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CheckFreq: Frequent, Fine-Grained DNN Checkpointing

Jayashree Mohan *
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Abstract

Training Deep Neural Networks (DNNs) is a resource-hungry
and time-consuming task. During training, the model per-
forms computation at the GPU to learn weights, repeatedly,
over several epochs. The learned weights reside in GPU mem-
ory, and are occasionally checkpointed (written to persistent
storage) for fault-tolerance. Traditionally, model parameters
are checkpointed at epoch boundaries; for modern deep net-
works, an epoch runs for several hours. An interruption to
the training job due to preemption, node failure, or process
failure, therefore results in the loss of several hours worth of
GPU work on recovery.

We present CheckFreq, an automatic, fine-grained check-
pointing framework that (1) algorithmically determines the
checkpointing frequency at the granularity of iterations using
systematic online profiling, (2) dynamically tunes checkpoint-
ing frequency at runtime to bound the checkpointing overhead
using adaptive rate tuning, (3) maintains the training data in-
variant of using each item in the dataset exactly once per
epoch by checkpointing data loader state using a light-weight
resumable iterator, and (4) carefully pipelines checkpointing
with computation to reduce the checkpoint cost by introduc-
ing two-phase checkpointing. Our experiments on a variety
of models, storage backends, and GPU generations show that
CheckFreq can reduce the recovery time from hours to sec-
onds while bounding the runtime overhead within 3.5%.

1 Introduction

Deep Neural Networks (DNNs) are widely used in many
Al applications including image classification [20, 23, 41],
language translation [46], and speech recognition [17]. While
DNNSs have facilitated state-of-the-art accuracy in these tasks,
they come at the cost of high computational complexity, taking
up to several days to train [8, 35].

Training starts with a randomly chosen set of learnable
parameters (such as weights and biases) and proceeds in itera-
tions consisting forward and backward pass over a minibatch
of data. At the end of each backward pass, the learnable pa-
rameters are recomputed using the gradients obtained, and
updated in GPU memory. Training is performed for several
epochs, where one epoch is a complete pass over the dataset.
At the end of training, the learned parameters are saved to
persistent storage for inference.

Due to the large runtime of DNN training, the model
weights and optimizer state (collectively, model state) are
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occasionally written to persistent storage, for fault tolerance;
else, an interruption to the job due to process failure, or node
crash can wipe out all the job state, resulting in loss of several
hours of GPU work. This is termed checkpointing. Tradition-
ally, models are checkpointed at epoch boundaries [30].

Interruptions to DNN training jobs are common. Be it ded-
icated enterprise clusters or cloud instances, failures due to
software and hardware errors are inevitable. Prior work has
shown that infrastructure and process failures are common
in large-scale big data clusters, with a mean time between
failure (MTBF) of 4 — 22 hours [19,27]. Similarly, for GPU
clusters, recent study of large-scale DNN training clusters at
Microsoft [22] highlight that DNN training jobs encounter
interruptions due to infrastructure failure, node crashes, soft-
ware bugs, and user errors. Over the span of the analysis
period (2 months), the mean time between job failures was 45
minutes on average (excluding early failures) in the Microsoft
cluster.

Furthermore, a recent trend with cloud providers is the
emergence of cost-effective preemptible VMs which are
priced 6-8x cheaper than dedicated VMs [9, 16, 29]; such
VMs may be preempted at any time. Recent work shows that
GPU VMs may be preempted as frequent as every 15 minutes
and atleast every 24 hours on the Google Cloud [31].

When interruptions occur, the long running, stateful, DNN
job terminates abruptly, wiping out the model parameters in-
memory. For instance, training ResNext101 to accuracy on
ImageNet-1K dataset using a V100 GPU takes 270 hours
(~3.9 hours per epoch) [35]; if checkpointing is performed
at epoch boundaries, about two hours of GPU computation
is wasted on average for every interruption. More generally,
there is a trend of growing size of datasets [3,7,24], and larger,
complex model architectures [8, 10,35], consequently increas-
ing DNN epoch time and overall training time. Therefore, it
is critical to frequently checkpoint training progress, at a finer
granularity than epochs i.e., at iteration level. In this work,
we explore how to perform fine-grained checkpointing auto-
matically in a model- and hardware-agnostic manner, without
intrusive changes to the training workload.

We present CheckFreq, a fine-grained checkpointing frame-
work for DNN training. CheckFreq strikes a balance between
ensuring a low runtime overhead and providing a high check-
pointing frequency, so that there is minimal loss of GPU
time in the event of job interruptions or failures by perform-
ing iteration-level checkpointing. CheckFreq has two major
components; a checkpointing policy that automatically deter-
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mines when to checkpoint, and a checkpointing mechanism
that performs correct, low-cost checkpointing. To this end, we
build upon a set of techniques from the High Performance
Computing (HPC) and storage community, alongside novel
DNN-specific optimizations such as pipelined in-memory
snapshots, utilizing spare GPU capabilities for fast snapshot,
and a DNN-aware systematic profiling for dynamic tuning
of checkpointing frequency. Using CheckFreq, we show that
the recovery time reduces from hours to seconds during job
interruptions.

Fine-grained checkpointing for DNNs at iteration gran-
ularity poses several unique challenges which CheckFreq
addresses as described below.

1. Checkpointing frequency. There is no single checkpoint-
ing frequency that works across models, hardware, and train-
ing environments. The frequency of checkpointing depends
on several factors; e.g., model size, storage bandwidth, and
training iteration time. Moreover, a job could face interference
while writing checkpoints due to reading the dataset from the
same storage device, or due to concurrently running jobs that
share the storage bandwidth to write checkpoints. Statically
determining a checkpointing frequency is sub-optimal for
runtime if a job faces interference in its training environment.

Therefore, CheckFreq algorithmically determines an initial
checkpointing frequency by profiling the job characteristics
during runtime. CheckFreq uses systematic online profiling
to determine the best-case checkpointing frequency for the
model in the given training environment. However, in practice,
the job might incur additional overheads due to intereference
which slows down the checkpointing process. To tackle this,
CheckFreq introduces adaptive rate tuning to dynamically
monitor the job runtime between checkpoint intervals, and
appropriately scale up or scale down the checkpointing fre-
quency, so that the end-to-end runtime overhead is within a
user-given bound.

2. Checkpoint stalls. The model state to be checkpointed
is updated every iteration. Therefore, training has to briefly
pause to accurately checkpoint the current state; the GPU
(or any accelerator) remains idle until checkpoint completes,
introducing checkpoint stalls in training. Naively increasing
the frequency of checkpointing (e.g., every iteration) results
in high runtime overhead due to checkpoint stalls.

CheckFreq reduces checkpoint stalls using a DNN-aware
two-phase checkpointing strategy. The checkpointing oper-
ation is split into a snapshot () and a persist () phase. In
the snapshot () phase, CheckFreq performs a consistent in-
memory copy of all the learnable model state. This operation
is pipelined with compute until the weight update of the sub-
sequent iteration which is the latest point when the model
parameters are updated. In the persist () phase, the snap-
shot is asynchronously written to the storage device. Check-
Freq guarantees that a checkpoint is reliably persisted on disk
(using fsync () ) before the subsequent checkpoint operation

begins. Therefore, in the event of an unexpected interruption,
the job state will rollback at most one checkpoint.

3. Data invariant. For a large class of models that perform
random data pre-processing operations in every epoch of
training (eg CNN35), it is crucial to ensure the following data
invariant holds: every epoch must process all the items in
the dataset exactly once, in a random order, with random
pre-processing like crop, resize etc. Existing data iterators in
frameworks like PyTorch, and MxNet do not support resuma-
bility. When the job is interrupted, these iterators can either
miss out, or repeat data items in an epoch, resulting in loss in
model accuracy when resuming at iteration granularity.

To address this challenge, CheckFreq introduces a resum-
able data iterator that respects the data invariant even in the
presence of interruptions. The iterator uses epoch seeded
psuedo-random transformations, that can reconstruct the iter-
ator state as it was prior to interruption. CheckFreq’s iterator
thus makes correct, iteration-level checkpointing feasible.

We implement CheckFreq as a pluggable module for Py-
Torch, with minimal (< 10 LOC) changes to the original job’s
script. Our evaluation across a variety of models, GPUs, and
storage types confirms that CheckFreq reduces the wasted
GPU time from order of hours to just under a minute, while
incurring less than 3.5% runtime overhead, as compared
to the existing epoch-based checkpointing schemes. Check-
Freq reduces the end-to-end training time by 2x when train-
ing a ResNet50 job on a 1080Ti GPU, and by 1.6x for a
ResNext101 job on a V100 GPU, when the job is interrupted
every 5 hours in both cases. We further demonstrate the
importance of CheckFreq’s recoverable iterator by training
ResNet18 to accuracy using ImageNet dataset with frequent
interruptions (once every 2 epochs) and iteration-level check-
pointing; Existing state-of-the-art data loaders like DALI [4]
result in up to 13% drop in accuracy while CheckFreq is able
to train the model to target accuracy.

In summary, this paper makes the following contributions.
* Analyzes the state of DNN checkpointing today and high-

lights the need for fine-grained checkpointing and the chal-

lenges involved in achieveing it (§3)

* The design and implementation of CheckFreq, an auto-
matic, fine-grained checkpointing framework for DNN
training that exploits the DNN computational model to
provide low-cost, pipelined checkpointing (§4)

» Experimental results demonstrating the efficacy of Check-
Freq in reducing the recovery time from hours to seconds,
across a range of models and hardware configurations (§5)

2 Background

This section provides a brief overview of the DNN computa-
tional model and the role of checkpointing in DNN training.

DNN computational model. Training a Deep Neural Net-
work (DNN) is the process of determining the set of weights
and bias in the network, collectively called the learnable pa-
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rameters. Once trained, the DNN computes the output using
the weights learned during the training phase.

DNN Training starts with a randomly chosen set of learn-
able parameters and proceeds iteratively in steps called iter-
ations. Every iteration processes a small disjoint subset of
the dataset called a minibatch. When the entire dataset is pro-
cessed exactly once, an epoch is said to be complete. Each
iteration of training performs the following steps in order.

* Data augmentation. Fetches a minibatch of data from stor-
age and applies random pre-processing operations. For e.g.,
in popular image classification models like the ResNets,
pre-processing includes randomly cropping the input im-
age, resizing, rotating, and flipping it.

* Forward pass. The model function is applied on the mini-
batch of data to obtain the prediction.

¢ Backward pass. A loss function is used to determine how
much the prediction deviates from the correct answer; each
layer in the DNN computes a gradient of the loss.

* Weight update. Using the gradients computed in the back-
ward pass, the learnable model parameters are updated.

At the end of training (typically after a fixed number of
epochs), the final learned parameters are saved to persistent
storage. To perform inference on the model, the DNN is initial-
ized with the learned parameters and the output is predicted.

Checkpointing. Training a DNN is a highly time-consuming
task. For instance, BERT-large, the state-of-the-art language
modeling network, takes 2.5 days to train [8], when trained
in parallel across 16 V100 GPUs. Since the learnable param-
eters are maintained in GPU memory during training, any
interruption to the training job due to a process crash, server
crash, job or VM preemption, or job migration, results in the
loss of model state learned so far. This state is typically a
few hundred MBs to a few hundred GBs in size [36] (§5.4).
Consequently, several hours of GPU time spent on training
will be lost. To overcome this, the model state is typically
checkpointed at epoch boundaries; i.e., written out to persis-
tent storage for fault-tolerance. This checkpoint can then be
loaded when the training job resumes to ensure that progress
is not entirely lost.

Recovery Time. When a DNN training job is interrupted, it
rolls back to the last completed epoch that was checkpointed
as shown in Figure 1. Note that, all the GPU work performed
between the last checkpoint and the point of interruption is
lost and has to be redone when training resumes. The amount
of GPU time lost due to an interruption is termed the recovery
time. In other words, this is the time spent to bring the model
to the same state as it was prior to the interruption.

3 The Current State of Checkpointing

We analyze the current state of checkpointing in popular open
source ML training frameworks like PyTorch [5], Tensor-
Flow [6], and MxNet [11]. We analyze training workloads
from MLPerf submissions v0.7, and the official workloads

Epochi Epoch i+l

Interruption
"o

D e e PP PR >

Recovery Time
Figure 1: Recovery time. The amount of GPU work lost and
has to be redone on recovery is termed the recovery time.

released by NVIDIA, TensorFlow and PyTorch. We find that
checkpointing in open source ML training frameworks is
incorrect and inefficient.

* Correctness. The checkpointing mechanism used in the
training scripts could result in loss or corruption of check-
point files in the event of job failure or interruption.

* Efficiency. Checkpointing is inefficient. The frequency of
checkpointing is determined in an ad-hoc fashion, typically
at epoch-boundaries which results in loss of several hours
of GPU time for recovery. Furthermore, there is lack of
support for checkpointing at fine granularity; existing data
iterators do not support resuming training state at iteration
boundaries and results in high checkpoint stalls.

3.1 Checkpointing is Incorrect

Corruption due to overwrites. Some of the official training
workloads maintained by PyTorch [38], overwrite the same
checkpoint file at the end of each epoch to reduce storage
utilization. However, this exposes the risk of corrupting the
checkpoint file in the event of a crash during the checkpoint
operation. Prior work [37] has shown that different filesystems
treat overwrites differently; a crash could result in non-atomic
data update in the writeback mode of ext3 resulting in data
corruption, while it could truncate the file on ext4, resulting in
data loss. In either case, the checkpoint file becomes unusable;
training has to restart from the first epoch.

The checkpoint file may not persist. Analyzing the primi-
tives used by training frameworks for checkpointing, such as
torch.save reveal that they do not £sync () the checkpoint
file. We verified that this can lead to data loss. Moreover,
naively performing frequent synchronous fsync () affects
training performance significantly ( §5.3.1).

3.2 Checkpointing is Inefficient

Checkpointing is performed sparingly in an ad-hoc fash-
ion. There is no systematic checkpointing policy in the train-
ing jobs; checkpointing interval is chosen in an ad-hoc fash-
ion. For example, some jobs do not checkpoint during train-
ing, while some others start checkpointing only after a large
number of epochs (60% of training) have elapsed. In gen-
eral, we observe that checkpointing is typically performed
at epoch boundaries, providing only modest fault-tolerance;
in the event of a job interruption, the training will resume
from the last completed epoch, which potentially loses sev-
eral hours of GPU training time that has to be redone. For
instance, when ResNext101 is trained using ImageNet on a
V100 GPU, two hours of GPU time is lost on average if the
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job is interrupted (§5.5).

A naive frequent checkpointing schedule results in check-
point stalls. Providing higher fault-tolerance requires check-
pointing to be performed more frequently than at epoch bound-
aries; ie., at iteration boundaries. However, naively increas-
ing the frequency of checkpointing introduces a large check-
point stall in training. Since model weights are constantly
updated between iterations, checkpointing requires the train-
ing to briefly pause to capture the model weights accurately.
We term this overhead (i.e, the time GPU is idle, waiting for
the checkpoint to complete) as the checkpoint stall. Therefore,
it is crucial to find the correct checkpointing frequency given
a DNN (because the size of checkpoint varies from 100MBs
to 100GBs across DNNs), and the storage bandwidth, to min-
imize checkpoint stalls.

Violating the data invariant during training can affect
model accuracy. Each epoch performs a full pass over the
dataset, in a random order and holds the invariant that each
data item is seen exactly once per epoch. One of the ben-
efits of checkpointing at epoch boundaries is that, the data
iterator state need not be persisted, as it is reset at the end
of epoch. Checkpointing at a finer granularity (i.e. at itera-
tions), requires infrastructure support to resume the state of
data iterator as well. We note that the support to persist iter-
ator state exists in some custom dataloaders of NLP models
which do not perform random pre-processing operations for
every batch. However, for image and video models that apply
random transformations on the input data every batch, the
existing dataloaders in PyTorch, MxNet, and state-of-the-art
data pipelines like NVIDIA’s DALI are not resumable at iter-
ation boundaries. As a result, they violate the data invariant in
the presence of interruptions, resulting in upto the 13% drop
in accuracy for popular models ResNet18 (Fig 6).

3.3 Summary

In summary, we observe that the checkpointing mechanism
today is incorrect; resulting in potential checkpoint data loss
or corruption. Additionally, the checkpointing policy is ad-
hoc; there is no systematic way of determining how frequently
one must checkpoint, to both minimize recovery time and
incur low checkpoint stalls.

The solution to minimize recovery time is to perform fre-
quent, iteration-level checkpointing. However, performing
correct and efficient fine-grained checkpointing is challeng-
ing. We need (1) low-cost checkpointing mechanisms, (2)
light-weight, resumable data iterators that preserve the model
accuracy, and (3) a way to systematically determine the fre-
quency of checkpointing.

4 CheckFreq: Design and Implementation

We present the goals of CheckFreq and the recovery guaran-
tees it provides. We then present an overview of the overall
architecture of CheckFreq, and discuss the techniques used
by CheckFreq to achieve the enlisted goals.

Benefits
Checkpointing mechanism (How to checkpoint?)

Technique

2-phase checkpointing Splits checkpointing into two phases
and pipelines them carefully with

compute to make checkpoints cheap

Recoverable data iterator Maintains data invariant, allows re-
suming training at iteration bound-
aries without affecting accuracy

Checkpointing policy (When to checkpoint?)

Systematic online profiling Automatically determines check-
pointing frequency, cognizant of
model characteristics

Adaptive rate tuning Dynamically tunes checkpointing fre-
quency to reduce overhead due to in-

terference

Table 1: Overview of techniques used by CheckFreq.
4.1 Goals

Correctness. CheckFreq aims to provide frequent, iteration-
level checkpointing that is consistent, and persistent.

No impact on model accuracy. CheckFreq aims to not im-
pact the statistical efficiency of the model by ensuring that the
data invariant holds when training resumes after interruption.

Automatic frequency selection. CheckFreq aims to deter-
mine and tune the frequency of checkpointing automatically
based on the model being trained, and the training environ-
ment (GPU gen, storage type, iteration time). Checkpointing
frequency influences the recovery time, i.e., time to bring
model state to what it was prior to the interruption.

Low checkpoint stalls. CheckFreq aims to reduce check-
point stalls during training, so that there is low runtime over-
head to frequent checkpointing (e.g., < 5%).

Minimal code changes. CheckFreq aims to require minimal
changes to the training code to automate checkpoint manage-
ment and restoration.

4.2 CheckFreq Recovery Guarantees

An interrupted job resumes training from the latest available
checkpoint on disk. In the traditional epoch-based check-
pointing, irrespective of when the job is interrupted, training
resumes from the previous epoch boundary as shown in Fig 1.
If a job performs 7 iterations per epoch and takes time #; per
iteration, then the average recovery time Ry, for this job is :

n
Ravg = 5 * 1

This is because, when interrupted in the middle of an epoch,
work done so far in the epoch must be redone when resumed,
as the state is reset to the end of previous epoch. Thus, recov-
ery time R for epoch-based checkpointing is bounded by:

0<R<nxt

Note that n x ¢#; is the duration of an epoch; it can be as
large as a few hours. CheckFreq aims to provide a tight bound
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Figure 2: Bounding recovery time. CheckFreq guarantees
that training rolls back at most one checkpoint.

on recovery time and takes a more fine-grained approach to
checkpointing at iteration boundaries. CheckFreq guarantees
that there is at most one ongoing checkpoint operation in the
system at any point in time. When interrupted, it rolls back at
most one checkpoint - either the last initiated checkpoint (if it
completes), or the one prior as shown in Fig 2. If the frequency
automatically determined by CheckFreq is k iterations, then
CheckFreq guarantees that the recovery time R is bounded by

0<R<2xkxt;
Ravg =kxt;  (k<<n)
The chosen checkpointing frequency k is 100 — 300 x less
than n, as we show later in evaluation (§5.4), thereby resulting

in orders of magnitude reduction in recovery time compared
to epoch based checkpointing.

4.3 Design

We now present an overview of the architecture of CheckFreq
and how it uses various techniques to provide frequent check-
pointing at a bounded cost described in §4.2. Table 1 lists
the different techniques used by CheckFreq and the benefit of
each technique.

Overview. The architecture of CheckFreq is shown in Fig-
ure 3. CheckFreq has three major components; a recoverable
data iterator that returns a minibatch of data to the training
job, a feedback-driven checkpointing policy that determines
when to trigger a checkpoint, and a low-cost checkpointing
mechanism that is split into a snapshot () and a persist ()
phase. CheckFreq monitors the runtime overhead incurred
in each checkpoint interval; this is used as feedback to dy-
namically tune the checkpointing frequency to ensure that
the runtime overhead does not exceed a user-given limit p
(e.g., 5%). When interrupted, CheckFreq restores the latest
available checkpoint and resumes training. We describe each
component in detail below.

4.3.1 Checkpointing Mechanism

DNN checkpointing today is performed synchronously; train-
ing is paused until the checkpoint operation is complete. How-
ever, synchronous checkpointing introduces large checkpoint
stalls, which results in large runtime overhead if performed
frequently. In other words, the cost of a checkpoint (T;) is
high for synchronous checkpointing. For example, consider a
policy that checkpoints every three iterations. The model state
is written to disk after the weight update phase which updates
weights based on the gradients computed in the backward
pass. As shown in Figure 4a, the checkpoint cost is incurred
in the critical path, resulting in high checkpoint stalls, which

DNN training job

next_batch()
CHECKFREQ

must_checkpoint() ? B
Iterator ) Policy
A

7 Feedback

(3]
oo B

3
Storage DR— A

Figure 3: Training with CheckFreq. CheckFreq’s policy
determines the checkpointing frequency. The checkpointing
mechanism then snapshots and persists the model and iterator
state at the identified frequency in a pipelined manner. If a
failure occurs, CheckFreq rolls back the model and iterator
state to the latest available checkpoint and resumes training.

can significantly slow down the end-to-end training time. To
mask such high checkpoint costs within an overhead p, check-
pointing needs to be performed infrequently, which in turn
results in high recovery cost.

Two-phase checkpointing. CheckFreq aims to reduce the re-
covery cost in the event of an interruption by reducing check-
point stalls. To achieve low checkpoint cost, CheckFreq in-
troduces a DNN-aware two-phase checkpointing mechanism.
CheckFreq splits checkpointing into two phases; snapshot ()
and persist () and pipelines each phase with computation.
The main insight behind CheckFreq’s two-phase checkpoint-
ing is that it exploits the DNN computational model (§2) to
pipeline checkpointing operations on modern accelerators
such as the GPUs.

1. Phase 1: snapshot (). The firstis a snapshot () phase,
performed after the weight update step of the iteration.
Here, a copy of the model state is captured in memory,
so that it can be written out to storage asynchronously.
Since the model state resides in GPU memory, snapshot ()
involves copying the model parameters from GPU to CPU
memory. Performing this operation synchronously in the
critical path results in non-trivial snapshot () overhead
as shown in Figure 4b. Therefore, CheckFreq carefully
pipelines snapshot () with compute.

Pipelining snapshot () with compute has to be per-
formed cautiously to ensure consistency of model param-
eters and preserve correctness of Stochastic Gradient De-
scent (SGD), which is a popular optimization technique
used by learning algorithms. Naively pipelining them can
result in an inconsistent snapshot that contains part of the
weight updates from one iteration and the rest from the
other. CheckFreq exploits the DNN learning structure to
achieve correct, pipelined snapshots.

We observe that the learnable model parameters are
updated in GPU memory after the backward pass of an
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pipelining Checkpoint g 1 i 4

. Checkpoint stall

Figure 4: Pipelining checkpoint with compute. This figure contrasts three checkpointing mechanisms, when checkpointing is
performed every 3 iterations. (a) performs checkpointing synchronously and incurs a high checkpoint stall. (b) takes a snapshot
of the model state synchronously but pipelines disk 10 (persist ()) with compute, allowing it to proceed in the background.
CheckFreq takes a more nuanced approach by carefully pipelining snapshot () with the subsequent iteration’s forward and
backward pass and incurs lower checkpointing stalls as shown in (c)

iteration; in a step called the weight update. Therefore,
we can pipeline snapshot () of iteration i with compute,
until the weight update of iteration i 4 1. If snapshot ()
does not complete by then, then iteration i 4 1 waits until
the ongoing snapshot () successfully completes as shown
in Figure 4c. This tight coupling is required to ensure a
consistent snapshot; else we might capture a state that is
partially updated by the subsequent iteration that in turn
affects the correctness of the learning algorithm [28].

GPU-based snapshot (). Although snapshot () is
pipelined with compute of the following iteration, it may
result in checkpointing stalls in cases where it is not possi-
ble to completely hide the cost of copying model state from
GPU to CPU. Therefore, CheckFreq further optimizes this
operation using a GPU-based snapshot () when feasible.
We observe that the cost of performing a snapshot () in
GPU memory is an order of magnitude cheaper than per-
forming it to CPU memory, as the latter involves a GPU to
CPU copy in the critical path. Therefore CheckFreq takes
the following approach.

(a) When spare GPU memory is available in the train-
ing environment to hold a copy of the snapshot,
we snapshot () in the GPU on GPU memory. The
persist () phase then asynchronously copies the
snapshot to CPU memory and then to disk.

(b) If not, CheckFreq snapshots directly into CPU mem-
ory. This can introduce stalls in critical path.

(c) CheckFreq adjusts the frequency of checkpointing ap-
propriately to minimize the overhead of snapshot (),
which can be especially large in (b), and stalls in
persist ().

2. Phase 2 : persist (). The second phase in checkpoint-
ing is the persist () phase which asynchronously writes
the snapshot to persistent storage similar to well explored
asynchronous checkpointing techniques [33, 34, 40, 45].
However, to provide bounded rollback guarantees discussed
in §4.2, persist () is tightly coupled with compute. Check-
Freq performs the persist () operation as a background

process; and monitors its progress. When a subsequent
checkpoint is triggered as determined by the policy, the
progress of the ongoing persist () operation is checked.
If the persist () has not completed, then the compute
process waits until the ongoing checkpoint operation is
complete. This ensures that there is at most one ongoing
checkpoint operation at any point in time, and if the job is
interrupted, it rolls back to at most one prior checkpoint.

While it may be tempting to abandon an ongoing check-
point if the next one is triggered, it is a tricky and risky
operation. Suppose we abandon the current checkpoint and
begin writing the next one, a failure at this point may end
up losing both the checkpoints. This could be a chain reac-
tion; a failure could result in rolling back to a significantly
old checkpoint if all the recent ones were abandoned, re-
sulting in a high recovery time. Since CheckFreq aims to
guarantee that we roll back to at most one prior checkpoint,
it does not abandon any running checkpoints.

Resumable light-weight data iterator. The DNN training
workload interacts with CheckFreq using a thin API provided
by a data iterator. The function of a data iterator in DNN
training is to return a pre-processed batch of data items to the
GPU, such that the data invariant holds - each epoch processes
all the data items exactly once, in a random order. While the
native iterator in PyTorch and those provided by state-of-the-
art data pipelines like DALI [4] support this in the common
case, they lack resumability if the training is interrupted.

For example, consider a dataset with eight data items from 1
— 8. In an epoch, the order of data items processed could be as
shown in Fig 5a. Assume that we checkpoint the model state
at the end of every iteration which processes one data item.
If training is interrupted in the middle of this epoch, the data
iterator loses state, and resumes with a random shuffled order
of the dataset as shown in Fig 5b, resulting in data items being
repeated and missed in a epoch, violating the data invariant.

CheckFreq’s data iterator uses the following techniques to
support resumption:
« It shuffles data items every epoch using a seed that is a

function of the epoch number. Therefore, to recreate the
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(a) Order of data items processed in an epoch

| e—
[1 5 8 2 | [4 2 1 5] |
—d

(b) Resuming with current data iterator

B |

(c) Resuming with CheckFreq data iterator
Figure 5: Resuming iterator state. When iterator state is
not resumable, an epoch might miss data items when job
is interrupted (items 3,6,7 are missed in b). CheckFreq (c)
ensures that training resumes from exactly where it left off.

[6 4 7 3]

same shuffle order, it is sufficient to persist the current
epoch ID, and the number of data items processed so far
(which makes iterator checkpointing lightweight).

* When training resumes, the iterator reconstructs the shuffle
order, and deterministically restarts from where it left off
at the last checkpoint as shown in Fig 5c.

Summary. Two-phase checkpointing mechanism along with
the resumable data iterator provides correct, low-cost check-
pointing. The next important question to answer is, how fre-
quently should we checkpoint the model?

4.3.2 Checkpointing Policy

To perform automatic, iteration-level checkpointing, we must
determine the frequency at which checkpointing is performed.
On one hand, we can checkpoint after every iteration, provid-
ing low recovery cost but possibly high runtime overhead. On
the other hand, we can perform coarse grained checkpointing
at epoch boundaries, resulting in high recovery cost but low
runtime overhead. An effective checkpointing policy must
find the right balance between recovery cost and runtime over-
head, minimizing both. The main idea behind CheckFreq’s
checkpointing policy is to initiate checkpoints every k iter-
ations (called the checkpointing frequency), such that the
overhead of one checkpointing operation can be amortized
over k iterations. While prior work in HPC have explored
ways of identifying the checkpointing frequency based on
failure distribution in the cluster [12, 14, 15], CheckFreq finds
the shortest interval that masks the overhead of checkpointing
based on the DNN and hardware characteristics.

Systematic online profiling. CheckFreq takes a systematic
profile-based approach to determine the checkpointing fre-
quency. It should be chosen such that the runtime overhead
introduced due to checkpointing is within a percentage p of
the actual compute time, where p is the permissible overhead
decided by the user (say 5%).

CheckFreq determines the initial checkpointing frequency
as follows. When a training job starts, CheckFreq’s data itera-
tor (§4.3.1) automatically profiles several iteration-level and
checkpoint-specific metrics which influences the checkpoint-
ing frequency - the iteration time (7;), time to perform weight
update (7,), time to create an in-memory GPU copy (T}), time

Algorithm 1 : Checkpointing frequency determination

Input: 7i,Tw,Tc,Tg,Ts,m,M, Mgy, p
Tye < max(0,T. — (T; — T,,)
Tog < T
if Mo —M >m and T, < T, then
T, < Ty
mode < GPU
else
T, < Ty
mode < CPU

end if
k — T+T—-T,
T;

kmin — ’VPZOE—‘
k < max(k,kyin)
Output: k,mode

to create an in-memory CPU copy (7), time to write to stor-
age (Ty), size of checkpoint (1), peak GPU memory utilization
(M), and total GPU memory (M,;,.,). Based on CheckFreq’s 2-
phase checkpointing mechanism, the frequency determination
algorithm is as shown in Algorithm 1.

The algorithm provides two outputs; 1) the checkpointing
frequency k which is the number of iterations elapsed be-
tween every checkpoint, and 2) the snapshot () mode (CPU
or GPU-based). The algorithm first determines the snapshot
mode based on available free GPU memorys; if there is enough
space to snapshot the model state in GPU memory, then the
mode is set to GPU, else the preferred mode is set to CPU-
based snapshotting. Based on the chosen mode, the algo-
rithm estimates the overhead in the critical path incurred after
pipelining checkpointing and compute in a tightly coupled
manner as described earlier (§4.3.1). It then determines the
number of iterations required to amortize this overhead such
that the total runtime overhead incurred is below the threshold
p. For example, consider the cost of a checkpoint operation
and the duration of an iteration are both 1 time unit. If the
threshold on runtime overhead is set to 5%, then CheckFreq
chooses to checkpoint every 20 iterations.

Adaptive rate tuning. A static, profile-based frequency de-
termination works well when the training environment of the
model remains unchanged throughout the runtime of the job.
However, in practice, the checkpoint cost estimated by the
online profiler can deviate, resulting in higher than estimated
runtime overheads. For instance, a job could face write in-
terference by concurrently running jobs sharing storage for
read/write, which affects the time to write a checkpoint.
Therefore, CheckFreq uses an adaptive rate tuning tech-
nique to perform feedback-driven frequency changes. Check-
Freq’s iterator monitors the runtime of the job and the actual
cost of checkpointing during runtime (after the initial fre-
quency determination). If the observed runtime exceeds the
desired overhead, then these values are used to recalculate
the checkpointing frequency. The idea is to ensure that the
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overall runtime overhead does not exceed the threshold p.

4.4 Implementation

We implement CheckFreq as a pluggable module for PyTorch.
The data iterator of CheckFreq is implemented on top of the
state-of-the-art data pipeline DALI for PyTorch. CheckFreq
can be used as a drop-in replacement to the existing data
loader in PyTorch.

CheckFreq determines the initial checkpointing frequency
by profiling the first 1% of the iterations in the first epoch, or
the first 50 iterations, whichever is the minimum. Therefore,
no checkpointing is performed during this initial phase, which
is a very small fraction of the total runtime. Additionally,
we cache the profiled metrics and the determined policy on
persistent storage so that profiling can be skipped when the
job resumes after a crash.

CheckFreq internally uses torch.save (), followed by a
fsync () to perform persist (), and thus guarantees persis-
tence. To eliminate chances of data corruption, CheckFreq al-
ways writes checkpoints to a new file. However, to keep space
utilization bounded, CheckFreq only maintains two check-
points on disk at any given time; one completed checkpoint
and the other in-flight. Additionally, checkpoints performed at
epoch boundary are preserved (can be turned off by the user).
CheckFreq wraps the weight update step in the optimizer with
a semaphore that waits on the ongoing snapshot () to ensure
that a copy of the model state is completed before it is updated
by the next iteration.

5 Evaluation

In this section we use a number of microbenchmarks and

end-to-end training to accuracy with interruptions to evaluate

the efficacy of CheckFreq with respect to the current epoch-
based checkpointing scheme across a variety of DNNs. Our
evaluation seeks to answer the following questions.

* Can CheckFreq’s iterator make iteration-level checkpoint-
ing feasible without affecting the accuracy? (§5.2)

* Does CheckFreq’s 2-phase checkpoint mechanism reduce
checkpoint stalls compared to the existing synchronous
strategy? (§5.3)

* Can CheckFreq checkpoint more frequently than epoch-
based checkpointing, while incurring low runtime over-
head? (§5.4)

* Does CheckFreq reduce the recovery cost when DNN train-
ing is interrupted? (§5.5)

* What is the end-to-end benefit of training to accuracy with
CheckFreq in the presence of job interruptions in a real
preemptive training environment? (§5.6)

5.1 Experimental setup

We evaluate the efficacy of CheckFreq against the state-of-
the-art epoch-based checkpointing in PyTorch using the state-
of-the-art data pipeline DALI [4].

Servers. We evaluate CheckFreq on two generations of GPU;

GPU GPU CPU  Storage
Type Mem(GB) Mem(GB) Media

Conf-Pascal 1080Ti 11 500 HDD
Conf-Volta V100 32 500 SSD

Table 2: Server configurations. We use two ML server
SKUs; each with 24 CPU cores, 500GB DRAM, and 8 GPUs

a Volta V100 GPU with a 1.8TB SSD for persistent storage,
and a Pascal 1080Ti GPU with a 1.8TB HDD for persistent
storage as shown in Table 2. Both these servers have 8 GPUs,
24 CPU cores and 500GB of DRAM. Both servers run 64-bit
Ubuntu 16.04 with CUDA toolkit 10.0 and PyTorch 1.1.0.

Models. We use 7 DNNs in our evaluation. ResNet18 [20],
ResNet50 [20], ResNext101 [48], DenseNetl21 [21],
VGG16 [41], InceptionV3 [42] all on Imagenet-1k
dataset [39], and Bert-Large pretraining [13] on Wikipedia &
BookCorpus dataset [49]. For each model, we use the default
minibatch size reported in the literature for these models.

Baseline. We use the epoch-boundary checkpointing as the
baseline for all the models except BERT. BERT trains in units
of iterations; therefore we use the default checkpointing inter-
val of 200 iterations as the baseline [8]. To perform persistent
and correct checkpoints, we explicitly flush the checkpoint
file after the checkpoint operation returns.

5.2 Accuracy implications

We first show the need for resumable data iterator to make fine
grained iteration-level checkpointing feasible. Using the ex-
isting state-of-the-art data iterators to perform iteration-level
checkpointing results in violation of the DNN data invariant
as described in (§4.3.1). To demonstrate this, we perform the
following experiment. We train a ResNet18 job for 70 epochs
or to a target accuracy of 69.5% (whichever is earliest) in
three different scenarios;

* No interrupt. This is the normal training scenario where
the job is not interrupted until its completion. There is no
checkpointing performed here.

* Baseline-interrupt. This scenario uses the existing DALI
iterator (same with the native PyTorch iterator) to perform
checkpoints at the iteration right before the job is inter-
rupted. We interrupt the job once very 7 minutes ( approx
every two epochs). This corresponds to commonly used
round durations in preemptive schedulers [18,26,32,47].

* CheckFreq-interrupt. This setting uses the CheckFreq
data iterator that is capable of performing a light-weight
checkpoint of iterator state and correctly resuming it. We
checkpoint, interrupt, and resume the job exactly as de-
scribed in the prior setting.

We plot the Top-1 validation accuracy against cumulative
training time. Figure 6 shows that it is not possible to perform
iteration-level checkpointing using existing iterator, without
affecting the model accuracy. This is because, the model state
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Figure 6: Impact of resumable data iterator on accuracy.
Performing iteration-level checkpointing with baseline non-
resumable data iterator violates the data invariant, results in
significant loss of accuracy if job is interrupted. However,
CheckFreq’s iterator does not affect the final accuracy.
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Figure 7: Runtime overhead for various models. At a fre-
quency chosen by CheckFreq, synchronous checkpointing
incurs upto 70% overhead while CheckFreq’s pipelined check-
pointing reduces runtime overhead to under 3.5%
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is checkpointed at iteration boundaries, but the data loader
state is lost. However, with CheckFreq’s iterator, the model
reaches the target accuracy in the almost the same time as the
setting where the job ran without any interruption.

Storage overhead. Checkpointing data iterator state does not
have a significant space overhead; it requires persisting two
integers - epoch and iteration number, that take up a few bytes
on disk. CheckFreq thus provides light-weight, resumable
data iterators that do not affect the accuracy of DNNs.

5.3 Performance of checkpointing mechanism

We now evaluate the performance of the two-phase check-
pointing strategy of CheckFreq, and compare it against the
synchronous strategy. We further provide a split of benefits
due to pipelining persist () and snapshot () operations.

5.3.1 Checkpoint stalls

Figure 7 shows the runtime overhead incurred due to check-
point stalls with CheckFreq and the baseline checkpointing
mechanism while checkpointing at a frequency chosen for
that model by CheckFreq on Conf-Pascal. The frequency
varies across models, but is kept constant for CheckFreq and
baseline for a given model. While CheckFreq is able to bound
the runtime overheads to about 3.5%, the baseline incurs 17
— 73% runtime overhead due to frequent checkpointing. The
reduction in runtime overhead is due to the two-phase check-
pointing and pipelining it with computation.

Checkpoint stall (seconds)
Synchronous 10 pipelining CheckFreq

Conf-Volta 3.6 1.5 0.3
Conf-Pascal 10.7 1.3 0.07

Table 3: Breakdown of benefits. This table shows the split
of checkpoint stall incurred in critical path for VGG16 on two
different hardwares

Model Resl8 Res50 ResNext VGG16 BERT
Freq 147 125 238 83 100
Size(MB) 90 195 482 1055 5000

Table 4: Checkpoint frequency. This table shows the num-
ber of checkpoints per epoch and the size of each checkpoint

5.3.2 Breakdown of benefits

To understand how much each phase of the checkpointing
mechanism contributes to the reduction of checkpoint stalls,
we train VGG16 on the two servers using identical batch
size of 64 that is the maximum that can fit on Conf-Pascal.
Checkpointing is performed at a frequency chosen indepen-
dently for the two servers. We evaluate three settings in Ta-
ble 3; 1) The baseline synchronous mode, 2) CheckFreq with
only persist () pipelining (indicated by IO pipelining) and
snapshot () performed synchronously, 3) CheckFreq with
both persist () and snapshot () pipelining.

On both hardware, CheckFreq is able to significantly re-
duce the checkpoint cost by 5 — 18x by pipelining both
phases of checkpointing with compute as compared to only
pipelining persist (). On Conf-Pascal, the benefit due
to pipelining persist () is prominent due to the slower
storage device. On Conf-Volta with fast storage, the CPU
cost of snapshot () and the storage cost of persist () con-
tribute equally to the checkpointing cost. Therefore, pipelin-
ing snapshot () with compute provides significant speedup.

5.4 Checkpointing policy

We compare the checkpointing frequency determined by
CheckFreq for a threshold overhead p of 3.5%. Table 4 shows
the number of checkpoints performed per epoch for vari-
ous models along with per-checkpoint size when perform-
ing distributed data parallel training across across 8 GPUs
on Conf-Pascal. There are two main takeaways here. First,
the checkpointing frequency varies with model; therefore fre-
quency selection must take into account the model character-
istics. Second, CheckFreq is able to perform 83 — 278 X more
frequent checkpointing when compared to that performed
at epoch boundaries, while incurring < 3.5% overhead. On
Conf-Volta, CheckFreq resulted in 25 — 100 x more frequent
checkpointing than the epoch-based policy. More frequent
checkpoints directly translate to faster recovery times which
we evaluate in Section 5.5.

Adaptive tuning of frequency. To demonstrate the impor-
tance of adaptive frequency tuning, we perform the follow-
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Setting Isolated Static Adaptive
Overhead 5% 35% 5%
Frequency (# iterations) 14 14 19

Table 5: Adpative frequency tuning. Adaptive frequency
tuning is able to dynamically adjust checkpointing frequency
to maintain the same overhead as if the job is run in isolation.

Model Recovery (seconds) Recovery (seconds)
Baseline CF Baseline CF
ResNet18 840 5 180 3
ResNet50 2100 24 540 8
VGGl16 5700 25 1320 31
ResNext101 7080 32 1680 14
DenseNet121 2340 7 600 4
Inceptionv3 3000 27 780 42
BERT 4920 85 4500 43

(a) 1 GPU (V100) (b) 8 GPU (1080T1)

Table 6: Average recovery time (CF - CheckFreq).

ing experiment. We run a VGG16 training job on a single
GPU (Job-A), allowing it to checkpoint at an initial frequency
chosen by CheckFreq (with an overhead of 5%). After 100
iterations have elapsed, we trigger another VGG16 job on
a different GPU on the same machine (Job-B), so that the
two jobs contend for storage bandwidth to write checkpoints.
We measure the runtime for 500 iterations of Job-A with and
without adaptive frequency tuning. The results are as shown
in Table 5. When Job-A runs in isolation, it incurs an over-
head of 5% while checkpointing every 14 iterations. However,
when Job-B is introduced after 100 iterations of Job-A, if
there is no adaptation across the two jobs, the checkpointing
frequency is statically fixed to 14 iterations and the runtime
overhead for Job-A increases to 35% (indicated as static in
Table 5). This is because, the jobs compete for storage band-
width, increasing checkpoint cost. In contrast, CheckFreq’s
adaptive rate tuning dynamically adjusts the checkpointing
frequency and keeps the overhead bounded at 5%.

5.5 Recovery time

To understand the benefits of using CheckFreq in the pres-
ence of job interruptions, we evaluate the recovery time with
the epoch-based checkpointing and CheckFreq. With epoch-
based checkpointing, irrespective of when during the epoch
the job is interrupted, the job rolls back to the previously com-
pleted epoch. Therefore, in the best case, if a failure occurs
immediately after the finish of an epoch, then the recovery
time is the same as CheckFreq. However, on average, half
an epoch’s worth of work can be lost if the job is interrupted
in the middle of an epoch. And in the worst case, the entire
epoch must be redone if the job fails just before the comple-
tion of an epoch. For the seven different models, we compare
the average case recovery time in two distinct scenarios; 1) a
single-GPU training job on Conf-Volta in Table 6a and 2) a
8 GPU data-parallel job on Conf-Pascal in Table 6b.

As can be seen, CheckFreq is able to reduce recovery time

(0]
o
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= Baseline (Epoch-level checkpointing)
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Figure 8: End-to-end training. We train Resnet50 using a
Conf-Pascal GPU with interruptions every 5 hours. Check-
Freq trains to state-of-the-art accuracy (76.1%) 2 x faster than
epoch-based checkpointing by reducing recovery time.

0

from several minutes (and hours) to just a few seconds, all
while incurring less than 3.5% runtime overhead. For in-
stance, when training ResNext101 on a V100 GPU, on aver-
age, CheckFreq reduces the recovery time from 2 hours to 32
seconds on average.

5.6 End-to-end training

We evaluate the end-to-end benefit of training with CheckFreq
by simulating a preemptive cluster scenario. We consider a
cluster with a premeptive scheduler similar to the one in large
production clusters like Philly [2,22]. We consider an average
preemption interval of 5 hours. Figure 8 plots the total training
duration against top-1 validation accuracy for the epoch-based
baseline checkpointing strategy and CheckFreq for training
ResNet50 using a GPU on Conf-Pascal to state-of-the-art
accuracy. CheckFreq results in 2x faster training by reducing
recovery time from 1.9 hours to under a minute for every
interruption. A similar experiment on Conf-Volta resulted
in 1.6x faster training time to accuracy for ResNext101.

6 Discussion

Applicability to distributed cluster training. CheckFreq
currently works with the distributed data parallel (DDP) mode,
where only one GPU per node (rank 0) is responsible for
checkpointing. While we show results for single- and multi-
GPU training, extending it to multi-node settings is straight-
forward; checkpointing in multi-GPU and multi-node settings
is the same for DDP in frameworks such as PyTorch. Model
weights are synchronized across different workers (same node
or in the distributed cluster) typically every iteration, or ac-
cumulated over a few tens of iterations before synchronizing;
therefore each node sees the same version of weights at these
synchronization points. Hence, one instance of CheckFreq
runs on each node, and persists an identical checkpoint for lo-
cal recovery at synchronization boundaries. Since each node
persists checkpoints independently, and in parallel, there is
no additional synchronization overhead for checkpointing.

Generality. CheckFreq focuses on optimizing checkpointing,
which is by far the predominant way in which DNN training
jobs recover from failures. While our paper focuses on data
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parallel training, prior work in model or pipeline parallelism,
also rely on checkpointing. Using CheckFreq, checkpointing
at minibatch boundaries (every n iterations), each pipeline
stage only persists a subset of parameters and optimizer state
hosted by that worker. CheckFreq also enables checkpointing
within minibatch boundaries during pipeline parallel training
(every m microbatches), as CheckFreq’s iterator controls the
introduction of each microbatch into the pipeline. Checkpoint-
ing at the microbatch granularity requires storing additional
model state — specifically accumulated weight gradients at
every stage in addition to parameter and optimizer state. We
leave it to future work to integrate CheckFreq’s implementa-
tion into frameworks supporting pipeline parallelism.

While we implement CheckFreq in PyTorch, we can extend
it to other frameworks like TF and MxNet by wrapping the
framework-specific APIs into those exposed by CheckFreq.

7 Related Work

Asynchronous DNN checkpointing. While recent work like
DeepFreeze [33] that perform asynchronous DNN checkpoint-
ing employ techniques similar to CheckFreq for 1O pipelining,
it only considers CPU clusters. It does not consider the cost of
snapshotting the model state in memory when trained using
state-of-the-art GPUs. Our work shows that on modern ML
optimized servers, the cost of snapshotting the model state
(copying from GPU to CPU) is significant, demonstrating
how to pipeline this transfer with compute, and use spare
GPU capabilities to enable fast snapshotting.

Furthermore, DeepFreeze requires manual intervention to
tune the checkpointing frequency for a given model, hard-
ware and training environment while CheckFreq masks these
complexities from the user and analytically identifies the best
parameters for checkpointing. Unlike DeepFreeze that uses
a static checkpointing frequency, CheckFreq is also benefi-
cial in shared cluster settings, as it adapts the checkpointing
frequency based on memory and storage interference due to
other jobs to minimize checkpoint stalls.

Asynchronous checkpointing in HPC. Prior work in
HPC [34,40,45] uses asynchronous checkpointing to mask
the IO latency. A key challenge that differentiates DNN check-
pointing from traditional HPC ones is that, performing a syn-
chronous in-memory copy of the model state from GPU to
CPU is expensive due to the increasingly fast compute ca-
pabilities of the GPU. CheckFreq exploits the DNN learn-
ing structure to carefully pipeline even the in-memory snap-
shot with computation to perform correct, consistent check-
pointing. Moreover, CheckFreq further reduces the latency of
checkpointing by utilizing spare GPU memory and compute
capabilities when possible to perform fast snapshots.

Checkpoint interval estimation in HPC. Prior work [12,
14, 15] determine checkpointing interval for large scale HPC
applications based on failure distributions observed in the
system. CheckFreq does this in a DNN-aware fashion by ex-

ploiting the deterministic, repetitive structure of DNN training
to systematically profile resource utilization at runtime.

Adaptive checkpointing. The idea of using adaptation for
fault management has been used in HPC applications [25] to
decide when to checkpoint, based on a failure prediction mod-
ule. CheckFreq introduces adaptivity in DNN checkpointing
frequency. It identifies and dynamically adapts the checkpoint-
ing frequency, based on the characteristics of the model being
trained, system hardware, and interference due to other jobs.

TensorFlow Checkpoint Manager. TF checkpoint man-
ager [43] allows checkpointing at a user-given time interval,
and supports persisting iterator state. However, it has three
shortcomings. First, the checkpointing frequency is decided in
an ad-hoc fashion by the user; this introduces large checkpoint
stalls if not chosen carefully. Second, it cannot checkpoint
the iterator state if random data transformation is involved;
this is common for most image based models [44]. Finally,
even in cases where it can persist iterator state, TF writes
the entire operator graph to storage along with prefetched
items resulting in large checkpoint size. CheckFreq addresses
these challenges by automatically adapting the checkpointing
frequency and using a light-weight, resumable data iterator.

Framework-transparent checkpointing.  Transparent
checkpointing techniques such as CRIU [1] can backup entire
VM state for fault-tolerance; however they do not checkpoint
GPU or accelerator state. Even if they were to capture entire
device state, device state alone is an order of magnitude larger
than the model state captured at iteration boundaries, making
frequent CRIU checkpoints impractical. Thus, in this work,
we focus on the dominant approach to DNN fault-tolerance -
framework-assisted checkpointing of model state.

8 Conclusion

This paper presents CheckFreq, an automatic, fine-grained
checkpointing framework for DNN training. CheckFreq
achieves consistent, low-cost checkpoints at iteration level
using a resumable data iterator, a pipelined two-phase check-
pointing mechanism, and automatic determination and tun-
ing of checkpointing frequency. When the job is interrupted,
CheckFreq reduces recovery time for popular DNNs from
hours to seconds, while incurring low runtime overhead.
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