.com/brandlab/2015/05/
andrew-ng-deep-learning-mandate-humans-not-just-machines/.

Luis Perez and Jason Wang. 2017. The effectiveness of data augmentation in
image classification using deep learning. arXiv preprint arXiv:1712.04621 (2017).
Philipp Probst, Anne-Laure Boulesteix, and Bernd Bischl. 2019. Tunability: Im-
portance of Hyperparameters of Machine Learning Algorithms. J. Mach. Learn.
Res. 20 (2019), 53:1-53:32. http://jmlr.org/papers/v20/18-444.html

PyTorch. 2020. PyTorch Training Examples. https://github.com/pytorch/
examples/tree/master/imagenet.

Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and Stephen W.
Keckler. 2016. vDNN: Virtualized Deep Neural Networks for Scalable, Memory-
efficient Neural Network Design. In The 49th Annual IEEE/ACM International
Symposium on Microarchitecture (Taipei, Taiwan) (MICRO-49). Piscataway, NJ,
USA, 18:1-18:13.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
2015. Imagenet large scale visual recognition challenge. International journal of
computer vision 115, 3 (2015), 211-252.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
4510-4520.

Supheakmungkol Sarin, Knot Pipatsrisawat, Khiem Pham, Anurag Batra, and
Luis Valente. 2019. Crowdsource by Google: A Platform for Collecting Inclusive
and Representative Machine Learning Data.

Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. 2017. Don’t
decay the learning rate, increase the batch size. arXiv preprint arXiv:1711.00489

https://github.com/mlperf/

[69

[70

[71

[73

[74

[75

[76

[77

[78

[79

(2017).

Michael Stonebraker. 1981. Operating System Support for Database Management.
Commun. ACM 24,7 (1981), 412-418. https://doi.org/10.1145/358699.358703
Mustafa Suleyman. 2020. Using Al to give doctors a 48-hour head start on
life-threatening illness. https://deepmind.com/blog/article/predicting-patient-
deterioration.

Andrew Tomkins, R Hugo Patterson, and Garth Gibson. 1997. Informed multi-
process prefetching and caching. In ACM SIGMETRICS Performance Evaluation
Review, Vol. 25. ACM, 100-114.

Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal,
Zachary DeVito, William S Moses, Sven Verdoolaege, Andrew Adams, and Albert
Cohen. 2018. Tensor comprehensions: Framework-agnostic high-performance
machine learning abstractions. arXiv preprint arXiv:1802.04730 (2018).
Subhashini Venugopalan, Marcus Rohrbach, Jeffrey Donahue, Raymond Mooney,
Trevor Darrell, and Kate Saenko. 2015. Sequence to sequence-video to text. In
Proceedings of the IEEE International Conference on Computer Vision. 4534-4542.
Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s Neural Machine Translation System: Bridging the Gap between
Human and Machine Translation. arXiv preprint arXiv:1609.08144 (2016).
Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Sivathanu,
Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu
Zhang, Fan Yang, and Lidong Zhou. 2018. Gandiva: Introspective Cluster Sched-
uling for Deep Learning. In 13th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018. USENIX
Association, 595-610. https://www.usenix.org/conference/osdi18/presentation/
xiao

Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiaodan Liang, Zhiting
Hu, Jinliang Wei, Pengtao Xie, and Eric P. Xing. 2017. Poseidon: An Efficient
Communication Architecture for Distributed Deep Learning on GPU Clusters. In

2017 USENIX Annual Technical Conference (USENIX ATC 17). USENIX Association,
Santa Clara, CA, 181-193.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2018. Shufflenet: An ex-
tremely efficient convolutional neural network for mobile devices. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 6848-6856.
Hongyu Zhu, Amar Phanishayee, and Gennady Pekhimenko. 2020. Daydream:
Accurately Estimating the Efficacy of Optimizations for DNN Training. In 2020
USENIX Annual Technical Conference, USENIX ATC 2020, July 15-17, 2020. USENIX
Association, 337-352.

Yue Zhu, Fahim Chowdhury, Huansong Fu, Adam Moody, Kathryn Mohror,
Kento Sato, and Weikuan Yu. 2018. Entropy-aware I/O pipelining for large-scale
deep learning on HPC systems. In 2018 IEEE 26th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS). IEEE, 145-156.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies and reading books. In Proceed-
ings of the IEEE international conference on computer vision. 19-27.

	Abstract
	1 Introduction
	1.1 Contributions

	2 Background
	2.1 The DNN ETL Requirements
	2.2 DALI : Fast Data Pipelining

	3 Data Stalls in DNN Training
	4 Analyzing Data Stalls
	4.1 Methodology
	4.2 Measuring data stalls using DS-Analyzer
	4.3 Data Stalls in DNN Training

	5 DS-Analyzer: Predictive analysis
	5.1 Example : Predicting optimal cache size

	6 Mitigating Data Stalls
	6.1 The MinIO cache
	6.2 Partitioned MinIO Caching
	6.3 Coordinated Prep
	6.4 Tying it all together with CoorDL

	7 Evaluation
	7.1 Single-server Multi-GPU training
	7.2 Multi-Server Distributed Training
	7.3 Hyperparameter Search
	7.4 Training to Accuracy with CoorDL
	7.5 Resource Utilization
	7.6 CoorDL on DGX-2

	8 Discussion
	9 Related Work
	10 Conclusion
	References

