
This paper is included in the Proceedings of the

19th USENIX Conference on File and Storage Technologies.
February 23–25, 2021

978-1-939133-20-5

Open access to the Proceedings

of the 19th USENIX Conference on

File and Storage Technologies

is sponsored by USENIX.

CheckFreq: Frequent, Fine-Grained DNN
Checkpointing

Jayashree Mohan, UT Austin; Amar Phanishayee, Microsoft Research;

Vijay Chidambaram, UT Austin and VMware research

https://www.usenix.org/conference/fast21/presentation/mohan

CheckFreq: Frequent, Fine-Grained DNN Checkpointing

Jayashree Mohan *

UT Austin

Amar Phanishayee

Microsoft Research

Vijay Chidambaram

UT Austin and VMware research

Abstract
Training Deep Neural Networks (DNNs) is a resource-hungry

and time-consuming task. During training, the model per-

forms computation at the GPU to learn weights, repeatedly,

over several epochs. The learned weights reside in GPU mem-

ory, and are occasionally checkpointed (written to persistent

storage) for fault-tolerance. Traditionally, model parameters

are checkpointed at epoch boundaries; for modern deep net-

works, an epoch runs for several hours. An interruption to

the training job due to preemption, node failure, or process

failure, therefore results in the loss of several hours worth of

GPU work on recovery.

We present CheckFreq, an automatic, fine-grained check-

pointing framework that (1) algorithmically determines the

checkpointing frequency at the granularity of iterations using

systematic online profiling, (2) dynamically tunes checkpoint-

ing frequency at runtime to bound the checkpointing overhead

using adaptive rate tuning, (3) maintains the training data in-

variant of using each item in the dataset exactly once per

epoch by checkpointing data loader state using a light-weight

resumable iterator, and (4) carefully pipelines checkpointing

with computation to reduce the checkpoint cost by introduc-

ing two-phase checkpointing. Our experiments on a variety

of models, storage backends, and GPU generations show that

CheckFreq can reduce the recovery time from hours to sec-

onds while bounding the runtime overhead within 3.5%.

1 Introduction

Deep Neural Networks (DNNs) are widely used in many

AI applications including image classification [20, 23, 41],

language translation [46], and speech recognition [17]. While

DNNs have facilitated state-of-the-art accuracy in these tasks,

they come at the cost of high computational complexity, taking

up to several days to train [8, 35].

Training starts with a randomly chosen set of learnable

parameters (such as weights and biases) and proceeds in itera-

tions consisting forward and backward pass over a minibatch

of data. At the end of each backward pass, the learnable pa-

rameters are recomputed using the gradients obtained, and

updated in GPU memory. Training is performed for several

epochs, where one epoch is a complete pass over the dataset.

At the end of training, the learned parameters are saved to

persistent storage for inference.

Due to the large runtime of DNN training, the model

weights and optimizer state (collectively, model state) are

*Work done as part of MSR internship

occasionally written to persistent storage, for fault tolerance;

else, an interruption to the job due to process failure, or node

crash can wipe out all the job state, resulting in loss of several

hours of GPU work. This is termed checkpointing. Tradition-

ally, models are checkpointed at epoch boundaries [30].

Interruptions to DNN training jobs are common. Be it ded-

icated enterprise clusters or cloud instances, failures due to

software and hardware errors are inevitable. Prior work has

shown that infrastructure and process failures are common

in large-scale big data clusters, with a mean time between

failure (MTBF) of 4 – 22 hours [19, 27]. Similarly, for GPU

clusters, recent study of large-scale DNN training clusters at

Microsoft [22] highlight that DNN training jobs encounter

interruptions due to infrastructure failure, node crashes, soft-

ware bugs, and user errors. Over the span of the analysis

period (2 months), the mean time between job failures was 45

minutes on average (excluding early failures) in the Microsoft

cluster.

Furthermore, a recent trend with cloud providers is the

emergence of cost-effective preemptible VMs which are

priced 6-8× cheaper than dedicated VMs [9, 16, 29]; such

VMs may be preempted at any time. Recent work shows that

GPU VMs may be preempted as frequent as every 15 minutes

and atleast every 24 hours on the Google Cloud [31].

When interruptions occur, the long running, stateful, DNN

job terminates abruptly, wiping out the model parameters in-

memory. For instance, training ResNext101 to accuracy on

ImageNet-1K dataset using a V100 GPU takes 270 hours

(~3.9 hours per epoch) [35]; if checkpointing is performed

at epoch boundaries, about two hours of GPU computation

is wasted on average for every interruption. More generally,

there is a trend of growing size of datasets [3,7,24], and larger,

complex model architectures [8,10,35], consequently increas-

ing DNN epoch time and overall training time. Therefore, it

is critical to frequently checkpoint training progress, at a finer

granularity than epochs i.e., at iteration level. In this work,

we explore how to perform fine-grained checkpointing auto-

matically in a model- and hardware-agnostic manner, without

intrusive changes to the training workload.

We present CheckFreq, a fine-grained checkpointing frame-

work for DNN training. CheckFreq strikes a balance between

ensuring a low runtime overhead and providing a high check-

pointing frequency, so that there is minimal loss of GPU

time in the event of job interruptions or failures by perform-

ing iteration-level checkpointing. CheckFreq has two major

components; a checkpointing policy that automatically deter-

USENIX Association 19th USENIX Conference on File and Storage Technologies 203

mines when to checkpoint, and a checkpointing mechanism

that performs correct, low-cost checkpointing. To this end, we

build upon a set of techniques from the High Performance

Computing (HPC) and storage community, alongside novel

DNN-specific optimizations such as pipelined in-memory

snapshots, utilizing spare GPU capabilities for fast snapshot,

and a DNN-aware systematic profiling for dynamic tuning

of checkpointing frequency. Using CheckFreq, we show that

the recovery time reduces from hours to seconds during job

interruptions.

Fine-grained checkpointing for DNNs at iteration gran-

ularity poses several unique challenges which CheckFreq

addresses as described below.

1. Checkpointing frequency. There is no single checkpoint-

ing frequency that works across models, hardware, and train-

ing environments. The frequency of checkpointing depends

on several factors; e.g., model size, storage bandwidth, and

training iteration time. Moreover, a job could face interference

while writing checkpoints due to reading the dataset from the

same storage device, or due to concurrently running jobs that

share the storage bandwidth to write checkpoints. Statically

determining a checkpointing frequency is sub-optimal for

runtime if a job faces interference in its training environment.

Therefore, CheckFreq algorithmically determines an initial

checkpointing frequency by profiling the job characteristics

during runtime. CheckFreq uses systematic online profiling

to determine the best-case checkpointing frequency for the

model in the given training environment. However, in practice,

the job might incur additional overheads due to intereference

which slows down the checkpointing process. To tackle this,

CheckFreq introduces adaptive rate tuning to dynamically

monitor the job runtime between checkpoint intervals, and

appropriately scale up or scale down the checkpointing fre-

quency, so that the end-to-end runtime overhead is within a

user-given bound.

2. Checkpoint stalls. The model state to be checkpointed

is updated every iteration. Therefore, training has to briefly

pause to accurately checkpoint the current state; the GPU

(or any accelerator) remains idle until checkpoint completes,

introducing checkpoint stalls in training. Naively increasing

the frequency of checkpointing (e.g., every iteration) results

in high runtime overhead due to checkpoint stalls.

CheckFreq reduces checkpoint stalls using a DNN-aware

two-phase checkpointing strategy. The checkpointing oper-

ation is split into a snapshot() and a persist() phase. In

the snapshot() phase, CheckFreq performs a consistent in-

memory copy of all the learnable model state. This operation

is pipelined with compute until the weight update of the sub-

sequent iteration which is the latest point when the model

parameters are updated. In the persist() phase, the snap-

shot is asynchronously written to the storage device. Check-

Freq guarantees that a checkpoint is reliably persisted on disk

(using fsync()) before the subsequent checkpoint operation

begins. Therefore, in the event of an unexpected interruption,

the job state will rollback at most one checkpoint.

3. Data invariant. For a large class of models that perform

random data pre-processing operations in every epoch of

training (eg CNNs), it is crucial to ensure the following data

invariant holds: every epoch must process all the items in

the dataset exactly once, in a random order, with random

pre-processing like crop, resize etc. Existing data iterators in

frameworks like PyTorch, and MxNet do not support resuma-

bility. When the job is interrupted, these iterators can either

miss out, or repeat data items in an epoch, resulting in loss in

model accuracy when resuming at iteration granularity.

To address this challenge, CheckFreq introduces a resum-

able data iterator that respects the data invariant even in the

presence of interruptions. The iterator uses epoch seeded

psuedo-random transformations, that can reconstruct the iter-

ator state as it was prior to interruption. CheckFreq’s iterator

thus makes correct, iteration-level checkpointing feasible.

We implement CheckFreq as a pluggable module for Py-

Torch, with minimal (< 10 LOC) changes to the original job’s

script. Our evaluation across a variety of models, GPUs, and

storage types confirms that CheckFreq reduces the wasted

GPU time from order of hours to just under a minute, while

incurring less than 3.5% runtime overhead, as compared

to the existing epoch-based checkpointing schemes. Check-

Freq reduces the end-to-end training time by 2× when train-

ing a ResNet50 job on a 1080Ti GPU, and by 1.6× for a

ResNext101 job on a V100 GPU, when the job is interrupted

every 5 hours in both cases. We further demonstrate the

importance of CheckFreq’s recoverable iterator by training

ResNet18 to accuracy using ImageNet dataset with frequent

interruptions (once every 2 epochs) and iteration-level check-

pointing; Existing state-of-the-art data loaders like DALI [4]

result in up to 13% drop in accuracy while CheckFreq is able

to train the model to target accuracy.

In summary, this paper makes the following contributions.

• Analyzes the state of DNN checkpointing today and high-

lights the need for fine-grained checkpointing and the chal-

lenges involved in achieveing it (§3)

• The design and implementation of CheckFreq, an auto-

matic, fine-grained checkpointing framework for DNN

training that exploits the DNN computational model to

provide low-cost, pipelined checkpointing (§4)

• Experimental results demonstrating the efficacy of Check-

Freq in reducing the recovery time from hours to seconds,

across a range of models and hardware configurations (§5)

2 Background

This section provides a brief overview of the DNN computa-

tional model and the role of checkpointing in DNN training.

DNN computational model. Training a Deep Neural Net-

work (DNN) is the process of determining the set of weights

and bias in the network, collectively called the learnable pa-

204 19th USENIX Conference on File and Storage Technologies USENIX Association

rameters. Once trained, the DNN computes the output using

the weights learned during the training phase.

DNN Training starts with a randomly chosen set of learn-

able parameters and proceeds iteratively in steps called iter-

ations. Every iteration processes a small disjoint subset of

the dataset called a minibatch. When the entire dataset is pro-

cessed exactly once, an epoch is said to be complete. Each

iteration of training performs the following steps in order.

• Data augmentation. Fetches a minibatch of data from stor-

age and applies random pre-processing operations. For e.g.,

in popular image classification models like the ResNets,

pre-processing includes randomly cropping the input im-

age, resizing, rotating, and flipping it.

• Forward pass. The model function is applied on the mini-

batch of data to obtain the prediction.

• Backward pass. A loss function is used to determine how

much the prediction deviates from the correct answer; each

layer in the DNN computes a gradient of the loss.

• Weight update. Using the gradients computed in the back-

ward pass, the learnable model parameters are updated.

At the end of training (typically after a fixed number of

epochs), the final learned parameters are saved to persistent

storage. To perform inference on the model, the DNN is initial-

ized with the learned parameters and the output is predicted.

Checkpointing. Training a DNN is a highly time-consuming

task. For instance, BERT-large, the state-of-the-art language

modeling network, takes 2.5 days to train [8], when trained

in parallel across 16 V100 GPUs. Since the learnable param-

eters are maintained in GPU memory during training, any

interruption to the training job due to a process crash, server

crash, job or VM preemption, or job migration, results in the

loss of model state learned so far. This state is typically a

few hundred MBs to a few hundred GBs in size [36] (§5.4).

Consequently, several hours of GPU time spent on training

will be lost. To overcome this, the model state is typically

checkpointed at epoch boundaries; i.e., written out to persis-

tent storage for fault-tolerance. This checkpoint can then be

loaded when the training job resumes to ensure that progress

is not entirely lost.

Recovery Time. When a DNN training job is interrupted, it

rolls back to the last completed epoch that was checkpointed

as shown in Figure 1. Note that, all the GPU work performed

between the last checkpoint and the point of interruption is

lost and has to be redone when training resumes. The amount

of GPU time lost due to an interruption is termed the recovery

time. In other words, this is the time spent to bring the model

to the same state as it was prior to the interruption.

3 The Current State of Checkpointing
We analyze the current state of checkpointing in popular open

source ML training frameworks like PyTorch [5], Tensor-

Flow [6], and MxNet [11]. We analyze training workloads

from MLPerf submissions v0.7, and the official workloads

GPU time
Interruption

Recovery Time

Epoch i+1Epoch i

Figure 1: Recovery time. The amount of GPU work lost and

has to be redone on recovery is termed the recovery time.

released by NVIDIA, TensorFlow and PyTorch. We find that

checkpointing in open source ML training frameworks is

incorrect and inefficient.

• Correctness. The checkpointing mechanism used in the

training scripts could result in loss or corruption of check-

point files in the event of job failure or interruption.

• Efficiency. Checkpointing is inefficient. The frequency of

checkpointing is determined in an ad-hoc fashion, typically

at epoch-boundaries which results in loss of several hours

of GPU time for recovery. Furthermore, there is lack of

support for checkpointing at fine granularity; existing data

iterators do not support resuming training state at iteration

boundaries and results in high checkpoint stalls.

3.1 Checkpointing is Incorrect

Corruption due to overwrites. Some of the official training

workloads maintained by PyTorch [38], overwrite the same

checkpoint file at the end of each epoch to reduce storage

utilization. However, this exposes the risk of corrupting the

checkpoint file in the event of a crash during the checkpoint

operation. Prior work [37] has shown that different filesystems

treat overwrites differently; a crash could result in non-atomic

data update in the writeback mode of ext3 resulting in data

corruption, while it could truncate the file on ext4, resulting in

data loss. In either case, the checkpoint file becomes unusable;

training has to restart from the first epoch.

The checkpoint file may not persist. Analyzing the primi-

tives used by training frameworks for checkpointing, such as

torch.save reveal that they do not fsync() the checkpoint

file. We verified that this can lead to data loss. Moreover,

naively performing frequent synchronous fsync() affects

training performance significantly (§5.3.1).

3.2 Checkpointing is Inefficient

Checkpointing is performed sparingly in an ad-hoc fash-

ion. There is no systematic checkpointing policy in the train-

ing jobs; checkpointing interval is chosen in an ad-hoc fash-

ion. For example, some jobs do not checkpoint during train-

ing, while some others start checkpointing only after a large

number of epochs (60% of training) have elapsed. In gen-

eral, we observe that checkpointing is typically performed

at epoch boundaries, providing only modest fault-tolerance;

in the event of a job interruption, the training will resume

from the last completed epoch, which potentially loses sev-

eral hours of GPU training time that has to be redone. For

instance, when ResNext101 is trained using ImageNet on a

V100 GPU, two hours of GPU time is lost on average if the

USENIX Association 19th USENIX Conference on File and Storage Technologies 205

job is interrupted (§5.5).

A naive frequent checkpointing schedule results in check-

point stalls. Providing higher fault-tolerance requires check-

pointing to be performed more frequently than at epoch bound-

aries; i.e., at iteration boundaries. However, naively increas-

ing the frequency of checkpointing introduces a large check-

point stall in training. Since model weights are constantly

updated between iterations, checkpointing requires the train-

ing to briefly pause to capture the model weights accurately.

We term this overhead (i.e, the time GPU is idle, waiting for

the checkpoint to complete) as the checkpoint stall. Therefore,

it is crucial to find the correct checkpointing frequency given

a DNN (because the size of checkpoint varies from 100MBs

to 100GBs across DNNs), and the storage bandwidth, to min-

imize checkpoint stalls.

Violating the data invariant during training can affect

model accuracy. Each epoch performs a full pass over the

dataset, in a random order and holds the invariant that each

data item is seen exactly once per epoch. One of the ben-

efits of checkpointing at epoch boundaries is that, the data

iterator state need not be persisted, as it is reset at the end

of epoch. Checkpointing at a finer granularity (i.e. at itera-

tions), requires infrastructure support to resume the state of

data iterator as well. We note that the support to persist iter-

ator state exists in some custom dataloaders of NLP models

which do not perform random pre-processing operations for

every batch. However, for image and video models that apply

random transformations on the input data every batch, the

existing dataloaders in PyTorch, MxNet, and state-of-the-art

data pipelines like NVIDIA’s DALI are not resumable at iter-

ation boundaries. As a result, they violate the data invariant in

the presence of interruptions, resulting in upto the 13% drop

in accuracy for popular models ResNet18 (Fig 6).

3.3 Summary

In summary, we observe that the checkpointing mechanism

today is incorrect; resulting in potential checkpoint data loss

or corruption. Additionally, the checkpointing policy is ad-

hoc; there is no systematic way of determining how frequently

one must checkpoint, to both minimize recovery time and

incur low checkpoint stalls.

The solution to minimize recovery time is to perform fre-

quent, iteration-level checkpointing. However, performing

correct and efficient fine-grained checkpointing is challeng-

ing. We need (1) low-cost checkpointing mechanisms, (2)

light-weight, resumable data iterators that preserve the model

accuracy, and (3) a way to systematically determine the fre-

quency of checkpointing.

4 CheckFreq: Design and Implementation

We present the goals of CheckFreq and the recovery guaran-

tees it provides. We then present an overview of the overall

architecture of CheckFreq, and discuss the techniques used

by CheckFreq to achieve the enlisted goals.

Technique Benefits

Checkpointing mechanism (How to checkpoint?)

2-phase checkpointing Splits checkpointing into two phases

and pipelines them carefully with

compute to make checkpoints cheap

Recoverable data iterator Maintains data invariant, allows re-

suming training at iteration bound-

aries without affecting accuracy

Checkpointing policy (When to checkpoint?)

Systematic online profiling Automatically determines check-

pointing frequency, cognizant of

model characteristics

Adaptive rate tuning Dynamically tunes checkpointing fre-

quency to reduce overhead due to in-

terference

Table 1: Overview of techniques used by CheckFreq.

4.1 Goals

Correctness. CheckFreq aims to provide frequent, iteration-

level checkpointing that is consistent, and persistent.

No impact on model accuracy. CheckFreq aims to not im-

pact the statistical efficiency of the model by ensuring that the

data invariant holds when training resumes after interruption.

Automatic frequency selection. CheckFreq aims to deter-

mine and tune the frequency of checkpointing automatically

based on the model being trained, and the training environ-

ment (GPU gen, storage type, iteration time). Checkpointing

frequency influences the recovery time, i.e., time to bring

model state to what it was prior to the interruption.

Low checkpoint stalls. CheckFreq aims to reduce check-

point stalls during training, so that there is low runtime over-

head to frequent checkpointing (e.g., < 5%).

Minimal code changes. CheckFreq aims to require minimal

changes to the training code to automate checkpoint manage-

ment and restoration.

4.2 CheckFreq Recovery Guarantees

An interrupted job resumes training from the latest available

checkpoint on disk. In the traditional epoch-based check-

pointing, irrespective of when the job is interrupted, training

resumes from the previous epoch boundary as shown in Fig 1.

If a job performs n iterations per epoch and takes time ti per

iteration, then the average recovery time Ravg for this job is :

Ravg =
n

2
∗ ti

This is because, when interrupted in the middle of an epoch,

work done so far in the epoch must be redone when resumed,

as the state is reset to the end of previous epoch. Thus, recov-

ery time R for epoch-based checkpointing is bounded by:

0≤ R≤ n∗ ti

Note that n ∗ ti is the duration of an epoch; it can be as

large as a few hours. CheckFreq aims to provide a tight bound

206 19th USENIX Conference on File and Storage Technologies USENIX Association

GPU time

Recovery Time

Epoch i+1Epoch i
Interruption

Figure 2: Bounding recovery time. CheckFreq guarantees

that training rolls back at most one checkpoint.

on recovery time and takes a more fine-grained approach to

checkpointing at iteration boundaries. CheckFreq guarantees

that there is at most one ongoing checkpoint operation in the

system at any point in time. When interrupted, it rolls back at

most one checkpoint - either the last initiated checkpoint (if it

completes), or the one prior as shown in Fig 2. If the frequency

automatically determined by CheckFreq is k iterations, then

CheckFreq guarantees that the recovery time R is bounded by

0≤ R≤ 2∗ k ∗ ti

Ravg = k ∗ ti (k << n)

The chosen checkpointing frequency k is 100 – 300× less

than n, as we show later in evaluation (§5.4), thereby resulting

in orders of magnitude reduction in recovery time compared

to epoch based checkpointing.

4.3 Design

We now present an overview of the architecture of CheckFreq

and how it uses various techniques to provide frequent check-

pointing at a bounded cost described in §4.2. Table 1 lists

the different techniques used by CheckFreq and the benefit of

each technique.

Overview. The architecture of CheckFreq is shown in Fig-

ure 3. CheckFreq has three major components; a recoverable

data iterator that returns a minibatch of data to the training

job, a feedback-driven checkpointing policy that determines

when to trigger a checkpoint, and a low-cost checkpointing

mechanism that is split into a snapshot() and a persist()

phase. CheckFreq monitors the runtime overhead incurred

in each checkpoint interval; this is used as feedback to dy-

namically tune the checkpointing frequency to ensure that

the runtime overhead does not exceed a user-given limit p

(e.g., 5%). When interrupted, CheckFreq restores the latest

available checkpoint and resumes training. We describe each

component in detail below.

4.3.1 Checkpointing Mechanism

DNN checkpointing today is performed synchronously; train-

ing is paused until the checkpoint operation is complete. How-

ever, synchronous checkpointing introduces large checkpoint

stalls, which results in large runtime overhead if performed

frequently. In other words, the cost of a checkpoint (Tc) is

high for synchronous checkpointing. For example, consider a

policy that checkpoints every three iterations. The model state

is written to disk after the weight update phase which updates

weights based on the gradients computed in the backward

pass. As shown in Figure 4a, the checkpoint cost is incurred

in the critical path, resulting in high checkpoint stalls, which

Snapshot() Persist()

PolicyIterator

Feedback

DNN training job

next_batch()

1

5

6

4

7

must_checkpoint() ?

Storage

2

3

CHECKFREQ

Figure 3: Training with CheckFreq. CheckFreq’s policy

determines the checkpointing frequency. The checkpointing

mechanism then snapshots and persists the model and iterator

state at the identified frequency in a pipelined manner. If a

failure occurs, CheckFreq rolls back the model and iterator

state to the latest available checkpoint and resumes training.

can significantly slow down the end-to-end training time. To

mask such high checkpoint costs within an overhead p, check-

pointing needs to be performed infrequently, which in turn

results in high recovery cost.

Two-phase checkpointing. CheckFreq aims to reduce the re-

covery cost in the event of an interruption by reducing check-

point stalls. To achieve low checkpoint cost, CheckFreq in-

troduces a DNN-aware two-phase checkpointing mechanism.

CheckFreq splits checkpointing into two phases; snapshot()

and persist() and pipelines each phase with computation.

The main insight behind CheckFreq’s two-phase checkpoint-

ing is that it exploits the DNN computational model (§2) to

pipeline checkpointing operations on modern accelerators

such as the GPUs.

1. Phase 1 : snapshot(). The first is a snapshot() phase,

performed after the weight update step of the iteration.

Here, a copy of the model state is captured in memory,

so that it can be written out to storage asynchronously.

Since the model state resides in GPU memory, snapshot()

involves copying the model parameters from GPU to CPU

memory. Performing this operation synchronously in the

critical path results in non-trivial snapshot() overhead

as shown in Figure 4b. Therefore, CheckFreq carefully

pipelines snapshot() with compute.

Pipelining snapshot() with compute has to be per-

formed cautiously to ensure consistency of model param-

eters and preserve correctness of Stochastic Gradient De-

scent (SGD), which is a popular optimization technique

used by learning algorithms. Naively pipelining them can

result in an inconsistent snapshot that contains part of the

weight updates from one iteration and the rest from the

other. CheckFreq exploits the DNN learning structure to

achieve correct, pipelined snapshots.

We observe that the learnable model parameters are

updated in GPU memory after the backward pass of an

USENIX Association 19th USENIX Conference on File and Storage Technologies 207

1 1 1

11

2 2 2Compute

Checkpoint

3 3 3 4 4 4

44

1 1 1

11

2 2 2 3 3 3 4 4 4

44

5 5 5 6 6 6 7 7 7

1 1 1

11

2 2 2 3 3 3 4 4 4

44

5 5 5 6 6 6 7 7 7

Compute

Checkpoint

Compute

Checkpoint

Weight update

Snapshot

Persist

Forward pass

Backward pass

Checkpoint stall

(a) Baseline :

Synchronous

checkpointing

(b) Only persist()

pipelining

(c) Snapshot()

and persist()

pipelining

5 5 5 6 6 6 7 7 7

Figure 4: Pipelining checkpoint with compute. This figure contrasts three checkpointing mechanisms, when checkpointing is

performed every 3 iterations. (a) performs checkpointing synchronously and incurs a high checkpoint stall. (b) takes a snapshot

of the model state synchronously but pipelines disk IO (persist()) with compute, allowing it to proceed in the background.

CheckFreq takes a more nuanced approach by carefully pipelining snapshot() with the subsequent iteration’s forward and

backward pass and incurs lower checkpointing stalls as shown in (c)

iteration; in a step called the weight update. Therefore,

we can pipeline snapshot() of iteration i with compute,

until the weight update of iteration i+ 1. If snapshot()

does not complete by then, then iteration i+1 waits until

the ongoing snapshot() successfully completes as shown

in Figure 4c. This tight coupling is required to ensure a

consistent snapshot; else we might capture a state that is

partially updated by the subsequent iteration that in turn

affects the correctness of the learning algorithm [28].

GPU-based snapshot(). Although snapshot() is

pipelined with compute of the following iteration, it may

result in checkpointing stalls in cases where it is not possi-

ble to completely hide the cost of copying model state from

GPU to CPU. Therefore, CheckFreq further optimizes this

operation using a GPU-based snapshot() when feasible.

We observe that the cost of performing a snapshot() in

GPU memory is an order of magnitude cheaper than per-

forming it to CPU memory, as the latter involves a GPU to

CPU copy in the critical path. Therefore CheckFreq takes

the following approach.

(a) When spare GPU memory is available in the train-

ing environment to hold a copy of the snapshot,

we snapshot() in the GPU on GPU memory. The

persist() phase then asynchronously copies the

snapshot to CPU memory and then to disk.

(b) If not, CheckFreq snapshots directly into CPU mem-

ory. This can introduce stalls in critical path.

(c) CheckFreq adjusts the frequency of checkpointing ap-

propriately to minimize the overhead of snapshot(),

which can be especially large in (b), and stalls in

persist().

2. Phase 2 : persist(). The second phase in checkpoint-

ing is the persist() phase which asynchronously writes

the snapshot to persistent storage similar to well explored

asynchronous checkpointing techniques [33, 34, 40, 45].

However, to provide bounded rollback guarantees discussed

in §4.2, persist() is tightly coupled with compute. Check-

Freq performs the persist() operation as a background

process; and monitors its progress. When a subsequent

checkpoint is triggered as determined by the policy, the

progress of the ongoing persist() operation is checked.

If the persist() has not completed, then the compute

process waits until the ongoing checkpoint operation is

complete. This ensures that there is at most one ongoing

checkpoint operation at any point in time, and if the job is

interrupted, it rolls back to at most one prior checkpoint.

While it may be tempting to abandon an ongoing check-

point if the next one is triggered, it is a tricky and risky

operation. Suppose we abandon the current checkpoint and

begin writing the next one, a failure at this point may end

up losing both the checkpoints. This could be a chain reac-

tion; a failure could result in rolling back to a significantly

old checkpoint if all the recent ones were abandoned, re-

sulting in a high recovery time. Since CheckFreq aims to

guarantee that we roll back to at most one prior checkpoint,

it does not abandon any running checkpoints.

Resumable light-weight data iterator. The DNN training

workload interacts with CheckFreq using a thin API provided

by a data iterator. The function of a data iterator in DNN

training is to return a pre-processed batch of data items to the

GPU, such that the data invariant holds - each epoch processes

all the data items exactly once, in a random order. While the

native iterator in PyTorch and those provided by state-of-the-

art data pipelines like DALI [4] support this in the common

case, they lack resumability if the training is interrupted.

For example, consider a dataset with eight data items from 1

– 8. In an epoch, the order of data items processed could be as

shown in Fig 5a. Assume that we checkpoint the model state

at the end of every iteration which processes one data item.

If training is interrupted in the middle of this epoch, the data

iterator loses state, and resumes with a random shuffled order

of the dataset as shown in Fig 5b, resulting in data items being

repeated and missed in a epoch, violating the data invariant.

CheckFreq’s data iterator uses the following techniques to

support resumption:

• It shuffles data items every epoch using a seed that is a

function of the epoch number. Therefore, to recreate the

208 19th USENIX Conference on File and Storage Technologies USENIX Association

1 5 8 2 6 4 7 3

4 2 1 5 3 8 7 61 5 8 2 6 4 7 36 4 7 3

1 5 8 2 6 4 7 36 4 7 3 1 5 8 2 6 4 7 31 5 8 2

3 7 8 6

(a) Order of data items processed in an epoch

(b) Resuming with current data iterator

(c) Resuming with CheckFreq data iterator

Figure 5: Resuming iterator state. When iterator state is

not resumable, an epoch might miss data items when job

is interrupted (items 3,6,7 are missed in b). CheckFreq (c)

ensures that training resumes from exactly where it left off.

same shuffle order, it is sufficient to persist the current

epoch ID, and the number of data items processed so far

(which makes iterator checkpointing lightweight).

• When training resumes, the iterator reconstructs the shuffle

order, and deterministically restarts from where it left off

at the last checkpoint as shown in Fig 5c.

Summary. Two-phase checkpointing mechanism along with

the resumable data iterator provides correct, low-cost check-

pointing. The next important question to answer is, how fre-

quently should we checkpoint the model?

4.3.2 Checkpointing Policy

To perform automatic, iteration-level checkpointing, we must

determine the frequency at which checkpointing is performed.

On one hand, we can checkpoint after every iteration, provid-

ing low recovery cost but possibly high runtime overhead. On

the other hand, we can perform coarse grained checkpointing

at epoch boundaries, resulting in high recovery cost but low

runtime overhead. An effective checkpointing policy must

find the right balance between recovery cost and runtime over-

head, minimizing both. The main idea behind CheckFreq’s

checkpointing policy is to initiate checkpoints every k iter-

ations (called the checkpointing frequency), such that the

overhead of one checkpointing operation can be amortized

over k iterations. While prior work in HPC have explored

ways of identifying the checkpointing frequency based on

failure distribution in the cluster [12,14,15], CheckFreq finds

the shortest interval that masks the overhead of checkpointing

based on the DNN and hardware characteristics.

Systematic online profiling. CheckFreq takes a systematic

profile-based approach to determine the checkpointing fre-

quency. It should be chosen such that the runtime overhead

introduced due to checkpointing is within a percentage p of

the actual compute time, where p is the permissible overhead

decided by the user (say 5%).

CheckFreq determines the initial checkpointing frequency

as follows. When a training job starts, CheckFreq’s data itera-

tor (§4.3.1) automatically profiles several iteration-level and

checkpoint-specific metrics which influences the checkpoint-

ing frequency - the iteration time (Ti), time to perform weight

update (Tw), time to create an in-memory GPU copy (Tg), time

Algorithm 1 : Checkpointing frequency determination

Input: Ti,Tw,T c,T g,T s,m,M,Mmax, p

Toc← max(0,Tc− (Ti−Tw)
Tog← Tg

if Mmax−M > m and Tog ≤ Toc then

To← Tog

mode← GPU

else

To← Toc

mode←CPU

end if

k← Tc+Ts−To
Ti

kmin←

⌈

To
p∗Ti

⌉

k← max(k,kmin)
Output: k,mode

to create an in-memory CPU copy (Tc), time to write to stor-

age (Ts), size of checkpoint (m), peak GPU memory utilization

(M), and total GPU memory (Mmax). Based on CheckFreq’s 2-

phase checkpointing mechanism, the frequency determination

algorithm is as shown in Algorithm 1.

The algorithm provides two outputs; 1) the checkpointing

frequency k which is the number of iterations elapsed be-

tween every checkpoint, and 2) the snapshot() mode (CPU

or GPU-based). The algorithm first determines the snapshot

mode based on available free GPU memory; if there is enough

space to snapshot the model state in GPU memory, then the

mode is set to GPU, else the preferred mode is set to CPU-

based snapshotting. Based on the chosen mode, the algo-

rithm estimates the overhead in the critical path incurred after

pipelining checkpointing and compute in a tightly coupled

manner as described earlier (§4.3.1). It then determines the

number of iterations required to amortize this overhead such

that the total runtime overhead incurred is below the threshold

p. For example, consider the cost of a checkpoint operation

and the duration of an iteration are both 1 time unit. If the

threshold on runtime overhead is set to 5%, then CheckFreq

chooses to checkpoint every 20 iterations.

Adaptive rate tuning. A static, profile-based frequency de-

termination works well when the training environment of the

model remains unchanged throughout the runtime of the job.

However, in practice, the checkpoint cost estimated by the

online profiler can deviate, resulting in higher than estimated

runtime overheads. For instance, a job could face write in-

terference by concurrently running jobs sharing storage for

read/write, which affects the time to write a checkpoint.

Therefore, CheckFreq uses an adaptive rate tuning tech-

nique to perform feedback-driven frequency changes. Check-

Freq’s iterator monitors the runtime of the job and the actual

cost of checkpointing during runtime (after the initial fre-

quency determination). If the observed runtime exceeds the

desired overhead, then these values are used to recalculate

the checkpointing frequency. The idea is to ensure that the

USENIX Association 19th USENIX Conference on File and Storage Technologies 209

overall runtime overhead does not exceed the threshold p.

4.4 Implementation

We implement CheckFreq as a pluggable module for PyTorch.

The data iterator of CheckFreq is implemented on top of the

state-of-the-art data pipeline DALI for PyTorch. CheckFreq

can be used as a drop-in replacement to the existing data

loader in PyTorch.

CheckFreq determines the initial checkpointing frequency

by profiling the first 1% of the iterations in the first epoch, or

the first 50 iterations, whichever is the minimum. Therefore,

no checkpointing is performed during this initial phase, which

is a very small fraction of the total runtime. Additionally,

we cache the profiled metrics and the determined policy on

persistent storage so that profiling can be skipped when the

job resumes after a crash.

CheckFreq internally uses torch.save(), followed by a

fsync() to perform persist(), and thus guarantees persis-

tence. To eliminate chances of data corruption, CheckFreq al-

ways writes checkpoints to a new file. However, to keep space

utilization bounded, CheckFreq only maintains two check-

points on disk at any given time; one completed checkpoint

and the other in-flight. Additionally, checkpoints performed at

epoch boundary are preserved (can be turned off by the user).

CheckFreq wraps the weight update step in the optimizer with

a semaphore that waits on the ongoing snapshot() to ensure

that a copy of the model state is completed before it is updated

by the next iteration.

5 Evaluation

In this section we use a number of microbenchmarks and

end-to-end training to accuracy with interruptions to evaluate

the efficacy of CheckFreq with respect to the current epoch-

based checkpointing scheme across a variety of DNNs. Our

evaluation seeks to answer the following questions.

• Can CheckFreq’s iterator make iteration-level checkpoint-

ing feasible without affecting the accuracy? (§5.2)

• Does CheckFreq’s 2-phase checkpoint mechanism reduce

checkpoint stalls compared to the existing synchronous

strategy? (§5.3)

• Can CheckFreq checkpoint more frequently than epoch-

based checkpointing, while incurring low runtime over-

head? (§5.4)

• Does CheckFreq reduce the recovery cost when DNN train-

ing is interrupted? (§5.5)

• What is the end-to-end benefit of training to accuracy with

CheckFreq in the presence of job interruptions in a real

preemptive training environment? (§5.6)

5.1 Experimental setup

We evaluate the efficacy of CheckFreq against the state-of-

the-art epoch-based checkpointing in PyTorch using the state-

of-the-art data pipeline DALI [4].

Servers. We evaluate CheckFreq on two generations of GPU;

GPU GPU CPU Storage

Type Mem(GB) Mem(GB) Media

Conf-Pascal 1080Ti 11 500 HDD

Conf-Volta V100 32 500 SSD

Table 2: Server configurations. We use two ML server

SKUs; each with 24 CPU cores, 500GB DRAM, and 8 GPUs

a Volta V100 GPU with a 1.8TB SSD for persistent storage,

and a Pascal 1080Ti GPU with a 1.8TB HDD for persistent

storage as shown in Table 2. Both these servers have 8 GPUs,

24 CPU cores and 500GB of DRAM. Both servers run 64-bit

Ubuntu 16.04 with CUDA toolkit 10.0 and PyTorch 1.1.0.

Models. We use 7 DNNs in our evaluation. ResNet18 [20],

ResNet50 [20], ResNext101 [48], DenseNet121 [21],

VGG16 [41], InceptionV3 [42] all on Imagenet-1k

dataset [39], and Bert-Large pretraining [13] on Wikipedia &

BookCorpus dataset [49]. For each model, we use the default

minibatch size reported in the literature for these models.

Baseline. We use the epoch-boundary checkpointing as the

baseline for all the models except BERT. BERT trains in units

of iterations; therefore we use the default checkpointing inter-

val of 200 iterations as the baseline [8]. To perform persistent

and correct checkpoints, we explicitly flush the checkpoint

file after the checkpoint operation returns.

5.2 Accuracy implications

We first show the need for resumable data iterator to make fine

grained iteration-level checkpointing feasible. Using the ex-

isting state-of-the-art data iterators to perform iteration-level

checkpointing results in violation of the DNN data invariant

as described in (§4.3.1). To demonstrate this, we perform the

following experiment. We train a ResNet18 job for 70 epochs

or to a target accuracy of 69.5% (whichever is earliest) in

three different scenarios;

• No interrupt. This is the normal training scenario where

the job is not interrupted until its completion. There is no

checkpointing performed here.

• Baseline-interrupt. This scenario uses the existing DALI

iterator (same with the native PyTorch iterator) to perform

checkpoints at the iteration right before the job is inter-

rupted. We interrupt the job once very 7 minutes (approx

every two epochs). This corresponds to commonly used

round durations in preemptive schedulers [18, 26, 32, 47].

• CheckFreq-interrupt. This setting uses the CheckFreq

data iterator that is capable of performing a light-weight

checkpoint of iterator state and correctly resuming it. We

checkpoint, interrupt, and resume the job exactly as de-

scribed in the prior setting.

We plot the Top-1 validation accuracy against cumulative

training time. Figure 6 shows that it is not possible to perform

iteration-level checkpointing using existing iterator, without

affecting the model accuracy. This is because, the model state

210 19th USENIX Conference on File and Storage Technologies USENIX Association

parallel training, prior work in model or pipeline parallelism,

also rely on checkpointing. Using CheckFreq, checkpointing

at minibatch boundaries (every n iterations), each pipeline

stage only persists a subset of parameters and optimizer state

hosted by that worker. CheckFreq also enables checkpointing

within minibatch boundaries during pipeline parallel training

(every m microbatches), as CheckFreq’s iterator controls the

introduction of each microbatch into the pipeline. Checkpoint-

ing at the microbatch granularity requires storing additional

model state – specifically accumulated weight gradients at

every stage in addition to parameter and optimizer state. We

leave it to future work to integrate CheckFreq’s implementa-

tion into frameworks supporting pipeline parallelism.

While we implement CheckFreq in PyTorch, we can extend

it to other frameworks like TF and MxNet by wrapping the

framework-specific APIs into those exposed by CheckFreq.

7 Related Work

Asynchronous DNN checkpointing. While recent work like

DeepFreeze [33] that perform asynchronous DNN checkpoint-

ing employ techniques similar to CheckFreq for IO pipelining,

it only considers CPU clusters. It does not consider the cost of

snapshotting the model state in memory when trained using

state-of-the-art GPUs. Our work shows that on modern ML

optimized servers, the cost of snapshotting the model state

(copying from GPU to CPU) is significant, demonstrating

how to pipeline this transfer with compute, and use spare

GPU capabilities to enable fast snapshotting.

Furthermore, DeepFreeze requires manual intervention to

tune the checkpointing frequency for a given model, hard-

ware and training environment while CheckFreq masks these

complexities from the user and analytically identifies the best

parameters for checkpointing. Unlike DeepFreeze that uses

a static checkpointing frequency, CheckFreq is also benefi-

cial in shared cluster settings, as it adapts the checkpointing

frequency based on memory and storage interference due to

other jobs to minimize checkpoint stalls.

Asynchronous checkpointing in HPC. Prior work in

HPC [34, 40, 45] uses asynchronous checkpointing to mask

the IO latency. A key challenge that differentiates DNN check-

pointing from traditional HPC ones is that, performing a syn-

chronous in-memory copy of the model state from GPU to

CPU is expensive due to the increasingly fast compute ca-

pabilities of the GPU. CheckFreq exploits the DNN learn-

ing structure to carefully pipeline even the in-memory snap-

shot with computation to perform correct, consistent check-

pointing. Moreover, CheckFreq further reduces the latency of

checkpointing by utilizing spare GPU memory and compute

capabilities when possible to perform fast snapshots.

Checkpoint interval estimation in HPC. Prior work [12,

14, 15] determine checkpointing interval for large scale HPC

applications based on failure distributions observed in the

system. CheckFreq does this in a DNN-aware fashion by ex-

ploiting the deterministic, repetitive structure of DNN training

to systematically profile resource utilization at runtime.

Adaptive checkpointing. The idea of using adaptation for

fault management has been used in HPC applications [25] to

decide when to checkpoint, based on a failure prediction mod-

ule. CheckFreq introduces adaptivity in DNN checkpointing

frequency. It identifies and dynamically adapts the checkpoint-

ing frequency, based on the characteristics of the model being

trained, system hardware, and interference due to other jobs.

TensorFlow Checkpoint Manager. TF checkpoint man-

ager [43] allows checkpointing at a user-given time interval,

and supports persisting iterator state. However, it has three

shortcomings. First, the checkpointing frequency is decided in

an ad-hoc fashion by the user; this introduces large checkpoint

stalls if not chosen carefully. Second, it cannot checkpoint

the iterator state if random data transformation is involved;

this is common for most image based models [44]. Finally,

even in cases where it can persist iterator state, TF writes

the entire operator graph to storage along with prefetched

items resulting in large checkpoint size. CheckFreq addresses

these challenges by automatically adapting the checkpointing

frequency and using a light-weight, resumable data iterator.

Framework-transparent checkpointing. Transparent

checkpointing techniques such as CRIU [1] can backup entire

VM state for fault-tolerance; however they do not checkpoint

GPU or accelerator state. Even if they were to capture entire

device state, device state alone is an order of magnitude larger

than the model state captured at iteration boundaries, making

frequent CRIU checkpoints impractical. Thus, in this work,

we focus on the dominant approach to DNN fault-tolerance -

framework-assisted checkpointing of model state.

8 Conclusion

This paper presents CheckFreq, an automatic, fine-grained

checkpointing framework for DNN training. CheckFreq

achieves consistent, low-cost checkpoints at iteration level

using a resumable data iterator, a pipelined two-phase check-

pointing mechanism, and automatic determination and tun-

ing of checkpointing frequency. When the job is interrupted,

CheckFreq reduces recovery time for popular DNNs from

hours to seconds, while incurring low runtime overhead.

Acknowledgements

This work was done during an internship at Microsoft Re-

search as part of Project Fiddle. We thank our shepherd Mehul

Shah, the anonymous FAST reviewers, members of the UT

SaSLab, fellow Project Fiddle interns Youjie Li, Kshiteej

Mahajan, Andrew Or, and many of our MSR colleagues for

their invaluable feedback that made this work better. We sin-

cerely thank MSR Labs for their generous support in procur-

ing the many resources required for this work. This work was

supported by NSF CAREER #1751277 and donations from

VMware, Google, and Facebook.

USENIX Association 19th USENIX Conference on File and Storage Technologies 213

References

[1] CRIU checkpointing. https://criu.org/Main_Page.

[2] Microsoft Philly Traces. https://github.com/msr-

fiddle/philly-traces.

[3] Training a Champion: Building Deep Neural Nets for

Big Data Analytics. https://www.kdnuggets.com/

training-a-champion-building-deep-neural-

nets-for-big-data-analytics.html/.

[4] NVIDIA DALI. https://github.com/NVIDIA/DALI,

2018.

[5] PyTorch. https://github.com/pytorch/pytorch,

2019.

[6] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Geoffrey Irving, Michael Isard, Man-

junath Kudlur, Josh Levenberg, Rajat Monga, Sherry

Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,

Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,

and Xiaoqiang Zheng. Tensorflow: A system for large-

scale machine learning. In 12th USENIX Symposium on

Operating Systems Design and Implementation (OSDI

16), pages 265–283, GA, 2016.

[7] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul

Natsev, George Toderici, Balakrishnan Varadarajan, and

Sudheendra Vijayanarasimhan. Youtube-8m: A large-

scale video classification benchmark. arXiv preprint

arXiv:1609.08675, 2016.

[8] NVIDIA AI. BERT Meets GPUs. hhttps:

//medium.com/future-vision/bert-meets-gpus-

403d3fbed848.

[9] Amazon. Amazon EC2 spot instances. https:

//aws.amazon.com/ec2/spot/?cards.sort-by=

item.additionalFields.startDateTime&cards.sort-

order=asc.

[10] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind

Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen

Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,

Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-

pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,

Scott Gray, Benjamin Chess, Jack Clark, Christopher

Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,

and Dario Amodei. Language models are few-shot learn-

ers. CoRR, abs/2005.14165, 2020.

[11] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,

Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang,

and Zheng Zhang. Mxnet: A flexible and efficient ma-

chine learning library for heterogeneous distributed sys-

tems. CoRR, abs/1512.01274, 2015.

[12] John T. Daly. A higher order estimate of the optimum

checkpoint interval for restart dumps. Future Gener.

Comput. Syst., 22(3):303–312, 2006.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. BERT: pre-training of deep bidi-

rectional transformers for language understanding. In

Proceedings of the 2019 Conference of the North Amer-

ican Chapter of the Association for Computational Lin-

guistics: Human Language Technologies, NAACL-HLT

2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1

(Long and Short Papers), pages 4171–4186. Association

for Computational Linguistics, 2019.

[14] Sheng Di, Mohamed-Slim Bouguerra, Leonardo Arturo

Bautista-Gomez, and Franck Cappello. Optimization of

multi-level checkpoint model for large scale HPC appli-

cations. In 2014 IEEE 28th International Parallel and

Distributed Processing Symposium, Phoenix, AZ, USA,

May 19-23, 2014, pages 1181–1190. IEEE Computer

Society, 2014.

[15] Sheng Di, Mohamed-Slim Bouguerra, Leonardo Arturo

Bautista-Gomez, and Franck Cappello. Optimization of

multi-level checkpoint model for large scale HPC appli-

cations. In 2014 IEEE 28th International Parallel and

Distributed Processing Symposium, Phoenix, AZ, USA,

May 19-23, 2014, pages 1181–1190. IEEE Computer

Society, 2014.

[16] Google. Preemptible VM instances. https:

//cloud.google.com/compute/docs/instances/

preemptible#preemptible_with_gpu.

[17] Alex Graves, Abdel-rahman Mohamed, and Geoffrey

Hinton. Speech recognition with deep recurrent neural

networks. In 2013 IEEE international conference on

acoustics, speech and signal processing, pages 6645–

6649. IEEE, 2013.

[18] Juncheng Gu, Mosharaf Chowdhury, Kang G.

Shin, Yibo Zhu, Myeongjae Jeon, Junjie Qian,

Hongqiang Harry Liu, and Chuanxiong Guo. Tiresias:

A GPU cluster manager for distributed deep learning. In

16th USENIX Symposium on Networked Systems Design

and Implementation, NSDI 2019, Boston, MA, February

26-28, 2019, pages 485–500. USENIX Association,

2019.

[19] Saurabh Gupta, Tirthak Patel, Christian Engelmann, and

Devesh Tiwari. Failures in large scale systems: long-

term measurement, analysis, and implications. In Pro-

ceedings of the International Conference for High Per-

formance Computing, Networking, Storage and Analysis,

214 19th USENIX Conference on File and Storage Technologies USENIX Association

SC 2017, Denver, CO, USA, November 12 - 17, 2017,

pages 44:1–44:12. ACM, 2017.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition. In

Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[21] Gao Huang, Zhuang Liu, Laurens van der Maaten, and

Kilian Q. Weinberger. Densely connected convolutional

networks. In 2017 IEEE Conference on Computer Vi-

sion and Pattern Recognition, CVPR 2017, Honolulu, HI,

USA, July 21-26, 2017, pages 2261–2269. IEEE Com-

puter Society, 2017.

[22] Myeongjae Jeon, Shivaram Venkataraman, Amar Phan-

ishayee, Junjie Qian, Wencong Xiao, and Fan Yang.

Analysis of large-scale multi-tenant GPU clusters for

DNN training workloads. In 2019 USENIX Annual

Technical Conference (USENIX ATC 19), pages 947–

960, 2019.

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-

ton. Imagenet classification with deep convolutional

neural networks. In Advances in Neural Information

Processing Systems, pages 1097–1105, 2012.

[24] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper

Uijlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali,

Stefan Popov, Matteo Malloci, Tom Duerig, et al. The

open images dataset v4: Unified image classification, ob-

ject detection, and visual relationship detection at scale.

arXiv preprint arXiv:1811.00982, 2018.

[25] Zhiling Lan and Yawei Li. Adaptive fault management

of parallel applications for high-performance computing.

IEEE Trans. Computers, 57(12):1647–1660, 2008.

[26] Kshiteej Mahajan, Arjun Balasubramanian, Arjun

Singhvi, Shivaram Venkataraman, Aditya Akella, Amar

Phanishayee, and Shuchi Chawla. Themis: Fair and

efficient GPU cluster scheduling. In 17th USENIX Sym-

posium on Networked Systems Design and Implementa-

tion, NSDI 2020, Santa Clara, CA, USA, February 25-27,

2020, pages 289–304. USENIX Association, 2020.

[27] Catello Di Martino, Zbigniew T. Kalbarczyk, Ravis-

hankar K. Iyer, Fabio Baccanico, Joseph Fullop, and

William Kramer. Lessons learned from the analysis of

system failures at petascale: The case of blue waters.

In 44th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks, DSN 2014, Atlanta,

GA, USA, June 23-26, 2014, pages 610–621. IEEE Com-

puter Society, 2014.

[28] Qi Meng, Wei Chen, Yue Wang, Zhi-Ming Ma, and Tie-

Yan Liu. Convergence analysis of distributed stochas-

tic gradient descent with shuffling. Neurocomputing,

337:46–57, 2019.

[29] Microsoft. Use low priority VMs. https:

//docs.microsoft.com/en-us/azure/batch/

batch-low-pri-vms.

[30] MLPerf. MLPerf Training Results v0.7. https://

github.com/mlperf/training_results_v0.7.

[31] Deepak Narayanan, Keshav Santhanam, Fiodar

Kazhamiaka, Amar Phanishayee, and Matei Zaharia.

Analysis and exploitation of dynamic pricing in the

public cloud for ml training. DISPA, 2020.

[32] Deepak Narayanan, Keshav Santhanam, Fiodar

Kazhamiaka, Amar Phanishayee, and Matei Za-

haria. Heterogeneity-aware cluster scheduling

policies for deep learning workloads. arXiv preprint

arXiv:2008.09213, 2020.

[33] Bogdan Nicolae, Jiali Li, Justin M. Wozniak, George

Bosilca, Matthieu Dorier, and Franck Cappello. Deep-

freeze: Towards scalable asynchronous checkpointing of

deep learning models. In 20th IEEE/ACM International

Symposium on Cluster, Cloud and Internet Computing,

CCGRID 2020, Melbourne, Australia, May 11-14, 2020,

pages 172–181. IEEE, 2020.

[34] Bogdan Nicolae, Adam Moody, Elsa Gonsiorowski,

Kathryn Mohror, and Franck Cappello. Veloc: Towards

high performance adaptive asynchronous checkpointing

at large scale. In 2019 IEEE International Parallel and

Distributed Processing Symposium, IPDPS 2019, Rio de

Janeiro, Brazil, May 20-24, 2019, pages 911–920. IEEE,

2019.

[35] NVIDIA. ResNext101 Training. https:

//github.com/NVIDIA/DeepLearningExamples/

tree/master/PyTorch/Classification/

ConvNets/resnext101-32x4d.

[36] OpenAI. GPT-3 Checkpoint. https://github.com/

openai/gpt-3/issues/1.

[37] Thanumalayan Sankaranarayana Pillai, Vijay Chi-

dambaram, Ramnatthan Alagappan, Samer Al-Kiswany,

Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-

Dusseau. All file systems are not created equal: On

the complexity of crafting crash-consistent applications.

In 11th USENIX Symposium on Operating Systems De-

sign and Implementation, OSDI ’14, Broomfield, CO,

USA, October 6-8, 2014, pages 433–448. USENIX As-

sociation, 2014.

USENIX Association 19th USENIX Conference on File and Storage Technologies 215

[38] PyTorch. PyTorch Training Examples. https:

//github.com/pytorch/examples/tree/master/

imagenet.

[39] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,

Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej

Karpathy, Aditya Khosla, Michael Bernstein, et al. Im-

agenet large scale visual recognition challenge. Inter-

national journal of computer vision, 115(3):211–252,

2015.

[40] Faisal Shahzad, Markus Wittmann, Thomas Zeiser,

Georg Hager, and Gerhard Wellein. An evaluation

of different I/O techniques for checkpoint/restart. In

2013 IEEE International Symposium on Parallel & Dis-

tributed Processing, Workshops and Phd Forum, Cam-

bridge, MA, USA, May 20-24, 2013, pages 1708–1716.

IEEE, 2013.

[41] Karen Simonyan and Andrew Zisserman. Very deep con-

volutional networks for large-scale image recognition.

arXiv preprint arXiv:1409.1556, 2014.

[42] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,

Jonathon Shlens, and Zbigniew Wojna. Rethinking

the inception architecture for computer vision. In

2016 IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-

30, 2016, pages 2818–2826. IEEE Computer Society,

2016.

[43] TensorFlow. Tensorflow checkpoint manager.

https://www.tensorflow.org/api_docs/python/

tf/train/CheckpointManager.

[44] TensorFlow. Tensorflow iterator checkpoint-

ing. https://www.tensorflow.org/guide/

data#iterator_checkpointing.

[45] Devesh Tiwari, Saurabh Gupta, and Sudharshan S.

Vazhkudai. Lazy checkpointing: Exploiting temporal

locality in failures to mitigate checkpointing overheads

on extreme-scale systems. In 44th Annual IEEE/IFIP

International Conference on Dependable Systems and

Networks, DSN 2014, Atlanta, GA, USA, June 23-26,

2014, pages 25–36. IEEE Computer Society, 2014.

[46] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V

Le, Mohammad Norouzi, Wolfgang Macherey, Maxim

Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.

Google’s neural machine translation system: Bridging

the gap between human and machine translation. arXiv

preprint arXiv:1609.08144, 2016.

[47] Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-

jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,

Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang,

Fan Yang, and Lidong Zhou. Gandiva: Introspective

cluster scheduling for deep learning. In 13th USENIX

Symposium on Operating Systems Design and Imple-

mentation, OSDI 2018, Carlsbad, CA, USA, October 8-

10, 2018, pages 595–610. USENIX Association, 2018.

[48] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen

Tu, and Kaiming He. Aggregated residual transforma-

tions for deep neural networks. In 2017 IEEE Con-

ference on Computer Vision and Pattern Recognition,

CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages

5987–5995. IEEE Computer Society, 2017.

[49] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdi-

nov, Raquel Urtasun, Antonio Torralba, and Sanja Fidler.

Aligning books and movies: Towards story-like visual

explanations by watching movies and reading books. In

Proceedings of the IEEE international conference on

computer vision, pages 19–27, 2015.

216 19th USENIX Conference on File and Storage Technologies USENIX Association

	Introduction
	Background
	The Current State of Checkpointing
	Checkpointing is Incorrect
	Checkpointing is Inefficient
	Summary

	CheckFreq: Design and Implementation
	Goals
	CheckFreq Recovery Guarantees
	Design
	Checkpointing Mechanism
	Checkpointing Policy

	Implementation

	Evaluation
	Experimental setup
	Accuracy implications
	Performance of checkpointing mechanism
	Checkpoint stalls
	Breakdown of benefits

	Checkpointing policy
	Recovery time
	End-to-end training

	Discussion
	Related Work
	Conclusion

