
Analyzing and Mitigating Data Stalls in DNN Training

Jayashree Mohan
University of Texas at Austin

jaya@cs.utexas.edu

Amar Phanishayee
Microsoft Research

amar@microsoft.com

Ashish Raniwala
Microsoft

ashish.raniwala@microsoft.com

Vijay Chidambaram
University of Texas at Austin & VMWare Research

vijay@cs.utexas.edu

ABSTRACT

Training Deep Neural Networks (DNNs) is resource-intensive and

time-consuming. While prior research has explored many diferent

ways of reducing DNN training time, the impact of input data

pipeline, i.e., fetching raw data items from storage and performing

data pre-processing in memory, has been relatively unexplored.

This paper makes the following contributions: (1) We present the

irst comprehensive analysis of how the input data pipeline afects

the training time of widely-used computer vision and audio Deep

Neural Networks (DNNs), that typically involve complex data pre-

processing. We analyze nine diferent models across three tasks and

four datasets while varying factors such as the amount of memory,

number of CPU threads, storage device, GPU generation etc on

servers that are a part of a large production cluster at Microsoft.

We ind that in many cases, DNN training time is dominated by

data stall time: time spent waiting for data to be fetched and pre-

processed. (2) We build a tool, DS-Analyzer to precisely measure

data stalls using a diferential technique, and perform predictive

what-if analysis on data stalls. (3) Finally, based on the insights from

our analysis, we design and implement three simple but efective

techniques in a data-loading library, CoorDL, to mitigate data stalls.

Our experiments on a range of DNN tasks, models, datasets, and

hardware conigs show that when PyTorch uses CoorDL instead of

the state-of-the-art DALI data loading library, DNN training time

is reduced signiicantly (by as much as 5× on a single server).

PVLDB Reference Format:

Jayashree Mohan, Amar Phanishayee, Ashish Raniwala, and Vijay

Chidambaram. Analyzing and Mitigating Data Stalls in DNN Training.

PVLDB, 14(5): 771 - 784, 2021.

doi:10.14778/3446095.3446100

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/msr-iddle/DS-Analyzer.

1 INTRODUCTION

Data is the fuel powering machine learning [59]. Large training

datasets are empowering state-of-the-art accuracy for several ma-

chine learning tasks. Particularly, Deep Neural Networks (DNNs),

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 5 ISSN 2150-8097.
doi:10.14778/3446095.3446100

have gained prominence, as they allow us to tackle problems that

were previously intractable, such as image classiication [33, 43, 67],

translation [74], speech recognition[30], video captioning [73], and

even predictive health-care [70].

Empowering DNNs to push state-of-the-art accuracy requires

the model to be trained with a large volume of data. During training,

the model predicts the output given training data; based on the

output, the model’s weights are tuned. This happens iteratively, in

many rounds called epochs.

However, DNN training is data-hungry, resource-intensive, and

time-consuming. It involves the holistic use of all the resources in

a server from storage and CPU for fetching and pre-processing the

dataset to the GPUs that perform computation on the transformed

data. Researchers have tackled how to eiciently use these resources

to reduce DNN training time, such as reducing communication

overhead [32, 39, 49, 57, 76], GPUmemory optimizations [22, 38, 63],

and compiler-based operator optimizations [21, 41, 72]. However,

the impact of storage systems, speciically the data pipeline, on

DNN training has been relatively unexplored.

The DNN Data Pipeline. During DNN training, the data pipeline

works as follows. Data items are irst fetched from storage and then

pre-processed in memory. For example, for many important and

widely-used classes of DNNs in computer vision, there are several

pre-processing steps: data is irst decompressed, and then random

perturbations such as cropping the image or rotating it are per-

formed to improve the model’s accuracy [60]. Once pre-processed,

the data items are sent to the GPUs for processing. One complete

pass over the training dataset is termed an epoch; models are itera-

tively trained for several epochs to achieve desired accuracy.

The DNN data pipeline operates in parallel with GPU computa-

tion. Ideally, the data pipeline should steadily feed pre-processed

data items to the GPUs to keep them continuously busy process-

ing data; we term this GPU-bound. Unfortunately, training image,

video, or audio models is often I/O-bound, bottlenecked by fetching

the data from storage, or CPU-bound, bottlenecked by applying

data pre-processsing in memory. Collectively, we term these bottle-

necks data stalls and diferentiate between prep stalls (time spent

on data pre-processing) and fetch stalls (time spent on I/O).

1.1 Contributions

Categorizing,measuring, and analyzing data stalls.We present

the irst comprehensive analysis of data stalls (categorized as fetch

and prep stalls) in DNN training. We analyze nine popular DNN

models from three domains (image classiication, object detection,

and audio classiication) and four datasets in a production cluster

Table 1: Key indings and implications of our analysis of data stalls

Finding Insights

OS Page Cache is ineicient for DNN training due to thrashing DNN-aware caching can eliminate thrashing across epochs

DNNs need anywhere between 3 ś 24 CPU cores per GPU for data

pre-processing

If hardware is upgraded to overcome workload bottlenecks, it must be done carefully

with an eye towards designing balanced server SKUs.

DNNs spend upto 65% of the epoch time in data pre-processing,

primarily on redundant decoding

Decoded data can be cached (as opposed to caching encoded data), if space

ampliication due to decoding can be addressed

Lack of coordination among local caches lead to redundant I/O in

distributed training across servers

To overcome local storage I/O bottlenecks, local in-memory caches of servers

allocated to a job can be coordinated to fetch data from distributed in-memory caches

Hyperparameter search workloads perform redundant I/O & prep Hyperparameter search jobs must coordinate data fetch & prep to mitigate data stalls

at Microsoft. We vary factors such as the storage media, amount

of data that can be cached in memory, the number of CPU threads

used to fetch and pre-process data, and GPU generation. We then

analyze how these factors afect the data pipeline and DNN training.

Our analysis shows that data stalls are prominent in popular com-

puter vision and audio DNNs, as opposed to text-based NLP models.

Our analysis inds that data stalls squander away the improved

performance of faster GPUs, even on ML optimized servers like

the DGX-2 [10]. Revisiting the insights from Stonebraker et al. [69],

our analysis corroborates that relying on OS abstractions (like Page

Cache) is ineicient for DNN workloads. We also ind that the data

pipelines in popular training frameworks like PyTorch and Ten-

sorFlow are ineicient in their use of CPU and memory resources,

despite using state-of-the-art data-loading libraries like DALI [7]

that reduce prep stalls using GPU-accelerated data pre-processing.

Table 1 summarizes the indings and insights of our analysis.

Performingpredictivewhat-if analysis of data stalls. Perform-

ing an analysis of how the data pipeline impacts DNN training is

challenging since DNN training has a high degree of concurrency;

it is hard to isolate the time taken to perform a single task as data

pre-processing is pipelined with GPU computation. We develop a

tool, DS-Analyzer, that uses diferential analysis between runs (e.g.,

comparing a run where data is completely cached vs when data

needs to be fetched from storage) to identify data-stall bottlenecks.

Using the measured data stalls, it answers what-if questions to help

practitioners predict and analyze data stalls (e.g.,What would be

the impact on data stalls if DRAM capacity increased by 2×?).

Mitigating data stalls. We use the insights from our analysis to

identify opportunities for improvement. We build a new Coordi-

nated Data Loader, CoorDL1,that uses three main techniques to

mitigate data stalls. First, inspired by the pioneering work of Stone-

braker et al. on database caching [69], we demonstrate that relying

on the OS page cache is sub-optimal for DNN training. We imple-

ment MinIO, a software cache that is specialized for DNN training.

Second, we describe the partitioned caching technique to coordinate

the MinIO caches of servers involved in distributed training over

commodity network stack. Third, we discuss the coordinated prep

technique to carefully eliminate redundancy in data prep among

concurrent hyperparameter search jobs in a server. We implement

these techniques as part of the user-space library CoorDL, built

on top of the state-of-the-art data pipeline DALI [7]. We evaluate

CoorDL across diferent models, datasets, and hardware and show

that it can accelerate training by up-to 5× on a single server by

mitigating data stalls over DALI.

1Read as cordial

2 BACKGROUND

Deep Neural Networks (DNNs) are a class of ML models that au-

tomatically extract higher level features from the input data. The

DNN is trained over multiple rounds termed epochs. Each epoch

processes all items in the dataset exactly once, and consists of mul-

tiple iterations; each iteration processes a random, disjoint subset of

the data termed a minibatch. The DNN is trained until a target ac-

curacy is reached. Training a DNN model to reach a given accuracy

consists of two steps:

(1) Hyperparameter (HP) search. There are many parameters

for the learning algorithm that must be provided before the

start of training. These hyperparameters (for e.g., learning rate,

its decay, dropout, and momentum) inluence the speed and

quality of learning. During the search process, we start several

training jobs; each job trains the model with diferent hyper-

parameters, on each available GPU (or a distributed job across

several GPUs); progress is checked after a few epochs and the

worst-performing candidates are killed and replaced by new

jobs with diferent hyperparameters that are chosen algorith-

mically [19, 27, 37, 46]. Tuning hyperparameters is crucial for

generating DNN models that have high accuracy [61].

(2) Training the model to target accuracy. The second step is

to obtain models with high accuracy by training it with input

data, using the hyperparameters chosen in the previous step.

2.1 The DNN ETL Requirements

In every epoch of training, the input dataset is subjected to a ETL

(extract-transform-load) before being processed at the GPU (or any

other accelerator). The ETL process in the data pipeline of popular

image-based DNN training imposes several unique data ordering

constraints to ensure model convergence and achieve state-of-the-

art accuracy.

• The dataset must be shuled every epoch to ensure the order

in which data items are accessed are random in each epoch

• An epoch must use all data items in the dataset exactly once

• In every epoch, the data transformations(pre-processing) must

be random; the same transformed item should not be used

across epochs

Several prior work have theoretically and empirically demonstrated

that relaxing these constraints will afect the convergence rate of

SGD [23, 48, 52, 60]. While some NLP and recommendation models

may not require random pre-processing and data shuling every

epoch, the focus of our work is computer vision and audio models

where random data augmentation and shuling is the default and

Pre-processing GPUs

Storage

C

S
Decode Transform

Collate
batch

Fetch Rate (F) Prep Rate (P) GPU Rate (G)

Cache

Prefetch

Figure 1: Data Pipeline in DNN training. This igure shows

the diferent stages in the data pipeline.

common practice [54, 62]. Therefore, in this work, all our experi-

ments abide by the aforementioned ETL requirements.

2.2 DALI : Fast Data Pipelining

State-of-the-art data loading and pre-processing libraries like DALI

can be used as a drop in replacement for the default dataloaders in

frameworks like PyTorch, TensorFlow, or MxNet. DALI can accel-

erate data pre-processing operations using GPU-accelerated data

pre-processing operations. DALI also prefetches and pipelines the

data fetch and pre-processing with the GPU compute, similar to the

default dataloader in PyTorch. We empirically veriied that DALI

outperforms the default data pipelines of PyTorch, TensorFlow,

and MxNet. Therefore, throughout this work, unless and otherwise

stated, we use DALI, as it is the strongest baseline.

3 DATA STALLS IN DNN TRAINING

We now discuss our formulation of data stalls. Consider the training

process of a typical DNN. It executes the following steps in each

iteration of an epoch:

(1) A minibatch of data items is fetched from storage.

(2) The data items are pre-processed, for e.g.,, for image classiica-

tion, data items are decompressed, and then randomly cropped,

resized, and lipped.

(3) The minibatch is then processed at the GPU to obtain the

model’s prediction

(4) A loss function is used to determine how much the prediction

deviates from the right answer

(5) Model weights are updated using computed gradients

Ideally, most of the time in each epoch should be spent on Steps

3ś5 (whichwe collectively term theGPU compute time), i.e., training

is GPU bound. When performing multi-GPU training, individual

GPUs (workers) exchange weight gradients with other workers

before performing weight update. For this work, we roll the com-

munication time for gradient exchange during multi-GPU training

into computation time.

In most frameworks including PyTorch, TensorFlow, and MxNet,

data preparation (Steps 1 and 2) and GPU computation execute in a

pipelined fashion; i.e., subsequent minibatches are prefetched and

pre-processed by data preparation threads, using multiple CPU cores

on the machine, as the GPU computes on the current minibatch of

data. If the GPU is waiting for Steps 1ś2 to happen, we term it a

data stall. Speciically, if training is blocked on Step 1, we call it a

fetch stall; the training is I/O bound in this case. Training blocked

due to Step 2 is termed prep stall; this causes the training to be CPU

bound. Data stalls cause the GPU to be idle, and must be minimized

to increase GPU utilization.

The rate at which data items can be fetched from storage (Step

1) depends primarily on the storage media. The rate at which

Table 2: Models and datasets used in this work.

Task Model Dataset (Size)

Image

Classiication

Shulenetv2 [77]

AlexNet [43] ImageNet-22k [8]

Resnet18 [33] (1.3TB)

SqueezeNet [35] OpenImages-Extended

MobileNetv2 [65] [45, 66] (645GB)

ResNet50 [33] Imagenet-1k [64]

VGG11 [67] (146GB)

Obj Detection SSD+Res18 [50] OpenImages [45] (561GB)

Audio Classify M5 [24] Free Music [25] (950GB)

data items can be pre-processed (Step 2) depends upon the pre-

processing operations and the number of CPU cores available for

pre-processing.

In general, if we prefetch data at rate � , pre-process it at rate

� and perform GPU computation on it at rate � , then data stalls

appear if � > ���(�, �), i.e., GPU processes data at a rate faster

than it can be prefetched or pre-processed.

Any fetch or prep stall implies idle GPU time, which must be

minimized. The fetch and prep stalls reported in this work are

unmasked stall time; i.e., the stall time that shows up in the critical

path, inspite of being pipelined with compute. From now on, we

call data prefetching simply fetch, and pre-processing prep.

4 ANALYZING DATA STALLS

To understand data stalls in DNN training and the fundamental

reasons why data stalls exist, we perform a comprehensive analysis

on several DNNs by varying a number of factors, such as the number

of GPUs, GPU generation, the size of the DRAM cache, the number

of CPU threads etc.

4.1 Methodology

Models andDatasets. We analyzenine state-of-the-art DNNmod-

els across three diferent tasks and four diferent datasets as shown

in Table 2. This section focuses on the smaller ImageNet-1K dataset

for image classiication models. Evaluation with large datasets like

ImageNet-22k and OpenImages is presented in Section ğ7. The

image and audio classiication models are taken from TorchVi-

sion [15] and TorchAudio [14] respectively; for object detection,

we use NVIDIA’s oicial release of SSD300 v1.1 [11].

Pre-processing. For all DNNs, we use the same pre-processing as

in their original papers. More precisely, for the image classiication

task, pre-processing includes image decoding, random crop, resizing

to a ixed size, and a random horizontal lip of the image. The object

detection task performs a color twist of the image, and a random

crop and horizontal lip of the bounding box in addition to the image

transformations described for image classiication. The audio model

decodes and down-samples input to 8kHz.

Training environment. All experiments are performed on Py-

Torch 1.1.0 using the state-of-the-art NVIDIA data loading pipeline,

DALI. We have empirically veriied that DALI’s performance is

strictly better than PyTorch, TF and MxNet’s default data loaders;

Table 3: Server conigurations used. We use two SKUs; each

server has 24 CPU cores, 500GiB DRAM, and 8 GPUs.

GPU GPU Storage Rand Read

Conig Mem(GB) Media (MBps)

SSD-V100 8xV100 32 SSD 530

HDD-1080Ti 8x1080Ti 11 HDD 15 ś 50

therefore we perform our analysis of data stalls using the strongest

baseline, DALI. We use two distinct server conigurations for our

analysis as shown in Table 3. Both these are part of a large pro-

duction and research cluster at Microsoft [9, 40], whose workload

have guided the design of several research systems for ML train-

ing [20, 31, 51, 75]. These servers also closely resemble publicly

available cloud GPU SKUs [1, 2]. Config-SSD-V100 has conigu-

ration closest to AWS p3.16xlarge [1] with gp2 storage [6], while

Config-HDD-1080Ti is closest to AWS p2.8xlarge [2] with st1 stor-

age [6]. Both our servers have 500GB DRAM, 24 physical CPU cores

, and 8 GPUs per server.

Training parameters. For experiments on Config-SSD-V100, we

use a batch size of 512 per GPU for all image classiication mod-

els, 128 per GPU for SSD-Res18, 16 per GPU for M5 and perform

weak scaling for distributed training (while ensuring that the global

batch size is consistent with those widely used in the ML commu-

nity). Since V100 GPUs have tensor cores, we use Apex mixed

precision training with LARC (Layer-wise Adaptive Rate Clip-

ping), and state-of-the art learning rate warmup schedules [29].

On Config-HDD-1080Ti, we use the maximum batch size that its

the GPU memory (less than 256 for all models) and perform full-

precision training.

Training metrics. We run all the experiments presented here for

three epochs, and report the average epoch time (or throughput in

samples per second), ignoring the irst epoch. Since we start with

a cold cache in our experiments, irst epoch is used for warmup.

Measuring data stall time does not require training to accuracy;

per-epoch time remains stable.

4.2 Measuring data stalls using DS-Analyzer

We develop a standalone tool, DS-Analyzer that proiles data stalls

in DNN training. Frameworks like PyTorch and TensorFlow provide

an approximate time spent on data loading and pre-processing per

minibatch, by simply placing timers in the training script. This is

insuicient and inaccurate for two reasons. First, this technique

cannot accurately provide the split up of time spent in data fetch

(from disk or cache) and pre-processing operations. To understand

if the training is bottlnecked on I/O or CPU, it is important to

know this split. Second, frameworks like PyTorch and libraries

like DALI use several concurrent processes (or threads) to fetch

and pre-process data; for a multi-GPU data parallel training job, a

data stall in one of the data loading processes may relect as GPU

compute time for the other processes, because all GPU processes

wait to synchronize weight updates at batch boundaries. Naively

adding timers around data path does not provide accurate timing

information. Therefore, DS-Analyzer uses a diferential approach.

DS-Analyzer runs in three phases;

(1) Measure ingestion rate. First, DS-Analyzer pre-populates

synthetic data at the GPUs and runs the job for a ixed number

of epochs. This identiies the max data ingestion rate at the

GPUs, with no fetch or prep stalls.

(2) Measure prep stalls. Next, DS-Analyzer runs the training

script with a subset of the given dataset, such that it is entirely

cached inmemory, using all available CPU cores, and estimates

the training speed. Since this run eliminates fetch stalls, any

drop in throughput compared to (1) is due to prep stalls.

(3) Measure fetch stalls. Finally, DS-Analyzer runs the training

script by clearing all caches, and setting maximum cache size

to a user-given limit, to account for fetch stalls. The diference

between (2) and (3) is the impact of fetch stalls.

4.3 Data Stalls in DNN Training

Our analysis aims to answer the following questions:

Fetch Stalls

(Remote)
Is remote storage a bottleneck for training? ğ4.3.1

Fetch Stalls

(Local)

When does the local storage device (SSD/HDD)

become a bottleneck for DNN training?
ğ4.3.2

Prep Stalls
When does data prep at the CPU become a bot-

tleneck for DNN training?
ğ4.3.3

Generality
Do fetch and prep stalls exist in other training

platforms like TensorFlow?
ğ4.3.4

4.3.1 When dataset resides on remote storage. Datasets used

for training DNNs could reside locally on the persistent storage of a

server, or on shared remote storage such as distributed ile systems

(HDFS, GlusterFS - GFS), or object stores (S3, Azure blobs). We

analyze the impact of two kinds of remote backends; a distributed

ile system, GlusterFS (GFS) and the Azure blob object store accessed

via blobfuse. When data resides remotely, the irst epoch of training

fetches data over the network and stores it locally for subsequent

use. Cluster ile systems like GFS use the OS Page Cache to speed

up subsequent accesses. Blobfuse downloads the dataset on to local

SSD, and mimics local training from the second epoch. Figure 2a

compares the epoch time for ResNet18 on Config-SSD-V100 using

GFS, blobfuse, and local SSD for the irst epoch and a stable-state

epoch with warmed up cache.

The data stall overhead of BlobFuse is especially high in the

irst epoch when it downloads the entire dataset to local storage,

and can result in 20× higher training time as compared to GFS.

Unsurprisingly, during the steady state epochs, data stall overheads

when using the local SSD and BlobFuse are similar (as the blob data

is cached on the local SSD); GFS results in more data stalls as it

validates metadata of cached data items over the network every

time a data item is accessed. Blobfuse does not incur any network

cost beyond irst epoch, if the dataset its on local SSD.

As shown in Figure 2b, for the ImageNet1K dataset, for BlobFuse,

the cost of downloading the entire dataset in the irst epoch is

amortized as we train for a longer number of epochs, making the

remote Blobstore a better it compared to GFS when models are

trained to accuracy for over 60 epochs.

Athough datasets are growing in size, large datasets that are

publicly available it entirely on local storage (but not inmemory) [8,

16, 18, 25, 45, 64]. Therefore, a common training scenario is to pay

C B C A

B C A D C B D A

D A D C B C B D A D

Page Cache
+ LRU

minIO Cache

Access Pattern

C B C A D A D C B C B DD BD BD B

D B D B D B D B D B D B D B D B D B

Add the missed item to cache

Figure 12: Cache hits with MinIO. Cache activity for two

łepochsž of training for page cache and MinIO.

becomes CPU-bound. A comprehensive list of data pipeline rates

(�, �, �) for several models, datasets, and conigurations is in the

Appendix of our Technical Report [55].

6 MITIGATING DATA STALLS

Based on the insights from our analysis, we explore ways of mit-

igating data stalls using domain speciic techniques that reduces

cache misses, and eliminates redundancy in data fetch and prep.

We further discuss how to reduce the cost of decoding in ğ8.

Technique Impact Beneits

MinIO Cache
DNN-aware caching to minimize IO by

reducing cache misses per epoch (ğ6.1)

Single-server

training

Partitioned

MinIO Cache

Eliminate redundant fetch by

coordinating remote MinIO caches

(ğ6.2)

Distributed

training

Coordinated

Prep

Eliminates redundant fetch and prep

across jobs (ğ6.3)

Single-server

training

6.1 The MinIO cache

As datasets increase in size, they cannot be cached entirely in the

memory of a server during training. In such cases, DNNs sufer from

fetch stalls if the rate of data fetch is lower than the rate of compute

(despite prefetching and pipelining data fetch with compute) as

discussed in (ğ4.3). Note that, when fetch stalls occur, training is

bottlenecked by the bandwidth of storage device, therefore it is

crucial to minimize I/O by maximizing cache hits every epoch.

DNN training frameworks today, rely on the OS Page Cache to

cache the training dataset. However, we tap on the piercing insight

of Stonebraker et al.’s pioneering work on database caching [69],

that the abstractions provided by OS can hinder the development of

eicient databases, and validate it in the context of DNN workloads.

Therefore, we study theDNNdata access pattern to design a domain-

speciic cache MinIO.

OS Page Cache works as follows; whenever a data item is read

from storage, it is cached in the Page Cache to speed up future

accesses. When the Page Cache reaches its capacity, a cache replace-

ment policy decides which of the existing items to evict to make

space for the new one. Linux uses a variant of Least Recently Used

(LRU) for cache replacement [28].

However, DNN training has a unique data access pattern: it is

repetitive across epochs and random within an epoch. Training is split

into epochs: each epoch accesses all the data items in the dataset

exactly once in a random order. We make a key observation about

the DNN access pattern that is at odds with such OS cache replace-

ment policies. All data items in the dataset have equal probability

of access in an epoch. Therefore, it is not important which data item

is cached. Instead, it is crucial that cached items are not replaced

before they are used, to minimize storage I/O per epoch.

Therefore, MinIO recommends a simple and unintuitive solution;

items, once cached, are never replaced in the DNN cache. MinIO

works as follows. In the irst epoch of the training job, MinIO caches

random data items as they are fetched from storage, to populate the

cache. Once the cache capacity is reached, MinIO will not evict any

items in the cache; instead, the requests to other data items default

to storage accesses. The items in the MinIO cache survive across

epochs until the end of the training job. Every epoch beyond the

irst gets exactly as many hits as the number of items in the cache;

this reduces the per-epoch disk I/O to the diference in the size of

dataset and the cache.

Figure 12 contrasts the caching policy of the OS Page Cache and

MinIO. Consider a dataset of size 4 (with items A ś D) and a cache of

size 2 (50% cache). Let’s say after warmup, the cache has two items

D and B. Figure 12 shows the state of the cache for two training

epochs. MinIO only incurs capacity misses per epoch (here 2); the

Page Cache on the other hand, can result in anywhere between 2-4

misses per epoch because of thrashing. For instance, in the irst

epoch, D is in the cache to begin with, but kicked out to make way

for a new item C, and later in the same epoch it is requested again

(thrashing). We empirically veriied this using large datasets and

varying cache sizes (ğ7) and found that Page Cache results in close

to 20% more misses than MinIO due to thrashing.

MinIO’s no replacement policy simpliies the design of the cache

as we do not need bookkeeping about the time or frequency of

access of data items. Moreover, we choose to implement MinIO

in user-space and not as a new replacement policy in the kernel,

making it lexible to use in scenarios where the user has no root

privileges to modify the kernel. The strength of MinIO thus lies in

its simplicity and efectiveness.

6.2 Partitioned MinIO Caching

MinIO reduces the amount of disk I/O (fetch stalls) in single-server

training. In distributed training, the dataset is partitioned and pro-

cessed by a group of servers. Each server operates on a random

shard of the dataset per epoch, and this partition changes every

epoch (ğ2.1). The MinIO cache alone, is not eicient in this setting.

For example, consider a distributed training job across two servers,

each of which can cache 50% of the dataset. In every epoch, each

server has to process a random 50% partition of the dataset, some

of which may be hits in the local MinIO cache but the misses result

in storage I/O, which is expensive and results in fetch stalls.

We observe that the cross-node network bandwidth in publicly

available cloud GPU instances and our clusters(10-40 Gbps) is upto

4× higher than the read bandwidth of local SATA SSDs (530 MBps).

Data transfer over commodity TCP stack is much faster than fetch-

ing a data item from its local storage, on a cache miss. Therefore,

we can coordinate the remote MinIO caches across all servers.

Partitioned MinIO caching works as follows. In the irst epoch,

the dataset is sharded across all servers, and each server populates

it’s local MinIO cache with data items in the shard assigned to it.

At the end of the irst epoch, we collectively cache a part of the

dataset of size equal to the sum of capacities of individual MinIO

caches. To route data fetch requests to the appropriate server, we

maintain metadata about data items present in each server’s cache.

Whenever a local cache miss happens in the subsequent epoch at

any server, the item is irst looked up in the metadata; if present, it

is fetched from the respective server over TCP, else from its local

storage. If the aggregate memory on the participating servers is

large enough to cache the entire dataset, then partitioned caching

ensures that there is no storage I/O on any server beyond the irst

epoch; the entire dataset is fetched exactly once from disk in the

duration of distributed training.

6.3 Coordinated Prep

Hyperparameter (HP) search for a model involves running several

concurrent training jobs, each with a diferent value for the HP

and picking the best performing one. Our analysis shows that co-

locating HP search jobs on the same server results in both fetch

and prep stalls (ğ4) due to lack of coordination in data fetch and

prep among these jobs.

We introduce coordinated prep to address this issue. The idea be-

hing coordinated prep is simple. Each job in the HP search operates

on the same data; hence, instead of accessing data independently

for each job, they can be coordinated to fetch and prep the dataset

exactly once per epoch. Each epoch is completed in a synchro-

nized fashion by all HP jobs; as a result, pre-processed minibatches

created by one job can be reused by all concurrent jobs.

Coordinating HP search jobs must be done carefully to ensure

that: each job processes the entire dataset exactly once per epoch. A

naive way of doing this is to pre-process the dataset once and reuse

across all HP jobs and all epochs as suggested by prior work [42, 56].

This approach will not work for two reasons. First, reusing pre-

processed data across epochs may result in lower accuracy, as the

random transformations are crucial for learning. Second, the pre-

processed items are 5ś7× larger in size when compared to the raw

data items. Caching pre-processed items will overlow the system

memory capacity quickly for large datasets. If we store them on

storage, we may incur fetch stalls.

Coordinated prep addresses these challenges by staging pre-

processed minibatches in memory for a short duration within an

epoch. Since each job has identical per-minibatch processing time,

the minibatch is short lived in the staging area. Coordinated prep

works as follows.

Each HP search job on a server receives a random shard of the

dataset when they start. Each job fetches and pre-processes the

assigned shard, creating minibatches as they would normally do.

When ready, these minibatches are exposed to the other jobs in the

cross-job staging area. This is a memory region that is accessible to

all running jobs on the server. Additionally, each minibatch has a

unique ID and an associated atomic counter that tracks how many

jobs have used this minibatch so far in the current epoch. When a

job needs a minibatch for GPU processing, it retrieves it from the

staging area and updates its usage counter. A minibatch is deleted

from the staging area when it is used exactly once by all running

jobs, as we want to ensure that it is not used across epochs. We

empirically show in ğ7 that the addition of cross-job staging area

does not introduce additional memory overhead.

6.4 Tying it all together with CoorDL

We implement the three techniques discussed thus far as a part of a

user-space data loading library, CoorDL.We build CoorDL on top of

DALI to take advantage of the GPU-accelerated data pre-processing

operations. CoorDL can be used as a drop-in replacement for the

default PyTorch dataloader.

The overall architecture of CoorDL is as follows. The training

dataset resides on a local storage device like SSD/HDD. If the data

resides on a remote storage service, it is cached in local storage

when irst accessed [3]. For all later epochs, the data is fetched from

local storage. In each training iteration, a minibatch of data must

be fetched from disk (or cache), pre-processed to apply random

transformations and collated to a tensor that can be copied over to

the GPU for computation. CoorDL manages its own MinIO cache

of the raw data items (before any stochastic pre-processing trans-

formations are applied). The data sampling and randomization is

unmodiied; in each epoch, every minibatch is sampled randomly

from the dataset. Every data item is then subjected to the random

pre-processing pipeline speciied in the training workload. The

prepared minibatch is then placed in a cross-job staging area for

consumption by the GPU. If a single data-parallel job is running

across multiple GPUs in a server, then the minibatches in the stag-

ing are used exactly once per epoch and discarded; if there are

concurrent HP jobs on a server, then the staging area retains mini-

batches until each concurrent job has used it exactly once in the

current epoch. Any minibatch that satisies this criteria is evicted

from the staging area to make way for newer batches.

7 EVALUATION

We now evaluate the eicacy of CoorDL on three diferent as-

pects of the training process: multi-GPU training on a single server,

distributed training across multiple servers, and hyperparameter

tuning. We evaluate our techniques on nine models, performing

three diferent ML tasks (image classiication, object detection and

audio classiication) on four diferent datasets, each over 500GB as

shown in Table 2. Since DALI strictly outperforms PyTorch DL, we

use DALI as the baseline in our experiments. For each model, we

run both CPU-based (all pre-processing on CPU) and GPU-based

(part of decoding and all other transformations on GPU) mode of

DALI, and present the best of the two results.

Experimental setup. We evaluate CoorDL on two representative

server conigurations from Microsoft clusters as described in Ta-

ble 3. Config-SSD-V100 uses V100 GPUs and a SATA SSD, while

Config-HDD-1080Ti uses 1080Ti GPUs and a magnetic hard drive.

We use the same training methodology we used for analysis (ğ4.1).

We seek to answer the following questions:

How does the MinIO cache afect multi-GPU training on a server? ğ7.1

How does partitioned caching improve training time for jobs dis-

tributed across multiple servers?
ğ7.2

How does coordinated prep beneit HP search? ğ7.3

Does CoorDL afect DNN training accuracy? ğ7.4

Does CoorDL enable better resource utilization compared to DALI? ğ7.5

Does CoorDL accelerate training on ML servers like the DGX-2? ğ7.6

7.1 Single-server Multi-GPU training

CoorDL speeds up a single-server training job by reducing cache

misses using the MinIO cache. Figure 13 (a) plots the relative

speedup with respect to DALI while training the image classii-

cation and object detection models on the OpenImages dataset, and

tradeof in deciding how many steps of prep are oloaded to the

GPU for two reasons. (1) Performing prep at the GPU takes up a part

of the already scarce GPU memory which may result in training

with lower batch sizes, thereby afecting training eiciency. (2) Prep

at the GPU may interfere with the computations performed by the

learning algorithm; this adversely afects the overall throughput

of training for computationally expensive and deeper networks.

Therefore, the split of prep operations must be carefully chosen

considering the model’s architecture, batch size, and data stalls.

While this split is determined manually by trial-and-error today,

automating it with a careful eye on GPU and CPU utilization is an

interesting future direction.

Minibatch as a service. Our analysis shows that the imbalance in

CPU cores per GPU in ML optimized servers result in data stalls

for several models. In such cases where single-host capacities are

maxed out, a viable approach is to oload data prep to other idle

host machines in a cluster. This is especially useful in production

clusters with high-bandwidth ethernet, where several jobs use the

same dataset and similar pre-processing pipelines; a dedicated set

of servers can be used to centrally pre-process minibatches of data,

while the training jobs can request minibatch as a service, thereby

entirely disaggregating learning from data management.

Cost-peformance tradeof of upgrading hardware. Our analy-

sis inds that data stalls squander away the improved performance

of faster, expensive GPUs, resulting in lower value/$ spent as shown

in Figure 8 (b). Therefore, it may be economical to train some mod-

els on slower, less expensive GPUs with no data stalls, rather on

underutilizing the accelerator capabilities due to stalls on faster, ex-

pensive GPUs. In practice, such techniques may improve the overall

eiciency in multi-tenant clusters by assigning jobs to accelerators

in such a way that they maximize GPU utilization.

Data stalls in inference. This work addresses data stalls in the

training pipeline which have three distinct features from inference.

(1) Training requires a large volume of data samples, (2) performs a

larger set of data prep for every batch, and (3) requires backpropaga-

tion during the learning phase. While inference jobs require fewer

prep steps per sample or batch, it also performs lesser GPU com-

putation compared to training. Moreover, the limited memory and

compute availability at edge devices may also introduce data stalls

in inference. We hope our analysis encourages similar research and

possibly unique optimizations in inference land.

Trade-ofbetween convergence rate and epoch time for other

SGD variants. This work focuses on the most common case of

mini-batch SGD with a random shuling of the data in every epoch

which is the default for the models we analyzed. A future direc-

tion is to understand the impact of relaxing the ETL requirements

assumed in this work (such as random prep and shuling every

epoch) on epoch time and model convergence. Although relaxing

these constraints may reduce data stalls and hence epoch time, it

may prolong convergence, or afect the accuracy of some models. It

is worth investigating this behavior theoretically and empirically.

9 RELATED WORK

To the best of our knowledge, this paper presents the irst compre-

hensive analysis of data stalls in DNN training.

Optimizing remote storage via local caching. Quiver [44] uses

local SSD caches to eliminate the impact of slow reads from remote

storage. The best case for Quiver is when the dataset is completely

cached on local storage; our system starts from this baseline and

further improves performance. Quiver does not consider or optimize

prep stalls, only handling fetch stalls.

Partitioned caching. Cerebro [56] uses a new parallel SGD strat-

egy for model selection tasks. It partitions the dataset across the

servers in a cluster and hops the models from one server to other,

instead of shuling data. Cerebro does not improve DNN training

on a single server, while CoorDL optimizes performance in this sce-

nario. Furthermore, Cerebro is designed speciically for distributed

model search; on the contrary, our analysis and CoorDL have a

broader scope. DeepIO [79] uses a partitioned caching technique

for distributed training with remote data, but relies on specialized

hardware like RDMA. In contrast, our work shows that it is possible

to mask fetch stalls using commodity TCP stacks.

Redundancy in DNN training. Prior work like Model Batch-

ing [58] addressed redundancy in model search when running

multiple DNNs together on a single GPU, by sharing GPU computa-

tion across jobs. Our analysis looks at the setting where GPUs are

not shared between jobs. OneAccess [42] is a preliminary study that

makes a strong case for storing pre-processed data across epochs

to reduce prep stalls; however such an approach precludes com-

monly used online data prep techniques and this can afect model

convergence. In contrast, CoorDL carefully eliminates redundancy

while preserving accuracy and providing signiicant speedups.

Domain speciic caching. The idea of designing a caching pol-

icy that is aware of application semantics is not new. Stonebraker

et al. highlighted the importance of domain-aware caching for

databases [69]. Tomkins et al. show that informed prefetching

and caching in ile systems can reduce the execution time of I/O-

intensive applications [71]. Our work draws parallels to such tech-

niques by irst understanding DNN access pattern and then devising

a caching policy based on these observations.

10 CONCLUSION

Wepresent the irst detailed study of data stalls in several DNNs, and

show that it accounts for up to 65% of the training time. The insights

from our study, guide the design of a coordinated caching and pre-

processing library, CoorDL, that can accelerate DNN training by

mitigating data stalls. CoorDL accelerates training by up to 15× for

distributed training across two servers, and 5.3× for HP search (on

the audio model).The techniques behind CoorDL are simple and

intuitive, easing adoption into production systems.

ACKNOWLEDGEMENTS

This work was done during an internship at Microsoft Research as

part of Project Fiddle. We thank the anonymous VLDB reviewers,

members of the UT SaSLab, Jorgen Thelin, Jack Kosian, Deepak

Narayanan, Keshav Santhanam andmany of our MSR colleagues for

their invaluable feedback that made this work better. We thankMSR

Labs for their generous support in procuring the many resources

required for this work. This work was supported by NSF CAREER

#1751277 and donations from VMware, Google, and Facebook.

REFERENCES
[1] 2020. AWS Instance Types. https://aws.amazon.com/ec2/instance-types/#p3.
[2] 2020. AWS Instance Types. https://aws.amazon.com/ec2/instance-types/#p2.
[3] 2020. Blobfuse. https://github.com/Azure/azure-storage-fuse.
[4] 2020. Cloud TPU Tools. https://cloud.google.com/tpu/docs/cloud-tpu-tools.
[5] 2020. DALI: Supported Operations. https://docs.nvidia.com/deeplearning/dali/

user-guide/docs/supported_ops.html#nvidia.dali.ops.FileReader.
[6] 2020. EBS Volume types. https://docs.aws.amazon.com/AWSEC2/latest/

UserGuide/ebs-volume-types.html.
[7] 2020. Fast AI Data Preprocessing with NVIDIA DALI. https://

devblogs.nvidia.com/fast-ai-data-preprocessing-with-nvidia-dali/.
[8] 2020. ImageNet-22k. http://www.image-net.org/releases.
[9] 2020. Microsoft Philly Traces. https://github.com/msr-iddle/philly-traces.
[10] 2020. NVIDIA DGX-2: Enterprise AI Research System. https://www.nvidia.com/

en-us/data-center/dgx-2/.
[11] 2020. NVIDIA Object Detection. https://github.com/NVIDIA/

DeepLearningExamples/tree/master/PyTorch/Detection/SSD.
[12] 2020. NVIDIA Proiler. https://docs.nvidia.com/cuda/proiler-users-guide/

index.html.
[13] 2020. Proiling MXNet models. https://mxnet.apache.org/api/python/docs/

tutorials/performance/backend/proiler.html.
[14] 2020. TorchAudio classiier. https://pytorch.org/tutorials/beginner/

audio_classiier_tutorial.html?highlight=audio.
[15] 2020. TorchVision models. https://pytorch.org/docs/stable/torchvision/

models.html.
[16] 2020. Training a Champion: Building Deep Neural Nets for Big Data Analyt-

ics. https://www.kdnuggets.com/training-a-champion-building-deep-neural-
nets-for-big-data-analytics.html/.

[17] 2020. WMT16. http://www.statmt.org/wmt16/.
[18] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Natsev, George Toderici,

Balakrishnan Varadarajan, and Sudheendra Vijayanarasimhan. 2016. Youtube-8m:
A large-scale video classiication benchmark. arXiv preprint arXiv:1609.08675
(2016).

[19] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter
optimization. Journal of machine learning research 13, Feb (2012), 281ś305.

[20] Shubham Chaudhary, Ramachandran Ramjee, Muthian Sivathanu, Nipun Kwa-
tra, and Srinidhi Viswanatha. 2020. Balancing eiciency and fairness in het-
erogeneous GPU clusters for deep learning. In EuroSys ’20: Fifteenth EuroSys
Conference 2020, Heraklion, Greece, April 27-30, 2020. ACM, 1:1ś1:16. https:
//doi.org/10.1145/3342195.3387555

[21] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. 2018. TVM: An automated end-to-end optimizing
compiler for deep learning. In 13th������ Symposium on Operating Systems
Design and Implementation (���� 18). 578ś594.

[22] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016. Training Deep
Nets with Sublinear Memory Cost. arXiv preprint arXiv:1604.06174 (2016).

[23] Jichan Chung, Kangwook Lee, Ramtin Pedarsani, Dimitris Papailiopoulos, and
Kannan Ramchandran. 2017. Ubershule: Communication-eicient data shuling
for sgd via coding theory. Advances in Neural Information Processing Systems
(NIPS) (2017).

[24] Wei Dai, Chia Dai, Shuhui Qu, Juncheng Li, and Samarjit Das. 2017. Very deep
convolutional neural networks for raw waveforms. In 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 421ś425.

[25] Michaël Deferrard, Kirell Benzi, Pierre Vandergheynst, and Xavier Bresson. 2016.
Fma: A dataset for music analysis. arXiv preprint arXiv:1612.01840 (2016).

[26] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for Language Under-
standing. In Proceedings of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers). Association for Computational Linguistics, 4171ś4186.
https://doi.org/10.18653/v1/n19-1423

[27] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John
Karro, and D Sculley. 2017. Google vizier: A service for black-box optimization.
In Proceedings of the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining. 1487ś1495.

[28] Mel Gorman. 2020. Understanding the Linux Virtual Memory Manager. https:
//www.kernel.org/doc/gorman/html/understand/understand013.html.

[29] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. 2017. Accurate,
large minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677
(2017).

[30] Alex Graves, Abdel-rahman Mohamed, and Geofrey Hinton. 2013. Speech
recognition with deep recurrent neural networks. In 2013 IEEE international
conference on acoustics, speech and signal processing. IEEE, 6645ś6649.

[31] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo Zhu, Myeongjae Jeon,
Junjie Qian, Hongqiang Harry Liu, and Chuanxiong Guo. 2019. Tiresias: A GPU

Cluster Manager for Distributed Deep Learning. In 16th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2019, Boston, MA, February
26-28, 2019. USENIX Association, 485ś500. https://www.usenix.org/conference/
nsdi19/presentation/gu

[32] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy H. Campbell. 2019. TicTac:
Accelerating Distributed Deep Learning with Communication Scheduling. In
Proceedings of Machine Learning and Systems 2019, MLSys 2019, Stanford, CA,
USA, March 31 - April 2, 2019. mlsys.org.

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770ś778.

[34] Elad Hofer, Itay Hubara, and Daniel Soudry. 2017. Train longer, generalize better:
closing the generalization gap in large batch training of neural networks. In
Advances in Neural Information Processing Systems. 1731ś1741.

[35] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J
Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and< 0.5 MBmodel size. arXiv preprint arXiv:1602.07360 (2016).

[36] Kumar Iyer and Jefrey Kiel. 2016. GPU Debugging and Proiling with NVIDIA
Parallel Nsight. In Game Development Tools. AK Peters/CRC Press, 303ś324.

[37] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki,
Jef Donahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Si-
monyan, et al. 2017. Population based training of neural networks. arXiv preprint
arXiv:1711.09846 (2017).

[38] Animesh Jain, Amar Phanishayee, Jason Mars, Lingjia Tang, and Gennady Pekhi-
menko. 2018. Gist: Eicient Data Encoding for Deep Neural Network Training. In
ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA
’18).

[39] Anand Jayarajan, Jinliang Wei, Garth Gibson, Alexandra Fedorova, and Gennady
Pekhimenko. 2019. Priority-based Parameter Propagation for Distributed DNN
Training. In Proceedings of Machine Learning and Systems 2019, MLSys 2019,
Stanford, CA, USA, March 31 - April 2, 2019. mlsys.org.

[40] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie Qian, Wen-
cong Xiao, and Fan Yang. 2019. Analysis of Large-Scale Multi-Tenant GPU
Clusters for DNN Training Workloads. In 2019������ Annual Technical Con-
ference (USENIX ATC 19). 947ś960.

[41] Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and
Alex Aiken. 2019. TASO: Optimizing Deep Learning Computation with Au-
tomated Generation of Graph Substitutions. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles. ACM.

[42] Aarati Kakaraparthy, Abhay Venkatesh, Amar Phanishayee, and Shivaram
Venkataraman. 2019. The case for unifying data loading in machine learning
clusters. In 11th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud
19).

[43] Alex Krizhevsky, Ilya Sutskever, and Geofrey E Hinton. 2012. ImageNet Clas-
siication with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems. 1097ś1105.

[44] Abhishek Vijaya Kumar and Muthian Sivathanu. 2020. Quiver: An Informed
Storage Cache for Deep Learning. In 18th USENIX Conference on File and Storage
Technologies, FAST 2020, Santa Clara, CA, USA, February 24-27, 2020. USENIX
Association, 283ś296.

[45] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi
Pont-Tuset, Shahab Kamali, Stefan Popov, Matteo Malloci, Tom Duerig, et al.
2018. The open images dataset v4: Uniied image classiication, object detection,
and visual relationship detection at scale. arXiv preprint arXiv:1811.00982 (2018).

[46] Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. 2017. Hyperband: A Novel Bandit-Based Approach to Hyperparameter
Optimization. J. Mach. Learn. Res. 18 (2017), 185:1ś185:52. http://jmlr.org/papers/
v18/16-558.html

[47] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez,
and Ion Stoica. 2018. Tune: A research platform for distributed model selection
and training. arXiv preprint arXiv:1807.05118 (2018).

[48] Tao Lin, Sebastian U. Stich, Kumar Kshitij Patel, and Martin Jaggi. 2020. Don’t Use
Large Mini-batches, Use Local SGD. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net. https://openreview.net/forum?id=B1eyO1BFPr

[49] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. 2017. Deep
gradient compression: Reducing the communication bandwidth for distributed
training. arXiv preprint arXiv:1712.01887 (2017).

[50] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. 2016. Ssd: Single shot multibox detector.
In European conference on computer vision. Springer, 21ś37.

[51] Kshiteej Mahajan, Arjun Balasubramanian, Arjun Singhvi, Shivaram Venkatara-
man, Aditya Akella, Amar Phanishayee, and Shuchi Chawla. 2020. Themis: Fair
and Eicient GPU Cluster Scheduling. In 17th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2020, Santa Clara, CA, USA, February
25-27, 2020. USENIX Association, 289ś304. https://www.usenix.org/conference/
nsdi20/presentation/mahajan

[52] QiMeng,Wei Chen, YueWang, Zhi-MingMa, and Tie-Yan Liu. 2019. Convergence
analysis of distributed stochastic gradient descent with shuling. Neurocomputing
337 (2019), 46ś57. https://doi.org/10.1016/j.neucom.2019.01.037

[53] Apache Mesos. 2020. RecordIO Data Format. https://mesos.apache.org/
documentation/latest/recordio/.

[54] MLPerf. 2020. MLPerf Training Results v0.7. https://github.com/mlperf/
training_results_v0.7.

[55] Jayashree Mohan, Amar Phanishayee, Ashish Raniwala, and Vijay Chidambaram.
2020. Analyzing andMitigatingData Stalls in DNNTraining. CoRR abs/2007.06775
(2020). arXiv:2007.06775 https://arxiv.org/abs/2007.06775

[56] Supun Nakandala, Yuhao Zhang, and Arun Kumar. 2020. Cerebro: A Data System
for Optimized Deep Learning Model Selection. Proc. VLDB Endow. 13, 11 (2020),
2159ś2173. http://www.vldb.org/pvldb/vol13/p2159-nakandala.pdf

[57] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R
Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. 2019.
PipeDream: Generalized Pipeline Parallelism for DNN Training. In Proceedings
of the 27th ACM Symposium on Operating Systems Principles. ACM, 1ś15.

[58] Deepak Narayanan, Keshav Santhanam, Amar Phanishayee, and Matei Zaharia.
2018. Accelerating deep learning workloads through eicient multi-model exe-
cution. In NIPS Workshop on Systems for Machine Learning (December 2018).

[59] Andrew NG. 2020. Data and DNNs. https://www.wired.com/brandlab/2015/05/
andrew-ng-deep-learning-mandate-humans-not-just-machines/.

[60] Luis Perez and Jason Wang. 2017. The efectiveness of data augmentation in
image classiication using deep learning. arXiv preprint arXiv:1712.04621 (2017).

[61] Philipp Probst, Anne-Laure Boulesteix, and Bernd Bischl. 2019. Tunability: Im-
portance of Hyperparameters of Machine Learning Algorithms. J. Mach. Learn.
Res. 20 (2019), 53:1ś53:32. http://jmlr.org/papers/v20/18-444.html

[62] PyTorch. 2020. PyTorch Training Examples. https://github.com/pytorch/
examples/tree/master/imagenet.

[63] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zuliqar, and Stephen W.
Keckler. 2016. vDNN: Virtualized Deep Neural Networks for Scalable, Memory-
eicient Neural Network Design. In The 49th Annual IEEE/ACM International
Symposium on Microarchitecture (Taipei, Taiwan) (MICRO-49). Piscataway, NJ,
USA, 18:1ś18:13.

[64] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
2015. Imagenet large scale visual recognition challenge. International journal of
computer vision 115, 3 (2015), 211ś252.

[65] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
4510ś4520.

[66] Supheakmungkol Sarin, Knot Pipatsrisawat, Khiem Pham, Anurag Batra, and
Luís Valente. 2019. Crowdsource by Google: A Platform for Collecting Inclusive
and Representative Machine Learning Data.

[67] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[68] Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. 2017. Don’t
decay the learning rate, increase the batch size. arXiv preprint arXiv:1711.00489

(2017).
[69] Michael Stonebraker. 1981. Operating System Support for Database Management.

Commun. ACM 24, 7 (1981), 412ś418. https://doi.org/10.1145/358699.358703
[70] Mustafa Suleyman. 2020. Using AI to give doctors a 48-hour head start on

life-threatening illness. https://deepmind.com/blog/article/predicting-patient-
deterioration.

[71] Andrew Tomkins, R Hugo Patterson, and Garth Gibson. 1997. Informed multi-
process prefetching and caching. In ACM SIGMETRICS Performance Evaluation
Review, Vol. 25. ACM, 100ś114.

[72] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal,
Zachary DeVito, William S Moses, Sven Verdoolaege, Andrew Adams, and Albert
Cohen. 2018. Tensor comprehensions: Framework-agnostic high-performance
machine learning abstractions. arXiv preprint arXiv:1802.04730 (2018).

[73] Subhashini Venugopalan, Marcus Rohrbach, Jefrey Donahue, Raymond Mooney,
Trevor Darrell, and Kate Saenko. 2015. Sequence to sequence-video to text. In
Proceedings of the IEEE International Conference on Computer Vision. 4534ś4542.

[74] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s Neural Machine Translation System: Bridging the Gap between
Human and Machine Translation. arXiv preprint arXiv:1609.08144 (2016).

[75] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Sivathanu,
Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu
Zhang, Fan Yang, and Lidong Zhou. 2018. Gandiva: Introspective Cluster Sched-
uling for Deep Learning. In 13th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018. USENIX
Association, 595ś610. https://www.usenix.org/conference/osdi18/presentation/
xiao

[76] Hao Zhang, Zeyu Zheng, Shizhen Xu,Wei Dai, Qirong Ho, Xiaodan Liang, Zhiting
Hu, Jinliang Wei, Pengtao Xie, and Eric P. Xing. 2017. Poseidon: An Eicient
Communication Architecture for Distributed Deep Learning on GPU Clusters. In
2017 USENIX Annual Technical Conference (USENIX ATC 17). USENIX Association,
Santa Clara, CA, 181ś193.

[77] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2018. Shulenet: An ex-
tremely eicient convolutional neural network for mobile devices. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 6848ś6856.

[78] Hongyu Zhu, Amar Phanishayee, and Gennady Pekhimenko. 2020. Daydream:
Accurately Estimating the Eicacy of Optimizations for DNN Training. In 2020
USENIX Annual Technical Conference, USENIX ATC 2020, July 15-17, 2020. USENIX
Association, 337ś352.

[79] Yue Zhu, Fahim Chowdhury, Huansong Fu, Adam Moody, Kathryn Mohror,
Kento Sato, and Weikuan Yu. 2018. Entropy-aware I/O pipelining for large-scale
deep learning on HPC systems. In 2018 IEEE 26th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS). IEEE, 145ś156.

[80] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies and reading books. In Proceed-
ings of the IEEE international conference on computer vision. 19ś27.

	Abstract
	1 Introduction
	1.1 Contributions

	2 Background
	2.1 The DNN ETL Requirements
	2.2 DALI : Fast Data Pipelining

	3 Data Stalls in DNN Training
	4 Analyzing Data Stalls
	4.1 Methodology
	4.2 Measuring data stalls using DS-Analyzer
	4.3 Data Stalls in DNN Training

	5 DS-Analyzer: Predictive analysis
	5.1 Example : Predicting optimal cache size

	6 Mitigating Data Stalls
	6.1 The MinIO cache
	6.2 Partitioned MinIO Caching
	6.3 Coordinated Prep
	6.4 Tying it all together with CoorDL

	7 Evaluation
	7.1 Single-server Multi-GPU training
	7.2 Multi-Server Distributed Training
	7.3 Hyperparameter Search
	7.4 Training to Accuracy with CoorDL
	7.5 Resource Utilization
	7.6 CoorDL on DGX-2

	8 Discussion
	9 Related Work
	10 Conclusion
	References

