BIMODAL WILSON SYSTEMS IN L*(R)
DIVYANG G. BHIMANI AND KASSO A. OKOUDJOU

ABSTRACT. Given a window ¢ € L?(R), and lattice parameters «, 3 > 0, we introduce a
bimodal Wilson system W(¢, a, §) consisting of linear combinations of at most two elements
from an associated Gabor G(¢, «, 3). For a class of window functions ¢, we show that the
Gabor system G(¢, a, ) is a tight frame of redundancy 5! if and only if the Wilson system
W(¢, a, B) is Parseval system for L?(R). Examples of smooth rapidly decaying generators
¢ are constructed. In addition, when 3 < B~! € N, we prove that it is impossible to
renormalize the elements of the constructed Parseval Wilson frame so as to get a well-
localized orthonormal basis for L?(R).

1. INTRODUCTION

Given that {e*™™ :m € Z} forms an orthonormal basis (ONB) for L?([0, 1)), it is easy to
establish that ‘
g(X) 17 1) = {X[U,l)(’ - j)627r7,m- : j7m € Z},
is an ONB for L*(R), where x[o1) is the characteristic function of [0,1). G(x,1,1) is the

simplest example of Gabor systems, first introduced in 1946 by D. Gabor [12]. More generally,
given o, 8 > 0 and ¢ € L*(R), the set

(1.1) G(9, 0, ) = {@jm(-) = o(- = Bj)e*™™™ : j,m € Z}
is the Gabor system with generator (function) ¢ and (time-frequency) parameters «, 3.

G(¢,a, B) is called a Gabor frame if there exist 0 < A < B such that for every f € L*(R)
we have

(1.2) AIFIF < > [KF dim) < BIIFIP.
JmEZL

A Gabor frame with A = B is called a tight Gabor frame. In this case the frame bound A
will be referred to as the redundancy of the tight Gabor frame. If in addition, A= B =1
we call the system a Parseval (Gabor) frame. We recall the following well-known result that
will be used in the sequel, see [6, Theorem 8.1], and [8, Theorem 3.1].

Proposition 1.1. Let ¢ € L*(R) and o, 3 > 0. The Gabor system G(¢, a, 3) is a tight frame

for L*(R) with frame bound B~ if and only if ¢ satisfies Y., (E—am)p(E + B~k — am) =
Ok a.e. for each k € Z.

In addition, the following result about Parseval frames and ONBs will be used repeatedly,
we refer to [16, Section 7.1] for details.

Proposition 1.2. Let {¢;}32, C L*(R). The following statements hold.

Date: May 13, 2021.
2000 Mathematics Subject Classification. Primary 42C15, Secondary 94A12, 42C40.
Key words and phrases. frame, Gabor system, orthonormal basis, Wilson system.

1



2 D. G. BHIMANI AND K. A. OKOUDJOU

(1) For all f € L*(R), we have
I = S 1F. e
if and only if B
f= i(ﬁ €;)€5,

with convergence in L*(R), for all f € L*(R).
(2) If

1£11* = Z|<f,€j>l2

holds for all f in a dense subset D C L*(R), then this equality holds for all f € L*(R).
(3) Suppose {e; : j =1,2,...} is a Parseval frame. If ||e;||2 = 1 for all j, then {e; : j =
1,2,...} is an orthonormal basis for L*(R).

The characterization of the generators ¢ and the time-frequency parameters «,  such that
G(¢, o, B) is a frame is still largely unresolved [14]. Nonetheless, it is known that if G(¢, a, 3)
is a Gabor frame then 0 < af < 1. But when af > 1 the system in (1.1) is never complete.
Furthermore, G(¢, a, 3) is an ONB for L*(R) if and only if a3 = 1. For more details about
these density results we refer to [13, Section 7.5], [15], and the references therein. It is also
known that all Gabor ONB behave essentially like our first example in the sense that if
G(¢,a, 1/ar) is an ONB, then, the window ¢ must be poorly localized in time or frequency
that is

[1aPo@Par = o [ le10e)Pde = o0
R R

where ¢ is the Fourier transform of ¢. This is the Balian-Low Theorem (BLT) that imposes
strict limits on Gabor systems that form an ONB [2, 3, 4, 20].

Introduced numerically by K. G. Wilson [22], the so-called generalized Warnnier func-
tions have good time-frequency localization properties and thus are not subjected to the
localization limits dictated by the BLT. Latter, Daubechies, Jaffard, and Journé formalized
this definition and introduced what is now known as Wilson systems [9]. Wilson ONBs have
played major roles in some recent applications, including the detection of the gravitational
waves [7, 17, 18], or their use in electromagnetic reflection-transmission problems in fiber
optics [11, 10] .

We now define the Wilson system for which each element ;,, is a linear combination of
two Gabor functions localized at (j,m) and (j, —m) respectively. More precisely, given a
Gabor system G(¢, a, B), the associated (bimodal) Wilson system W(¢, «, 3) is

(13) W(¢7 «, 6) - {w]}m : j € Za m e NO}

where

V2B¢j0(x) = v2B(x — 265) it jeZm=0,

(1-4) @/)]m(a:) = {\/B [e—Qmﬂjam¢j,m(x) + (_1)j+me2wi6jam¢j7_m(g;)} if (j, m) € 7Z x N.
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With these notations, the following result was proved in [9]:

Theorem 1.3 ([9]). Let ¢ € L2(R) be such that $(€) = ¢(€) and ||¢||s = 1. Then the Gabor
system G(¢,1,1/2) is a tight frame for L*(R) if, and only if, the Wilson system W(¢,1,1/2)
is an orthonormal basis for L*(R). Furthermore, one can choose ¢ € C*°(R) with compact
support.

Theorem 1.3 has been generalized from the case of Gabor frames on the separable lattice
Z x 17 to non separable lattices AZ? where A is any invertible matrix such that |detA| = 1/2,
see [19, 23]. The underlying theme in all these results is a one-to-one association of a tight
Gabor frame of redundancy (a3)~! = 2 with a bimodal Wilson basis. However, it is still
unknown whether similar associations can be made starting from a tight Gabor frame of other
redundancy. For example, Grochenig in [13, p.168] posed the problem of the existence and
construction of a Wilson ONB starting from a tight Gabor frame with o = 1 and 8 = 1/3.
This problem is still unresolved. However, Wojdylo proved that taking linear combinations
of three elements of a redundancy 3 tight Gabor frame results in a (trimodal) Parseval
Wilson frame [24]. But the method developed was not constructive and it is not clear how
to use it to produce an example of a well-localized window function ¢. In higher dimensions,
Wilson ONBs are usually constructed by taking tensor products of 1 dimensional Wilson
ONBs. In this context, (non-separable) Wilson ONBs for L?(RY) were recently constructed
starting from tight Gabor frame of redundancy 2* for each k = 0,1,2,...,d,[5, Theorem 3.1
& Theorem 4.5].

In this paper, we show that starting from a tight Gabor frame of redundancy 1/, one
can construct a bimodal Parseval Wilson frame. Furthermore, we can choose the generator
to be a Schwartz function. For example, as a consequence of some of our results we shall
prove the following.

Theorem 1.4. Let 3 € (0,1/2). There exists ¢ € S(R) with ¢ € C=(R) such that the Gabor
system G(p,1, ) is a tight frame for L*(R) with frame bound B~ if and only if the Wilson
system W(o, 1, B) is a Parseval frame for L*(R).

To convert this Wilson system into an ONB, one is left to normalize its elements to have
unit L? norm. However, we prove that this is impossible in general as the normalization
conditions needed to get an ONB are incompatible with the definition of the Wilson system
we use. In particular, our results suggest that for a redundancy 5~! € N tight Gabor frame,
the associated Wilson system should be made of linear combinations of 37! elements from the
Gabor frame. It follows that the bimodal Wilson system given by (1.4) where the coefficients
in the linear combinations are the unimodular numbers e~27%49m and (—1)I+me2mifiom can
never lead to an ONB.

Theorem 1.5. Let 3 < 37! € N. There exists no function ¢ € L*(R) with ez’thercfﬁ compactly

supported, or ¢ and <§ having exponential decay, such that the Wilson system W(p,1, ) is
an ONB for L*(R).

We recall that the space of smooth functions on R with compact support is denoted
by C°(R), the Schwartz class is S(R), the space of tempered distributions is S'(R). The
(unitary) L? Fourier transform is defined by

Ffw) = Fw) = /R Ft)e=2mt gt e R,
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with inverse given by
Flf(x) = fY(z) = / f(w) ™ dw, x € R.
R

The torus {z € C: |z| = 1} is denoted by T. If f € L'(T), we define it’s Fourier coefficients
by

]?(m) = /Tf(x)e_%imzdx, (m e Z).

The rest of the paper is organized as follows. Section 2 contains the technical results needed
to prove our main results. In particular, we derive necessary and sufficient conditions on ¢
for the {¢;m} to be an ONB for L?(R). In Section 3 we state and prove one of our main
results Theorem 3.1. In particular, we give necessary and sufficient conditions to turn a tight
Gabor frame into a Parseval Wilson system. We also indicate under which extra condition
this Wilson system becomes an ONB, and provide examples of generators ¢ € S(R). Finally,
in Section 4 we use the Zak transform to construct more examples of generator ¢ € S(R)

such that ¢ and & have exponential decay.

2. CHARACTERIZATION FOR WILSON BASES IN L?(R)

In this section we find necessary and sufficient conditions on ¢ that guarantee that the
Wilson system W(¢, a, §) forms a Parseval frame, Theorem 2.1. In addition, by normalizing
each vector in W(¢, «, ) we find additional conditions needed to make this Parseval (Wilson)
frame an ONB.

Theorem 2.1. Let o, f > 0, and {¢jm}ijezmen, s defined by (1.4). The following state-
ments are equivalent:

(a) W(¢,a, B) = {Wjm}jczmen, is a Parseval frame for L*(R).
(b) ®x(§) = Orpa.e., and Ak(§) = O0a.e. for each k € Z, where

~

{Qﬁ)=2@@$@—amwﬁ+ﬁ*k—am%
A(€) = X nen (1€ + am)p(€ + Bk +1/2) — am).

As an immediate consequence of this result we have.

Corollary 2.2. Let o, f > 0, and {Yjm}jezmen, s defined by (1.4). Suppose that one of
the statements (a) or (b) in Theorem 2.1 hold (hence all of them hold), then {;m}icz.men,
is an ONB for L*(R) if and only if

1
10l = 73
R(Xm, Yjm) = 0.

In order to prove Theorem 2.1, and for the future reference, first we note that the Fourier
transform ¢, ,,, of ¢; , is

(2.1) Gim(€) = e 2 HIE™ (e _qam), (€ €R),
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and the Fourier transform w/yjn of Y, is

(2.2)
T = V/2Be S G(€) if j€Z,m=0,
PSS /B [G_ZWiﬁquZ;(f — am) + (—=1)7tme=2mBiE G 4 am)| if (j,m) € Z x N.

Remark 2.1. In [21], using the notations ¢j,(x) = €™ ¢(x — bj) where a,b > 0, the
following Wilson-type system was considered.

d(z — 2b) ifj €Z,m=0,
2712 (@) + (=177 (2)] if j € Z,m e N.

In particular, when a = 7 and b =1 [21, Theorem 1.2] which is similar to Theorem 2.1 was
proved, and it was claimed that the proof extends to all a,b > 0. However, this is not the
case because of the choice of coefficients in defining the Wilson-type system (2.3). Indeed, in
the Fourier domain (using the normalization ) (€) = [ (x)e=™tdE), (2.3) becomes
(2.4)
- B e—2ibj§$(£) if j € Z,m=0,
Yim(€) = 2-1/2[e=ibil€=ma) (¢ _ a) 4 (—1)itme=biCtma (e 4+ ma)]  if j € Z,m e N.

When a = m and b = 1 the term e*®™* = 41, which is why [21, Theorem 1.2] holds.
However, when ab # 7 this is no longer the case and the proposed system cannot be an
ONB. We resolve this problem by introducing in our proposed Wilson system (1.4) where the
unimodular term e*> %9 qllows for the cancellations needed to establish our results.

(2.3) bjm () = {

The proof of Theorem 2.1 will follow from Lemma 2.4, and Proposition 2.3, which we first
state and prove.

First, observe that by Proposition 1.2(1), W(¢, o, ) = {¥jm }jez.men, is a Parseval frame
for L*(R) if and only for each f € L*(R), we have

(2.5) 117 = D D Wy
meNgy jJEZ

So by Proposition 1.2(2), to establish Theorem 2.1 it is enough to prove that part (b) is
equivalent to (2.5) for all f belonging to a dense subset, D of L?(R). Here and in the sequel,
we choose

D = {f e L*(R) : f € L*®(R) and support of f is a compact subset of R \ {0}} .

In the next proposition we set

I(f) = > > Hf i)l

meNy jEZ

To(f) = [ D F(&+ 87 k) F(©)Pi(€)d,

R kez

and

L) = [ SHOFE+ 57 b+ 1/2)8u(6)de.

R ez
With these notations we have.
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Proposition 2.3. Let a,3 > 0 and ¢ € L*(R). For any f € D we have the following
decomposition

Z(f) = To(f) + Li(f)-
Proof. Plancherel’s Theorem together with (2.2) give

() = DS W)= 3 S W f i)

meNy jEZ meNy jJEZ

= S G+ S [ G 2

JEZ meN jEZ

F(&)d(&)em @k qg

R

DIDY

meN jeZ

2

/ f 27”53% (& —am) + (—1)j+m62”iﬁj%(€ + am) }

For fix m € N, set

(2.6)  Famp(&) = f(B71)(B1E —am) and Fys(€) = f((28)7€)p((28)71€).

Since f € D, Fp p is compactly supported in R\ {0} and belongs to L'(R) N L*(R). By
a simple change of variables and in view of (2.6), we may rewrite

Je F(€) 9 — am) 295 de. - = 57 Fa(—i).
(2.7) o £ géfwm) MBI de = BUE 0 s(—5),
o F(6) D) €2m12R)IE g = (28) " Fo5(—))-

In view of (2.7), we can write

1) - %Z)Fh;(—j)f

2

BZZ om,6(=1) + (=1) 7" Fam,5(—7)
meN jeZ
S o \ Sh
JEL meN jeZ
(2.8) = I+ L+ L+ I3+ Iy

where
2

—

Fam,ﬁ(_j) + <_1>j+meam,ﬁ(_j)
= Famp(=))Famp(=3) + (=1)"" Famp(=5) F-amp(—J)
+(_1)j+mF—am,6(_j)Fam,B(_j) + F—am,ﬁ(_j)F—am,B(_j)a
and I; (i =0,1,2,3,4) will be introduced latter.
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Using the fact that R = Ugez(k + Q) = Urez(k + [—3,3)), and that F,,, 5 is compactly
supported, we obtain

Fams(=1) = /R Fam,ﬁ@)ezﬂﬁdf:Z/Q-k Fam,5(&)e*™ ¢ d

keZ
-/ (ZFamﬂmm) (P g
Q@ \kez
2.9 = [ e

where H(&) = >,y Famp(§ + k). We note that H(€) is a 1—periodic function, and since
Fom s is compactly supported, it follows that H € L*(T), and it’s Fourier coefficients are

F/am\ﬂ(— j). By the Parseval’s theorem, we have

—

Fomp(—J)

2

= A(ZFamﬂ(f‘*'k)) (ZFam,ﬁ(f+p)>df

JEZL keZ PEL
(2.10) = / (Z Fam,p(§ + k)) Fam,5(€)dE.
R \rez

In view of (2.9), and by the Poisson summation formula, we obtain

D = Y (=1 Famp(—) Famp(—3)

JEZ.

- [ (Ermatcsn) (SR

keZ jez

= /T (Z Foomp(§ + k)) . (Z Fomp(&+7+ 1/2)> d¢

keZ jez

(2.11) = /RF—am,ﬂ(é)' (Z Fom,p(§+ 7+ 1/2)> dg.

JEZ.
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By a simple change of variable, (2.10), and (2.6), we have

keZ

- /R (Zf<£+<26>—1k>><%<£+<2ﬁ)—1k>>> F(©)d(&)de

keZ

-/ (Zf E+B7R)IE+ 5 1k>>> F)d(e)de

keZ

/R<Zf €+ 87k +1/2)0(¢+ 57 <k+1/2)>) F(©)o(e)de

kEZ

= I+ 1.
Similarly, in view of (2.11), we have

I = BZZ‘FQWB ‘

meN jEZ

_ Bz/ﬂ{(zpamﬂgw) Fom ()¢,

meN keZ

= 3 D> / (Zf HE+R)SBHE+R) —am)) (BB — am)dg

meN keZ

= Z/(ngw k)& + - %—am)) F(©)o(€ — am)de,

meN keZ

and

—

I, = 5 Z Z j+mF (=) Fams(=J)

- 52 / “am,6(§ '<2Fam,ﬁ(§+j+1/2)) d¢
= /f P(B7IE + am)
(Zf W€+ +1/2)9(8- (£+j+1/2)—am)> d¢

= /f d(€ + am)

meN

(Zf€+5 G+ 1/2)d(E + B (J+1/2)—am)> de.

JEZL
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By similar arguments, we have

———

I3 = 522 HmF—amﬁ J)Famﬂ(_J)

meN jeZ
= f B — am))
(Zf N+ +1/2)(8 (§+j+1/2)+am)) dg

= /f £ —am))

mEN

(Zfsw Y +1/2))0(€ + B~ <y+1/2)+am>)d§,

JEZ
and

Iy = BZZ‘FO”W

meN jeZ

= 3 Z /R (Zf HE+ER)O(BE+ ) +am>> F(B1)S(B7¢ + am)d¢

meN keZ

= Z/(ZMW h)S(E + 8- 1k+am>) F©)9(€ + am)de.

meN kEZ

We shall justify in Lemma 2.4 below the change of the orders of integration and summation
in next few steps. Consequently,

L+Li+1 = Z/R<Zf5+ﬁlk 5+61k—oam)>f<£>¢(£—am)d£

meZ keZ
/(Zf§+6 'hf >Z¢ — am)@(¢ + Bk — am)dé
keZ mez
= [ Yt s mi@aes
R kez
and
If+ 1+ 1 f €+ozm
0 2 3 mEZ /
'(Zﬂﬁﬁ (J+1/2)$(&+ 8- (j+1/2)—am)>d§
JEZ

/R F(E+ 570k + 1/2)) Ap(€)de.

keZ
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This together with (2.8), we obtain

/R 7 (e + 57 ) () Di()de

keZ

/R F(E+ 571k + 1/2)) Ar(€) .

keZ
This completes the proof. ([l

The following technical result justifies the change of the order of integration and summa-
tion performed in the proof of Proposition 2.3.

Lemma 2.4. Let o, 3 > 0. If f € D and ¢ € L*(R), then

(212) Z/(me )l o6 + 5 %—am)\) FE)11(€ — am)|de < oo,

MEZ keZ

and

(213) K = / |F NS + am)]
mEZL
- (Z FE+B7 5 +1/2) b + 871G +1/2) - am>1> € < oo.

JEZ
To prove Lemma 2.4 (2.12), it suffices to show that
(2.14) [ 1t + 51| )16 - am)Pde < .

kEZ meZ
This is because

’2d3(€ —am)(&+ Bk — am)‘ < |p(€ — am))® + ‘qE(f + 8% — am)

2

. 2
We remark that the summation involving ‘qb(ﬁ + 87k — am)’ reduced to (2.14) via the

change of variable & — & — f7'k. And (2.14) is an immediate consequence of the following
lemma

Lemma 2.5. Suppose 0 < a <b< oo, f € L>*(R), and supp fc {£:a < |£| <b}, then
= > f €+ 87 k+am)[|f(E+am)| S|l

k,m€eZ

for almost every & € R.
Proof. When |37'k| > § = b — a, we have ’f(f + B k4 am) (€ + am)‘ = 0. Then

2 £ Y Y €+ B8k am)f(e+am)

mez |B~1k|<8

S G Y |7 +am)| 1l S 1l

meZ
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Since
’2¢3(§ +am)p(& + BNk +1/2) — am)| < (€ + am)|? + |6(E + Bk + 1/2) — am) i ,
we note, to prove Lemma 2.4 (2.13), it suffices to prove

@15) [ S I+ A UG + am) e < o

kEZ meZ

R 2
It is clear that the summation involving ‘(b(& + 871k +1/2) —am)| reduces to (2.15)

via the change of variable £ — ¢ — 871(k+1/2). And (2.15) is an immediate consequence of
the following lemma

Lemma 2.6. Suppose 0 < a <b< oo, f € L>*(R), supp fc {:a < |£| <b}, then
S(€) = > 1+ k+1/2) —am)||f (€ — am)| S |1 f]l e,
km€eZ

for almost every £ € R.
Proof. Since the proof is similar to that of Lemma 2.5 we will omit it. U

Proof of Lemma 2.4. Lemma 2.4 follows from the observations we made above, together
with Lemmas 2.5 and 2.6. ]

Remark 2.2. As a consequence of Lemma 2.4, we may conclude that ®;, A, € L}, (R).
Indeed,

(1) Taking f = Xk, where K C R is any compact set, and fixing ko € Z, by Lemma 2.4
we obtain

/K (Z (B — am)| |(€ + B-1ko — am)\> Xk (€ + B ko)dé < oo,

mEZ

It follows that ®_x, € Lj,.(R), and so @y, € L}, .(R).

(2) Taking f = Xk, where K C R is any compact set, and firing kg € Z, by Lemma 2.4
we obtain

/K (Z [6(& + am)| }95(5 + 57 (ko +1/2) — am)\) X (§+ B (ko +1/2))dg < o0.

meZ

It follows that Ay, (& — B (ko +1/2)) € L} (R), and so Ay € L} (R).

loc loc
We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. ((b) = (a)). Assume that ®;(§) = dx0 a.e. for each k € Z, and
Ag(§) = 0 a.e. for each k € Z. Then by Proposition 2.3, it follows that

1172 = D0 1t P
meNgy jJEZ

for all f € D. By Proposition 1.2(2), we may conclude that the above equality holds for all
f € L*(R). This proves that statement (b) implies statement (a).
((a) = (b)). Suppose that (a) holds. Therefore, by Proposition 2.3 we have
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216) 1 = S van) P = [ 30 F€+BRAORMEE + T

kEZ

for all f € D.

Let & € R\ Z. Choose ¢ > 0 so that B(§) NZ = (§& — €,& +€) NZ = 0, and set
f= XB.(¢o)- Then for & € Be(&), by (2.16) , we have ®y(§) = 1. Since &, is arbitrary, we
have &y =1 a.e.. Since &y =1 a.e., (2.16) gives

(2.17) 0_/IR >+ R)f(E

0£kEZ

€)de + /R F(E+ 571k + 1/2)) Ax(€)de.

kEZ

We claim that &, =0 a.e. for all 0 # k € Z and Ay, = 0 a.e. for all k € Z.
By a polarization argument (see e.g. [16, p.362, Section 7.1]) of (2.17) we obtain

(2.18) 0_/]R &+ BR)f(€ d§+/R 9E+ 87k +1/2)) Ar(€)dE

0+£keZ keZ

for all f,g € D.

Let us fix kg # 0 and choose a point & of differentiability of the integral of ®;, such that
0 # & # & + B 'ko. By Remark 2.2, we have @, € L (R). Hence, almost every point
of R is point of differentiability of the integral of ®j,. This means, if &, is such a point, by
Lebesgue differentiation theorem, we have

(2.19) limy m /R Dy (€)dE = By (£o).

We consider § > 0 sufficiently small so that both Bj(&y) and Bjs(&o + ko) lie within R\ {0}.
Let fs and g5 in D be functions such that

- 1

fs(&) = MT@()))XBé(go)(g)v
and
N P——— (©)
W alBa(gy)) e

Note that gs(¢) = fs(¢ — B~ "ko) and

— o 1
(2.20) [5(§)gs(& + 8 k‘o)—mXBa(éo)(f)



BIMODAL WILSON SYSTEMS 13

Substituting fs, gs in (2.18), and using (2.20), we obtain

0 = / Go(€+ B k) Fr©)Dio( e+ | ST Gs(€ + 57k F5(€)DelE)de

R k=£0,ko

1 ) -
= m/}gé(&))@ko(ﬁ)d@r Rk%095(£+5 k) fs(&)®(&)dE

+ / T ()€ + Bk + 1/2)) Ar(€)de

1

- - ) d J Ps.
(B e)) /BM tw(Q)dE + Js 1 Fs

By (2.19), to establish that ®;, (&) = 0, it suffices to prove that

0—0 6—0

Assume that E(f)ﬁg(& + 87'k) = E(f)ﬁ;(f + 71k — ko)) # 0, for some k # kg. Then
1€ —&| < 0 and [ + 871Kk — ko) — &| < 0. But this implies we have

187 (k — ko)| = €+ B (k — ko) — & — &+ & < 26.

Taking § — 0, we obtain k = ko which is a contradiction. Therefore ﬁ(f‘) G(E+p7k) =0
for all k # k. It follows that J; — 0 as § — 0. o

Suppose that for some k # kg, we have ﬁ;(g)g(g(g + 871 k+1/2)) = ﬁ;({)ﬁ;(f + Bk —
ko)+(28)71) # 0. Then |€ —&| < § and [E+ 871k — ko) + (28) 71 — &| < 0. But this implies
we have

B7(k — ko) < |87 (k — ko) + (28) 7| = [€ + 871 (k — ko) + (28) ™" — &0 — £ + &l < 20

Taking  — 0, we get k = ko, which is a contradiction.

Next, assume that for k = ko, f5(£)gs(€ + 8 (k+1/2)) = E(f)ﬁ;(ﬁ +(28)71) # 0. Then
1€ —&| < d and [€+ (28)7 — & < 6. But this implies we have

1(26) 7 = [+ (28)7 — & — €+ &l < 26.

Taking & — 0, we get a contradiction. Therefore f5(€)gs(€+ B (k+1/2)) = 0 for all k € Z.
It follows that Ps — 0 as § — 0. Since kg is arbitrary, we have ®4(£) =0 for 0 # k € Z.

The proof that Ay = 0 a.e. for all k € Z is similar to the above using the functions fs and
gs in D be defined by

A 1
fs(§) = M(T@O))X&s(fo)(f),

and
1

95(§) = mma(éow—wkm/z))(f)-

We can now prove Corollary 2.2
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Proof of Corollary 2.2 . Suppose that
I1llz> = 755
§R<Xj7m7 Y3,m> =0
for all (j,m) € Z x N. Then, we have ||¢;0||z2 = v/20]||¢||r2 =1 for j € Z, and
1jmllZ = 1 XgmllZe + Vil 22 + 2R(Xm, Vi)
= 2B)16l1L2 + 2R(Xm, Vi) = 1.

The converse easily follows.

3. PARSEVAL WILSON FRAMES

In this section we connect Gabor tight frames to the Wilson systems we defined. In
particular, one of our main result is Theorem 3.1 from which Theorem 1.4 follows.

3.1. From tight Gabor frames to Parseval Wilson frames. We can now state and
prove a result that links Gabor frames to the Wilson systems defined in the Introduction.

Theorem 3.1. Let ¢ € L*(R) and o, 8 > 0. The following two statements are equivalent.

(a) The Gabor system G(¢,a, B) is a tight frame for L*(R) with frame bound 371, and
Ar =0 a.e. for all k € Z, where Ay, was defined in Theorem 2.1.
(b) The Wilson system W(¢, «, B) is a Parseval frame for L*(R).

Proof of Theorem 3.1. ((a) == (b)). Assume that (a) holds. By Proposition 1.1, if
G(¢,a, B) is a tight frame with frame bound S~!, then ®;(¢) = 0 a.e. for all k € Z.
Together with the second condition of (a) we conclude using Theorem 2.1 that (b) holds.

((b) = (a)). The converse follows from Theorem 2.1, and Proposition 1.1. O

The following consequence easily follows from Theorem 3.1.

Corollary 3.2. Let ¢ € L*(R) and o, 8 > 0. Let X, and Y}, be defined by

_ ,—2mifBjam
{Xj,m =e B ¢j,m7

}/j,m — (_1)j+m€2ﬂ'iﬁjo¢m¢j,_m.

Suppose that the Gabor system G(¢, v, 8) is a tight frame for L*(R) with frame bound 571,
and Ay =0 a.e. for all k € Z. Then, the Wilson system W(¢, «, 3) is an orthonormal basis

for L2(R) if and only if
{||¢||L2 = 4

§R<X]m7}/Jm> =0
for all (j,m) € Z x N,

Proof. The proof follows from Theorem 3.1 and Corollary 2.2.

Remark 3.1. Here are some observations from Theorem 3.1.
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(1) Suppose that o« = 1 and 5 = % where n is any odd natural number. If we assume

that ¢ is a real-valued function, then Ar(§) = 0 is automatically satisfied. Indeed,
in this case, by a change of variable (m +— 2k + 1 — m) over summation, we obtain
Ap(§) = —Ax(§), that is, Ap(§) = 0.

(2) Suppose that o = 1 and 71 € N and ¢ is real valued. Then we shall construct a
generator ¢ of Wilson system in Theorem 3.1, using the Zak transform, see Section

/.

We conclude this section by stating an analogue of Theorem 3.1 in higher dimensions.
Since the proofs are identical with the obvious modifications, we omit them.

To state these results we need the following notations. Put N¢ = {0} UN¢ and 1/2 =
(1/2,---,1/2) € RL Let a = (ay,-++ ,aq),b = (by,-+- ,bg) € R% Let A and B be diagonal
matrices with diagonal entries {a1, ...., aq} and {by, ..., by} respectively. Assume that det B #
0. Then B! = diag{bi,...,bq}, and put b* = |det B|. For m = (m4,...,myq) € Z% Am =
(myay, ..., mgaq) as usual. Let ¢ : R? — C be a nice function. We consider the multivariate
Gabor system

G(¢, A, B) = {¢jm}jmezt = {bjm(x) = 24" ¢(x — Bj)}jmeza
We define a family generated by arbitrary time-frequency shifts
b = o(x — Bj) ifm=0,j€Z
Jm 6—2m’Bj-Am¢j7m(l.) + 62mBj'Am¢j7_m(l') lfj c Zd, 0 7& m e Ng
The collections of these functions is denoted by
W(p, A, B) = {jm : j € 2%, m € Ni}.
We call W(¢, A, B) the Wilson system. Specifically, we have following result.
Theorem 3.3. The following statements are equivalent:
(a) The Gabor system
G(¢, A, B) = {4 p(x — Bj) :m, j € L}
is a tight frame for L?*(RY) with frame bound (det B)™!, and A} = 0 a.e. for all
k € N¢, where
ANE) = D (=1)"p(&+ Am)p(§ + B (k +1/2) — Am).
0£AmeZ4

(b) The Wilson system W(¢, A, B) is a Parseval frame for L*(R?).

3.2. Examples of generator of Wilson systems. In this subsection we prove that there
exists rapidly decaying C'*° function ¢ satisfying the hypothesis of Theorem 3.1. Thus we
seek a function ¢ € L*(R) which satisfies

Or(8) = Z O(& — am)P(& + B~k — am) = g a.e for each k € Z,

mMEZ

Ap(€) = Z(—l)mqg(ﬁ + am)p(€ + B~k +1/2) — am) = 0 a.e for each k € Z.
meZ
We give two classes of examples, one when a8 = 1/2, which is the classical case developed
in [9, 1]. The second family of examples concerns the case 5 € (0,1/2) and a = 1.
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Example 3.1. In this example we assume ozﬁ = 1/2 and recovers the classical case. Define
b= X[0,0]- We note that ||¢||7. = ||q5|| = 25, and ¢ is supported in [0,1/28]. Since y(€) is

periodic with period o, we only needs to check what happens for 0 < & < a. Since the support
of ¢ is [0,a], we have Dy =1 a.e., B, = 0 a.e. for k #0, and Ay = 0 a.e. for all k € 7.

We also note that ¢(€)p(€ + 2am) = 0 for all € € R and all m € N. On the other hand, by
the Plancherel theorem and (2.1), we have

(3.1) (K Yim) = (K i) = (<17 [ G616+ 2am) e

Hence by (3.1), it follows that Re(X;,,Y;m) =0 for all (j,m) € Z x N. Thus, this example
satisfies all the hypotheses of Theorem 3.1.

Example 3.2. Let 5 € (0,1/2), and a = 1. For this case, we choose a function ¢ : R — C
supported in B,(0) = {¢ E R: || <}, where v = = — € for € > 0 suitable small enough so

that 1 < 2, that 1s, 1 < 55 — 2e.

We note that for B € (O, 1/2), we hcwe 1< 1/2@ and hence we may choose € > 0 so that
1< % —2e¢. (For fix > 0, take 2¢ = B —1—¢€ for suitable small € > 0 and notice that for
this choice of €, we have v < 1.)

For this qg, we note that

HENDE T F1h) =0
for allO #k € Z, and

HED(E+ Bk +1/2)) =

for all k € Z. In fact, if possible, assume that k # 0 and qg(f)qg(f + B71k) £ 0, then |£] <~
and |£ + B~ k| < ~y. But this implies we have

B k| =1 =Bk =| =Bk — &+ <2v.

L we have k| < 28y < 1/2, therefore we must have k = 0, which is a con-

48
tradiction. In fact, if possible, assume that ¢()P(& + =1 (k +1/2)) # 0, then €| < ~ and
€+ 87k +1/2))| < ~. But this implies
B~ (k+1/2)| =] =B~ (k+1/2) — £+ €] < 2v.
Since v < B’ we have |k + 1/2| < 2By < 1/2 but this is not possible as k € Z. Thus, we
have @, =0 a.e. for all0 #k € Z and Yy =0 a.e. for all k € Z.
Neat, we wish to show that (&) = >, oz |6(E —m)|2 =1 a.e.. Since this sum is periodic

in & with period 1, we only needs to check what happen for 0 < & < 1. To this end, consider
smooth function G : R — [0, 1] satisfying the following properties:

Cla) = {0 if x<—y+1,

Since v <

1 if x>n7.
We define the function gzg "R—=R by

o sin[SGE+1)] if € <0,
(&) = {cos (2G(9)) if £ > 0.

We note that ¢ is supported in [—7,7]-
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Since ¢ is supported in B,(0) C [-1,1], it follows that B(6)D(€ +2m) = 0 for all m € N.
In fact, if $(E)P(E+2m) # 0, then |€] < v and |& + 2m| < ~. But this implies we have
12m] < |€+ 2m| + [€] < 27, and so |m| < v, which is contradiction as v < 1. Thus, for
real ¢ with support in B,(0) C [-1,1], to show ®; = 1, we only need to ascertain that
@2(5) + ng52(§ — 1) for all 0 < ¢ < 1. This is easy to verify. For the above defined ngS, we have

F©)+ (€~ 1) = cos* (36(0)) +sin® (56(9)) =1, (€€ [0,1]),

Since ¢ € C(R), we have ¢ € S(R). We note that this ¢ satisfies the hypothesis of
Theorems 2.1 and 3.1.

Remark 3.2. The Parseval Wilson frames of Example 3.2 cannot lead to an ONB. Indeed,
in order to have an ONB one must also choose ¢ so that ||d|l2 = 1/+/28 and Re(Xjm, Yim) =
0 for all (j,m) € Z x N. However, given a function ¢ € S(R) constructed in Example 3.2,
we note that ¢ is supported in [—C,C] with 1/2 < C < 1 and

C
162 = 18] = /

—C

A 1 ~ 1 A A

o) = [ 1P = [ 6P + 16 - DPds =1
-1 0

which happens only when = 1/2.

We can now prove Theorem 1.4

Proof of Theorem 1.4. Choose ¢ as in Example 3.2. O

4. THE ZAK TRANSFORM AND WILSON SYSTEMS

In this section we construct example of generators ¢ that satisfy the hypothesis of The-
orem 3.1 and such that ¢ and qg have exponential decay. To achieve this we extended a
construction originally given in [9] to the case of Gabor frame of redundancy N € N when
N > 3. The key tool needed to deal with this case is the Zak transform. Using this we have
the following results.

Theorem 4.1. Let ¢ be real functions such that |p(€)| < (1+|€])"17¢ and 5 = 1/(2n) where
n 1s any odd natural number. Then the following are equivalent:

(1) The Gabor system G(¢, 1, 3) is a tight frame for L*(R) with frame bound 3.
(2) The Wilson system W(¢, 1, B) is a Parseval frame for L*(R).

~ ~

(3) The Zak transform Zz¢ of ¢ satisfies

gl 2 1
> |Zsb g on)| =3
r=0 6
for all most all z,& € [0, 1].
Furthermore, if one of the above statements holds (hence all of them hold) , then the Parse-
val Wilson frame W(, 1, ) is an orthonormal basis for L*(R) if and only if Re(X;m, Yim) =

0 for all (j,m) € Z x N and ||¢|/2 = 1/v/28, where X,,, and Yj,, were defined in Theo-
rem 3.1.
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We shall prove the above theorems at the end of the section. To this end, we first develop
some tools using Zak transform. In particular, this framework will allow us to convert the
infinitely many conditions Theorem 2.1 (b) (one for every k) into a single condition which
can be tested (see Proposition 4.3 below). Thus, we show how to use the Zak transform
to construct smooth functions that satisfy the hypotheses of Theorem 2.1 and Theorem 3.1
(see Theorem 4.4 below).

Given f > 0, we define the Zak transform of f € S(R) by

(4.1) Z3f(,€) = \/—Zf

keZ

The two-variable function F' = Zsf is periodic in the first variable and “semi-periodic” in
the second variable:

(42) Z@f(]? + 175) = Zﬁf(I,é), ng(l’,£ + 1) = e:t27rixZ5f(‘r7€>‘

The set of all functions F' of two variables satisfying the periodicity conditions (4.2) can be
equipped with the norm

(4.3) |F|? = / / (. €)|2drde.

We will denote the closure of this set, under the norm (4.3), by Z. A function F'is in Z if
and only if its restriction to [0,1) x [0, 1) is square integrable and it satisfies the periodicity
conditions almost everywhere. It follows that Z is isomorphic with L?([0,1)?) and the map
Zg defined by (4.1) can be extended to unitary map from L*(R) to Z :

(4.4) /[ N1 ©)Pde = |1

The functions E,, ,(x,&), defined by
Epn(z,8) = 2™ for . & €[0,1)

constitute an orthonormal basis for Z. Let ¢ € S(R). The inverse transform of (4.1) is given
by

(45) o) = /B /0 Zs (e, B6)da

Lemma 4.2. Let ¢ € S(R) and 7' € N. Then we have

B2-1
Zgp(x,€) = Be2mice j;o €2m£jzﬁ¢ ( 5% xﬁ_'_—j)

and

B2-1 .
Zsd(w,€) = BT Y T Zyg (5 %, — B - )
j=0

Proof. Denote T:cf( )= f(t—x), Mgf( ) = 2™t f(t). For fixed € and 3, put h(t) = ¢(871(E—
t)) (t € R). Then h(y) = Be 2"%¥¢(—By) (y € R). Using the Poisson summation formula
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(see e.g., [13, p.16 (1.35)]), we find

Zg¢($, és) _ \/_ Z (b 5 k 2mkm _ \/_ Z h 27mkm

kEZ kEZ
= Z (M, h)( Z Toh(k
\/_ kEZ kJEZ
_ 62mfm Z (b(_ﬁ(k _ .T 67271*1'514:
keZ

_ 2m§az % ¢ ( ( k)) e—2m’§k‘

Noticing Z = {72k —j: k€ Z,7=0,1,...,(87% — 1)}, we may rewrite

S () - B R ()

j=0 keZ
B2-1

NG 2 754 ( 2573”4'])‘

=0

This completes the proof of first identity. Since the second identity can be obtained similarly,
we shall omit the details. 0]

Proposition 4.3. Let ¢ be a real-valued function such that ngS and ¢ have exponential decay.
Suppose that o = 1 and = € N. Then

Z¢§ m)o(& 4+ Bk —m) = 0k a.e. for each k € Z

meZ

if and only if the Zak transform Zg(i ofé satisfies

g1

(4.6 > [abwe-onf =3

for all most all x,& € [0, 1].
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Proof. With the assumptions on ¢ and ngS all the calculations that follow are justified. Noticing
Z={B"'m+r:meZr=0,1,.,(8"—1)} and using (4.5) and (4.2), we have

K = > $&-m)d&+p"k—m)

meZ

> / / Z3d(a, B(E —m)) Zsd(a', BE — m) + k)dada’

meZ

= ﬁZ/O /O Zs6 <fc %))Zm% (:c fﬁ__Zn )d:cd:c’

_ BZZ//ZBQs( ) < —m—i—k)dmdm’
r=0 meZ
_ ﬁ Z Z/ / —2mim(z+z') 27rzx ko7 ¢( ( )dxdx
r=0 meZ
= p Z Z/ o 2mima 7 ¢( 56 ) (/01 ZBQB (l‘/ i:‘) eQm'x/(k—m)dl,/> dr
r=0 meZ
B1-1
= f Z / Zggb (Z ck_me_zmm””> dx
mEZL
g-1_1
_ ﬁ Z / Zﬁ(b( z, 6 - > Zcme2ﬂzmx> 27rilc:pdaj
meZ
B1-1
_ /1 ( ’ fﬁtlr) 26—27rizkdx7

, gif) e~ 2mir'(m=k) 4o/ is the Fourier coefficient of function Z 545 <-, 5:7")

where ¢j_,, = fol Zg(ﬁ (x’ 5

at the point m — k. Hence, the proof follows.

O ~

We can construct explicit “nice” ¢ that satisfying hypothesis of Theorem 3.1 by construct-
ing ¢ satisfying (4.6). The method we used is an extension of the construction given in [9,
Section 4] for the case a« =1, § = 1/2.

We start with a real-valued function g with exponential decay,

wn) {rgm\ < Ce Ml 3 eR N> 0,

9(&)] < Ce il ¢ e R, u> 0.

The function g will be used as seed to construct a function in Z (see (4.11) below) that
satisfies the condition of Proposition 4.3 (4.6).

Observe that G := Zgg is a well-defined continuous and bounded function. Furthermore,
since ¢ is real-valued we have, for z, ¢ € R,
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Assume further that

g1-1
(4.9) inf Z |G (x,& = Br))* >
We then define
(4.10) 6=27;'0,
where
(4.11) Uz, ):% 1 G, ¢) o
(G e )P
and

VA | (e, BE)d

Theorem 4.4. The function ¢, defined by (4.10), is real-valued and satisfies (4.6). Further-
more, ¢ and ¢ have exponential decay.

Sketch of the Proof. The detail proof for the case a« = 1, 8 = 1/2 can be found in [9, Theorem
4.1]. Since the main ideas for the generalization is similar, we shall highlight only the crucial
points and omit the details. Now, for the clarity of presentation, we divide the sketch proof
into four steps.

Step I: It follows from (4.8) and (4.11) that ¥U(—=z,&) = ¥(z,£) and so, using (4.2) and

(4.5), we have $(¢) = (&)
Step II: The function ¢ has an exponential decay. To achieve this, we may follow the
procedure:

1. Because of the decay condition (4.7), the series

G(z,8) =Gz +ir,§) = fZQW” g (B7HE=10)

LETL

converges absolutely for 7 > —\ /7. The extension G(z, &), for fixed £ € R, is complex
analytic on R + ¢(—\/m, 00) and satisfies

G(z,§+1) = ™ G(2,€)
G(z+ 1,8 =G(2,9).
2. We show that W (see (4.11)) also has analytic extension (the main obstacle is its
denominator). To this end, we define, for z € R +i(—\/m,00),£ € R
Bl

< 5) = Z G(Zaf - BT>G(_Za€ - ﬁ’l“)

Then G(-,€) is analytic on R + i(—\/m, 00) for every £ € R, and

G(z+1,§) =6(2,¢) =6G(x¢+1)
for all z € R+ i(—\/m,00). Using (4.7) and (4.12), G is uniformly continuous on
R + i[—A/7, 00) x R. Because of condition (4.9), there exists A > 0 so that |G| is
bounded below away from zero on (R +i[—X, A]) x R. We can therefore define G~1/2
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as a uniformly continuous function on (R + i[—-\, \]) x R; G(z,£)~1/2

ze€R+1i(—\N), € € R. We can therefore extend (4.11) and define

is analytic in

U(z,€) = %g‘l/Q(Z,Q)G(z,f) ( €R+i(—3,3),£ € R).

3. We use the above extension and its property

U(z+1,8) =¥(z9),
U(z,&+1) =e™=0(z,§)

to prove exponential decay of ¢. To this end, by (4.5) and (4.10) and Cauchy formula,
we have

90 = W [ v seris
- Vi
- VB

0

/ \I/(z‘r,ﬁf)d§+/ \IJ(x+z’A,6§)d§+/A (1 + i1, BE)dE

1
0 0

—nA
Se ™

1
/ V(x4 A, 5E)dE
0

for £ > 0 and some 0 < A < . For ¢ < 0 we may use the similar argument, but we
deform the integration path by going into the Imz < 0 the half plane.

Step III: The ¢ has an exponential decay. To achieve this, we use the connection (Lemma
4.2) between the Zak transforms of a function and of its Fourier transform and similar
procedure as in the previous step. For the clarity, we briefly highlight substeps:

1. G can be extended to a uniformly continuous function on R x (R +i(u/4m, 00)), and
that, for every z € R, G(z,£ + i0) is analytic in § +i0 € R+ i(u/4m, 00).
2. We define, for z € R, w = { +i0 € R +i(u/4m, 00),

]
I(z,w) = Z G(z,w — pr)G(—z,w — Pr).

r=0

Again I'(z,w) is analytic, and there exists & > 0 so that |I'| is bounded below away
from zero on Rx (R+i[—f, fi]). It follows that ¥ has an extension to R x (R+i[—f, fi]),

U(z, & +i0) = %G(m,f + i) (x, & + io) "2,

which is analytic in £ + 70 for every fixed x, and which satisfies

U(z,w+1) =™ (x,w),
U(r+1,w) =¥Y(z,w).



BIMODAL WILSON SYSTEMS 23

3. By Lemma 4.5 and (4.2), we have

1
06) = VB [ Zuotw. sy

B72-1

_ 5\/32 /0 ezﬁﬂiﬁ(jJ“y)ZﬁgE( B~ 1§’yﬁ+3>
j=0
Y s y+J

:B\/BZ/Oemmf(Hy <5552>
5=0

Now similarly to the the last part of Step II, we may obtain the the desired estimate.
Step IV: In view of (4.11), notice that
pi-1 pgi-1

Z 256 (.6~ pr)| = Z @ (2,6 — )

-1

B Gz, & — Br))
5; TG (w6 — e — pr))?

(4.12) _ ﬁf Gla, & — 6P

b= L TTIG @ e - ol
By Lemma 4.2, for r > 1, we notice
Bl—1+r B -1
> G@e=pOPr = > |G(x,6- B0
t=r t=r

|G (2,6 = BB =1+ )|+ |G (2,6 = BB =1+ 1)|
B-1-1

= ) |G c-p0)”
{=r
+HG (2, & =) + |G (2,6 = Blr —1) = 1)

B1-1

Z ’G(l‘,f - 5€)|2 .
=0

This together with (4.12), we have

g1-1 1
Z 1256 (.6~ 51| -5

This together with preceding steps completes the proof. 0
We are now ready to prove Theorems 4.1.

Proof of Theorem 4.1. Combining Theorems 3.1 and 4.4, Remark 3.1(1) and Proposition 4.3,
the proof follows.
For the last part, we proceed as in the proof of the last part of Theorem 3.1. O
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Proof of Theorem 1.5. Since Zak transform Zs : L*(R) — Z is surjective, to prove Theorem
1.5, it suffices to prove that there does not exist any generator ¢, defined by (4.10) (with any
seed function g), which can convert the Wilson system (1.4) into an ONB for L?(R) unless
gl =2.

We shall prove this by contradiction. If possible, suppose that there exist generator ¢,
defined by (4.10) (for some seed function g), which can convert the Wilson system (1.4) into
an ONB for L*(R) and 7! # 2. Then by the last part of Theorem 3.1 (or Theorem 4.1), we

must have ||¢[|z2 = |||z = 1/v/2B. On the other hand, using (4.4), we obtain

”ﬁbH%mR) = ||Z,6T1‘IJH%2(R) = H‘I’H%Z([OJP)
1 o A 2
BJo Jo ZT:O |Z,89 ($,§—5T)|
= 5_1||h||%2(1r)7
where h(z,§) = Gle,58) 77, (2, € T). Consider translation operator in the

(3020 G @ pe—n)1?)
second variable T} : L*(T?) — L*(T?) : h(z,y) — h(z,& — BL), and we have || T;h||2 = ||h| 12
for £ € N. This together with (4.2), we obtain

g1
5_1||h||%2(1r2) = ||h||%2(1r2) + Z ||T£h||%2(1r)
=1
_ /1 ' s 259, €= BOP ) 4e — 1

71_

0 Jo 3007 | Zsg (2,6 = Br)?

Thus, we have H(%H%Q(R) =1 a contradiction to the hypothesis 371 # 2. O
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